- 2 -

FG IPTV-IL- xxx

	[image: image1.png]

	INTERNATIONAL TELECOMMUNICATION UNION
	Focus Group On IPTV

	
	TELECOMMUNICATION
STANDARDIZATION SECTOR

STUDY PERIOD 2005-2008
	FG IPTV-IL-0055

	
	
	English only

	WG(s): ALL
	
	4th FG IPTV meeting:
Bled, Slovenia, 7-11 May 2007

	INCOMING LIAISON STATEMENT

	Source:
	AVS (Audio-Visual Coding Standard Working Group), China

	Title:
	Liaison Statement from AVS Working Group – Specifications on Audio
and Video Coding (Part 2)

Dear Ghassem Koleyni,

AVS standardization group likes to submit the English translated AVS spec to the ITU-T web-site. The spec is only for the ITU-T FG IPTV standardization information usage.

Any expert in the ITU-T FG IPTV group can require this spec from yun-he-ie3@ieee.org for getting one copy.

The official Chinese version of the standard can be publicly required from:

 http://www.spc.net.cn/produce/showonebook.asp?strid=28188
FG IPTV can take parts of it and use the parts in the FG IPTV standardization working documents. When revising the text, the technique correctness needs to be checked.

Sincerely yours,

[image: image2.emf]C:\AVS Part 2 Video for ITU-T IPTV FG.PDF

Yun He

Tsinghua University

On behalf of AVS group

	Attention: This is a document submitted to the work of ITU-T and is intended for use by the participants to the activities of ITU-T's Focus Group on IPTV, and their respective staff and collaborators in their ITU-related work. It is made publicly available for information purposes but shall not be redistributed without the prior written consent of ITU. Copyright on this document is owned by the author, unless otherwise mentioned. This document is not an ITU-T Recommendation, an ITU publication, or part thereof.

_1234963285/AVS Part 2 Video for ITU-T IPTV FG.PDF

Declaration of the Copyright

This is an English translation of the Final Committee Draft of a National

Standard named "Information Technology Advanced Audio and Video

Coding Part 2: Video" (“AVS-P2” for short) that was approved and

released as GB/T 20090.2-2006 by the General Administration of Quality

Supervision, Inspection and Quarantine of the People's Republic of

China. For the purpose of assisting the international experts or

companies to understand AVS standard and develop AVS products, the

secretariat of AVS Working Group organized specialists translating AVS-

P2 into English. The Chinese version of AVS-P2 is the unique official

version. If there is any inconsistency between the understanding of

Chinese version and English translation, the standard in Chinese version

prevails. AVS Working Group shall not take the responsibility for the

inconsistency and any result related with the inconsistency.

AVS workgroup reserves the copyright of the English translation. Any

individual or legal identity is prohibited from copying, modifying, or

reproducing the copy offered by AVS workgroup or transferring the copy

to any third parties in whatever form. The AVS workgroup hereby

provides the English translation (without chapter 9) to ITU-T IPTV FG for

standardization activity. The usage scope of the translation is limited in

ITU-T IPTV FG. Without the agreement approval and authorization from

AVS workgroup, any company or individual who gets the English

translation should not use it outside ITU-T IPTV FG. If a company or

individual intends to use the English translation outside ITU-T IPTV FG,

it or he/she should apply for a copy from AVS Working Group under the

guideline at

http://www.avs.org.cn/en/standard/standard_download.asp. Otherwise,

the consequent liabilities and damages to the third parties or the AVS

workgroup shall be born by the violators.

 1

The Standards of People’s Republic of China

GB/T 20090.2—2006

Information Technology
Advanced Coding of Audio and Video

Part 2: Video（Final Draft without Chapter Nine）

ICS 35.040
L71

 2

TABLE OF CONTENTS

FOREWORD .. 7

0 PROLOGUE.. 8

0.1 PURPOSE ... 8
0.2 APPLICATIONS... 8
0.3 PROFILES AND LEVELS.. 8
0.4 OVERVIEW OF THE DESIGN CHARACTERISTICS ... 8
0.5 PREDICTIVE CODING ... 8
0.6 PICTURE PARTITIONING INTO MACROBLOCKS AND SMALLER PARTITIONS... 9
0.7 TRANSFORM AND QUANTISATION... 9
0.8 HOW TO READ THIS STANDARD.. 9
0.9 AVS PATENT POOL... 9

1 SCOPE ... 10

2 NORMATIVE REFERENCES.. 10

3 DEFINITIONS .. 10

4 ABBREVIATIONS ... 15

5 CONVENTIONS... 15

5.1 ARITHMETIC OPERATORS.. 15
5.2 LOGICAL OPERATORS ... 16
5.3 RELATIONAL OPERATORS ... 16
5.4 BIT-WISE OPERATORS ... 16
5.5 ASSIGNMENT OPERATORS... 16
5.6 MATHEMATICAL FUNCTIONS .. 17
5.7 BITSTREAM SYNTAX, PARSING PROCESS AND DECODING PROCESS.. 17

5.7.1 Description Style... 17
5.7.2 Functions .. 19
5.7.3 Descriptors ... 20
5.7.4 Reserved, Forbidden and Marker ... 20

6 STRUCTURE OF CODED BITSTREAM ... 21

6.1 SEQUENCE... 21
6.1.1 Progressive and Interlaced Sequences ... 21
6.1.2 Sequence Header .. 21

6.2 PICTURES .. 22
6.2.1 Picture Format.. 22
6.2.2 Picture Types .. 23
6.2.3 Frame Reordering .. 23
6.2.4 Reference Picture.. 24

6.3 SLICES... 24
6.4 MACROBLOCKS... 25
6.5 8×8 MACROBLOCK SUB-PARTITIONS.. 25

7 BITSTREAM SYNTAX AND SEMANTICS ... 26

7.1 SYNTAX DESCRIPTION .. 26
7.1.1 Start Code ... 26
7.1.2 Sequence ... 27
7.1.3 Picture .. 31
7.1.4 Slice .. 33
7.1.5 Macroblock ... 34
7.1.6 Block ... 35

7.2 SEMANTICS DESCRIPTION ... 36
7.2.1 Video Extension .. 36
7.2.2 Sequence ... 36
7.2.3 Picture .. 44

 3

7.2.4 Slice .. 48
7.2.5 Macroblock ... 49
7.2.6 Block ... 50

8 PARSING PROCESS ... 50

8.1 KTH-ORDER EXP-GOLOMB CODES ... 51
8.2 UE(V), SE(V) AND ME(V).. 51
8.3 CE(V)... 53
8.1 KTH-ORDER EXP-GOLOMB CODES ... 51
8.2 UE(V), SE(V) AND ME(V).. 51
8.3 CE(V)... 53

9 DECODING PROCESS ... 54

9.1 HIGHER SYNTACTIC STRUCTURES...错误！未定义书签。
9.2 PICTURE HEADER DECODING..错误！未定义书签。
9.3 SLICE DECODING ...错误！未定义书签。
9.4 MACROBLOCK DECODING ...错误！未定义书签。

9.4.1 Macroblock Types...错误！未定义书签。
9.4.2 Intra Prediction Process...错误！未定义书签。
9.4.3 Reference Picture Selection ..错误！未定义书签。
9.4.4 Motion Vector ...错误！未定义书签。
9.4.5 Macroblock coding template...错误！未定义书签。
9.4.6 Quantization Parameter ...错误！未定义书签。

9.5 BLOCK DECODING ..错误！未定义书签。
9.5.1 Variable Length Code Decoding ..错误！未定义书签。
9.5.2 Inverse Scan..错误！未定义书签。

9.6 INVERSE QUANTISATION...错误！未定义书签。
9.6.1 Quantisation Parameter ...错误！未定义书签。
9.6.2 Dequantization..错误！未定义书签。

9.7 INVERSE TRANSFORM ...错误！未定义书签。
9.8 INTRA PREDICTION..错误！未定义书签。

9.8.1 Reference Sample Calculation..错误！未定义书签。
9.8.2 Intra Prediction for Luma Block...错误！未定义书签。
9.8.3 Intra Prediction for Chroma Block...错误！未定义书签。

9.9 INTER PREDICTION ..错误！未定义书签。
9.9.1 Luma Motion Vector Derivation Process ...错误！未定义书签。
9.9.2 Reference Sample Derivation Process..错误！未定义书签。
9.9.3 Weighted Prediction ...错误！未定义书签。

9.10 RECONSTRUCTION..错误！未定义书签。
9.11 LOOP FILTER ..错误！未定义书签。

9.11.1 Derivation Process of Edge Filtering Intensity ..错误！未定义书签。
9.11.2 Derivation Process of Edge Threshold ...错误！未定义书签。
9.11.3 Filtering Process for Bs==2...错误！未定义书签。
9.11.4 Filtering Process for Bs==1...错误！未定义书签。

ANNEX A.. 55

ANNEX B .. 61

B.1 PROFILES.. 61
B.2 LEVELS... 61

B.2.1 Levels Defined in This Standard ... 61
B.2.2 Profile-Independent Level Limits.. 62

ANNEX C.. 65

ANNEX D.. 66

D.1 CONVENTIONS.. 66

 4

D.1.1 Convention 1... 66
D.1.2 Convention 2... 66
D.1.3 Convention 3... 66

D.2 BASIC OPERATION.. 66
D.2.1 Data Enters the Buffer .. 66
D.2.2 Data Removed from the Buffer ... 67

D.3 CHECKING INTERVAL OF THE BBV BUFFER ... 68
D.3.1 Non Low Delay ... 69
D.3.2 Low Delay... 69

 5

LIST OF FIGURES

FIGURE 6-1 VERTICAL AND HORIZONTAL LOCATIONS OF 4:2:0 LUMA AND CHROMA SAMPLES IN A PICUTRE......... 22
FIGURE 6-2 VERTICAL AND HORIZONTAL LOCATIONS OF 4:2:2 LUMA AND CHROMA SAMPLES IN A PICUTRE......... 23
FIGURE 6-3 VERTICAL AND HORIZONTAL LOCATIONS OF 4:4:4 LUMA AND CHROMA SAMPLES IN A PICTURE......... 23
FIGURE 6-4 SLICE STRUCTURE... 25
FIGURE 6-5 MACROBLOCK PARTITIONS... 25
FIGURE 6-6 8×8 PARTITION (4:2:0 FORMATS) .. 26
FIGURE 6-7 8×8 PARTITION (4:2:2 FORMAT).. 26
FIGURE 6-8 8×8 PARTITION (4:4:4 FORMAT).. 26
FIGURE 7-1 THE PRINCIPLE OF CAMERA .. 44
FIGURE 7-2 THE COORDINATES OF CAMERA ... 44
FIGURE 7-3 FRAME CENTRE OFFSET PARAMETERS... 48
FIGURE 9-1 ALL 8×8 INTRA PREDICTION MODES ...错误！未定义书签。
FIGURE 9-2 REFERENCE INDEX ASSIGNMENTS...错误！未定义书签。
FIGURE 9-3 SPATIAL POSITION OF A LUMA BLOCK E AND ITS NEIGHBOURING LUMA BLOCKS A, B, C, AND D错误！

未定义书签。
FIGURE 9-4 16×8 OR 8×16 PREDICTION MODE ...错误！未定义书签。
FIGURE 9-5 INVERSE BLOCK SCAN...错误！未定义书签。
FIGURE 9-6 DERIVATION PROCESS OF MOTION VECTORS IN DIRECT MODE错误！未定义书签。
FIGURE 9-7 SYMMETRICAL MODE ...错误！未定义书签。
FIGURE 9-8 THE POSITION OF INTEGER, HALF AND QUARTER SAMPLES错误！未定义书签。
FIGURE 9-9 RELATIONSHIP BETWEEN VARIABLE POSITIONS AND REFERENCE SAMPLES错误！未定义书签。
FIGURE 9-10 FILTERED EDGES IN A MACROBLOCK ..错误！未定义书签。
FIGURE 9-11 HORIZONTAL OR VERTICAL EDGE SAMPLE OF 8×8 BLOCK.................................错误！未定义书签。

 6

LIST OF TABLES

TABLE 7-1 TYPES AND VALUES OF START CODES .. 27
TABLE 7-2 EXTENSION IDENTIFICATION.. 36
TABLE 7-3 CHROMA FORMAT.. 37
TABLE 7-4 SAMPLE PRECISION .. 37
TABLE 7-5 ASPECT RATIO INFORMATION .. 37
TABLE 7-6 FRAME RATE CODES... 38
TABLE 7-7 VIDEO FORMAT.. 39
TABLE 7-8 COLOUR PRIMARIES ... 39
TABLE 7-9 OPTO-ELECTRONIC TRANSFER CHARACTERISTICS.. 40
TABLE 7-10 MATRIX COEFFICIENTS .. 41
TABLE 7-11 TIME CODE... 45
TABLE 7-12 CODING TYPE OF A PICTURE... 46
TABLE 8-1 KTH-ORDER EXP-GOLOMB CODES ... 51
TABLE 8-2 SE(V) AND CODENUM .. 51
TABLE 8-3 MBCBP AND CODENUM.. 52
TABLE 8-4 MBCBP422 AND CODENUM.. 53
TABLE 9-1 TYPES OF P MACROBLOCKS ...错误！未定义书签。
TABLE 9-2 TYPES OF B MACROBLOCKS...错误！未定义书签。
TABLE 9-3 B_8X8 MBPARTTYPE ..错误！未定义书签。
TABLE 9-4 8×8 LUMA INTRA PREDICTION MODE..错误！未定义书签。
TABLE 9-5 8×8 CHROMA INTRA PREDICTION MODE...错误！未定义书签。
TABLE 9-6 CURRENTQP AND QP OF CHROMA BLOCK ...错误！未定义书签。
TABLE 9-7 DEQUANTTABLE AND SHIFTTABLE ...错误！未定义书签。
TABLE 9-8 THE ELEMENTS OF PREDICTED SAMPLE MATRIX...错误！未定义书签。
TABLE 9-9 RELATIONSHIP BETWEEN INDEXA, INDEXB AND THRESHOLD VALUE α AND β错误！未定义书签。
TABLE 9-10 RELATIONSHIP OF C AND INDEXA ...错误！未定义书签。

 7

Foreword
GB/T 20090, Information Technology - Advanced Coding of Audio and Video, includes the
following parts:
Part 1: System
Part 2: Video
Part 3: Audio
Part 4: Conformance Test
Part 5: Reference Software
Part 6: DRM
Part 7: Mobile Video
Part 8: Transmit AVS via IP network
Part 9: AVS File Format

This standard, GB/T 20090.2, is the second part of GB/T 20090.

Annex A, Annex B, Annex C and Annex D are intergral parts of this Standard.

 8

0 Prologue

0.1 Purpose

This Standard is established in response to the growing need for better compression of moving
pictures for various applications such as digital television broadcasting, digital storage media, Internet
streaming, and communication.

0.2 Applications

This Standard is designed to cover a broad range of applications including but not limited to the
following:

CATV Cable TV on optical networks, copper, etc.
DBS Direct broadcast satellite video services
DSL Digital subscriber line video services
DTTB Digital terrestrial television broadcasting
ISM Interactive storage media (optical disks, etc.)
MMM Multimedia mailing
MSPN Multimedia services over packet networks
RTC Real-time conversational services (videoconferencing, videophone, etc.)
RVS Remote video surveillance

0.3 Profiles and Levels

This Standard can serve a wide range of bit rates, resolutions and qualities. Considering the capability
of interoperation, a limited number of subsets of the syntax are stipulated by means of “profiles” and
“levels”.

A “profile” is a subset of the syntax elements, semantics, and algorithmic features of this Standard.

A “level” is a specified set of limits on the syntax elements and the values that may be taked by the
syntax elements of a certain profile.

