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Abstract - The rapid growth of civilian vehicles has stimulated the development of advanced driver assistance systems 
(ADASs) to be equipped in-car. Real-time autonomous vision (RTAV) is an essential part of the overall system, and the 
emergence of deep learning methods has greatly improved the system quality, which also requires the processor to offer a 
computing speed of tera operations per second (TOPS) and a power consumption of no more than 30 W with 
programmability. This article gives an overview of the trends of RTAV algorithms and different hardware solutions, and 
proposes a development route for the reconfigurable RTAV accelerator. We propose our field programmable gate array 
(FPGA) based system Aristotle, together with an all-stack software-hardware co design workflow including 
compression, compilation, and customized hardware architecture. Evaluation shows that our FPGA system can realize 
real-time processing on modern RTAV algorithms with a higher efficiency than peer CPU and GPU platforms. Our 
outlook based on the ASIC-based system design and the ongoing implementation of next generation memory would target a 
100 TOPS performance with around 20 W power.
Keywords - Advanced driver assistance system (ADAS), autonomous vehicles, computer vision, deep learning, reconfig-
urable processor

1. INTRODUCTION

If you have seen the cartoon movie WALL-E, you will re-
member when WALL-E enters the starliner Axiom following
Eve, he sees a completely automated world with obese and
feeble human passengers laying in their auto driven chairs,
drinking beverages and watching TV. The movie describes
a pathetic future of human beings in the year of 2805 and
warns people to get up from their chairs and take some exer-
cise. However, the inside laziness has always been motivat-
ing geniuses to build auto driven cars or chairs, whatever it
takes to get rid of being a bored driver stuck in traffic jams.

At least for now, people find machines genuinely helpful for
our driving experience and sometimes they can even save
peoples lives. It has been nearly 30 years since the first
successful demonstrations of ADAS [1][2][3], and the rapid
development of sensors, computing hardware and related
algorithms has brought the conceptual system into reality.
Modern cars are being equipped with ADAS and the num-
bers are increasing. According to McKinseys estimation
[4], auto-driven cars will form a 1.9 trillion dollars mar-
ket in 2025. Many governments like those in the USA [5],
Japan [6] and Europe [7][8][9] have proposed their intelli-
gent transportation system (ITS) strategic plans, which have
drawn up timetables for the commercialization of related
technologies.

Figure 1. The market pattern of automotive cars.

In current ADASs, machine vision is an essential part; it is
also called autonomous vision [10]. Since the conditions of
weather, roads and the shapes of captured objects are com-
plex and variable with little concern for safety, the anticipa-
tion for high recognition accuracy and rapid system reaction
to these is urgent. For state-of-the-art algorithms, the number
of operations has already increased to tens and hundreds of
giga-operations (GOPs). This has set a great challenge for
real time processing, and correspondingly we need to find a
powerful processing platform to deal with it.
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Fig. 1 shows a pattern of the current market of automotive
cars. NVIDIA is leading the market with its Drive series
GPU platforms, and has already built cooperation with car
manufacturers like Audi, Tesla, Daimler, etc. Intel is also
focusing on this area. It has acquired many relevant compa-
nies such as Mobileye, Nervana, Movidius and Altera, and
has collaborated with BMW and Delphi to build its ecosys-
tem circle. It has also released products such as Atom A3900
for the automotive scene[11]. Another chip giant Qualcomm
is also trying to make inroads in this market. It has release
dedicated processors like Snapdragon 602A and 820A chips
[12], and it has bought NXP to strengthen its impact in the
ADAS market.

Many ADAS solutions have chosen graphic processing unit
(GPU)-based systems to carry their autonomous vision al-
gorithms, not only because of their powerful computational
ability since GPU-based systems can offer massive paral-
lelisms in datapaths and the latest GPU processors can offer a
throughput of several TOPS such as the NVIDIA Drive PX2
system [13] with Xavier chips, but also because of the robust
and efficient developing environment support such as CUDA
[14] and cuDNN [15].

