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Abstract – Receptors on-board satellites are being implemented to track civil aircrafts all around the world. This new
scenario requires novel methods to process the signals in order to efficiently retrieve more updated and reliable position
and status data of every aircraft. To reach the required performance, it is indeed needed to engage carefully chosen
algorithms of data analysis and processing. Machine learning algorithms, in particular k-nearest neighbors and support
vector machines, are employed to estimate the potential success in decodifying ADS-B messages in highly congested
areas, and simulations are performed to obtain the training and testing signals. First, the ADS-B communication
system is described; second, multivariate analysis and machine learning algorithms are studied. Finally, the results
obtained from machine learning methods are compared and future studies are proposed.
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1. INTRODUCTION
The disappearance in 2014 of the flight MH370 is still
a matter of concern for the international community.
Many efforts were engaged in order to enable a safer
flight environment all over the world. Nevertheless,
there still is a long road ahead.
One of the very first actions taken was the creation
of the Focus Group on Aviation Applications of Cloud
Computing for Flight Data Monitoring (FGAC) at the
Telecommunication Standardization sector of the Inter-
national Telecommunication Union (ITU). At the same
time as the FGAC was looking at telecommunication
standards for an aviation cloud for real-time monitor-
ing of flight data[1], Working Party 5B (WP5B) of the
Radiocommunication sector of ITU (ITU-R) was also
addressing the issue. The role of the ITU-R is to ensure
the rational, equitable, efficient and economical use of
the radio-frequency spectrum by all radiocommunica-
tion services, including satellite services, and to carry
out studies on the basis of which Recommendations are
adopted[2]. In WP5B, the challenge was to identify a
suitable frequency band that would be required to know
the status of every civil aircraft.
Automatic dependent surveillance-broadcast (ADS-B)
was conceived by the International Civil Aviation Or-
ganization (ICAO) as a terrestrial communication sys-
tem. Making use of satelital global positioning data and
other on-board navigation information, ADS-B contin-
uously broadcasts an aircraft’s position and status to
ground stations and other aircrafts. For that reason, the
frequency band was attributed to the terrestrial service
exclusively. In addition to that, the secondary surveil-
lance radar (SSR) and other non-ICAO systems coexist
with the terrestrial ADS-B system in that particular fre-
quency band.
Low earth orbit (LEO) satellites have been widely used

Fig. 1 – ADS-B coverage improved by a satellite network

for both voice and data communications for many years
[4]. Based on this, WP5B conducted studies to evaluate
the feasibility to receive ADS-B signals on-board LEO
satellites, which would enhance coverage for aircraft
that are suitably equipped, particularly in areas where
terrestrial receivers cannot practically be deployed (such
as oceanic, trans-polar and remote regions). Despite
many issues being identified[5], it was shown that allow-
ing the satellite reception of those signals is compatible
with existing systems and would potentially solve the
problem.
Following the information presented in WP5B Report
(Document 5B/883-E Annex 1)[3], the administration
members of the World Radiocommunication Confer-
ence 2015 (WRC-15), by Resolution 425, attributed
the frequency band to the aeronautical mobile-satellite
(Route) service (AMS(R)S) for the reception of ADS-B
signals on board satellites.
That decision was the enabler that many companies
were waiting for in order to implement reliable ADS-
B receivers on board their new satellites and to provide
a new service. However, the issues that arise upon the
spatial signal reception have to be deeply studied to ob-
tain the correct performance. The idea is depicted in
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Fig. 2 – ADS-B Signal

Fig. 1.
Also, in 2015, ITU included the item 1.10 in the
agenda of the World Radiocommunication Conference
2019 (WRC-19) with the subject “Studies on spectrum
needs and regulatory provisions for the introduction and
use of the Global Aeronautical Distress and Safety Sys-
tem” Moreover, the Conference Preparatory Meeting
2019 invited the ITU Radiocommunication Sector and
Working Party 5B “[...] to conduct the relevant stud-
ies, taking into account information and requirements
provided by ICAO for both the terrestrial and satellite
components, including: a) quantification and character-
ization of radiocommunication requirements related to
[Global Aeronautical Distress & Safety System] GADSS
[...]”[10].
Due to the lack of a non-proprietary, unique and global
system capable of providing accurate flight position and
status data to air traffic controllers (ATC), in many
parts of the globe, aircrafts have to maintain wider sep-
aration distances. Sometimes, changes in their routes
due to weather or any other cause, have to be care-
fully coordinated relying only on voice communication
between the pilot and the ATC. The consolidation of a
global system capable of delivering accurate information
in real time would change this situation, resulting in a
safer and fuel efficient overall transportation system, re-
ducing environmental impact caused by 𝐶𝑂2 emissions,
while saving customers money.
Implementing space ADS-B technology by itself is not
enough to prevent accidents. Additionally, to help
with events similar to the MH370 disappearance, ADS-
B equipment on board aircrafts must be tamper-proof,
start automatically and be always on. Whether every
aircraft in the world is precisely tracked, the time re-
quired to locate it, even in case of distress, can be re-
duced.