0.4 Overview of the Design Characteristics

In this Standard, a number of techniques may be used to achieve highly efficient compression,
including inter prediction, intra prediction, transform, quantization, entropy coding, etc. Inter coding
uses motion vectors for block-based inter prediction to exploit temporal statistical dependencies
between different pictures. Intra coding uses various spatial prediction modes to exploit spatial
statistical dependencies in the source signal for a single picture. The prediction residual is then further
compressed using a transform to remove spatial correlation inside the transform block before it is
quantized, producing an irreversible process that typically discards less important visual information
while forming a close approximation to the source samples. Finally, the motion vectors or intra
prediction modes are multiplexed with the quantization coefficients and encoded using entropy coding.

0.5 Predictive Coding

Intra coding needs not refer to other pictures; Intra coded pictures can provide random access points
to the coded sequence.

Inter coding need to refer to prior coded pictures, and the order of the decoding process can be
different from the order of the source picture capture process in the encoder or the output order from

 9

the decoder for display. In inter coding, motion vector precision can be up to ¼ pixel, and motion
vectors are coded by predictive coding.

0.6 Picture Partitioning into Macroblocks and Smaller Partitions

In this Standard, the basic processing unit of the video decoding process is a macroblock, which
consists of a 16×16 block of luma samples and corresponding blocks of chroma samples. A
macroblock can be further partitioned into sub-macroblocks for prediction. The minimum size of a
sub-macroblock is 8×8.

0.7 Transform and Quantisation

The transform block-size is 8×8. Transform coefficients are scalar quantized.

0.8 How to Read This Standard

It is suggested that the reader starts with clause 1 (Scope) and jumps to clause 3 (Definitions). Clause
6 (Structure of Coded Bitstream) should be read for the specification of coding bitstream construction.
Clause 7 (Bitstream Syntax and Semantics) specifies syntax and semantics of bitstream. Subclause 7.1
(Syntax Description) describes the syntax, which defines the order of appearance of syntax elements
in the bitstream. Subclause 7.2 (Semantics Description) describes the semantics, which specifies the
scope, restrictions, and conditions that are imposed on the syntax elements. The actual parsing for
most syntax elements is specified in clause 8 (Parsing Process). Finally, clause 9 (Decoding Process)
specifies how the syntax elements are mapped into decoded samples. Throughout reading this
specification, the reader can refer to clauses 2 (Normative References), 4 (Abbreviations), 5
(Conventions) and the annex as needed.

0.9 AVS Patent Pool

For further information about AVS Patent Pool, please contact:
 Dr. Huang Tiejun
 Secretary General

Audio and Video Coding Workgroup of China
Addr: No. 31, PO Box 2704, Beijing 10080, P.R.China
Tel: +86 10 58858303
Fax: +86 10 58858301
E-mail: tjhuang@ict.ac.cn
Web: http://www.avs.org.cn

 10

Information Technology - Advanced Coding of Video and Audio
Part 2: Video

1 Scope
GB/T 20090 specifies audio/video coding, decoding, processing and presentation part of Advanced
Audio/Video Coding Technology. It can be applied to HD and SD digital TV broadcasting, laser
digital storage media, internet broadband streaming media, multimedia communication services and
so on.

GB/T 20090.2 specifies video coding method at multiple rates, resolutions and quality, which is
suitable for digital TV broadcasting, interactive storage media, live satellite video service, multimedia
email, multimedia services over packet network, real-time communication services, remote
surveillance and so on. Moreover, it specifies the decoding procedure.

2 Normative References
The following Standards contain provisions that, through reference in this text, constitute provisions
of this Standard. For the references with specified date, all the errata list (excluding the content) or
revised editions published after them will not apply to this Standard. However, this Standard is subject
to revision, and parties to agreements based on this Standard are encouraged to investigate the
possibility of applying the most recent editions of the Standards listed below. For all references
without specified date, their latest editions will apply to this standard.

3 Definitions
For the purposes of this Standard, the following definitions apply.

3.1 Reserved: The term reserved, when used in the clauses specifying some values of a particular

syntax element, is for future extensions of this Standard.

NOTE – These values shall not be used in bitstreams conforming to this Standard.

3.2 Bit string: An ordered string of finite number of bits. The left-most bit is the MSB; the right-

most bit is the LSB.

3.3 Bitstream: A sequence of bits that forms the representation of coded pictures and associated

data forming one or more coded video sequences.

3.4 Bitstream buffer: A buffer to store the bitstream.

3.5 Bitstream order: Arrangement order of coded pictures in a bitstream, which is the same as the

order of picture decoding process.

3.6 Variable length coding: A reversible procedure of entropy coding that assigns shorter

codewords expected to be more frequent symbols and longer codewords to symbols expected to
be less frequent.

3.7 Transform coefficient: A scalar quantity, considered to be in a frequency domain that is

associated with a particular one-dimensional or two-dimensional frequency index in an inverse
transform part of the decoding process.

3.8 Coding representation: A data element as represented in its coded form.

 11

3.9 Encoding process: The process that produces a bitstream conforming to this Standard.

NOTE – This Standard does not specify this process.

3.10 Encoder: An embodiment of an encoding process.

3.11 Coded picture: A coded representation of a picture.

3.12 Flag: A variable that can take one of the two possible values 0 and 1.

3.13 Compensation: The sum of residual samples obtained from syntax elements decoding and the

corresponding prediction value.

3.14 Residual: The difference between a prediction of a sample or data element and its decoded

value.

3.15 Reference index: An index into a list of reference pictures (or fields of reference pictures) in

decoded picture buffer.

3.16 Reference picture: A reference picture contains samples that may be used for inter prediction

in the decoding process of subsequent pictures in decoding order.

3.17 Layer: One of a set of syntactical structures in a non-branching hierarchical relationship.

Higher layers contain lower layers. The coding layers starting from high to low are as follows:
sequence, picture, slice, macroblock and block layers.

3.18 Field: An assembly of alternate rows of a frame. A frame is composed of two fields, a top field

and a bottom field.

3.19 Profile: A specified subset of the syntax elements, semantics, and algorithmic features of this

Standard.

3.20 Non-reference picture: A picture that is not used for inter prediction of any other pictures.

3.21 Component: An array or single sample from one of the three arrays (luma and two chroma)

that make up a field or frame.

3.22 Inverse transform: A part of the decoding process by which a set of transform coefficients are

converted into spatial-domain values.

3.23 Dequantisation: The process by scaling quantization coefficients to get transform coefficients.

3.24 Block: An M×N (M-column by N-row) array of samples, or an M×N array of transform

coefficients.

3.25 Block scan: A specific sequential order of quantization coefficients.

3.26 Luma: An adjective specifying that a sample array or single sample is representing the

monochrome signal related to the primary colours.

NOTE – The symbol used for luma is Y.

3.27 Quantization parameter: A variable used by the decoding process for dequantization of

quantization coefficients.

 12

3.28 Quantization coefficient: The value of transform coefficient before dequantization.

3.29 Raster scan: A mapping of a rectangular two-dimensional pattern to a one-dimensional pattern

such that the first entries in the one-dimensional pattern are from the first top row of the two-
dimensional pattern scanned from left to right, followed similarly by the second, third, etc.
rows of the pattern (going down) each scanned from left to right.

3.30 Macroblock: A 16×16 block of luma samples and two corresponding blocks of chroma

samples.

3.31 Macroblock address: A macroblock address is the index of a macroblock. It starts from the

top-left macroblock in a picture and continues in raster scan order. The initial value is zero.

3.32 Macroblock row: A continuous group of macroblock with same vertical positions from left

boundary to right boundary in one coded picture. The height is 16 luma samples.

3.33 Macroblock location: The two-dimensional coordinates of a macroblock in a picture denoted

by (x, y). For the top left macroblock of the picture (x, y) is equal to (0, 0). x is incremented by
1 for each macroblock column from left to right. y is incremented by 1 for each macroblock
row from top to bottom.

3.34 Backward prediction: Prediction using a future reference picture (in display order).

3.35 Partitioning: The division of a set into subsets such that each element of the set is in exactly

one of the subsets.

3.36 Level: It specifies a set of limits on the syntax elements and the values that may be taken by the

syntax elements of a certain profile.

3.37 AC coefficient: Any transform coefficient for which the frequency index in one or both

dimensions is non-zero.

3.38 Decode processing: The decode processing includes parsing process and decoding process

3.39 Decoding process: The process specified in this Standard that produces decoded pictures from

syntax elements.

3.40 Decoder: An embodiment of a decode processing.

3.41 Decoding order: The order in which the coded pictures are decoded according to the prediction

relations among pictures.

3.42 Decoded picture: A reconstructed picture which is derived from bitstream.

3.43 Decoded picture buffer: A buffer holding decoded pictures for reference, output reordering,

or output delay.

3.44 Parsing process: The process specified in this Standard that reads a bitstream and produces

syntax elements.

3.45 Forbidden: The term forbidden specifies some values of syntax elements. These values shall

not be used in bitstreams conforming to this Standard. The aim of specifying forbidden values
is usually to avoid pseudo start code prefix in bitstream.

 13

3.46 X-profile decoder: A decoder capable of decoding bitstreams conforming to a certain profile.

3.47 Start code: A unique codeword of 32 bits embedded in the bitstream. It has many usages and

can be used to identify the start of a syntax structure in bitstream.

3.48 Forward prediction: Prediction using a previous reference pictures in display order.

3.49 Forward inter decoded picture:

P-picture: A picture that may be decoded using intra prediction from decoded samples within
the same slice or inter prediction from previously-decoded reference pictures, using at most one
motion vector and forward reference index to predict the sample values of each block.

3.50 Chroma: An adjective specifying that a sample array or single sample is representing one of

the two colour difference signals related to the primary colors.

NOTE – The symbols used for a chroma array or sample, are Cb and Cr.

3.51 Sequence: The highest hierarchical structure of coded bitstream, which is comprised one or

more consecutive coded pictures.

3.52 Output reordering delay: The delay between the instance of decoding a coded picture from a

bitstream and the instance of outputting the decoded picture. It is due to the difference between
display order and decoding order of a picture.

3.53 Output processing: It specifies how to derive output frames or fileds from decoded pictures.

3.54 Output order: The order in which decoded pictures are output from the decoded picture buffer,

which is same as the display order of decoded pictures.

3.55 Bidirectional prediction: A combination of forward prediction and backward prediction.

3.56 Bidirectional inter decoded picture:

B-picture: A picture that may be decoded using intra prediction from decoded samples within
the same slice or inter prediction from previously-decoded reference pictures, using at most two
motion vectors and reference indices to predict the sample values of each block.

3.57 Random access: The act of starting the decoding process for a bitstream at a point other than

the beginning of the stream.

3.58 Random access point: A point in a bitstream to start random access.

3.59 Stuffing bits: A bit string inserted into bitstream during encoding. It is disposed off defore

decoding process.

3.60 Slice: An integer number of macroblocks rows ordered consecutively in the raster scan.

3.61 Slice header: A part of a coded slice containing the data elements pertaining to the first or all

macroblocks represented in the slice.

3.62 Skipped macroblock: A macroblock for which no data is coded other than an indication that

the macroblock is to be decoded as “skipped”. This indication may be common to several
macroblocks.

3.63 Picture reordering: A process during which decoded pictures are reordered if there is a

difference between their display order and decoding order.

 14

3.64 Display order: The order to display decoded pictures.

3.65 Sample: A basic element that forms a picture.

3.66 Sample aspect ratio: It specifies, for assisting the display process, which is not specified in

this Standard, the ratio between the intended horizontal distance between the columns and the
intended vertical distance between the rows of the luma sample array in a frame. Sample
aspect ratio is expressed as h:v, where h is horizontal width and v is vertical height (in arbitrary
units of spatial distance).

3.67 Sample value: A value containing sign and magnitude of a sample.

3.68 Run: A number of consecutive data elements represented in the decoding process. In one

context, run refers to the number of zero-valued transform coefficient levels preceding a non-
zero transform coefficient level in the list of transform coefficient levels generated by a zig-zag
scan or a field scan. In other contexts, run refers to a number of skipped macroblocks.

3.69 Prediction: An embodiment of the prediction process.

3.70 Prediction process: The use of a predictor to provide an estimate of the sample value or data

element currently being decoded.

3.71 Prediction value: The previously decoded sample value or the combination of previously

decoded data elements used by the decoding process of the subsequent sample values or data
elements.

3.72 Syntax element: An element of data represented in the bitstream.

3.73 Source: Term used to describe an uncompressed video material or some certain properties of

this material.

3.74 Motion vector: A two-dimensional vector used for inter prediction that provides an offset from

the coordinates in the decoded picture to the coordinates in a reference picture.

3.75 DC coefficient: A transform coefficient for which the frequency index is zero in all dimensions.

3.76 Frame: A frame contains an array of luma samples (Y) and two corresponding arrays of

chroma samples (Cb and Cr).

3.77 Inter coding: Coding of a block, macroblock, slice, or picture that uses inter prediction.

3.78 Inter prediction: A prediction derived from decoded samples of reference pictures other than

the current decoded picture.

3.79 Intra coding: Coding of a block, macroblock, slice, or picture that uses intra prediction.

3.80 Intra decoded picture:

I-picutre: A picture that is decoded using prediction only from decoded samples within the
same slice. If an I-picture is coded as two fields, the first field shall be intra decoded.

3.81 Intra prediction: A prediction derived from the decoded samples of the same decoded slice.

 15

3.82 Byte: A sequence of 8 bits, written and read with the most significant bit on the left and the
least significant bit on the right. When represented in a sequence of data bits, the most
significant bit of a byte is first.

3.83 Byte-aligned: A bit in a bitstream is byte-aligned when its position is an integer multiple of 8

bits from the first bit in the bitstream.

4 Abbreviations
 BBV: Bitstream Buffer Verifier
 CBR: Constant Bit Rate
 CIF: Common Intermediate Format
 LSB: Least Significant Bit
 MB: Macroblock
 MSB: Most Significant Bit
 QCIF: Quarter Common Intermediate Format
 VBR: Variable Bit Rate
 VLC: Variable Length Coding

5 Conventions
The mathematical operators used in this Specification are similar to those used in the C programming
language. However, integer division and arithmetic shift operations are specifically defined.
Numbering and counting conventions generally begin from 0.

5.1 Arithmetic Operators

The following arithmetic operators are defined as follows.

+ Addition

– Subtraction (as a two-argument operator) or negation (as a unary prefix operator)

× Multiplication

a b Exponentiation. Specifies a to the power of b. In other contexts, such notation is used
for superscripting not intended for interpretation as exponentiation.

/ Integer division with truncation of the result toward zero. For example, 7/4 and –7/–4
are truncated to 1 and –7/4 and 7/–4 are truncated to –1.

÷ Used to denote division in mathematical equations where no truncation and rounding
is intended.

b
a Used to denote division in mathematical equations where no truncation or rounding is

intended.

∑
=

b

ai
if)(

 The summation of f(i) with i taking all integer values from a up to and including b.

a % b Modulus. Remainder of a divided by b, defined only for integers a and b with a >= 0
and b > 0.

 16

5.2 Logical Operators

The following logical operators are defined as follows:

a && b Boolean logical “and” of a and b

a | | b Boolean logical “or” of a and b

! Boolean logical “not”

5.3 Relational Operators

The following relational operators are defined as follows:

> Greater than

> = Greater than or equal to

< Less than

< = Less than or equal to

= = Equal to

! = Not equal to

5.4 Bit-wise Operators

The following bit-wise operators are defined as follows:

& Bit-wise “and”. When operating on integer arguments, operates on a two’s
complement representation of the integer value. When operating on a binary
argument that contains fewer bits than another argument, the shorter argument is
extended by adding more significant bits equal to 0.

| Bit-wise “or”. When operating on integer arguments, operates on a two’s
complement representation of the integer value. When operating on a binary argument
that contains fewer bits than another argument, the shorter argument is extended by
adding more significant bits equal to 0.

~ Bit-wise “not”.

a >> b Arithmetic right shift of a two’s complement integer representation of a by b binary
digits. This function is defined only for positive integer values of b. Bits shifted into
the MSBs as a result of the right shift shall have a value equal to the MSB of a prior
to the shift operation.

a << b Arithmetic left shift of a two’s complement integer representation of a by b binary
digits. This function is defined only for positive integer values of b. Bits shifted into
the LSBs as a result of the left shift have a value equal to 0.