While GPU can offer a computing speed of TOPS, the power
consumption can often be the bottleneck for in-car system
implementation as some modern GPUs can cost 200-300 W.
One solution is to improve the power efficiency, and this can
be achieved through the dedicate logic customization, and
reconfigurable processors can be a suitable choice. One rep-
resentative reconfigurable processor is FPGA. FPGA suppli-
ers Xilinx and Altera have already introduced their FPGA
products into ADAS scenarios such as Zynq-7000 [16] and
Cyclone-V [17] series SoC. While the power is around 10
W, FPGA can also get a peak performance of around 100
GOPS. Together with the features of multi-threading, paral-
lel processing and low latency, FPGA could be expected to
be a favorable choice for autonomous vision systems.

Naturally, we can convert an FPGA design into an application-
specific integrated circuit (ASIC), and the circuit system can
further improve its efficiency by at least one order of mag-
nitude with its reconfigurability maintained, which makes
ASIC another mainstream ADAS solution. Suppliers in-
cluding Qualcomm, Intel, Infineon, and Texas Instruments
have released their ASIC-based SoC products for ADAS.
One representative product is Intel Mobileyes EyeQ4 chip
[18], which will be released in 2018 and can get a 2.5 TOPS
performance drawing only 3-5 W. The low power feature
makes it quite suitable for in-car supercomputing.

Both the chances and challenges for reconfigurable in-car
systems lie ahead. This article will firstly analyze the de-
velopment of modern RTAV algorithms, then evaluate the
performance of each hardware platform, and finally discuss
how we can build a more efficient reconfigurable system for
RTAV.

Figure 2. A block diagram for ADAS system description.

2. TRENDS IN AUTONOMOUS VISION

2.1. An overview of an ADAS system

An ADAS system collects data of the surrounding envi-
ronment from sensors and remote terminals such as cloud
servers and satellites, and makes real-time recognition of
surrounding objects to assist drivers or automatically make
judgements for a better driving experience and avoid poten-
tial accidents. A typical system is depicted in Fig. 2. As we
can see, there could be a series of sensors on vehicles such
as cameras, radars, LIDAR and ultrasonics to get input for a
real-time surrounding condition description, and processors
will react to give driver warnings or control the mechanical
system of the vehicle in some certain circumstances with
the trained algorithm models stored in the memory. Com-
munication interfaces can help to locate cars with map data,
and can obtain traffic information from datacenters and even
offload some compute-intensive tasks to cloud servers, and
this can be even more powerful in the future as much faster
communication protocols like 5G is already on the way.
Various functions can be achieved with an equipped ADAS
system, and autonomous vision has taken up a great portion
of this. As we can see from Fig. 3, functions such as vehi-
cle detection (VD), lane departure warning (LDW), forward
collision warning (FCW), pedestrian detection (PED), traffic
sign recognition (TSR), etc. are achieved by the autonomous
vision system itself or together with audio and radar systems.
Hence, it is important to find an efficient solution for au-
tonomous vision processing. Next, we will take an overview
of the vision algorithms, and present an analysis of potential
hardware carriers.

2.2. Traditional algorithms of autonomous vision

For most autonomous vision functions such as PED, VD,
LDW, TSR, etc., the kernel algorithm can be generalized into
a 2D object detection question. As shown in Fig. 4, a tradi-
tional detection process consists of the following stages: im-
age preprocessing, region of interest (ROI) selection, feature
extraction and classification.
For traditional algorithms, usually steps like gain and expo-
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Figure 3. Common functions in ADAS system.

Figure 4. Workflow of traditional detection algorithms.

sure adjustment and image rectification would be performed
to preprocess the collected images. ROI selection methods
depend on the type of task, such as vanishing point detection
(VPD) [19] and piecewise linear stretching function (PLSF)
[20] are used in LDW, and sliding window methods are taken
in PED, VD and TSR. It would be time consuming to execute
an exhaustive ROI search, so various optimizations are also
taken for ROI selection. Broggi et al. [21] use morphological
characteristics of objects and distance information. Uijlings
et al. [22] propose a selective search approach to efficiently
generate ROIs. For feature extraction, various manually de-
signed features such as Scale-Invariant-Feature-Transform
(SIFT) [23], Histogram-of-Oriented-Gradients (HOG) [24],
Haar [25], etc. have been widely used in detection tasks. For
classification, combined simple classifiers like AdaBoost
[26] and support vector machines (SVMs) [27] are popular
to work with traditional features. Some part based method-
ologies also appear to reduce the complexity of the overall
task, such as Felzenszwalb et al. [28] proposes a deformable
part model (DPM) to break down the objects into simple
parts.