1.1 ADS-B system
ADS-B is a communication system for air traffic surveil-
lance that operates at 1090 MHz. Using this technology,
aircrafts routinely transmit identification and position
information during flights. An ADS-B message consists
of a preamble of 8𝜇𝑠 and a data block of 112𝜇𝑠. The
message is Manchester-coded, meaning that each bit is
represented with two states (high and/or low) that last
half a bit time (see Fig. 2). Finally, the signal is mod-
ulated using on-off keying (OOK) and sent about six
times per second, at random intervals.
There are two main ADS-B message types; squitter
mode (S) of 64 bits and extended squitter (ES) of 120
bits long. ES ADS-B messages may contain informa-

tion such as position, velocity, or status. The messages
are broadcast with a random period to prevent aircraft
from having synchronized transmissions. Depending on
the aircraft category, the required transmission power
ranges between 75𝑊 and 500𝑊 . The vertically polar-
ized ADS-B signals alternate between top and bottom
mounted quarter-wave monopole antennas.
Air traffic services receive not only the SSR data, but
also ADS-B messages that, due to their frequent up-
date cycle, provide more accurate and timely surveil-
lance information. In 2002, the American Federal Avi-
ation Administration announced that 1090 MHz would
be used in the next generation ATS for air carrier and
private/commercial operators of high performance air-
craft, wide-spreading the use of ADS-B. Many other
airspace authorities have implemented, or plan to im-
plement ADS-B mandates to enforce the use of ADS-B
in civil flights in their airspace.
Although the deployment of ADS-B receptors is grow-
ing, ground stations are difficult to install and maintain
in mid-ocean, desert and remote locations, resulting in
uncovered zones.

1.2 Satellite ADS-B improvement
Using satellite receptors of ADS-B extends the coverage
of the current terrestrial flight tracking system and has
the potential to provide improved performance of aero-
nautical traffic control in areas where ground stations
do not exist. Moreover, ADS-B is a non-proprietary
technology which uses equipment widely implemented
on most aircrafts and its use is already mandatory in
many countries. The actual traffic procedures and lim-
its may be improved, providing real-time and precise in-
formation of every civil aircraft in a particular airspace.
This would enable the reduction of the aircraft separa-
tion distance, and pilots would be able to take different
routes than planned due to weather or fuel economy
reasons. Those changes would not only reduce time and
fuel consumption, but also use crowded airspaces more
effectively.

2. CHALLENGES
The frequency band used by ADS-B is shared with other
ICAO and non-ICAO standardized aeronautical applica-
tions. This means that signals such as replies to SSR in-
terrogations, distance measurement equipments (DME)
and tactical air navigation system (TACAN) may in-
terfere with an ADS-B message. For that reason, it is
needed to distinguishing these (undesired) signals from
ADS-B messages.
Moreover, due to the altitude of LEO satellites, the cov-
erage area of a satellite receiver is notably larger than
a terrestrial one. In the world’s most congested zones,
satellites will be receiving messages from a high number
of planes at the same time, making message collision a
source of great interference. An example of that situa-
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Fig. 3 – Snapshot of approximately 1400 aircrafts in western Eu-
rope zone, Sunday, July 29. Source: FlightRadar24.com

tion is shown in Fig. 3.
The above-mentioned problem appears due to increased
coverage, and so the received signal needs to be treated
to separate, as much as possible, messages broadcasted
from different aircrafts. In order to achieve that, it is
necessary to conduct different signal processing analy-
sis from many perspectives, using as many methods as
possible.