5.5 Assignment Operators

The following arithmetic operators are defined as follows

= Assignment operator.

+ + Increment, i.e. x+ + is equivalent to x = x + 1; when used in an array index, evaluates
to the value of the variable prior to the increment operation.

 17

– – Decrement, i.e., x– – is equivalent to x = x – 1; when used in an array index, evaluates
to the value of the variable prior to the decrement operation.

+ = Increment by amount specified, i.e., x + = 3 is equivalent to x = x + 3, and x + = (-3)
is equivalent to x = x + (-3).

– = Decrement by amount specified, i.e., x – = 3 is equivalent to x = x – 3, and x – = (-3)
is equivalent to x = x – (-3).

5.6 Mathematical Functions

The following mathematical functions are defined as follows

Abs(x) =
⎩
⎨
⎧

<−
>=

0
0;

xx
xx

 (5-1)

Ceil(x) the smallest integer greater than or equal to x. (5-2)

Clip1(x) = Clip3(0, 255, x) (5-3)

Clip3(a, b, c) =
⎪
⎩

⎪
⎨

⎧
>
<

otherwisec
bcb
aca

;
;
;

 (5-4)

Floor(x) the greatest integer less than or equal to x. (5-5)

Log2(x) returns the base-2 logarithm of x. (5-6)

Log10(x) returns the base-10 logarithm of x. (5-7)

Median(x, y, z) = x + y + z – Min(x, Min(y, z)) – Max(x, Max(y, z)) (5-8)

Min(x, y) =
⎩
⎨
⎧

>
<=

yxy
yxx

;
;

 (5-9)

Max(x, y) =
⎩
⎨
⎧

<
>=

yxy
yxx

;
;

 (5-10)

Round(x) = Sign(x) * Floor(Abs(x) + 0.5) (5-11)

Sign(x) =
⎩
⎨
⎧

<−
>=

0;1
0;1

x
x

 (5-12)

5.7 Bitstream Syntax, Parsing Process and Decoding Process

5.7.1 Description Style

The description style of the syntax is similar to C. Syntax elements in the bitstream are represented in
bold type. Each syntax element is described by its name (all lower case letters with underscore
characters) and one or two descriptors for its method of coded representation. The decoding process
behaves according to the value of the syntax element and to the values of previously decoded syntax
elements. When a value of a syntax element is used in the syntax tables or the text, it appears in
regular (i.e. not bold) type.

 18

In some cases the syntax tables may use the values of other variables derived from syntax elements
values. Such variables appear in the syntax tables, or text, named by a mixture of lower case and
upper case letter and without any underscore characters. Variables starting with an upper case letter
are derived for the decoding of the current syntax structure and all depending syntax structures.
Variables starting with an upper case letter may be used in the decoding process for later syntax
structures mentioning the originating syntax structure of the variable. Variables starting with a lower
case letter are only used within the subclause in which they are derived.

The association of values and names is specified in the text. In some cases, “mnemonic” names for
syntax element values or variable values are used interchangeably with their numerical values. The
names are constructed from one or more groups of letters separated by an underscore character. Each
group starts with an upper case letter and may contain more upper case letters.

Hexadecimal notation, indicated by prefixing the hexadecimal number by “0x”, may be used when the
number of bits is an integer multiple of 4. For example, “0x1a” represents a bit-string “0001 1010”.
A value equal to 0 represents a FALSE condition in a test statement. The value TRUE is represented
by any other value other than zero.

The table below shows an example of pseudo-code. It always means read one data element from the
bitstream whenever syntax elements are there.

 descriptor
/* A statement can be a syntax element with associated descriptor or can be an
expression used to specify its existence, type, and value, as in the following
examples */

syntax_element ue(v)
conditioning statement

/* A group of statements enclosed in brackets is a compound statement and is
treated functionally as a single statement. */

{
 statement
 statement
 …
}

/* A “while” structure specifies that the statement is to be evaluated repeatedly
while the condition remains true. */

while (condition)
 statement

/* A “do … while” structure executes the statement once, and then tests the
condition. It repeatedly evaluates the statement while the condition remains
true. */

do
 statement
while (condition)

/* An “if … else” structure tests the condition first. If it is true, the primary
statement is evaluated. Otherwise, the alternative statement is evaluated. If the
alternative statement is not necessarily evaluated, the “else” and corresponding
alternative statement can be omitted. */

if (condition)

 19

 primary statement
else
 alternative statement

/* A “for” structure evaluates the initial statement at the beginning，then tests
the condition. If it is true, the primary and subsequent statements are evaluated
until the condition becomes false. */

for (initial statement; condition; subsequent statement)
 primary statement

The parsing process and decoding process are described in pseudo-code similar to C programming
language.

5.7.2 Functions

Functions below are used to describe syntax. These functions assume that there is a bitstream pointer
in decoder. The pointer indicates the position of the next bit to be read from the bitstream. A function
name and the parameters in the parentheses make up a function; however, a function may also exist
without parameters.

byte_aligned()

If the current position of bitstream is byte-aligned, true is returned. Otherwise, false is
returned.

next_bits(n)

next_bits(n) provides the next n bits in the bitstream with MSB first, without changing the
bitstream pointer. If the remaining number of bits within the byte stream is less than n, 0 is
returned.

byte_aligned_next_bits(n)

If the current position in bitstream is not byte-aligned, byte_aligned_next_bits(n) returns n
bits with MSB first starting from the next byte after current bitstream pointer position. The
bitstream pointer is not changed. If the remaining number of bits within the byte stream is less
than n, 0 is returned. If the current position of bitstream is byte-aligned,
byte_aligned_next_bits(n) returns next n bits in the bitstream with MSB first, without
changing the bitstream pointer. If the remaining number of bits is less than n, 0 is returned.

next_start_code()

next_start_code() seeks the next start code prefix in bitstream. The function is detailed in the
following table.

 descriptor
next_start_code() {
 stuffing_bit ‘1’
 while (! byte_aligned())
 stuffing_bit ‘0’
 while (next_bits(24) != ‘0000 0000 0000 0000 0000 0001’)
 stuffing_byte ‘0000 0000’
}

stuffing_byte shall be present in bitstream after picture header and before the start code of the
first slice.

is_stuffing_pattern()

 20

is_stuffing_pattern() checks whether the remaining bits of current byte or the next byte at
byte aligned position are stuffing bits. The function is detailed in the following table.

is_stuffing_pattern () { descriptor
 if (next_bits(8-n) == (1<< (7-n))
 // n: 0~7, is the position offset of the bitstream pointer at current byte;
 // if n is 0, the bitstream pointer points to the most significant bit of current byte

 return TRUE;
 else
 return FALSE;
}

read_bits(n)

read_bits(n) reads the next n bits in the bitstream and advances the bitstream pointer by n bit
positions. When n is equal to 0, read_bits(n) returns 0 and does not advance the bitstream
pointer.

5.7.3 Descriptors

The descriptors below specify the parsing process of syntax elements.

b(8) A byte with arbitrary value (8 bits). The parsing process for this descriptor is specified by the

return value of read_bits(8).

ce(v) Variable-length entropy-coded syntax element with the left bit first. The parsing process is

specified in subclause 8.3.

f(n) A bit string with n bits. The parsing process is specified by the return value of read_bits(n).

i(n) Signed integer with n bits. In syntax table, if n is ‘v’, the number of bits is determined by

other syntax elements. The parsing process is specified by the return value of read_bits(n),
interpreted as two’s complement representation with MSB first.

me(v) Mapped Exp-Golomb-coded syntax element with the left bit first. The parsing process is

specified in subclause 8.2.

se(v) Signed integer Exp-Golomb-coded syntax element with the left bit first. The parsing process

is specified in subclause 8.2.

u(n) Unsigned integer with n bits. In syntax table, if n is ‘v’, the number of bits is determined by

other syntax elements. The parsing process is specified by the returned value of read_bits(n),
interpreted as two’s complement representation with MSB first.

ue(v) Unsigned integer Exp-Golomb-coded syntax element with the left bit first. The parsing

process is specified in subclause 8.2.

5.7.4 Reserved, Forbidden and Marker

In the bitstream syntax defined by this Standard, the value of some syntax elements are marked
‘reserved’ or ‘forbidden’.

The term ‘reserved’, when used in the clauses specifying some values of a particular syntax element,
are for future uses. These values shall not be used in bitstreams conforming to this Standard, but may
be used in future extensions of this Standard.

 21

The term ‘forbidden’ specifies some values of syntax elements that shall not be used in bitstreams
conforming to this Standard.

marker_bit specifies a bit with value 1.

reserved_bits specifiies that some particular syntax elements are to be used for future extensions of
this Standard. The decode processing shall ignore these bits.

6 Structure of Coded Bitstream
This subclause specifies the structure of coded bitstream, the dependency on its layers and the order
of processing.

6.1 Sequence

Sequence is the highest syntax structure of the coded bitstream. It starts with a sequence header,
followed by one or more coded pictures. Each coded picture starts with a picture header, and are
ordered accordingly in the bitstream. The order of these pictures in the bitstream is the same as one in
decoding, but it can be different from display order. video_sequence_end_code indicates the end of a
video sequence.

6.1.1 Progressive and Interlaced Sequences

This Standard supports coding of both progressive and interlaced sequences.

A frame in sequences consists of three matrices of integer samples: a luminance matrix (Y), and two
chrominance matrices (Cb and Cr). The relationship between Y, Cb and Cr components and the
primary (analogue) Red, Green and Blue signals (E’R, E’G and E’B), the chromaticity of these
primaries and the transfer characteristics of these primaries may be specified in the bitstream. This
information does not affect the decoding process.

A field consists of every other line of samples in the three rectangular matrices of integers
representing a frame. That is, the first, third, fifth lines, and so on form a top field. The rest form a
bottom field.

A decoder outputs a series of frames or fields. An interval time exists bewteen two successive frames
for progressive sequence, i.e. one frame duration. For interlaced sequences, an interval time of two
successive fields is refered as one field duration. For progressive sequence, the interval time between
top and bottom field is 0.

6.1.2 Sequence Header

A video sequence header commences with a video_sequence_start_code followed by a series of
syntax elements.

The initial sequence header can be allowed to appear repeatly in the bitstream⎯which is called
repeated sequence header, and makes random access into the sequence possible.

An I-picture should be placed immediately after a sequence header. When editing a bitstream or
making a random access, all the data before a repeated sequence header can be discarded, and the
resulting bitstream should also conform to this Standard.

 22

6.2 Pictures

One picture is one frame, with encoding data commencing with a picture_header_code. It terminates
with a sequence header , video_sequence_end_code or next picture header.

In the bitstream, coded data of two fields with interlaced scan pattern can appear in sequential order or
in alternate order. The decoding order and display order of the two fields are determined in the picture
header.

6.2.1 Picture Format

6.2.1.1 4:2:0 format

In this format the Cb and Cr matrices shall be half the size of the Y matrix in both horizontal and
vertical dimensions, and the Y matrix shall have an even number of lines and samples, as show in
Figure 6-1.

Figure 6-1 Vertical and horizontal locations of 4:2:0 luma and chroma samples in a picutre

6.2.1.2 4:2:2 format

In 4:2:2 sampling, each of the two chroma arrays has the same height but half the width of the luma
array, as show in Figure 6-2.

 23

Figure 6-2 Vertical and horizontal locations of 4:2:2 luma and chroma samples in a picutre

6.2.1.3 4:4:4 format

In 4:4:4 sampling, each of the two chroma arrays has the same height and width as the luma array, as
show in Figure 6-3.

Figure 6-3 Vertical and horizontal locations of 4:4:4 luma and chroma samples in a picture

6.2.2 Picture Types

This Standard specifies three types of decoded pictures:

 Intra decoded picture (I-picture).
 Forward inter decoded picture (P-picture).
 Bidirectional inter decoded picture (B-picture).

6.2.3 Frame Reordering

 24

When the bitstream does not contain coded B-picutre, the decoding order of pictures is the same as
the display order. When B-picture is present, the decoding order is different from the display order.
The decoded pictures should be reordered according to the following rules:

 If the current decoded picture is a B-picture, output the current decoded picture directly.

 If the current decoded picture is I or P picture, output the previous decoded I or P picutre if it

existed, no picture is outputted if it did not.

For example:
There are two B-pictures between successive I and P pictures, and also two B-pictures between
successive P-pictures. Picutre ‘1I’ is used by picture ‘4P’ for prediction. Picutres ‘4P’ and ‘1I’ are
both used by picutres ‘2B’ and ‘3B’ for predictions. Therefore the decoding order of pictures is ‘1I’,
‘4P’, ‘2B’, ‘3B’, and the display order is ‘1I’, ‘2B’, ‘3B’, ‘4P’.

Input order at the encoder:

1 2 3 4 5 6 7 8 9 10 11 12 13
I B B P B B P B B I B B P

Decoding order:

1 4 2 3 7 5 6 10 8 9 13 11 12
I P B B P B B I B B P B B

Output order at the decoder (display order):

1 2 3 4 5 6 7 8 9 10 11 12 13
I B B P B B P B B I B B P

6.2.4 Reference Picture

P and B picutre can have a maximum of two reference pictures each. P-picture can use the two prior
reference pictures for forward prediction. Within coding of a frame, a previous decoded field can also
be used as reference for the next field. B-picture can use the two reference pictures for forward and
backward prediction.

A motion vector can exceed the boundaries of a reference frame. In this case, the nearest pixel in the
frame shall be used to extend the boundary. The number of pixels shall not exceed the boundaries of a
reference picture by 16 in both vertical and horizontal direction for luma array. As for chroma array:

 In 4:2:0 sampling, the number of pixels used for reference extension shall not exceed 8 in both

vertical and horizontal direction.

 In 4:2:2 sampling, the number of pixels used for reference extension shall not exceed 8 in

horizontal direction and 16 in vertical direction.

 In 4:4:4 sampling, the number of pixels used for reference extension shall not exceed 16 in both

vertical and horizontal direction.

This limitation also applies for field case.

6.3 Slices

A slice consists of an integer number of macroblock lines ordered consecutively in the raster scan
order. Macroblock lines within a slice shall not overlap. Slices shall also not overlap with each other.

 25

The decoding process for macroblocks within a slice shall not use the data of other slices in the same
picture.

If bitstreams of two fields with interlaced scan pattern appears in sequential order, the data of the two
fields shall belong to different slices.

See Figure 6-4 for an example of slice structure.

A
B
C
D
E

F

G

H

I

J
Figure 6-4 Slice structure

6.4 Macroblocks

A picture consists of macrolocks, and all pixels in macroblocks should be within a picture. In
bitstream, when coded data in interlaced scan pattern appears in sequential order, all pixels in a
macroblock shall come from the same field.

Macroblock partitioning is shown in
Figure 6-5. The numbers in macroblock partitioning of
Figure 6-5 will be used in indexing responding pixel in motion compensation.

0
0

1

0 1

0 1

2 3

1 macroblock partition of
16*16 luma samples and

associated chroma samples

Macroblock
partitions

2 macroblock partitions of
16*8 luma samples and

associated chroma samples

4 sub-macroblocks of
8*8 luma samples and

associated chroma samples

2 macroblock partitions of
8*16 luma samples and

associated chroma samples

Figure 6-5 Macroblock partitions

6.5 8×8 Macroblock Sub-Partitions

In 4:2:0 sampling format, a macroblock includes four luma blocks with the size 8×8 and two chroma
blocks (one Cb block and one Cr block). Shown in Figure 6-6, the numbers reprensent sequential
number of blocks in motion compensation.

 26

0

4 5

1

2 3

Y Cb Cr

Figure 6-7 8×8 partition (4:2:0 formats)

In 4:2:2 sampling format, a macroblock includes four luma blocks with the size 8×8 and four chroma
blocks (two Cb blocks and two Cr blocks). Shown in Figure 6-7, the numbers reprensent sequential
number of blocks in motion compensation.