2.3. The rise of convolutional neural network (CNN)

In recent years, the rise of CNN has set off a revolution in
the area of object detection. A typical CNN consists of a

Figure 5. A typical CNN architecture.

number of layers that run in sequence as shown in Figure 5.
Convolutional layer (CONV layer) and fully-connected layer
(FC layer) are two essential types of layer in CNN, followed
by optional layers such as pooling layers for down-sampling
and normalization layers. The first CONV layer takes an
input image and outputs a series of feature maps, and the
following CONV layers will extract features to higher lev-
els layer by layer through convolving the input feature maps
with filters. After CONV layers, FC layers will classify the
extracted features and output the probability of each category
that the input image might belong to.

State-of-the-art CNN models have achieved outstanding per-
formance in computer vision areas. Take image classification
as example, in 2012 Krizhevsky et al. announced an 8-layer
CNN model AlexNet [29] which achieved 84.7% top-5 ac-
curacy on ImageNet [30], which was far beyond the perfor-
mance of conventional algorithms. Five years have passed,
many organizations such as Google [31][32][33][34], Ox-
ford [35], Microsoft [36] have been focusing on novel CNN
model designs with more complex computing patterns, and
the accuracies of the top models have already surpassed the
human vision level [37].

The excellent performance of CNN is because the generic
descriptor extracted from CNN that trained on large scale
datasets is much richer than the traditional manually de-
signed features, and can be used for various tasks with some
fine tuning [38]. Hence for object detection problems, CNN-
based algorithms can get a much better performance than the
traditional ones.

The workflows of different detection algorithms are shown in
Fig. 6. R-CNN was first proposed [39]. It generates a set of
region proposals with selective search, warp/crop each region
into a static size, then extracts the feature maps with CONV
layers, and finally completes the classification with FC and
SVM layers. Since R-CNN needs to run CONV layers for
every region proposal which is very expensive in computa-
tions, SPP-net has appeared [40]. It merely needs to com-
pute CONV layers only once with spatial pyramid pooling to
transfer feature maps into fixed length vectors for FC layers.
Based on SPP-net, Fast R-CNN was designed by Girshick et
al. [41] which used multi-task loss to train the classifier and
bounding-box (BB) localizers jointly, with single-sized ROI
pooling to the feature maps of the last CONV layer which
are projected with region proposals. Then Ren et al. [42]
proposed Faster R-CNN, using the region proposal network
(RPN), which was actually a Fast R-CNN network, to gener-
ate region proposals and to get rid of the large computations
of traditional region proposal methods, and reused the Fast
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Figure 6. The processing flow of typical CNN-based detection methods.

R-CNN model to train the classifier and BB localizers. Un-
like the former algorithms which could only get satisfying
mean Average Precision (mAP) performance with the weak-
ness of slow speed, Faster R-CNN can achieve real-time pro-
cessing since it benefits from RPN and can get a 5fps speed
with one NVIDIA K40 GPU. Redmon et al. designed YOLO
[43] which directly took the whole input images to train the
model, and classifies each pixel in the output feature maps.
This equals to dividing the input image into several cells and
doing the classification inside each cell, which avoids the ex-
pensive process for proposals and can be around seven times
faster than Faster R-CNN to realize a more feasible real-time
detection with acceptable accuracy drop.

These detection algorithms have shown outstanding perfor-
mance on a PASCAL VOC dataset [44]. However, for the
autonomous vision scene, the detection mission would be
much tougher since the objects will be presented in much
worse quality for the big variance of object scale and the in-
complete captured object shape. Therefore, we need to opti-
mize the way we obtain proposals during our detection algo-
rithms. The corresponding representative benchmark for au-
tonomous vision is KITTI [45], and various algorithms have
been proposed for the dataset. We have selected some top
ranked detection algorithms and have listed them in Table. 1.
Actually, most of these algorithms have taken CONV layers
to extract the features based on the classic CNN models with
small revisions followed by application dependent FC lay-
ers. We compare the CONV layers of classic CNN models
in Table. 2. As we can see, giga MACs need to be solved
for each input frame. Together with FC layers and consider-
ing the number of region proposals, in order to realize real-
time processing, the hardware needs to provide a throughput
speed of over 100-1000 GOPS. With the growing number
of image data collected from cameras, future requirement of

Table 1. Top-ranked detection algorithms on KITTI.