3. DATA RETRIEVAL AND PRO-
CESSING

3.1 Multivariate analysis
It is possible to receive signals from more than one air-
craft at the same time applying multivariate data anal-
ysis methods. These statistical techniques can be used
to analyze data that arises from more than one vari-
able. Generally speaking, said techniques can be used
to uncover the latent structure (dimensions) of a set of
variables, which in this case, indicates that it would be
possible to know how multiple messages are added to the
received signal. However, for this practical problem, the
main objective is not to know how the radiofrequency
channel affected the message, but to decode the mes-
sage hidden in the sum of signals (i.e., to de-garble the
message). For this case, the technique employed is the
independent component analysis (ICA).

3.1.1 Independent component analysis
Looking at previous results, it can be seen that many
messages are interfered with other (also useful) mes-
sages. This situation is similar to the cocktail party
problem[15] where it is desirable to isolate one speaker
within a crowd. It would be even better to be able to
isolate every source and decode process them indepen-
dently. Independent component analysis attempts to
decompose a multivariate signal into independent non-
Gaussian signals.
The next analysis needed is to determine whether it is
possible to separate these contributing sources from the
received total signal. When the statistical independence
assumption is correct, blind ICA separation of a mixed

signal gives very good results [6].
The independent components are found based on the
statistical properties of the signals; by minimizing the
statistical dependence of the estimated signal factors
(components) and using the kurtosis or any approxima-
tion of negentropy, the independence of the components
can be measured, which, by hypothesis, should not be
Gaussian.
It is important to consider that, in theory, if 𝑁 messages
are present, at least 𝑁 observations (e.g. receiving an-
tennas) are needed to recover the independent signals.
This derives into a practical problem on board the satel-
lite, due to the complexity of the antenna deployment.
This consist of a major problem if only one satellite re-
ceptor is considered. Even if many antennas or receptors
are installed in one satellite, the received signals will be
highly correlated and the methods will not be able to
deliver good results.

3.2 Data classification
As the previous attempts are not practical using only
one satellite receptor, another tool needs to be devel-
oped to obtain useful information. A testbed is needed
to make all the trials and evaluate the performances of
the methods studied. In the following sections the de-
ployed simulator is explained, and then two algorithms
are evaluated and its performance is quantified.

3.2.1 Simulator
The first step is to build a test bed to be able to explore
every possible scenario and situation. The main variable
to study is the signal received on board the satellite. The
simulator was built considering a LEO satellite orbiting
above an area with an aircraft density similar to the one
found in the most congested areas. The aircrafts were
individually placed at random locations in the satellite
coverage.
Then, the received signal was built adding all the air-
crafts’ transmissions (generated by the signal genera-
tor) and affected individually by the particular channel
gain and stochastic propagation effects[11]. The model
comprises the main effects found in the communication
channel and fits well enough to study the possible solu-
tions.

3.3 Machine learning classification
After having the signal available at the satellite, two
different pattern recognition algorithm were tested; k-
nearest neighbours (kNN) and support vector machine
(SVM). The aim was to be able to identify if, at a certain
moment, the received signal contained or not a decod-
able message. At this stage, the content of the message
was not being considered, but whether it was feasible or
not it’s demodulation. In the machine learning model
(Fig. 4), this simulator is the message generator as it
creates the signal ̃𝑥 and also the supervisor as it labels
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Fig. 4 – Learning model

the data (𝑦 signal). If it is known how the signal is being
generated, it is possible to create a label that contains
the desired result of the ideal classificator. For this prob-
lem the labels state whether is possible or not to decode
a certain message based on the level of interference or
signal power. In other words, two classes were defined
based on whether the message could be decodified or
not. This mainly depends on the received power of that
message, e.g. a received power above the receiver’s sen-
sitivity and on if there were collisions between messages
with comparable power.
Actually, the ⃗𝑥 signal used as input to the learning
algorithms is a multidimensional signal composed of
features extracted from ̃𝑥. Finally, ⃗𝑥 is expected to
maximize the distance between samples of different
classes. If the features are carefully chosen, that could
be accomplished[7].
Once the vector ⃗𝑥 and the labels 𝑦 were properly condi-
tioned, they were introduced into a 𝑘-nearest neighbors
classifier and a support vector machine. The perfor-
mance was recorded with the error probability 𝑃𝑒 as the
key indicator and time/computational consumption as
a secondary one.
Both algorithms need specific parameters depending on
the chosen structure and many techniques are usually
employed to tune them. In k-fold cross-validation, used
in this study, part of the original samples are used as
training data, and the remaining subset of samples to
test the model. The partition of the samples is randomly
chosen and this process is repeated 𝑘 times. In order to
obtain a single estimation, the 𝑘 results are averaged.
Using this method, all observations are used for both
training and validation, and each one only once for val-
idation. 𝑘 is an unfixed parameter, and usually 5-fold
cross-validation is used.[8].