0 1

2 3

Y Cb Cr

6

4

7

5

Figure 6-8 8×8 partition (4:2:2 format)

In 4:4:4 sampling format, a macroblock includes four luma blocks with the size 8×8 and eight chroma
blocks (four Cb blocks and four Cr blocks). Shown in Figure 6-8, the numbers reprensent sequential
number of blocks in motion compensation.

0 1

2 3

Y Cb Cr

4 8

6 10

5 9

7 11

Figure 6-9 8×8 partition (4:4:4 format)

7 Bitstream Syntax and Semantics

7.1 Syntax Description

7.1.1 Start Code

Start code is a special bit pattern. In bitstreams conforming to GB/T 20090.2, the same bit pattern
should not occur anywhere except in start codes.

Each start code consists of a start code prefix followed by a start code value. The start code prefix is a
string of 23 bits with value 0 followed by a single bit with value 1, i.e. the bit string ‘0000 0000 0000
0000 0000 0001’. All start codes shall be byte aligned.

The start code value is an 8-bit integer which identifies the type of start code. See Table 7-1.

 27

Table 7-1 Types and values of start codes

Start code type Start code value
(Hexadecimal)

slice_start_code 00 ~ AF
video_sequence_start_code B0
video_sequence_end_code B1

User_data_start_code B2
i_picture_start_code B3

reserved B4
extension_start_code B5

pb_picture_start_code B6
video_edit_code B7

reserved B8
System start code B9 ~ FF

When assigned some values, certain syntax elements may contain the same bit string as in start code
prefix. These are called as start code emulation. Encoders and decoders conforming to this Standard
shall apply the methods defined in Annex C of this Standard to deal with pseudo start codes.

7.1.2 Sequence

Sequence is defined as follows:
video_sequence() { descriptor

next_start_code()
do {

sequence_header()
extension_and_user_data(0)
do {

if (next_bits(32) == video_edit_code)
video_edit_code u(32)
if (next_bits(32) == i_picture_start_code)

i_picture_header()
else

pb_picture_header()
extension_and_user_data(1)
picture_data()

} while ((next_bits(32) = = video_edit_code) || (next_bits(32) = =
pb_picture_start_code) || (next_bits(32) = = i_picture_start_code))

} while (next_bits(32) ! = video_sequence_end_code)
video_sequence_end_code f(32)

}

 28

7.1.2.1 Sequence Header

Sequence header is defined as follows:
sequence_header() { descriptor

video_sequence_start_code f(32)
profile_id u(8)
level_id u(8)
progressive_sequence u(1)
horizontal_size u(14)
vertical_size u(14)
chroma_format u(2)
sample_precision u(3)
aspect_ratio u(4)
frame_rate_code u(4)
bit_rate_lower u(18)
marker_bit f(1)
bit_rate_upper u(12)
low_delay u(1)
marker_bit f(1)
bbv_buffer_size u(18)
reserved_bits ‘000’
next_start_code()

}

7.1.2.2 Extension and User Data

Extension and user data are defined as follows:
extension_and_user_data(i) { descriptor

while ((next_bits(32) = = extension_start_code) || (next_bits(32) = =
user_data_start_code)) {

if (next_bits(32) = = extension_start_code)
extension_data(i)

if (next_bits(32) = = user_data_start_code)
user_data()

}
}

7.1.2.2.1 Extension Data

Extension data is defined as follows:
extension_data(i) { descriptor

while (next_bits(32) = = extension_start_code) {
extension_start_code f(32)
if (i = = 0) { /* after sequence header */

if (next_bits(4) = = ‘0010’) /* picture display extension */

 29

sequence_display_extension()
else if (next_bits(4) = = ‘0100’) /* copyright extension */

copyright_extension()
else if (next_bits(4) = = ‘1011’) /*camera parameters extension */

camera_parameters_extension()
else {

while (next_bits(24) ! = ‘0000 0000 0000 0000 0000 0001’)
reserved_extension_data_byte u(8)

}
}
else { /*after picture header */

if (next_bits(4) = = ‘0100’) /* copyright extension */
copyright_extension()

else if (next_bits(4) = = ‘0111’) /* picture display extension */
picture_display_extension()

else if (next_bits(4) = = ‘1011’) /* camera parameters extension */
camera_parameters_extension()

else {
while (next_bits(24) ! = ‘0000 0000 0000 0000 0000 0001’)

reserved_extension_data_byte u(8)
}

}
}

}

7.1.2.2.2 User Data

The user data is defined as follows:
user_data() { descriptor

user_data_start_code f(32)
while (next_bits(24) ! = ‘0000 0000 0000 0000 0000 0001’) {

user_data b(8)
}

}

7.1.2.3 Sequence Display Extension

Sequence display extension is defined as follows:
sequence_display_extension() { descriptor

extension_id f(4)
video_format u(3)
sample_range u(1)
colour_description u(1)
if (colour_description) {

 30

colour_primaries u(8)
transfer_characteristics u(8)
matrix_coefficients u(8)

}
display_horizontal_size u(14)
marker_bit f(1)
display_vertical_size u(14)
reserved_bits f(2)
next_start_code()

}

7.1.2.4 Copyright Extension

Copyright extension is defined as follows:
copyright_extension() { descriptor

extension_id f(4)
copyright_flag u(1)
copyright_id u(8)
original_or_copy u(1)
reserved_bits f(7)
marker_bit f(1)
copyright_number_1 u(20)
marker_bit f(1)
copyright_number_2 u(22)
marker_bit f(1)
copyright_number_3 u(22)
next_start_code()

}

7.1.2.5 Camera Parameters Extension

The camera parameter extension is defined as follows:
camera_parameters_extension() { descriptor

extension_id f(4)
reserved_bits f(1)
camera_id u(7)
marker_bit f(1)
height_of_image_device u(22)
marker_bit f(1)
focal_length u(22)
marker_bit f(1)
f_number u(22)
marker_bit f(1)

 31

vertical_angle_of_view u(22)
marker_bit f(1)
camera_position_x_upper i(16)
marker_bit f(1)
camera_position_x_lower i(16)
marker_bit f(1)
camera_position_y_upper i(16)
marker_bit f(1)
camera_position_y_lower i(16)
marker_bit f(1)
camera_position_z_upper i(16)
marker_bit f(1)
camera_position_z_lower i(16)
marker_bit f(1)
camera_direction_x i(22)
marker_bit f(1)
camera_direction_y i(22)
marker_bit f(1)
camera_direction_z i(22)
marker_bit f(1)
image_plane_vertical_x i(22)
marker_bit f(1)
image_plane_vertical_y i(22)
marker_bit f(1)
image_plane_vertical_z i(22)
marker_bit f(1)
reserved_bits f(32)
next_start_code()

}

7.1.3 Picture

7.1.3.1 I Picture Header

The I picture header is defined as follows:
i_picture_header() { descriptor

i_picture_start_code f(32)
bbv_delay u(16)
time_code_flag u(1)
if (time_code_flag = = ‘1’)

time_code u(24)
picture_distance u(8)
if (low_delay = = ‘1’)

 32

 bbv_check_times ue(v)
progressive_frame u(1)
if (progressive_frame == ‘0’)

picture_structure u(1)
top_field_first u(1)
repeat_first_field u(1)
fixed_picture_qp u(1)
picture_qp u(6)
if (progressive_frame = = ‘0’) {
 if (picture_structure = = ‘0’) {
 skip_mode_flag u(1)
 }
}
reserved_bits 0000
loop_filter_disable u(1)
if (! loop_filter_disable) {

loop_filter_parameter_flag u(1)
if (loop_filter_parameter_flag) {

alpha_c_offset se(v)
beta_offset se(v)

}
}
next_start_code()

}

7.1.3.2 PB Picture Header

PB picture header is defined as follows:
pb_picture_header() { descriptor

pb_picture_start_code f(32)
bbv_delay u(16)
picture_coding_type u(2)
picture_distance u(8)
If(low_delay = = ‘1’)
 bbv_check_times ue(v)
progressive_frame u(1)
if (progressive_frame = = ‘0’) {

picture_structure u(1)
if (picture_structure = = ‘0’)

advanced_pred_mode_disable u(1)
}
top_field_first u(1)
repeat_first_field u(1)

 33

fixed_picture_qp u(1)
picture_qp u(6)
if (! (picture_coding_type = = ‘10’ && PictureStructure = = 1))

picture_reference_flag u(1)
reserved_bits 0000
skip_mode_flag u(1)

 loop_filter_disable u(1)
 if (! loop_filter_disable) {
 loop_filter_parameter_flag u(1)
 if (loop_filter_parameter_flag) {
 alpha_c_offset se(v)
 beta_offset se(v)
 }
 }
 next_start_code()
}

7.1.3.3 Picture Display Extension

Picture display extension is defined as follows:
picture_display_extension() { descriptor

extension_id f(4)
for (i = 0; i < NumberOfFrameCentreOffsets; i + +) {

frame_centre_horizontal_offset i(16)
marker_bit f(1)
frame_centre_vertical_offset i(16)

 marker_bit f(1)
}
next_start_code()

}

7.1.3.4 Picture Data

Picture data is defined as follows:
picture_data() { descriptor

do {
slice()

} while (next_bits(32) = = slice_start_code)
next_start_code()

}

7.1.4 Slice

Slice is defined as follows:

 34

slice() { descriptor
slice_start_code f(32)
if (vertical_size > 2800)

slice_vertical_position_extension u(3)
 if (fixed_picture_qp = = ‘0’) {
 fixed_slice_qp u(1)
 slice_qp u(6)
 }

if (PictureType != 0 || (PictureStructure == 0 && MbIndex >= MbWidth × MbHeight / 2))
{

slice_weighting_flag u(1)
if (slice_weighting_flag == ‘1’) {

for (i=0; i<NumberOfReference; i++) {
luma_scale u(8)
luma_shift i(8)
marker_bit f(1)
chroma_scale u(8)
chroma_shift i(8)

 marker_bit f(1)
}
mb_weighting_flag u(1)

}
}
do {

if (PictureType != 0 || (PictureStructure = = 0 && MbIndex > = MbWidth × MbHeight
/ 2)) {

if (skip_mode_flag = = ‘1’)
mb_skip_run ue(v)

}
if (MbIndex < MbWidth × MbHeight)

macroblock()
} while (byte_aligned_next_bits(24) != ‘0000 0000 0000 0000 0000 0001’ || !

is_stuffing_pattern())

next_start_code()
}

7.1.5 Macroblock

Macroblock is defined as follows:
macroblock() { descriptor

if (PictureType != 0 || (PictureStructure = = 0 && MbIndex >= MbWidth × MbHeight /
2))

mb_type ue(v)
if (MbType != ‘P_Skip’ && MbType != ‘B_Skip’) {

if (MbType = = ‘B_8x8’) {

 35

for (i=0; i<4; i++)
mb_part_type u(2)

 }
if (MbType = = ‘I_8x8’) {

for (i=0; i<4; i++) {
pred_mode_flag u(1)
if (! pred_mode_flag)

intra_luma_pred_mode u(2)
}
intra_chroma_pred_mode ue(v)
 if (chroma_format = = ‘10 ‘)
 intra_chroma_pred_mode_422 ue(v)

}

if ((PictureType= = 1 || (PictureType= =2 && PictureStructure= =0)) &&
picture_reference_flag = = 0) {

for (i = 0; i<MvNum; i++)
mb_reference_index u(1)/u(2)

}
for (i = 0; i < MvNum; i++) {

mv_diff_x se(v)
mv_diff_y se(v)

}
if (MbWeightingFlag = = 1)
 weighting_prediction u(1)
if (!((MbTypeIndex >= 24 && PictureType = = 2) || (MbTypeIndex >= 5 &&

PictureType != 2)))

cbp me(v)
 if (chroma_format = = ‘10 ‘)

cbp_422 me(v)
if (MbCBP > 0 || (MbCBP422 > 0 && chroma_format = = ‘10’)) && ! FixedQP)

 mb_qp_delta se(v)
for (i = 0; i < 6; i++)

block(i)
 if (chroma_format = = ‘10 ‘) {

for (i = 6; i < 8; i++)
block(i)

 }
}

}

7.1.6 Block

Block is defined as follows:

 36

block(i) { descriptor
if ((i<6 && MbCBP & (1 << i)))|| (i>=6 && (MbCBP422 & (1 << (i-6))))) {

do {
trans_coefficient ce(v)
if (trans_coefficient >= 59)

escape_level_diff ce(v)
} while (trans_coefficient != ‘EOB’)

}
}

7.2 Semantics Description

7.2.1 Video Extension

Several rules of video extension are defined in this Standard. At different positions of syntax, there
may be different video extension. Each type of video extension has a unique extension identification.
See Table 7-2 for details. If a decoder encounters an extension with an extension identification that is
described as ‘reserved’, the decoder can discard all subsequent data until the next start code.

Table 7-2 Extension identification

Extension identification Description
0000 Reserved
0001 Reserved
0010 Sequence display extension
0011 Reserved
0100 Copyright extension
0101 Reserved
0110 Reserved
0111 Picture display extension

1000 - 1010 Reserved
1011 Camera parameter extension

1100 - 1111 Reserved

7.2.2 Sequence

video_edit_code – bit string ‘0x000001B7’. It means that there may be missing reference pictures for
the successive P or B picture that immediately follow an I-picture. This P or B picture cannot be
decoded correctly. video_edit_code shall not be present in front of pb_picture_start_code.

video_sequence_end_code – bit string ‘0x000001B1’. It terminates a video sequence.

7.2.2.1 Sequence Header

video_sequence_start_code – bit string ‘0x000001B0’. It identifies the start of a sequence.

profile_id – 8-bit unsigned integer. It specifies the profile of a bitstream.

level_id – 8-bit unsigned integer. It specifies the level of a bitstream.
Refer to Annex B for details of profiles and levels.

 37

progressive_sequence – flag. It specifies the scan format in a sequence. ‘1’ means there are only
progressive pictures in a sequence. ‘0’ means the sequence may contain progressive and interlaced
pictures.

horizontal_size – 14-bit unsigned integer. It specifies the display width of the luma component, i.e.
the number of samples in horizontal direction.
Width of display area calculated in MB unit is:

MbWidth = (horizontal_size + 15) / 16
horizontal_size shall not be 0.

vertical_size – 14-bit unsigned integer. It specifies the display height of the luminance component, i.e.
the number of samples in vertical direction.
In bitstream, when two fields of an interlaced picture appear in alternate order, the height of display
area in MB unit is:

MbHeight = 2 × ((vertical_size + 31) / 32)
Otherwise, the height of display area in MB unit is:

MbHeight = (vertical_size + 15) / 16
vertical_size shall not be 0.

chroma_format – 2-bit unsigned integer. It specifies the chroma component format. Refer to Table
7-3.

Table 7-3 Chroma format

chroma_format Description
00 Reserved
01 4:2:0
10 4:2:2
11 Reserved

sample_precision – 3-bit unsigned integer. It specifies the precision of luma and chroma samples.
Refer to Table 7-4.

Table 7-4 Sample precision

sample_precision Description
000 Forbidden
001 The precision of luma and chroma

sample is 8-bit.
010 - 111 Reserved

aspect_ratio – 4-bit unsigned integer. It specifies the sample aspect ratio (SAR) or display aspect
ratio (DAR) of reconstructed pictures. See Table 7-5.

Table 7-5 Aspect ratio information

aspect_ratio SAR DAR
0000 Forbidden Forbidden
0001 1.0 –
0010 – 4 ÷ 3
0011 – 16 ÷ 9
0100 – 2.21 ÷ 1

0101 - 1111 – Reserved

 38

If sequence display extension is absent in bitstream, the whole reconstructed picture will be mapped
to the whole active display region.

SAR = (DAR × vertical_size) / horizontal_size

NOTE – In this case, horizontal_size and vertical_size are restricted by the SAR and selected DAR of a source
picture.