Algorithm Target object (Moderate level)
Car Pedestrian Cyclist

MS-CNN [46] 89.02% 73.70% 75.46%
SubCNN [47] 89.04% 71.33% 71.06%

SDP+RPN [48] 88.85% 70.16% 73.74%
3DOP [49] 88.64% 67.47% 68.94%

Mono3D [50] 88.66% 66.68% 66.36%
SDP+CRC [48] 83.53% 64.19% 61.31%

Faster R-CNN [42] 81.84% 65.90% 63.35%

Table 2. Comparison of CONV layers in classic CNN mod-
els.

Model
AlexNet

[29]
VGG-16

[35]
Inception v1

[31]
ResNet-50

[36]
Top-5 Error 19.8% 8.8% 10.7% 7.0%
# of Weights 2.3M 14.7M 6.0M 23.5M
# of MACs 666M 15.3G 1.43G 3.86G

computing speed could reach 10-100 TOPS. To build such a
powerful processor with programmability and a power con-
sumption of less than 30 W is a challenging task, and we will
discuss the contenders in the next section.

3. PROCESSORS FOR REAL-TIME AUTONOMOUS
VISION

3.1. Heterogeneous platforms for CNN acceleration

As the CNN algorithm rapidly develops, so have the related
hardware accelerator designs, in recent years. The work of
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Figure 7. Hardware designs of CNN accelerators on different platforms and development route for RTAV accelerator in
ADAS.

(Source by:https://nicsefc.ee.tsinghua.edu.cn/projects/neural-network-accelerator/)

[51] shows the comparison between neural network acceler-
ators, as depicted in Fig. 7. We can see from the image that
GPUs are among the top tier of computing speeds, but the
power consumption is also very high. The freshly released
NVIDIA Tesla V100 can get an astounding computing speed
of 120 TOPS [52], with a power consumption of 300 W. This
can be useful in datacenter scenarios for cases like model
training where power is not the main concern. There are
also some GPUs designed for low-power embedded environ-
ments, like NVIDIA Jetson TX1 mobile GPU, which brings
a 300 GOPS speed on VGG-16 and a peak performance of
1 TOPS with only a 10 W cost [53]. The large general pur-
pose stream processors on chip might bring a considerable
parallelism, but the efficiency remains a question. With the
technology of 28nm, the NVIDIA TITAN-X and TX1 GPU
can only get an efficiency of 20-100 GOPS/W.

To improve the efficiency, we need to customize the inside
logic of processing elements (PEs) to enhance processing
parallelism and optimize memory access patterns. FPGA
could be a suitable initial selection, since it can provide
a large amount of computing and memory resources and
enough reconfigurability with programmable interconnec-
tion to map common algorithms on. In Fig. 7 we can see
that there have been many FPGA designs. The top designs,
including our Aristotle system on the Xilinx ZU9 FPGA plat-
form, can get a throughput speed at around 2 TOPS, which
is quite close to the same technology generation NVIDIA
TITAN-X GPUs, but of almost 10 times better efficiency.
This proves the capability of FPGA of being a strong com-
petitor.

As we can see, most CNN layers consist of MAC operations
and have similar computing patterns which could be possibly
generalized and parameterized. Therefore, with mature hard-
ware architecture and processing flow, it is feasible to harden
the original FPGA accelerator design into an ASIC chip with
a programmable interface for reconfigurability, which can
further improve performance. Kuon et al. [54] have mea-
sured the performance gap between FPGA and ASIC. It is
said that the critical-path delay of ASIC is three to four times

less than FPGAs, and the dynamic power consumption ratio
is approximately 14 for FPGA to ASIC, while the average
chip area of ASIC is also 18 times smaller than FPGA. This
means we can realize a much better performance with ASIC
within a given hardware area. ASIC designs have the rela-
tively better energy efficiency, mostly between 100 GOPS/W
to 10 TOPS/W. They have shown excellent performance in
low-power area, and as we can see from Fig. 7 some repre-
sentative designs such as DianNao [55], Eyeriss [56] and En-
vision [57] are showing a performance of around 100 GOPS
with only milli-watt level power consumption. The efficiency
can even reach 10 TOPS/W at extreme low voltage status.
To the other side, those ASICs with larger chip sizes are
capable of offering more abundant PEs and memory band-
width, which can lead to a faster throughput speed, such as
Googles TPU [58] which can get a peak performance of 86
TOPS. From the business aspect, a large quantity production
of ASIC could also reduce the overall cost. However, note
that the deep-learning algorithms for RTAV have a quite short
evolving cycle, usually within six to nine months. Moreover,
the benchmarks for RTAV are also far from perfect and new
tasks appear nearly every year. While ASICs time to market
is no less than one year, there is a potential risk of incom-
patibility between hardware processors and fresh algorithms
and application scenes. Solution providers need to make a
risk-return analysis.