3.3.1 k-nearest neighbors
The kNN search is a generalization of the optimization
problem of finding the closest point to a given one in
a determined set. This algorithm classifies the point
by counting from which class are the 𝑘-nearest training
points in the feature space (see Fig. 5). Choosing differ-
ent 𝑘 values sets different boundaries, as shown in Fig.
6a and 6b.
The training phase of the algorithm consists of stor-
ing vectors in a multidimensional feature space, labeling
them with classes. Then, in the classification phase, an
unlabeled vector is assigned to the class which is most

Fig. 5 – Example of finding k near neighbors.

(a) Boundary using 3
neighbors.

(b) Boundary using 7
neighbors.

Fig. 6 – Effect of choosing different k.

frequent among the 𝑘 closest training samples to that
point.
Depending on the problem, and specially on the nature
of the data, larger values of 𝑘 can reduce the effect of
the noise on the classification, but it could cause wrong
predictions between less distinct classes. It is helpful to
choose an odd 𝑘 if it is a binary classification problem,
in order to prevent ties[9].
For multi-class kNN classification exists an upper bound
error rate:

𝑅∗ ≤ 𝑅𝑘𝑁𝑁 ≤ 𝑅∗ (2 − 𝑀𝑅∗

𝑀 − 1 ) (1)

where 𝑅∗ is the Bayes error rate, 𝑅𝑘𝑁𝑁 is the kNN error
rate, and 𝑀 is the number of classes in the problem.
The only parameter that has to be chosen for this
method is 𝑘, i.e. the number of neighbors considered.
As previously detailed, to choose the optimal 𝑘 (the
one that committed fewer errors), k-fold cross-validation
method was employed. A𝑃𝑒 = 0.059 was obtained for
𝑘 = 11.
The contour for this method is shown in Fig. 7.
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Fig. 7 – 11NN Classification results.

3.3.2 Support vector machine
SVM[13] is a method to find the boundary with the
widest margin between all possible cases (Fig. 8b). Con-
sidering the case of IR2, when the classes are linearly
separable, a straight line can be drawn that perfectly
separates the classes, with the margin being the per-
pendicular distance between the closest points to the
line from each class, as seen in Fig. 8a. If the dimen-
sion of the sample is greater than three, the separating
line becomes an hyperplane. The closest samples to the
margin, or the ones that violate it are called support
vectors and are the only samples that are considered to
define the separating hyperplane[14].
When the classes are linearly separable, the wider the
margin, the confidence in the classification is higher be-
cause it indicates that the classes are less similar. Usu-
ally, it is difficult to obtain samples or data sets that are
linearly separable and any separating hyperplane will
not be useful. It is said that the margin is violated by a
sample whether it is beyond the separating hyperplane
as shown in Fig 8c with arrows marked as ‘1’. Also, the
case where the samples are on the correct side, but are
inside the margins has to be considered and an example
is marked with the arrow and ‘2’ in Fig. 8c.
To take into account violations, penalty is considered
proportional to the distance between each violating sam-
ple and the corresponding margin. Then, the problem
is reduced to the minimization of the risk:

1/𝜌 + 𝐶 ∑ 𝜉𝑖 (2)

where 𝜌 is the margin width, 𝜉𝑖 is the penalty paid of the
𝑖th violating sample and 𝐶 is a parameter that enables
to tune the trade-off between the width of the margin
and the amount of violating samples.
If 𝐶 is large, there will be fewer training errors, meaning
that fewer samples from the training set will be misclas-
sified. This is known as overfitting, and when it occurs,
as shown by the dashed line in Fig. 9, classes are per-
fectly separated, but the separation is greatly influenced
by noise, potentially leading to greater classification er-
rors.

(a) Linearly separable
classes.

(b) Maximum margin.

(c) Margin violation and mis-
classification.