If sequence display extension is present in bitstream,

SAR = (DAR × display_vertical_size) / display_horizontal_size

frame_rate_code – 4-bit unsigned integer. It specifies the frame rate. Refer to Table 7-6.

Table 7-6 Frame rate codes

frame_rate_code Frame rate
0000 Forbidden
0001 24000 ÷ 1001 (23.967…)
0010 24
0011 25
0100 30000 ÷ 1001 (29.97…)
0101 30
0110 50
0111 60000 ÷ 1001 (59.94…)
1000 60

1001 - 1111 Reserved

The time interval between two successive pictures are reciprocal of frame rate. The time interval
between two successive fields in an interlaced picture is half of the reciprocal of frame rate.

bit_rate_lower – low-order 18 bits of BitRate.
bit_rate_upper – high-order 12 bits of BitRate.

BitRate = (bit_rate_upper << 18) + bit_rate_lower

BitRate is calculated in 400bits/s and it is a ceiling integer. BitRate shall not be 0.

low_delay – flag. ‘1’ means that B-picture is not present in video sequence, picture reordering delay
is not present, and “big picture” may be present in bitstream (See Annex D); ‘0’ means that B-picture
can be present in video sequence, picture reordering delay may exist, and “big picture” shall not
present in bitstream.

bbv_buffer_size – 18-bit unsigned integer. It specifies the requirement for bitstream buffer size of
BBV for decoding (See Annex D). BBS is the minimum bitstream buffer size in bits for video
decoding, and it is calculated as:

BBS = 16 × 1024 × bbv_buffer_size

7.2.2.2 Extension and User Data

7.2.2.2.1 Extension Data

extension_start_code – bit string ‘0x000001B5’. It identifies the beginning of extensions.

reserved_extension_data_byte – 8-bit unsigned integer. It is reserved bits. Decoder should discard
this syntax element during decoding process.

 39

7.2.2.2.2 User Data

user_data_start_code – bit string ‘0x000001B2’. It identifies the beginning of user data. The user
data is continually stored until next start code.

user_data – 8-bit integer. User data is defined by users for their specific applications. In the series of
consecutive user_data bytes there shall not be a string of more than 21 consecutive ‘0’.

7.2.2.3 Sequence Display Extension

The display process is not included in this Standard. The information in this extension does not
influence the decoding process. Therefore the decoder can ignore this information.

extension_id – bit string ‘0010’. It identifies sequence display extension.

video_format – 3-bit unsigned integer. It specifies the video format before encoding process. See
Table 7-7. If there is no sequence display extension in the bitstream, it is assumed that the video
format is ‘unspecified’.

Table 7-7 Video format

video_format Description
000 Component
001 PAL
010 NTSC
011 SECAM
100 MAC
101 Unspecified
110 Reserved
111 Reserved

sample_range – flag. It specifies the range of sample values of luma and chroma signals. If there is
no sequence display extension in bitstream, the value of sample_range is assumed to be ‘0’.

colour_description – flag. ‘1’ means that colour_primaries, transfer_characteristics and
matrix_coefficients are present in bitstream; ’0’ means that colour_primaries, transfer_characteristics
and matrix_coefficients are not present in bitstream.

colour_primaries – 8-bit unsigned integer. It specifies the chromaticity coordinates of color
primaries of a source image. See Table 7-8.

Table 7-8 Colour primaries

Value
Colour primaries

0 Forbidden
1 Recommendation ITU-R BT.709

Primary x y
green 0.300 0.600
blue 0.150 0.060
red 0.640 0.330
white D65 0.3127 0.3290

2 Unspecified
Picture characteristics are unknown

3 Reserved

 40

4 Recommendation ITU-R BT.470-2 System M
primary x y
green 0.21 0.71
blue 0.14 0.08
red 0.67 0.33
white C 0.310 0.316

5 Recommendation ITU-R BT.470-2 System B, G
primary x y
green 0.29 0.60
blue 0.15 0.06
red 0.64 0.33
white D65 0.313 0.329

6 SMPTE 170M
primary x y
green 0.310 0.595
blue 0.155 0.070
red 0.630 0.340
white D65 0.3127 0.3290

7 SMPTE 240M (1987)
primary x y
green 0.310 0.595
blue 0.155 0.070
red 0.630 0.340
white D65 0.3127 0.3291

8 Common films（color filters，C source）
primary x y
green 0.243 0.692 (Wratten 58)
blue 0.145 0.049 (Wratten 47)
red 0.681 0.319 (Wratten 25)

9 - 255 Reserved

If there is no sequence display extension in bitstream, or the value of colour_description is ‘0’, then it
is assumed that colour primaries is defined by application itself.

transfer_characteristics – 8-bit unsigned integer. It describes the opto-electronic transfer
characteristics of the source picture. See Table 7-9.

Table 7-9 Opto-electronic transfer characteristics

Value Opto-electronic transfer characteristics
0 Forbidden
1 Recommendation ITU-R BT.709

V = 1.099 Lc0.45  0.099，1 > = Lc > = 0.018
V = 4.500 Lc，0.018 > Lc > = 0

2 Unspecified
Image characteristics are unknown

3 Reserved
4 Recommendation ITU-R BT.470-2 System M

 Assumed display gamma 2.2
5 Recommendation ITU-R BT.470-2 System B, G

 Assumed display gamma 2.8

 41

6 SMPTE 170M
V = 1.099 Lc

0.45 0.099，1 > = Lc > = 0.018
V = 4.500 Lc，0.018 > Lc > = 0

7 SMPTE 240M (1987)
V = 1.1115 Lc

0.45  0.1115，Lc > =0.0228
V = 4.0 Lc，0.0228 > Lc

8 Linear transfer characteristics, i.e. V = Lc
9 Logarithm transfer characteristics (scale100:1)

V = 1.0-Log10(Lc)/2，1= Lc = 0.01
V= 0.0，0.01> Lc

10 Logarithm transfer characteristics (range 316.22777:1)
V = 1.0-Log10(Lc)/2.5，1= Lc = 0.0031622777
V= 0.0，0.0031622777> Lc

11 – 255 Reserved

If there is no sequence display extension in bitstream, or the value of colour_description is ‘0’, then it
is assumed that transfer characteristics is defined by application itself.

matrix_coefficients – 8-bit unsigned integer. It is used in deriving luma and chroma signals from
green, blue and red primaries. See Table 7-10.

Table 7-10 Matrix coefficients

Value Matrix coefficients
0 Forbidden
1 Recommendation ITU-R BT.709

EY = 0.7154 EG + 0.0721EB + 0.2125ER
EPB = -0.386 EG + 0.500EB - 0.115ER
EPR = -0.454 EG - 0.046EB + 0.500ER

2 Unspecified
Image characteristics are unknown

3 Reserved
4 FCC

EY = 0.59EG + 0.11EB + 0.30ER
EPB = -0.331EG + 0.500 EB - 0.169ER
EPR = -0.421EG - 0.079 EB + 0.500ER

5 Recommendation ITU-R BT.470-2 System B, G
EY = 0.587EG + 0.114EB + 0.299ER
EPB = -0.331EG + 0.500EB - 0.169ER
EPR = -0.419EG - 0.081EB + 0.500ER

6 SMPTE 170M
EY = 0.587EG + 0.114EB + 0.299ER
EPB = -0.331EG + 0.500EB - 0.169ER
EPR = -0.419EG - 0.081EB + 0.500ER

7 SMPTE 240M (1987)
EY = 0.701EG + 0.087EB + 0.212ER
EPB = -0.384EG + 0.500EB - 0.116ER
EPR = -0.445EG - 0.055EB + 0.500ER

8 - 255 Reserved

In Table 7-10,
 E′Y is an analog value between 0 and 1;

 42

 E′PB and E′PR are analog values between -0.5 and 0.5;
 E′R, E′G and E′B is an analog value between 0 and 1；

The relationship between Y, Cb, Cr and E′Y, E′PB and E′PR:

If sample_range is ‘0’:

Y = (219 × 2n-8 × E’Y) + 2n-4
Cb = (224 × 2n-8 × E’PB) + 2n-1

Cr = (224 × 2n-8 × E’PR) + 2n-1

If sample_range is ‘1’:

Y =((2n – 1) × E′Y)
Cb=((2n – 1) × E′PB)+2n-1
Cr=((2n – 1) × E′PR)+2n-1

n is sampling point precision. For example when n = 8，sample_range is ‘0’:

Y=(219 × E′Y)+16
Cb=(224×E′PB)+128
Cr=(224 ×E′PR)+128

The range of Y is16~235, the range of Cb and Cr 16~240.

When n = 8，sample_range is ‘1’:

Y = (255 × E′Y)
Cb = (255 × E′PB)+128
Cr = (255 × E′PR)+128

The range of Y,Cb and Cr is 0~255.

NOTE 1 – The decoding process given by this Specification limits output values of samples Y, Cb, Cr
in the range [0, 255]. If there is no sequence display extension in bitstream, or the value of
colour_description is ‘0’, then it is assumed that transform matrix is defined by application itself.

NOTE 2 – There may be different video signals in some applications, leading to different colour
primaries, transfer characteristics and/or transform matrix. In this case, it is suggested to use a uniform
parameter set converted from those different parameter sets.

display_horizontal_size
display_vertical_size – 14 bits unsigned integers. They together define a rectangle which may be
considered as the “intended display’s” active region. If this rectangle is smaller than the encoder
frame size then the display process may be expected to display only a portion of the encoded frame.
Conversely, if the display rectangle is larger than the encoded frame size then the display process may
be expected to display the reconstructed frames on a portion of the display device rather than on the
whole display device.
The units of display_horizontal_size shall be the sample number in horizontal direction.
The units of display_vertical size shall be the number of lines of the encoded frames.
display_horizontal_size and display_horizontal_size do not affect the decoding process but may be
used by the display process that is not defined in this Standard.

7.2.2.4 Copyright Extension

extension_id – bit string ‘0100’.

copyright_flag – flag. When it is set to ‘1’, it indicates that the source video material encoded in all
the coded pictures following the copyright extension, in coding order, up to the next copyright

 43

extension or end of sequence code, is copyrighted. When copyright_flag is set to ‘0’, it indicates that
there is no copyright information defined in this copyright extension.

copyright_id – 8-bit unsigned integer. copyright_id values of copyright owners are distributed by
Registration Authority. There is no corresponding copyright information when it is set to ‘0’.
If the value of copyright_id is 0, CopyrightNumber shall be 0.
If the value of copyright_flag is 0, copyright_id shall be 0

original_or_copy – flag. It is set to ‘1’ to indicate that the material is an original copy and set to ‘0’
to indicate that it is a copy.

copyright_number_1 – 20-bit unsigned integer. It contains the 44th to 63rd bits of CopyrightNumber.

copyright_number_2 – 22-bit unsigned integer. It contains the 22nd to 43rd bits of CopyrightNumber.

copyright_number_3 – 22-bit unsigned integer. It contains the 1st to 21st bits of CopyrightNumber.

CopyrightNumber is a 64 bits unsigned integer and is derived as:

CopyrightNumber = (copyright_number_1<<44)+(copyright_number_2<<22)+copyright_number_3

If the value of copyright_flag is ‘1’, it indicates that the value of CopyrightNumber identifies uniquely
the copyrighted work marked by the copyrighted extension. The meaning is not defined when
CopyrightNumber is set to ‘0’; if the value of copyright_flag is ‘0’, CopyrightNumber shall also be 0.

7.2.2.5 Camera Parameter Extension

extension_id – bit string ‘1011’.

camera_id – 7-bit unsigned integer. It identifies the camera.

height_of_image_device – 22-bit unsigned integer. It specifies the height of the imaging device, in
units of 0.001mm. The range is from 0 to 4194.303mm.

focal_length – 22-bit unsigned integer. It specifies the focal length of the camera, in units of
0.001mm. The range is from 0 to 4194.303mm.

f_number – 22-bit unsigned integer. It specifies the value of aperture of the camera (value of aperture
= focal length / effective aperture of lens), in units of 0.001. The range is from 0 to 4194.303.

vertical_angle_of_view – 22-bit unsigned integer. It specifies the vertical visual angle which is
determined by the top and bottom field of the imaging device, in units of 0.001. The range is from 0 to
180°.

camera_position_x_upper, camera_position_y_upper, camera_position_z_upper – high-order 16
bits of CameraPositionX, CameraPositionY and CameraPositionZ.

camera_position_x_lower, camera_position_y_lower, camera_position_z_lower – low-order 16
bits of CameraPositionX, CameraPositionY and CameraPositionZ.

CameraPositionX, CameraPositionY and CameraPositionZ – 32-bit signed integers, expressed in
two’s complement representation, which identify the position in a user-defined global coordinate from
the optic origins. Each value in the coordinate is expressed in units of 0.001mm. The range is
from -2,147,483.648mm to 2,147,483.647mm.

 44

camera_direction_x, camera_direction_y, camera_direction_z – 22-bit signed integers, expressed
in two’s complement representation, which identify the position of the camera. The range is
from -2,097,152 to 2,097,151. The direction of the camera is expressed using a vector which points
from the optic origins of the camera to points located on the optic axis of the camera.

image_plane_vertical_x, image_plane_vertical_y, image_plane_vertical_z – 22-bit signed integers,
expressed in two’s complement representation, which identify the position of the camera. The range is
from -2,097,152 to 2,097,151. The upward direction of the camera is expressed using a vector parallel
to the edge of the equipment and pointing upward.

Refer to Figure 7-1 and Figure 7-2.

 image plane vertical

lens

camera direction

optical axis

effective aperture of lens

height of
image device

vertical angle of view

image plane
(image device)

optical principal point
(= camera position)

Figure 7-1 The principle of camera

x

y

z

camera direction

image plane vertical

camera position

Figure 7-2 The coordinates of camera

7.2.3 Picture

7.2.3.1 I Picture Header

i_picture_start_code – bit string ‘0x000001B3’. It is the start code of I-picture.

bbv_delay – 16-bit unsigned integer. If bbv_delay is not equal to 0xFFFF, it specifies the waiting
time between the instance BBV received the last byte of picture start code to the instance the decoding
process is performed. It is in units of a 90 kHz clock, which is derived from the 27 MHz system clock.
If bbv_delay is equal to 0xFFFF in one frame, the bbv_delay of all the pictures in the whole video
sequence shall be set to 0xFFFF. Please see Annex D for details.

 45

time_code_flag – flag. “1” indicates that time_code is present in bitstream. “0” indicates that no
time_code is present in bitstream.

time_code – 24-bit unsigned integer comprising DropFrameFlag, TimeCodeHours,
TimeCodeMinutes, TimeCodeSeconds and TimeCodePictures. See Table 7-11. All these are unsigned
integers expressed using supplemental codes. These parameters corresponds to those specified in IEC
60461. time_code describes the time starting from the first frame with picture_distance 0 to the
current frame.

Table 7-11 Time code

time_code Value Descriptor
DropFrameFlag u(1)
TimeCodeHours 0..23 u(5)

TimeCodeMinutes 0..59 u(6)
TimeCodeSeconds 0..59 u(6)
TimeCodePictures 0..59 u(6)

picture_distance – 8-bit unsigned integer. picture_distance is equal to the picture_distance of
previous picture (display order) plus 1, plus the number of skipped pictures between current picture
and previous picture (this number shall be less than 32), in modulo 256 operation. picture_distance of
the first picutre of a sequence shall be 0.

bbv_check_times – If low_delay is equal to 0, bbv_check_times shall not be present in bitstream and
BbvCheckTimes is set to 0. If bbv_check_times is present in bitstream, BbvCheckTimes is obtained
after parsing bbv_check_times. See subclause 8.2 for the parsing process. BbvCheckTimes plus 1
indicates the times BBV buffer has been checked. BbvCheckTimes greater than 0 denotes that current
picture is a “big picture” (See Annex D).

progressive_frame – flag. ‘0’ indicates that the two fields of the picture are interlaced fields in
which a time interval of the field period exists between the two fields. In this case, repeat_first_field
shall be ‘0’. ‘1’ indicates that both fields are from the same time instance. In this case,
PictureStructure shall be 1.

picture_structure – flag. ‘0’ indicates that the coded data of the two fields of current picture will
appear in sequential order; ‘1’ indicates that the coded data of the two fields of current picture will
appear in alternate order. If progressive_sequence is ‘1’, picture_structure shall also be ‘1’ . The value
of PictureStructure is equal to picture_structure.

top_field_first – flag. The meaning of this syntax element depends on progressive_sequence,
progressive_frame, picture_structure and repeat_first_field.