Recently, some breakthroughs have taken place in the area
of near-memory and in-memory computing. The 3-D mem-
ory can offer an order of magnitude higher bandwidth and
several times power consumption than 2-D memory, such
as Hyper Memory Cube (HMC) proposed by Micron [59],
which uses through silicon vias (TSV) to stack the dynamic
random-access memory (DRAM) on top of the logic cir-
cuit. Through this method, the memory bandwidth can be
increased by an order of magnitude from 2-D memory, and
the power consumption can be five times less. There have
already been some designs combining the CNN accelerator
architecture with HMC [60][61]. Another technology is to
embed the computation inside memory, such as memristor

ITU Journal: ICT Discoveries, Special Issue No. 1, 25 Sept. 2017

5



[62]. It can realize a MAC operation through the summation
of currents from different memristor branches. This avoids
the data movement and can save energy. Recent simulation
works such as ISAAC [63] and PRIME [64] have evaluated
the efficiency of memristors in CNN acceleration.
An ideal ADAS system should be able to offer a comput-
ing speed of over 200 GOPS with no more than 40 W, and
hence we can mark the sweet zone for ADAS systems as the
red painted area in Fig. 7. Inside this sweet zone, we can
sketch a development route for the reconfigurable processors
for RTAV acceleration, shown as the dark red curve. Starting
from the FPGA design, we can climb up through logic hard-
ening for an efficiency of above 1 TOPS/W, and with the help
of the implementation of next generation memory technol-
ogy, the bandwidth can be broaden and the memory access
cost could be reduced, which can lead to an even higher effi-
ciency, to more than 10 TOPS/W. We use the yellow star to
indicate our target in Fig. 7. With a larger die size, a through-
put speed of over 100 TOPS could be expected, which can be
a suitable choice for an ideal RTAV system.

3.2. Chances and challenges for reconfigurable proces-
sors

In the area of RTAV, chances and challenges coexist for a
wide application of reconfigurable processors. The follow-
ing features of reconfigurable processors will bring them op-
portunities:
1) Programmability. Reconfigurable processors can offer a
pool of logic and memory resources on-chip. Considering
the fast evolving RTAV algorithms, it is not hard for users
to update the on-chip functions after they bought it from the
supplier.
2) Reliability. For example, the industrial grade FPGAs
can stably work in a temperature range between −40◦C ∼
100◦C. This makes them able to satisfy the requirement of
standards AEC-Q100 and ISO 26262.
3) Low-power. The power consumption for reconfigurable
processors is no more than 30 W. Low-power consumption is
suitable for the in-car environment.
4) Low-latency. Since algorithms mapped onto reconfig-
urable processors provide deterministic timing, they can of-
fer a latency of several nanoseconds, which is one order of
magnitude faster than GPUs. A quick reaction of ADAS sys-
tems is essential to dealing with sudden changes on the road.
5) Interfaces. Unlike GPU which can only make commu-
nication through the PCI Express protocol, both ASIC and
FPGA designs can provide huge interface flexibility, which
can be very helpful for ADAS system integration.
6) Customizable logic. Recently there has been great
progress in the area of model compression, including data
quantization and sparsity exploration. For general purpose
processors like CPU and GPU, only fixed data types could be
supported and the memory access pattern would be regular.
Reconfigurable processors can offer fine-grained customiz-
ability which can support data type as low as to 1 bit, and