Fig. 8 – SVM using a linear classifier

Fig. 9 – Overfitted samples

On the contrary, when 𝐶 is small, there will be more
misclassified samples, but the margin will be greater, as
shown by the grey continuous line in Fig. 9. To improve
the final result of the algorithm this parameter has to
be chosen using cross-validation[12].
For this method, two main parameters had to be set; 𝐶
of eq. (2) and the kernel used. A Gaussian kernel was
chosen for the present case. The only additional param-
eter required by the kernel was 𝜎 or the bandwidth.
Using k-fold cross-validation 𝐶 = 11 × 105 and 𝜎 =
0.0433 were found to be optimal. Training the SVM
classifier with those parameters, the performance re-
garding the error probability was 𝑃𝑒 = 0.049.
Furthermore, despite that the training phase took an
important amount of time, the classification of every
new sample could be done very quickly or with little
computational effort.
The contour for this method is shown in Fig. 10.
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Fig. 10 – SVM Classification results.

3.3.3 Performance comparison
The performance driven by the error probability 𝑃𝑒 as
the key indicator and time/computational requirement
as the secondary were used to evaluate the two studied
methods. Results are condensed in Table 1.

Table 1 – kNN vs. SVM

Indicator
Method kNN SVM

𝑃𝑒 0.059 0.049
Classification Slow Very fast
Training CPU Usage Low High

From Table 1, it can be seen that kNN performs better
during training time, but relatively to SVM, the clas-
sification process takes more time to complete. On the
other hand, SVM requires higher CPU usage during the
training phase, but it is able to classify new samples
significantly faster than kNN.

4. RESULTS
Under the hypothesis stated, it was shown that kNN
and SVM can determine whether a message can be de-
coded from the received signal, performing with little
difference. It is clear that SVM is about 1% better than
kNN. Under that circumstance, other indicators have
to be analyzed in order to define which method will be
better.
One of the most important indicators is the time or
computational resources that are needed to classify a
new sample. In that case, the SVM will perform bet-
ter. Nevertheless, if kNN is manipulated in order to
obtain a single and simpler boundary, the process can
be approximated by a simple function. But, in many
cases that method is not applicable, especially when the
dimension of the samples (i.e. the amount of features
used) is increased.
Despite that the training time for SVM is important,
this phase can be done offline, and once the system is
trained, the classification process will be very fast.
Nonetheless, during this study only one kernel was used

to test SVM. The results show that a simpler kernel can
be used, improving the performance of the method.

5. FUTURE WORK
It is considered for future work to model more phe-
nomena that affect the signal, e.g. doppler shift and
phase shift. Also, different strategies of pattern recogni-
tion and feature extraction could be considered to know
which method fits better to this problem.
Moreover, as the classificators studied only are able to
distinguish whether a decodable message is present in
the signal or not, a solution to the problem presented at
multivariate or ICA could be addressed in order to find
a solution. If that is achievable, then the reliability of
the algorithm should be tested to validate its potential
use in a satellite.
Finally, experimental tests are needed in order to evalu-
ate the performance of the algorithm. In future studies,
the algorithms will be tested with a real signal at satel-
lite receivers.

6. CONCLUSIONS
The conducted studies present a different way to deal
with the, already known, problem of receiving ADS-B
messages in congested airspaces. Machine learning and
pattern recognition are novel analysis methods that can
increase the amount of messages that a receiver could
decode in an efficient manner. This new technique can
contribute to international recommendations and stan-
dards to improve them, not only in a particular assump-
tion, but also in the way that parameters are chosen.
The approach found is the stepping stone to building a
robust satellite receptor of ADS-B messages. It is clear
that the challenges lead to the investigation of novel
methods to process the signal in order to obtain clean
and reliable data, using as little energy as possible. If
that is achieved, new real-time aircraft position and sta-
tus data can be obtained for all the aviation stakehold-
ers.
If the addition of this method makes the system more
efficient, the lifespan of the satellites will be improved
due to reduction in energy consumption. Consuming
less energy not only impacts on the battery depth of
discharge, but also makes the satellite cheaper due to
smaller electronic parts. Therefore, using machine learn-
ing techniques could potentially reduce the overall cost
of satellite missions carrying ADS-B receivers.
Improved flight tracking systems will be used in the fu-
ture to provide more secure, energy and time efficient
and convenient flights all around the world. Issues re-
garding aircraft flow as separation, conflict resolution,
approaches, planning, weather avoiding, etc. will be im-
proved to enhance safety, and provide additional capac-
ity. Furthermore, fuel consumption and 𝐶𝑂2 emissions
will be reduced since more efficient routes into busy air-
ports will be provided, thus cutting down holding time
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spent in the air and on the ground. It is shown that
despite the difficulties, having available enhanced data
that is provided by already-installed equipments, will
transform the industry to become more efficient and se-
cure, which yields a smart transportation system.
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