If progressive_sequence is ‘0’, top_field_first specifies display order of the decoded fields.
 If PictureStructure is ‘0’, top_field_first shall be ‘1’. It indicates that the decoder decodes and

outputs top field first, then decodes and outputs bottom field.
 If PictureStructure is ‘1’, decoder will decode whole picture. If top_field_first is ‘1’, it outputs top

field first, then bottom field. If top_field_first is ‘0’, it outputs bottom field first, then top field.

If progressive_sequence is equal to ‘1’, top_field_first and repeat_first_field, indicates the number of
times (one, two or three) the reconstructed pictures are output by the decoding process.
 If repeat_first_field is ‘0’, top_field_first shall also be ‘0’, decoder outputs one picture.
 If repeat_first_field is ‘1’ and top_field_first is ‘0’, decoder outputs two same pictures.
 If both repeat_first_field and top_field_first are ‘1’, decoder outputs three same pictures.

 46

repeat_first_field – flag. It only takes effect when progressive_frame is ‘1’. Otherwise
repeat_first_field shall be ‘0’.

If both progressive_sequence and progressive_frame are ‘0’, repeat_first_field shall also be ‘0’,
decoder outputs top field followed by bottom field.

If progressive_sequence is ‘0’ and progressive_frame is ‘1’, then:
1) If repeat_first_field is ‘0’, decoder outputs two fields. The first (top or bottom field, determined

by top_field_first) followed by the second.
2) If repeat_first_field is ‘1’, decoder outputs three fields. The first (top or bottom fields, determined

by top_field_first) followed by the second. The third is the same as the first field.

If progressive_sequence is ‘1’, then:
1) If repeat_first_field is ‘0’, decoder outputs one picture.
2) If repeat_first_field is ‘1’, decoder outputs two or three pictures, depending on top_field_first.

fixed_picture_qp – flag. ‘1’ indicates the quantization parameter does not change in the picutre. ‘0’
indicates the quantization parameter may change.

picture_qp – 6-bit unsigned integer. It specifies the quantization parameter of the picture, with a
range from 0 to 63 inclusive.

skip_mode_flag – flag. ‘1’ indicates that the macroblock skip mode uses run-length coding. ‘0’
indicates the macroblock skip mode is derived from mb_type. Refer to subclause 错误！未找到引用

源。.

loop_filter_disable – flag. ‘1’ indicates that loop filter is disabled. ‘0’ indicates that loop filter is
enabled.

loop_filter_parameter_flag – flag. ‘1’ means that picture header contains loop filter parameters
alpha_c_offset and beta_offset. Otherwise, alpha_c_offset and beta_offset is not present in picture
header.

alpha_c_offset – offset of loop filter α and C index of current picture. The range of alpha_c_offset is
[-8, 8]. AlphaCOffset is equal to alpha_c_offset. If alpha_c_offset is not present in bitstream,
AlphaCOffset is equal to 0.

beta_offset – offset of loop filter β of current picture. The range of beta_offset [-8, 8]. BetaOffset is
equal to beta_offset. If beta_offset is not present in the bitstream, BetaOffset is equal to 0.

7.2.3.2 PB Picture Header

pb_picture_start_code – bit string ‘0x000001B6’. It is the start code of P or B pictures.

picture_coding_type – 2-bit unsigned integer. It specifies the coding type of a picture. See Table
7-12.

Table 7-12 Coding type of a picture

picture_coding_type Coding type
00 Forbidden
01 Forward inter prediction (P)

 47

10 Bidirectional inter prediction (B)
11 Reserved

advanced_pred_mode_disable – flag. It shall set to ‘1’ to specify that the advanced prediction mode
is forbidden. ‘0’ is reserved.

picture_reference_flag – flag. ‘1’ means that all macroblocks use default reference pictures. ‘0’
means that every macroblock specifies the reference pictures to be used. See subclause 9.4.3 on how
to use a reference.

See subclause 7.2.3.1 for other syntax elements of PB picture header.

7.2.3.3 Picture Display Extension

This Standard does not define the display process. The information in this extension does not affect
the decoding process and may be ignored by decoders that conform to this Standard.

The picture display extension allows the position of the display rectangle whose size is specified in
sequence display extension to be moved on a picture-by-picture basis. One application is the
implementation of pan-scan.

extension_id – bit string ‘0111’.

frame_centre_horizontal_offset – 16-bit signed integer. It gives a horizontal offset in units of 1/16
samples. Positive number indicates that the centre of a reconstructed picture lies to the right of the
centre of the display rectangle.

frame_centre_vertical_offset – 16-bit signed integer. It gives the vertical offset in units of 1/16
samples. A positive value indicates that the centre of the reconstructed frame lies below the centre of
the display rectangle.

The dimensions of the display rectangular region are defined in the sequence display extension. The
coordinates of the region within the coded picture are defined in the picture display extension.

The centre of reconstructed frame is the centre of the rectangle defined by the horizontal_size and
vertical_size.

Since a coded picture may relate to one, two or three decoded fields, picture display extension may
contain up to three offsets.

The value of NumberOfFrameCentreOffsets in subclause 7.1.3.3 is defined as follows:

if (progressive_sequence = = ‘1’) {
 if (repeat_first_field = = ‘1’) {
 if (top_field_first = = ‘1’)
 NumberOfFrameCentreOffsets = 3
 else
 NumberOfFrameCentreOffsets = 2
 } else {
 NumberOfFrameCentreOffsets = 1
 }
 } else {
 if (picture_structure = = ‘0’) {
 NumberOfFrameCentreOffsets = 1

 48

 } else {
 if (repeat_first_field = = ‘1’)
 NumberOfFrameCentreOffsets = 3
 else
 NumberOfFrameCentreOffsets = 2
 }
 }

If there is no sequence display extension after previous sequence header, there shall be no picture
display extension in bitstream.

If there is no picture display extension in one frame, the offset of latest decoded picture shall be used.
Note that the offset values of skipped frames are the same. After sequence header, the centre offsets of
all the pictures are 0, until next picture display extension appears.

With the help of the centre offset of one picture, a rectangular region defining the range of the whole
reconstructed picture can be defined, to achieve the aim of scanning the whole picture.

Refer to Figure 7-3 to see the parameters of centre offset of a picture.

NOTES:
1. The display rectangle may be larger than the reconstructed picture.
2. In field pictures, frame_centre_vertical_offset still represents the offset from the centre of the frame in

1/16ths of a frame line (not a line in the field)
3. In the example of Figure 7-3, both frame_centre_horizontal_offset and frame_centre_vertical_offset have

negative values.

Figure 7-3 Frame centre offset parameters

7.2.4 Slice

slice_start_code – a string of 32 bits. The first 24 bits have the value ‘0x000001’ and the last 8 bits
are the slice_vertical_position ranging from 0x00 to 0xAF.

slice_vertical_position – 8-bit unsigned integer with range 0x00 to 0xAF. It gives the vertical
position of the first macroblock in the slice in macroblock units. If vertical_size of a coded frame is
greater than 2800, then the vertical position depends on slice_vertical_position and
slice_vertical_position_extension.

 49

slice_vertical_position_extension – 3-bit unsigned integer. If vertical_size of a coded frame is less
than 2800, slice_vertical_position_extension shall not be present in bitstream.

The vertical position of the first macroblock in current slice is derived as:

if (vertical_size > 2800)
 MbRow = (slice_vertical_position_extension << 7) + slice_vertical_position
else
 MbRow = slice_vertical_position

fixed_slice_qp – flag. It is set to ‘1’ to indicate that the quantization parameter in the slice does not
change, while ‘0’ means that the quantization parameter may change.

slice_qp – 6-bit unsigned integer. It specifies the quantization parameter of a slice, with a range from
0 to 63 inclusive.

slice_weighting_flag – flag. ‘1’ indicates that weighted prediction shall be applied to inter prediction
process of a macroblock. ‘0’ indicates that weighted prediction shall not be applied to inter prediction
process of a macroblock.

luma_scale – 8-bit unsigned integer. It specifies the scaling parameter for luma weighted prediction.

luma_shift – 8-bit signed integer. It specifies the offset parameter for luma weighted prediction.

chroma_scale – 8-bit unsigned integer. It specifies the scaling parameter for chroma weighted
prediction.

chroma_shift – 8 bits signed integer. It specifies the offset parameter for chroma weighted prediction.

mb_weighting_flag – flag. ‘0’ indicates that all inter coded macroblocks shall use weighted
prediction. ‘1’ indicates that weighted prediction for inter coded macroblock shall depend on
WeightingPrediction flag of that macroblock. If mb_weighting_flag is present in the bitstream,
MbWeightingFlag is equal to mb_weighting_flag, otherwise MbWeightingFlag is set to 0.

mb_skip_run – a counter for counting continuously skipped macroblock. See subclause 8.2 for
parsing process and subclause 错误！未找到引用源。 for decoding process.

7.2.5 Macroblock

mb_type – It determines the type of a macroblock. The semantics depends on the type of picture,
PictureStructure and skip_mode_flag. See subclause 8.2 for parsing process. See subclause 9.4.1 for
decoding process.

mb_part_type – 2-bit unsigned integer. Subtype of a macroblock. See subclause 9.4.1 for decoding
process.

pred_mode_flag – flag. ‘1’ means using the predicted value of intra prediction mode to predict the
luminance of a picture. ‘0’ means using intra_luma_pred_mode to predict the luminance of a picture.

intra_luma_pred_mode – 2-bit unsigned integer. It is used to determine the intra prediction mode of
a luma macroblock. See subclause 9.4.2 for decoding process.

intra_chroma_pred_mode – It is used to determine the intra prediction mode of the two chroma
blocks with index number 4 and 5 of a macroblock. See subclause 8.2 for parsing process . See
subclause 9.4.2 for decoding process.

 50

intra_chroma_pred_mode_422 – It is used to determine the intra prediction mode of the two chroma
blocks with index number 6 and 7 of a macroblock in 4:2:2 format. See subclause 8.2 for parsing
process. See subclause 9.4.2 for decoding process.

mb_reference_index – If PictureStructure is 1 or PictureType is 2, mb_reference_index is a one bit
unsigned integer. If PictureStructure is 0 and PictureType is 1, mb_reference_index is a 2 bits
unsigned integer. Decoder decodes all forward reference indices first, and then decodes all backward
reference indices. Refer to subclause 9.4.3 for details.

mv_diff_x, mv_diff_y – the value of motion vector difference. It is in one-quarter luma sample units,
with range -1024 to 1023.75. Decoder decodes all forward motion vectors first, and then decodes all
backward motion vectors. See subclause 9.4.4 for decoding process.

weighting_prediction – flag. If weighting_prediction is present in the bitstream, WeightPrediction is
equal to weighting_prediction, otherwise WeightPrediction is set to ‘0’. The value of
WeightPrediction is ‘0’ indicates that weighted prediction shall not be applied to current macroblock.
The value of WeightPrediction is ‘1’ indicates that weighted prediction shall be applied to current
macroblock.

cbp – It specifies which of the four luma blocks and two chroma blocks with index number 0 to 5 of
a macroblock may contain nonzero quantization coefficients. A 6 bits unsigned integer MbCBP is
obtained after parsing process of cbp. See subclause 8.2 for parsing process. See subclause 9.4.5 for
decoding process of MbCBP.

cbp_422 – It is used to determine which of the two chroma blocks with index number 6 and 7 of a
macroblock in 4:2:2 format may contain nonzero quantization coefficients. A 2 bits unsigned integer
MbCBP422 is obtained after parsing process of cbp_422. See subclause 8.2 for parsing process. See
subclause 9.4.5 for decoding process of MbCBP422.

mb_qp_delta – It gives the increment of current quantization coefficients relative to predicted
quantization coefficients, with a range of -32 to 31.

7.2.6 Block

trans_coefficient – It is used to specify the joint index of run length and nonzero quantization
coefficient, or used to determine escape run length and the sign of escape quantization coefficient. See
subclause 8.3 for parsing process. See subclause 9.5.1 for decoding process.

escape_level_diff – When trans_coefficient cannot specify the joint index of run length and nonzero
quantization coefficient, escape_level_diff is used to specify the absolute value of escape quantization
coefficient. See subclause 8.3 for parsing process. See subclause 9.5.1 for decoding process.

8 Parsing Process
This subclause specifies the parsing process of syntax elements. The parsing process for descriptors
ue(v), se(v) and me(v) is described in subclause 8.2, while parsing process for ce (v) is described in
subclause 8.3.

 51

8.1 kth-Order Exp-Golomb Codes

When parsing kth-order Exp-Golomb codes, the first nonzero bit is seeked from the current position of
the bitstream while counting the number of zero bits (leadingZeroBits). Then, CodeNum is calculated
according to leadingZeroBits. The pseudo-code is as follows:

leadingZeroBits = -1;
for (b = 0; ! b; leadingZeroBits++)
 b = read_bits(1)
CodeNum = 2leadingZeroBits + k – 2k + read_bits(leadingZeroBits + k)

Table 8-1 gives the structure of 0th, 1st, 2nd and 3rd-order Exp-Golomb codes. The bit string of Exp-
Golomb codes are divided into ‘prefix’ and ‘suffix’. Prefix consists of leadingZeroBits consecutive
‘0’ and a ‘1’. Suffix consists of leadingZeroBits+k bits, i.e the xi string in the table. The value of xi is
either ‘0’ or ‘1’.

Table 8-1 kth-order Exp-Golomb codes

Order Code structure Range of CodeNum
1 0

0 1 x0 1-2
0 0 1 x1 x0 3-6

0 0 0 1 x2 x1 x0 7-14
k = 0

......
1 x0 0-1

0 1 x1 x0 2-5
0 0 1 x2 x1 x0 6-13

0 0 0 1 x3 x2 x1 x0 14-29
k = 1

......
1 x1 x0 0-3

0 1 x2 x1 x0 4-11
0 0 1 x3 x2 x1 x0 12-27

0 0 0 1 x4 x3 x2 x1 x0 28-59
k = 2

......
1 x2 x1 x0 0-7

0 1 x3 x2 x1 x0 8-23
0 0 1 x4 x3 x2 x1 x0 24-55

0 0 0 1 x5 x4 x3 x2 x1 x0 56-119
k = 3

......

8.2 ue(v), se(v) and me(v)

The syntax elements described by ue(v), se(v) and me(v) use zero-order Exp-Golomb codes. The
parsing process is as follows:

ue(v): The value of syntax element is equal to CodeNum.
se(v): The value of syntax element is derived according to Table 8-2
me(v): The MbCBP and MbCBP422 values are derived according to Table 8-3 and Table 8-4 (Refer
to subclause 9.4.1 and 9.4.5 for details) respectively.