specialized controllers could be introduced to deal with ir-
regular sparsity inside the models.
7) Multi-thread processing. For ADAS systems, it would
be best for different algorithms to be processed simultane-
ously, such as LDW would work on grayscale images while
PD would process RGB images. Reconfigurable processors
can provide vast spatial parallelism for algorithms to work in
individual channels.
However, challenges remain for the wide use of reconfig-
urable processors such as:
1) Programming language gap: Most developers use high-
level programming languages to build their project, while for
reconfigurable processors they need to start from the bottom-
level hardware and describe the logic with register-transfer
level (RTL) hardware description language (HDL) such as
Verilog and VHDL.
2) Limited on-chip resource: There is limited area for on-
chip arithmetic and memory resource to map the tiled algo-
rithm on spatially. This might form a bottleneck for some
large-scale algorithms.
3) Limited off-chip bandwidth: To communicate recon-
figurable processors with off-chip memories like DDR, the
bandwidth is often limited by the clock frequency of the con-
troller and the width of data wires.

3.3. Related reconfigurable processors

There have been many excellent reconfigurable processor de-
signs for deep learning models. Initial designs are mostly
based on FPGAs. Chakaradhar et al. [65] proposed a run-
time reconfigurable architecture for CNN on FPGA with ded-
icated switches to deal with different CNN layers. Zhang
et al. [66] used a nested loop model to describe CNN and
designed the on-chip architecture based on high-level syn-
thesis optimizations. Suda et al. [67] presented an OpenCL-
based FPGA accelerator with fully-connected layers also im-
plemented on-chip.
ASIC-based reconfigurable processors have appeared in re-
cent years. The representative work is Diannao [55] and its
subsequent series [68][69][70], which focused great efforts
on memory system optimization. Eyeriss [56] focused on
the dataflow optimization and used smaller PEs to form a
coarse-grained computing array. ENVISION [57] utilized
a dynamic-voltage-accuracy-frequency-scaling (DVAFS)
method to enhance its efficiency and reached 10 TOPS/W
with low voltage supply. Googles TPU [58] has been the
recent star with large on-chip memories and has reached a
similar throughput speed to peer GPUs withdrawing much
less energy.
Most of these precedent reconfigurable processors have their
own features with partial optimization of the entire flow, but
few consider the entire flow of the neural network acceler-
ator system. Therefore, the on-chip utilization rate of dif-
ferent CNN layers will eventually fluctuate [58] which may
drag down the overall efficiency of the system, and there has
been a large space left for improvement from the aspect of
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Figure 8. The software-hardware co-design workflow of our
system.

software. With this motivation, we will introduce our system
design in the following section.

4. SOFTWARE-HARDWARE CO-DESIGN FOR A RE-
CONFIGURABLE AUTONOMOUS VISION SYSTEM

4.1. The overall system workflow

What we have already achieved is an FPGA-based system
called Aristotle to target CNN acceleration, which can deal
with various CNN-based applications and can be conve-
niently mapped onto different FPGA platforms. For a better
processing performance, we should reduce the software
workload and improve the hardware utilization rate. Accord-
ingly, we design the software hardware co-design workflow
of our Aristotle system depicted in Fig. 8. To reduce the
workload, we compress the models using software methods
like quantization, pruning and matrix transformation. To
improve the utilization rate, the compiler will take the com-
pressed model and hardware parameters of different FPGA
platforms as inputs, and execute a task tiling with dataflow
optimizations to generate instructions for the hardware. The
hardware architecture will exploit the parallelism on-chip
for higher throughput with proper granularity choice and
datapath reuse. The details will be introduced as follows.

4.2. Compression methods

Usually, an algorithm model is trained in floating-point form,
but there exists redundancy. Previous work has shown that it
is not necessary to represent every datum with 32-bit, and
an appropriate data quantization would not hurt the overall
accuracy of the model. In Fig. 9 we have made an experiment
of quantization on state-of-the-art CNN models, and as we
can see from an 8-bit quantization brings little loss to the
accuracy. A lower bit-width can directly compress the size
of memory footprint, and can bring chance to share datapath
consists of integrated DSP blocks. We can implement two
multipliers for 8-bit inputs with one 25 × 18 DSP block on
Xilinx platform.
Another method is to implement a pruning process to the pre-
trained model, in order to decrease the number of connec-
tions inside a model [71]. It has been proved that some of the
connections that have weights close to zero will make a small
impact on the output pixel, and can be pruned without much

Figure 9. Quantization results for different CNN models.

Table 3. Comparison of compression ratio between quanti-
zation, pruning and matrix transformation methods at differ-
ent accuracy loss levels (baseline 32-bit floating-point).