Table 8-2 se(v) and CodeNum

CodeNum Value of syntax elements
0 0
1 1
2 –1
3 2

 52

4 –2
5 3
6 –3
k (–1)k+1×Ceil(k÷2)

Table 8-3 MbCBP and CodeNum

MbCBP
xxxxxx

(543210)

CodeNum

Intra coding mode Inter coding mode
0 63 0
1 15 15
2 31 63
3 47 31
4 0 16
5 14 32
6 13 47
7 11 13
8 7 14
9 5 11

10 10 12
11 8 5
12 12 10
13 61 7
14 4 48
15 55 3
16 1 2
17 2 8
18 59 4
19 3 1
20 62 61
21 9 55
22 6 59
23 29 62
24 45 29
25 51 27
26 23 23
27 39 19
28 27 30
29 46 28
30 53 9
31 30 6
32 43 60
33 37 21
34 60 44
35 16 26
36 21 51
37 28 35
38 19 18
39 35 20
40 42 24

 53

41 26 53
42 44 17
43 32 37
44 58 39
45 24 45
46 20 58
47 17 43
48 18 42
49 48 46
50 22 36
51 33 33
52 25 34
53 49 40
54 40 52
55 36 49
56 34 50
57 50 56
58 52 25
59 54 22
60 41 54
61 56 57
62 38 41
63 57 38

Table 8-4 MbCBP422 and CodeNum

MbCBP422
xx

(10)

CodeNum

Intra coding mode Inter coding mode
0 0 0
1 1 1
2 2 2
3 3 3

8.3 ce(v)

The syntax elements described by ce(v) uses 0th, 1st, 2nd or 3rd-order Exp-Golomb codes. The order of
Exp-Golomb codes is determined according to the following rules:

 escape_level_diff for luma coefficients of intra coded blocks use 1st-order Exp-Golomb codes.
 escape_level_diff for luma coefficients of inter coded blocks use 0th-order Exp-Golomb codes.
 escape_level_diff for chroma coefficients use 0th-order Exp-Golomb codes.
 19 VLCs related to ce(v) are specified in this Standard, namely VLC0_Intra, VLC1_Intra,

VLC2_Intra, VLC3_Intra, VLC4_Intra, VLC5_Intra, VLC6_Intra, VLC0_Inter, VLC1_Inter,
VLC2_Inter, VLC3_Inter, VLC4_Inter and VLC5_Inter, VLC6_Inter, VLC0_Chroma,
VLC1_Chroma, VLC2_Chroma, VLC3_Chroma, VLC4_Chroma. See Annex A for details.
Different code tables specify the different orders of Exp-Golomb codes used by ce(v).
VLC0_Inter uses 3rd-order Exp-Golomb codes.VLC2_Chroma and VLC3_Chroma use 1st-order
Exp-Golomb codes. VLC1_Chroma and VLC4_Chroma use 0th-order Exp-Golomb codes. The
rest use 2nd-order Exp-Golomb codes.

 54

The selection rules of a code table are as follows:

 The code table for parsing the first quantization coefficient is selected according to the following

rules:
1) For luma coefficients of intra coded block, CurrentVLCTable = VLC0_Intra. See Table A-1.
2) For luma coefficients of inter coded block, CurrentVLCTable = VLC0_Inter. See Table A-8.
3) For chroma coefficients, CurrentVLCTable = VLC0_Chroma. See Table A-15.
4) maxAbsLevel is set to 0.
5) absLevel is set to the absolute value of the first quantization coefficient.

 The code table for parsing the other quantization coefficients is selected according to the

following rules:
1) For luma coefficients of intra coded block, if absLevel is greater than maxAbsLevel, code

table is selected according to the following rules:
♦ If absLevel is 1, CurrentVLCTable = VLC1_Intra. See Table A-2.
♦ If absLevel is 2, CurrentVLCTable = VLC2_Intra. See Table A-3.
♦ If absLevel is 3 or 4, CurrentVLCTable = VLC3_Intra. See Table A-4.
♦ If absLevel is 5, 6 or 7, CurrentVLCTable = VLC4_Intra. See Table A-5.
♦ If absLevel is 8, 9 or 10, CurrentVLCTable = VLC5_Intra. See Table A-6.
♦ If absLevel is greater than 10, CurrentVLCTable = VLC6_Intra, see Table A-7.

2) For luma coefficients of inter coded block, if absLevel is greater than maxAbsLevel, code
table is selected according to following rules:
♦ If absLevel is 1, CurrentVLCTable = VLC1_Inter. See Table A-9.
♦ If absLevel is 2, CurrentVLCTable = VLC2_Inter. See Table A-10.
♦ If absLevel is 3, CurrentVLCTable = VLC3_Inter. See Table A-11.
♦ If absLevel is 4, 5 or 6, CurrentVLCTable = VLC4_Inter. See Table A-12.
♦ If absLevel is 7, 8 or 9, CurrentVLCTable = VLC5_Inter. See Table A-13.
♦ If absLevel is greater than 9, CurrentVLCTable = VLC6_Inter. See Table A-14.

3) For chroma coefficients, if absLevel is greater than maxAbsLevel, code table is selected
according to following rules:
♦ If absLevel is 1, CurrentVLCTable = VLC1_Chroma. See Table A-16.
♦ If absLevel is 2, CurrentVLCTable = VLC2_Chroma. See Table A-17.
♦ If absLevel is 3 or 4, CurrentVLCTable = VLC3_Chroma. See Table A-18.
♦ If absLevel is greater than 4, CurrentVLCTable = VLC4_Chroma. See Table A-19.

4) If absLevel is greater than maxAbsLevel, maxAbsLevel is set to absLevel.
5) absLevel is set to the absolute value of the current quantization coefficient.

The parsing process of syntax elements described by ce(v) is as follows:
 Syntax element trans_coefficient is set to CodeNum
 If trans_coefficient is greater than or equal to 59, next ce(v) syntax element is parsed and a new

CodeNum is derived. escape_level_diff is set to this CodeNum.

9 Decoding Process
This clause specifies the decoding process. For details, please refer to official standard.

 55

Annex A
Variable Length Code Tables

(This annex forms an integral part of this Standard)

This annex specifies the variable length code tables. The data in these tables are the values of syntax
elements trans_coefficient. According to trans_coefficient, the value of Level and Run can be
obtained from the table. The value under EOB column corresponds to the value of trans_coefficient of
EOB.

Table A-1 VLC0_Intra (for decoding level and run of intra luma block)

Level>0 Level>0
Run 1 2 3

RefAbsLevel
Run 1 2 3

RefAbsLevel

0 0 22 38 4 12 26 - - 2
1 2 32 - 3 13 28 - - 2
2 4 44 - 3 14 30 - - 2
3 6 50 - 3 15 34 - - 2
4 8 54 - 3 16 36 - - 2
5 10 - - 2 17 40 - - 2
6 12 - - 2 18 42 - - 2
7 14 - - 2 19 46 - - 2
8 16 - - 2 20 48 - - 2
9 18 - - 2 21 52 - - 2

10 20 - - 2 22 56 - - 2
11 24 - - 2

Table A-2 VLC1_Intra (for decoding level and run of intra luma block)

Level > 0 EOB
1 2 3 4 5 6Run

8 - - - - - -

RefAbsLevel

0 - 0 4 15 27 41 55 7
1 - 2 17 35 - - - 4
2 - 6 25 53 - - - 4
3 - 9 33 - - - - 3
4 - 11 39 - - - - 3
5 - 13 45 - - - - 3
6 - 19 49 - - - - 3
7 - 21 51 - - - - 3
8 - 23 - - - - - 2
9 - 29 - - - - - 2

10 - 31 - - - - - 2
11 - 37 - - - - - 2
12 - 43 - - - - - 2
13 - 47 - - - - - 2
14 - 57 - - - - - 2

Table A-3 VLC2_Intra (for decoding level and run of intra luma block)

Level > 0 EOB
1 2 3 4 5 6 7 8 9Run

8 - - - - - - - - -

RefAbsLevel

0 - 0 2 6 13 17 27 35 45 55 10
1 - 4 11 21 33 49 - - - - 6
2 - 9 23 37 - - - - - - 4

 56

3 - 15 29 51 - - - - - - 4
4 - 19 39 - - - - - - - 3
5 - 25 43 - - - - - - - 3
6 - 31 53 - - - - - - - 3
7 - 41 - - - - - - - - 2
8 - 47 - - - - - - - - 2
9 - 57 - - - - - - - - 2

Table A-4 VLC3_Intra (for decoding level and run of intra luma block)

Level > 0 EOB
1 2 3 4 5 6 7 8 9 10 11 12Run

8 - - - - - - - - - - - -

RefAbsLevel

0 - 0 2 4 9 11 17 21 25 33 39 45 55 13
1 - 6 13 19 29 35 47 - - - - - - 7
2 - 15 27 41 57 - - - - - - - - 5
3 - 23 37 53 - - - - - - - - - 4
4 - 31 51 - - - - - - - - - - 3
5 - 43 - - - - - - - - - - - 2
6 - 49 - - - - - - - - - - - 2

Table A-5 VLC4_Intra (for decoding level and run of intra luma block)

Level > 0 EOB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Run

6 - - - - - - - - - - - - - - - - -

RefAbsLevel

0 - 0 2 4 7 9 11 15 17 21 23 29 33 35 43 47 49 57 18
1 - 13 19 27 31 37 45 55 - - - - - - - - - - 8
2 - 25 41 51 - - - - - - - - - - - - - - 4
3 - 39 - - - - - - - - - - - - - - - - 2
4 - 53 - - - - - - - - - - - - - - - - 2

Table A-6 VLC5_Intra (for decoding level and run of intra luma block)

Level > 0 EOB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21Run

0 -

RefAbsLevel

0 - 1 3 5 7 9 11 13 15 17 19 23 25 27 31 33 37 41 45 49 51 55 22
1 - 21 29 35 43 47 53 - - - - - - - - - - - - - - - 7
2 - 39 57 - - - - - - - - - - - - - - - - - - - 3

Table A-7 VLC6_Intra (for decoding level and run of intra luma block)

Level > 0 EOB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21Run

0 -

RefAbsLevel

0 - 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 35 37 39 41 43 27
1 - 33 45 55 - - - - - - - - - - - - - - - - - - 4

Level > 0
 22 23 24 25 26 - - - - - - - - - - - - - - - -

0 - 47 49 51 53 57 - - - - - - - - - - - - - - - - 27
1 -

Table A-8 VLC0_Inter (for decoding level and run of inter luma block)

 57

Level>0 Level>0
Run 1 2 3

RefAbsLevel
Run

1 2 3

RefAbsLevel

0 0 26 40 4 13 28 - - 2
1 2 46 - 3 14 30 - - 2
2 4 - - 2 15 32 - - 2
3 6 - - 2 16 34 - - 2
4 8 - - 2 17 36 - - 2
5 10 - - 2 18 38 - - 2
6 12 - - 2 19 42 - - 2
7 14 - - 2 20 44 - - 2
8 16 - - 2 21 48 - - 2
9 18 - - 2 22 50 - - 2

10 20 - - 2 23 52 - - 2
11 22 - - 2 24 54 - - 2
12 24 - - 2 25 56 - - 2

Table A-9 VLC1_Inter (for decoding level and run of inter luma block)

Level > 0 EOB
1 2 3 4Run

2 - - - -

RefAbsLevel

0 - 0 13 29 47 5
1 - 3 23 57 - 4
2 - 5 35 - - 3
3 - 7 39 - - 3
4 - 9 43 - - 3
5 - 11 49 - - 3
6 - 15 55 - - 3
7 - 17 - - - 2
8 - 19 - - - 2
9 - 21 - - - 2

10 - 25 - - - 2
11 - 27 - - - 2
12 - 31 - - - 2
13 - 33 - - - 2
14 - 37 - - - 2
15 - 41 - - - 2
16 - 45 - - - 2
17 - 51 - - - 2
18 - 53 - - - 2

Table A-10 VLC2_Inter (for decoding level and run of inter luma block)

Level > 0 EOB
1 2 3 4 5 6Run

2 - - - - - -

RefAbsLevel

0 - 0 5 11 23 35 47 7
1 - 3 13 27 49 - - 5
2 - 7 21 45 - - - 4
3 - 9 29 55 - - - 4
4 - 15 37 - - - - 3
5 - 17 41 - - - - 3
6 - 19 53 - - - - 3

 58

7 - 25 - - - - - 2
8 - 31 - - - - - 2
9 - 33 - - - - - 2

10 - 39 - - - - - 2
11 - 43 - - - - - 2
12 - 51 - - - - - 2
13 - 57 - - - - - 2

Table A-11 VLC3_Inter (for decoding level and run of inter luma block)

Level > 0 EOB
1 2 3 4 5 6 7 8 9Run

2 - - - - - - - - -

RefAbsLevel

0 - 0 3 7 13 17 27 35 43 55 10
1 - 5 11 21 33 51 - - - - 6
2 - 9 23 37 57 - - - - - 5
3 - 15 29 47 - - - - - - 4
4 - 19 41 - - - - - - - 3
5 - 25 49 - - - - - - - 3
6 - 31 - - - - - - - - 2
7 - 39 - - - - - - - - 2
8 - 45 - - - - - - - - 2
9 - 53 - - - - - - - - 2

Table A-12 VLC4_Inter (for decoding level and run of inter luma block)

Level > 0 EOB
1 2 3 4 5 6 7 8 9 10 11 12Run

2 - - - - - - - - - - - -

RefAbsLevel

0 - 0 3 5 9 11 17 21 25 33 41 45 55 13
1 - 7 13 19 29 35 49 - - - - - - 7
2 - 15 27 43 57 - - - - - - - - 5
3 - 23 37 51 - - - - - - - - - 4
4 - 31 53 - - - - - - - - - - 3
5 - 39 - - - - - - - - - - - 2
6 - 47 - - - - - - - - - - - 2

Table A-13 VLC5_Inter (for decoding level and run of inter luma block)

Level > 0 EOB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Run

0 - - - - - - - - - - - - - - - -

RefAbsLevel

0 - 1 3 5 7 9 13 15 17 21 25 29 33 39 43 49 53 17
1 - 11 19 27 31 41 45 57 - - - - - - - - - 8
2 - 23 37 51 - - - - - - - - - - - - - 4
3 - 35 55 - - - - - - - - - - - - - - 3
4 - 47 - - - - - - - - - - - - - - - 2

Table A-14 VLC6_Inter (for decoding level and run of inter luma block)

Level > 0 EOB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21Run

0 -

RefAbsLevel

0 - 1 3 5 7 9 11 13 17 19 21 23 25 29 33 35 39 41 43 47 49 57 22
1 - 15 27 37 45 55 - - - - - - - - - - - - - - - - 6
2 - 31 51 - - - - - - - - - - - - - - - - - - - 3

 59

3 - 53 - 2

Table A-15 VLC0_Chroma (for decoding level and run of chroma block)

Level>0 Level>0
Run 1 2 3 4

RefAbsLevel
Run

1 2 3 4

RefAbsLevel

0 0 14 32 56 5 13 28 - - - 2
1 2 48 - - 3 14 30 - - - 2
2 4 - - - 2 15 34 - - - 2
3 6 - - - 2 16 36 - - - 2
4 8 - - - 2 17 38 - - - 2
5 10 - - - 2 18 40 - - - 2
6 12 - - - 2 19 42 - - - 2
7 16 - - - 2 20 44 - - - 2
8 18 - - - 2 21 46 - - - 2
9 20 - - - 2 22 50 - - - 2

10 22 - - - 2 23 52 - - - 2
11 24 - - - 2 24 54 - - - 2
12 26 - - - 2

Table A-16 VLC1_Chroma (for decoding level and run of chroma block)

Level > 0 EOB
1 2 3 4 5Run

0 - - - - -

RefAbsLevel

0 - 1 5 15 29 43 6
1 - 3 21 45 - - 4
2 - 7 37 - - - 3
3 - 9 41 - - - 3
4 - 11 53 - - - 3
5 - 13 - - - - 2
6 - 17 - - - - 2
7 - 19 - - - - 2
8 - 23 - - - - 2
9 - 25 - - - - 2

10 - 27 - - - - 2
11 - 31 - - - - 2
12 - 33 - - - - 2
13 - 35 - - - - 2
14 - 39 - - - - 2
15 - 47 - - - - 2
16 - 49 - - - - 2
17 - 51 - - - - 2
18 - 55 - - - - 2
19 - 57 - - - - 2

Table A-17 VLC2_Chroma (for decoding level and run of chroma block)

Level > 0 EOB
1 2 3 4 5 6 7 8 9Run

2 - - - - - - - -

RefAbsLevel

0 - 0 3 7 11 17 27 33 47 53 10
1 - 5 13 21 37 55 - - - - 6
2 - 9 23 41 - - - - - - 4
3 - 15 31 57 - - - - - - 4

 60

4 - 19 43 - - - - - - - 3
5 - 25 45 - - - - - - - 3
6 - 29 - - - - - - - - 2
7 - 35 - - - - - - - - 2
8 - 39 - - - - - - - - 2
9 - 49 - - - - - - - - 2

10 - 51 - - - - - - - - 2

Table A-18 VLC3_Chroma (for decoding level and run of chroma block)

Level > 0 EOB
1 2 3 4 5 6 7 8 9 10 11 12 13 Run

0 - - - - - - - - - - - - -

RefAbsLevel

0 - 1 3 5 7 11 15 19 23 29 35 43 47 53 14
1 - 9 13 21 31 39 51 - - - - - - - 7
2 - 17 27 37 - - - - - - - - - - 4
3 - 25 41 - - - - - - - - - - - 3
4 - 33 55 - - - - - - - - - - - 3
5 - 45 - - - - - - - - - - - - 2
6 - 49 - - - - - - - - - - - - 2
7 - 57 - - - - - - - - - - - - 2

Table A-19 VLC4_Chroma (for decoding level and run of chroma block)

Level > 0 EOB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Run

0 - - - - - - - - - - - - - - - - -

RefAbsLevel

0 - 1 3 5 7 9 11 13 15 19 21 23 27 29 33 37 41 43 51 55 20
1 - 17 25 31 39 45 53 - - - - - - - - - - - - - 7
2 - 35 49 - - - - - - - - - - - - - - - - - 3
3 - 47 - - - - - - - - - - - - - - - - - - 2
4 - 57 - - - - - - - - - - - - - - - - - - 2

Table A-20 Mapping of CurrentVLCTable and MaxRun

CurrentVLCTable MaxRun CurrentVLCTable MaxRun CurrentVLCTable MaxRun

VLC0_Intra 22 VLC0_Inter 25 VLC0_Chroma 24

VLC1_Intra 14 VLC1_Inter 18 VLC1_Chroma 19

VLC2_Intra 9 VLC2_Inter 13 VLC2_Chroma 10

VLC3_Intra 6 VLC3_Inter 9 VLC3_Chroma 7

VLC4_Intra 4 VLC4_Inter 6 VLC4_Chroma 4

VLC5_Intra 2 VLC5_Inter 4

VLC6_Intra 1 VLC6_Inter 3

 61

Annex B

Profiles and Levels

(This annex forms an integral part of this Standard)

Profiles and levels specify subsets of syntax elements and semantics of this Standard. Profiles and
levels specify restrictions on bitstreams and hence limits on the capabilities needed to decode the
bitstreams.

Each profile specifies a subset of the syntax elements, semantics and algorithmic features of this
Standard. A decoder conforming to a certain profile shall completely support the subset specified by
the profile.

Each level specifies a set of limits on the syantax elements and the values that may be taken by the
syntax elements of a certain profile. For any given profile, levels generally correspond to decoder
processing load and memory capability.

This annex specifies the constraint of values of certain syntax elements, values of other syntax
elements can be set to any valid values of this Standard.

profile_id and level_id specifies the profiles and levels of a bitstream.

B.1 Profiles

See Table B-1 for profiles defined in this Standard.

Table B-1 Profiles

profile_id Profile
0x00 Forbidden
0x20 Jizhun profile
others Reserved

Bitstreams conforming to the Jizhun profile shall obey the following constraints:

 The value of profile_id shall be 0x20.
 The value of advanced_pred_mode_disable shall be ‘1’.
 The value of chroma_format shall be ‘01’ or ‘10’.
 The level constraints specified in subclause B.2.2 shall be fulfilled.

The levels supported by Jizhun profile are 4.0, 4.2, 6.0 and 6.2.

B.2 Levels

B.2.1 Levels Defined in This Standard

See Table B-2 for levels defined in this Standard.

Table B-2 Levels

level_id Level
0x00 Forbidden
0x10 2.0

 62

0x20 4.0
0x22 4.2
0x40 6.0
0x42 6.2
others Reserved

B.2.2 Profile-Independent Level Limits

For all levels, the maximum number of bits of each coded macroblock is specified in Table B-3.

Table B-3 Maximum number of bits of a coded macroblock

Picture Format Maximum number of bits of a
coded macroblock

4:2:0 128 + 256×8×1.5 = 3200
4:2:2 128 + 256×8×2 = 4224

Table B-4, Table B-5 and Table B-6 specify other limits.

Table B-4 Level limits

Level
Parameter 2.0

Maximum number of
samples per row

352

Maximum number of rows
per frame

288

Maximum number of frames
per second

30

Bitrate of luma sample 2,534,400
Maximum bitrate
(bits/second)

1,000,000

Size of BBV buffer (bits) 122,880
Maximum number of
macroblocks per frame

396

Maximum number of
macroblocks per second

9,900

Maximum range of vertical
motion vector (frame
coding)

[-128, +127.75]

Maximum range of vertical
motion vector (field coding)

-

Maximum range of
horizontal motion vector

[-2048, +2047.75]

Picture format 4:2:0

Table B-5 Level limits

Level
Parameter 4.0 4.2

Maximum number of
samples per row

720 720

Maximum number of rows
per frame

576 576

 63

Maximum number of frames
per second

30 30

Bitrate of luma sample 10,368,000 10,368,000
Maximum bitrate
(bits/second)

10,000,000 15,000,000

Size of BBV buffer (bits) 1,228,800 1,851,392
Maximum number of
macroblocks per frame

1,620 1,620

Maximum number of
macroblocks per second

40,500 40,500

Maximum range of vertical
motion vector (frame
coding)

[-256, +255.75] [-256, +255.75]

Maximum range of vertical
motion vector (field coding)

[-128, +127.75] [-128, +127.75]

Maximum range of
horizontal motion vector

[-2048, +2047.75] [-2048, +2047.75]

Picture format 4:2:0 4:2:0 or 4:2:2

Table B-6 Level limits

Level
Parameter 6.0 6.2

Maximum number of samples
per row

1,920 1,920

Maximum number of rows
per frame

1,152 1,152

Maximum number of frames
per second

60 60

Bitrate of luma sample 62,668,800 62,668,800
Maximum bitrate
(bits/second)

20,000,000 30,000,000

Size of BBV buffer (bits) 2,457,600 3,686,400
Maximum number of
macroblocks per frame

8,160 8,160

Maximum number of
macroblocks per second

244,800 244,800

Maximum range of vertical
motion vector (frame coding)

[-512, +511.75] [-512, +511.75]

Maximum range of vertical
motion vector (field coding)

[-256, +255.75] [-256, +255.75]

Maximum range of horizontal
motion vector

[-2048, +2047.75] [-2048, +2047.75]

Picture format 4:2:0 4:2:0 or 4:2:2

The following should be noted.

1) The BBV buffer size under one level shall be directly proportional to the maximum allowed

bitrate for that specific level. The reference value is the BBV buffer size for Jizhun profile at level
4.0. For example, the BBV buffer size in bits for Jizhun profile at level 6.0 is given by:

Ceil((1228800 × 20 ÷ 10) ÷ 16384) × 16384 = 2457600 bits

 64

2) The syntax elements related to Table B-4, Table B-5 and Table B-6 include horizontal_size,
vertical_size, frame_rate_code, bbv_buffer_size and chroma_format.

 65

Annex C

Start Code Emulation

(This annex forms an integral part of this Standard)

This annex specifies the methods to prevent the apprearance of start code emulation in bitsteam. The
format, meaning and padding method to align the bytes of start codes are described in subclause 7.1.1
and subclause 5.7.2.

To prevent the apprearance of start code emulation in bitsteam, encoding shall be performed in the
following manner: when writing a target bit into bitstream, if the bit is the second LSB of a byte, the
encoder shall check 22 bits before the target bit. If all these preceding 22 bits are ‘0’, ‘10’ shall be
inserted so that the target bit becomes the MSB of the next byte.

The decoding process shall be as follows: when reading a target byte, the decoder shall check the two
bytes before the target byte and the target byte. If these three bytes form the bit string ‘0000 0000
0000 0000 0000 0010’, the two LSBs of the target byte shall be dropped. This Standard does not
specify the way of dropping the two bits. Any methods can be used to achieve this purpose.

The above method shall not be applied to data in the sequence header, sequence display extension,
copyright extension, user data and camera parameter extension.

 66

Annex D

Bitstream Buffer Verifier

(This annex forms an integral part of this Standard)

This annex specifies the Bitstream Buffer Verifier (BBV).

BBV has an input buffer called BBV buffer. Encoded data shall enters the BBV buffer according to
the method specified in subclause D.2.1, and be removed from the BBV buffer according to the
method specified in subclause D.2.2. A bitstream conforming to this Standard shall not contain data
that causes overflow of the BBV buffer. If low_delay is equal to ‘0’, a bitstream conforming to this
standard shall not contain data that causes underflow to the BBV buffer. If low_delay is equal to ‘1’, a
bitstream conforming to this standard may contain data that causes BBV buffer underflow. In this
case, the method defined in subclause D.2.2.2 shall be used to process it.

All operations are real-number calculation; therefore, there is no rounding error. For example, the
number of bits in BBV buffer does not need to be an integer value.

D.1 Conventions

D.1.1 Convention 1

BBV has the same clock frequency and frame rate as the video encoder, and operates with it
synchronously.

D.1.2 Convention 2

The size of BBV buffer is BBS.

D.1.3 Convention 3

The maximum bitrate Rmax (bits/sec) input into BBV buffer is calculated as:

Rmax = BitRate × 400 (D-1)

D.2 Basic Operation

D.2.1 Data Enters the Buffer

This subclause specifies two methods to calculate the bitrate of coded data input into BBV buffer. The
two methods shall not be used simultaneously.

D.2.1.1 Method 1

If bbv_delay is not equal to 0xFFFF, the BBV buffer input bitrate of the n-th frame, R(n), is
calculated as:

R(n) = d*
n / (τ(n) – τ(n+1) + t(n+1) – t(n)) (D-2)

d*
n is the total number of bits from the first bit after start code of n-th frame to the first bit after start

code of (n+1)-th frame, τ(n) is bbv_delay of the n-th frame in seconds, t(n) is the time of removal of
the n-th frame coded data from BBV buffer in seconds, t(n+1)-t(n) is the time interval of decoding
process between (n+1)-th frame and n-th frame.

 67

In the beginning and at the end of the video sequence, no parameters may be available to determine
the decoding interval time. In this case, the following methods can be adopted.

D.2.1.1.1 Ambiguity at the Beginning of a Sequence

During random access of a sequence, the first picture after the sequence header does not have the
information of previous I or P pictures. In this case, if the bitstream is a part of the system stream, the
decoding interval time can be derived from the system stream instead.

If the decoding interval time cannot be determined unambiguously, then R(n) can not be determined.
In this case, the BBV cannot precisely determine the fullness in trajectories during a limited period
(always less than the maximum value for bbv_delay). Consequently, it is not possible to verify the
BBV buffer strictly for the entire bit stream. The encoder always knows the value of t(n+1)-t(n) after
each repeated sequence header, hence it also knows how to generate a bitstream conforming to the
BBV constraints.

D.2.1.1.2 Ambiguity at the End of a Sequence

If the first start code after a coded frame is the video_sequence_end_code, it is not possible to get the
total number of bits of this picture. In this case, an input rate should exist, and this rate shall not lead
the BBV buffer to an overflow. This rate also shall not lead to an underflow of the buffer when the
value of low_delay is ‘1’. The rate shall be less than the maximum rate specified in the video
sequence header.

After filling the BBV buffer with all the data that precedes to the first picture start code of the
sequence and the picture start code itself, data of each subsequent picture shall be put into the BBV
buffer within the time specified by the value of bbv_delay, and the decoding process shall begin
immediately. The input rate is determined by equation D-2.

All the R(n) of the bit stream shall be less than Rmax.

In the case of CBR, R(n) in the video frequency sequence is a constant value within the accuracy
permitted by the bbv_delay.

D.2.1.2 Method 2

If bbv_delay is equal to 0xFFFF, data enters the BBV buffer as follows:

If BBV buffer is not full, data enters the BBV buffer at Rmax. If BBV buffer is full, data has to wait
until some data are removed from the buffer.

After filling the BBV buffer with all the data that precedes to the first picture start code of the
sequence and the picture start code itself, data continues to enter the BBV buffer until the buffer is full.
At this time, the decoding process begins.

D.2.2 Data Removed from the Buffer

The data of the n-th picture, f(n), in the BBV shall include the following data if it exist:

 Sequence header, extension and user data after sequence header, and video_edit_code. There shall

be no data corresponding to other pictures.
 Encoded data of current picture.
 Picture display extension after picture header of current picture.

 68

 video_sequence_end_code and stuffing data after current picture.

B

1 2 n n+1 t0

dn+1

B*n+1

Bn+1

Bn

B*1
d1

dn

B1

bbv_delay

sequence_header(), extension_and_user_data(0), extension_and_user_data(1),
i_picture_header(), pb_picture_header()

B*n

Figure D-1 Usage of BBV buffer in CBR case

D.2.2.1 Non Low Delay

If low_delay is equal to ‘0’, data shall be removed from the BBV buffer as follows:

At the decoding time t(n) of each picture, BBV buffer is underflow if the fullness of BBV buffer B(n)
is less than f(n); otherwise, remove data from the buffer and begin to decode.

If low_delay is equal to ‘0’, BBV buffer shall not underflow.

D.2.2.2 Low Delay

If low_delay is equal to ‘1’, check the BBV buffer BbvCheckTimes+1 times before removing a coded
picture from the buffer. If BbvCheckTimes is greater than 0, current decoded picture is called “big
picture”.

Encoded data shall be removed from the BBV buffer as follows:

Check the BBV buffer in every checking interval time, remove the data after BbvCheckTimes+1
checkings.

If the current decoded picture is not a “big picture”, checking interval is specified in subclause D.3.

If the current decoded picture is a “big picture”, checking interval is the interval of one frame period.
The BBV buffer fullness B(n) shall be less than BBS before a “big picture” is removed. The last
picture of a sequence shall not be a “big picture”.

BBV buffer may be underflow when a “big picture” is removed in low delay mode.

D.3 Checking Interval of the BBV Buffer

This clause specifies the checking interval of the BBV buffer.

 69

D.3.1 Non Low Delay

If low_delay is equal to ‘0’, the checking interval of BBV buffer t(n+1)-t(n) is one, two or there times
of the reciprocal of frame rate T.

If the n-th picture is a B-picture and its repeat_first_field is ‘0’, the checking interval is equal to T.

If the n-th picture is a B-picture, its repeat_first_field is ‘1’, and top_field_first is ‘0’, the checking
interval is equal to 2T.

If the n-th picture is a B-picture, its repeat_first_field is ‘1’, and top_field_first is ‘1’, the checking
interval is equal to 3T.

If the n-th picture is an I or P picture, and repeat_first_field of previous I or P picture is ‘0’, the
checking interval is equal to T.

If the n-th picture is an I or P picutre, repeat_first_field of previous I or P picture is ‘1’, and
top_field_first of previous I or P picutre is ‘0’, the checking interval is equal to 2T.

If the n-th picture is an I or P picture, repeat_first_field of previous I or P picture is ‘1’, and
top_field_first of previous I or P picutre is ‘1’, the checking interval is equal to 3T.

D.3.2 Low Delay

If low delay is equal to ‘1’, the checking interval of BBV buffer t(n+1)-t(n) is one, two or there times
of the reciprocal of frame rate T.

If the n-th picture is an I or P picture, and its repeat_first_field is ‘0’, the checking interval is equal to
T.

If the n-th picutre is an I or P picutre, its repeat_first_field is ‘1’, and top_field_first is ‘0’, the
checking interval is equal to 2T.

If the n-th picutre is an I or P picture, its repeat_first_field is ‘1’, and top_field_first is ‘1’, the
checking interval is equal to 3T.

——————————