Accuracy
Loss SVD

Quantization
Only

Pruning
Only

Quantization
and Pruning

0% - 5.8x 10.3x 27.0x
1% 5.4x 14.1x 15.6x 35.7x
2% 6.5x 14.9x 19.1x 37.0x
4% 6.9x 15.4x 22.9x 37.7x

loss and the loss can be further healed by retraining. Table
3 has shown that if we combine pruning and quantization to-
gether, the compressed model size would be the smallest with
negligible accuracy loss. Together with Huffman coding, the
model size of AlexNet can be reduced by 35 times, and that
of VGG-16 can be reduced by 49 times. We should notice
the randomness of sparsity from pruning, which is tough to
be efficiently used for hardware execution. To deal with this
case, we add some constraints to limit the pruned connec-
tions in regular patterns, and this can increase the number
of all zero channels for more skips during the acceleration
process.

Moreover, we can see that inside the basic MAC operations
of CNN, multiplication is always the most resource consum-
ing operation, so reducing the number of multiplications can
also enhance the hardware performance. Matrix transforma-
tion like Winograd [72] and FFT [73] can achieve this goal
by targeting different sizes of filters. Take Winograd trans-
formation as example, if we tile the input feature maps into
6× 6 blocks and convolve it with 3× 3 filters, through trans-
formation we can reduce the number of multiplications by
2.25 times and replace them with cheap add and shifting op-
erations.

With all these compression methods above, we can reduce
the workload of the original model, which will benefit the on-
chip memory and arithmetic resources and system through-
put speed.
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Figure 10. Our CPU+FPGA system architecture.

4.3. Hardware architecture design

Our Aristotle hardware architecture design [74] is given
in Fig. 10. A CPU+FPGA accelerator design is adopted,
which consists of two parts: the processing system (PS) and
the programmable logic (PL). PS contains the low-power
CPU processors and the external memory, which offers
programmability and data capacity. Instructions will be
transferred into PL and decoded to implement the control of
PL. PL is the on-chip design where the majority of the CNN
accelerator logic is located, and can be scalable due to the
chosen FPGA platform. PEs are placed inside PL for parallel
MAC operations, which can complete the convolving pro-
cess through multiple iterations. Some functions that cannot
be efficiently accelerated with PE, such as several kinds of
pooling and an element-wise dot product, will be contained
inside a MISC calculation pool for optional use. On-chip
buffers will be provided to offer data reuse opportunities
controlled by a scheduler, and communicate with external
memories using a data mover such as a direct memory ac-
cess controller (DMAC). Such hardware architecture design
can be easily shared between layers which are friendly to
instruction generation and high-level programming.

Instead of combining every multiplication of one filter win-
dow together, we split the computing kernel into smaller
granularity, which can avoid the waste of arithmetic resource
while dealing with a large filter size or window stride, and
can ensure a regular data access pattern for easier control.
Furthermore, a smaller granularity of PE can increase the
chance of skipping for sparsity, which can save the overall
execution time of the system.

Figure 11. Evaluation results of YOLO-tiny on mobile
GPUs and different FPGA platforms.

Table 4. Evaluation results of SSD on CPU, GPU and FPGA
platforms.

Platform
Intel Xeon
E5-2640 v4

NVIDIA GTX
1080TI GPU

Xilinx ZU9
FPGA

Task SSD (YOLO)
SSD (YOLO)

Pruned
Operations

(GOPs) 16.6 7.4

fps 4.88 183.48 9.09 20.00
Power (W) 90 250 14
Efficiency
(fps/W) 0.054 0.734 0.649 1.429

4.4. Performance evaluation

We use the YOLO algorithm to evaluate our Aristotle sys-
tem, which is the most popular real-time detection algorithm
in the RTAV area. Fig. 11 shows the comparison of per-
formance on different platforms. We can see that compared
with the same level mobile GPU platforms our system can
reach a similar performance. However, the power consump-
tion of our Zynq-7020 and ZU2 based systems are around 3
W, while the power of GPU is 15 W. Moreover, the peak per-
formance of TK1 is 326 GOPS and that of TX1 is 1 TOPS,
while the peak performance of our FPGA platforms is only
around 100 GOPS. These can prove a much better efficiency
of our system design.

We also use the YOLO version SSD [75] algorithm to com-
pare our larger FPGA systems with CPUs and GPUs. SSD
is an optimized algorithm based on YOLO with multi-scale
feature extractions which can improve the ability to capture
small objects. Table. 4 lists the results on different platforms.
We can see that both GPU and FPGA solutions can reach a
faster performance than the Intel Xeon CPU. The power con-
sumption of the NVIDIA GTX 1080TI GPU can get up to
250 W, while the value of FPGA is only 14 W. From the per-
spective of efficiency, with the pruning method implemented,
our design can get an efficiency almost twice that of 1080TI
GPU.

Furthermore, we have tested a Densebox [76] model on our
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Table 5. Evaluation results of Densebox on GPU and FPGA
platforms.

Platform
NVIDIA GTX
1080TI GPU

Xilinx ZU9
FPGA

Input Size 640x360
Task Densebox Densebox Pruned

Operations (GOPs) 28 1.2
fps 150 330 300

Power (W) 250 14
Efficiency (fps/W) 0.60 1.32 21.43

Recall 0.875

platform and a peer GPU. Densebox is an end-to-end fully
convolutional network (FCN) which has been widely used in
face detection applications, and face detection is an essen-
tial part of the in-vehicle driver status recognition, such as
drowsiness detection. We have pruned the model with the
method mentioned in clause 4.2 from 28 GOPs to 1.2 GOPs,
with the recall rate staying the same. Table. 5 shows that with
the help of pruning, our ZU9-based platform can reach twice
the speed of the 1080TI GPU. The GPU can also get a 330 fps
with the pruned model, but the utilization rate of model spar-
sity is quite low considering the peak performance of 1080TI
is almost 10.6 TOPS, which results in an efficiency which
is 16 times worse than our ZU9 FPGA, reflecting the fit be-
tween our compression methods and our hardware system.

4.5. Tingtao: an ASIC-based reconfigurable accelerator

Our ASIC-based reconfigurable accelerator Tingtao is al-
ready on schedule. The PS of Tingtao is an ARM Cortex-A5
processor, and the PL includes two deep-learning processing
units (DPUs), each containing 2048 MAC PEs and works
at 500MHz. Some necessary interfaces for RTAV applica-
tion are also integrated. Tingtao has taken a 28nm CMOS
technology and is projected to provide a peak performance
of 4 TOPS at a power of 3 W, which is slightly better than
the EyeQ4 product. With the compression method and com-
piling optimization introduced, the performance could get
even better. As shown in Fig. 7, Tingtao has filled the sparse
area of 1 to 10 W of power and TOPS level throughput. We
are also planning to try a larger design for our next version,
and we will pay efforts in the ongoing research of the im-
plementation of emerging memory technology based on our
precedent work [64] for the target of our development route.

5. CONCLUSION

This article has reviewed the algorithms for RTAV applica-
tions of ADAS, a comparative analysis has been done over
different types of platforms, and an enumeration of chances
and challenges for reconfigurable RTAV platforms. We have
introduced the software-hardware co-design workflow for
our reconfigurable RTAV system, with detailed hardware
architecture design and implemented compression methods,

which ensure an efficient execution with programmability.
Evaluation shows that our system can get the best efficiency
among peer processors with a satisfying real-time processing
performance. An ASIC-based solution can further exploit
the efficiency, which means a similar throughput speed with
the FPGA-based Aristotle system and an energy cost of one
order of magnitude less.
There are some other deep learning models utilized in RTAV
applications. Recurrent neural network (RNN) is one of
them, and the long-short term memory (LSTM) model [77]
shows excellent performance in classifying, processing and
predicting time series. This feature can be helpful for object
tracking and action predicting functions in ADAS systems.
We have not expanded on this topic in this article, but we
have already released a similar design based on our Aristotle
system framework [78], which has proved the capability of
processing various deep learning models.
Future RTAV processors need to offer a 10-100 TOPS
throughput speed with less than 30 W power, and to re-
alize this we could count on the rapid development of
workload compression such as extreme low-bitwidth CNNs
[79][80][81][82] and novel pruning ideas [83][84], hardware
design such as dataflow optimization [85][86] and sparsity
supported architecture [87][88], and emerging memory tech-
nology implementation [60][89]. We are confident that with
all those mentioned above, the reconfigurable products will
thrive in the ADAS market.
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