
DATA-DRIVEN INTRA-PREDICTIONMODES IN THE DEVELOPMENT OF THE VERSATILE VIDEO

CODING STANDARD

Jonathan Pfaff1, Philipp Helle1, Philipp Merkle1, Michael Schäfer1, Björn Stallenberger1, Tobias Hinz1, Heiko Schwarz1, 2,
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Abstract – In this paper, intra-prediction modes for video coding that were designed using data-driven methods are pre-

sented. These predictors were incorporated into a test model of the emerging versatile video coding (VVC) standard and yield

compression benefit over state-of-the-art intra-prediction tools. However, most of the use cases for video coding require severe

complexity and memory restrictions, in particular at the decoder side. As data-driven methods typically result in predictors

that are described by a large set of parameters and operations, satisfying these constraints turned out to be a difficult task.

The purpose of this paper is to outline key steps in the complexity reduction of the trained intra-prediction modes that were

discussed in the VVC standardization activity. These simplifications finally led to matrix-based intra-prediction (MIP) which

is part of the current VVC draft international standard.

Keywords – Video Coding, intra-prediction.

1. INTRODUCTION

In recent years, the demand for broadcasting, streaming

and storing of video content has significantly increased,

but memory and transmission capacities are limited re-

sources. As a consequence, in 2017, a Call for Pro-

posals (CfP) for new video coding technologies with in-

creased compression capabilities compared to state-of-

the-art codecswas issued by the Joint VideoExperts Team

(JVET), [27].

One of the responses given to that call was a video codec

submitted by Fraunhofer HHI, [2, 20]. This codec has a

hybrid block based design and includes several advanced

tools. Some of these advanced concepts were contained

in the Joint Exploration Model (JEM) developed by the

JVET [11], while others were newly proposed. Among

these newly proposed tools were intra-prediction modes

that were designed as the outcome of a training experi-

ment based on a large set of training data. These intra-

prediction modes provide significant coding gains over

state-of-the-art video coding technologies. They are rep-

resented by fully connected neural-networkswith several

layers.

After results of the CfP were received, experts of the JVET

collaboratively initiated a standardization process for a

new video coding standard called versatile video coding

(VVC), [19]. Here, the development of a standard which

enables substantial compressionbenefits compared to ex-

isting technologies, in particularwithin the emerging sce-

nario of coding UHD or HDR-content, was targeted. In the

VVC standardization activity, individual coding tools with

promising compression performance were investigated

by the JVET within so-called core experiments. Among

these tools were the aforementioned data-driven intra-

prediction modes.

In the course of their investigation, several modifications

of the initially proposed intra-prediction modes which

mainly target a complexity reduction were developed.

The final variant, called matrix-based intra-prediction

(MIP) represents a low complexity version. MIP has a

small memory requirement and does not increase the

numberofmultiplications in comparison to existing intra-

prediction modes. It was included into the working draft

5 of the VVC standard at the 14th JVET-meeting in Geneva

in March 2018, [9].

Recently, several interesting machine-learning based ap-

proaches to image compression have been developed.

Without aiming at completeness, wemention the work of

Ballé et al., [3], [4], Agustsson, Mentzer et al., [1], [18],

Minnen et al. [17], Rippel et al. [24], Theis et al. [30]

and Toderici et al. [31]. In these approaches, image com-

pression systemswere designedwhich donot use a block-

based approach and which do not use intra-prediction in

a traditional sense. Rather, they extract several features

from the input image via a convolutional neural-network.

These features arequantized into symbols and then trans-

mitted in the bitstream. The decoder reconstructs the im-

age by a deconvolutional neural-networkwhich is applied

to the dequantized symbols. Parts of this network might

also be used in an arithmetic coding engine tomodel con-

ditional probabilities of coded symbols. The parameters

of theneural-networks areobtainedona large set of train-

ing data.

In our work, we used machine-learning techniques to de-

velop a compression tool which still fits into a hybrid

block-based architecture. Such an architecture is used

in many existing video codecs like advanced video cod-

ing (AVC) [12, 33] or high efficiency video coding (HEVC)

[13, 29] and also forms the basis of the emerging VVC [8].

Within this architecture, our intra predition modes sim-

ply replace or complement the classical intra-prediction
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modeswhich are already used in traditional video codecs.

Other components of the surrounding video codec like

block-partitioning or transform and residual-coding are

not altered by our method.

This paper is organized as follows. In section 2, we de-

scribe the general setup for designing data-driven intra-

predictionmodes. In section 3, we depict their realization

by fully connected neural-networks. In section 4, a sim-

plification of the neural-networks via prediction into the

transform domain is outlined. MIP is described in section

5. In the final section 6, some conclusions shall be consid-

ered.

2. DATA-DRIVEN DESIGN OF INTRA-

PREDICTIONMODES

In typical block-based hybrid video codecs, predictive

coding is used. Thus, when a receiver of a video signal

wants to reconstruct the content of a transmitted video

on a given block, out of information that is already avail-

able, it generates a prediction signal. This prediction sig-

nal serves as a first approximation of the video signal to

be reconstructed. In a second step, a prediction resid-

ual is added to generate the reconstructed video signal.

This prediction residual needs to be transmitted in the

bitstream and thus the quality of the prediction signal

greatly influences the compression efficiency.

There are two methods to generate a prediction signal:

Inter- and intra-picture prediction. In the case of inter-

picture prediction, the prediction signal is generated by

motion-compensated prediction where already decoded

video frames which are different from the current frame

serve as the input.

Conversely, in the case of intra-prediction, the prediction

signal is generated out of already reconstructed sample

values that belong to the same frameandare typically spa-

tially adjacent to the current block. Thus, as shown in Fig.

1, input for intra-prediction are the reconstructed sam-

ples r above and left of a block of samples to be predicted.

Fig. 1 – intra-prediction on a single block. In principle, all reconstructed

samples are available.

In conventional video codecs like HEVC and also in the

JEM, the intra-prediction signal is generated either by an-

gular prediction or by the DC and planar modes. The an-

gular prediction modes copy the already reconstructed

sample values on the lines left and above of the block

along a specific direction that is parametrized by an an-

gular parameter. Here, for fractional angular positions,

an interpolation filtering is applied to the reference sam-

ples. The DCmode generates a constant prediction signal

that corresponds to themean sample valueof the adjacent

samples, while the planar mode interpolates between a

prediction along the horizontal and the vertical direction.

In the JEM, an additional post-filtering step, called posi-

tion dependent prediction combination, PDPC [25], is op-

tionally applied to the intra-prediction signal.

In our approach to intra-prediction, we tried to design

nmore general intra-prediction modes using data-driven

methods. A priori, it was only assumed that the i-th intra-
prediction mode should generate the prediction signal

predi as

predi = Fi(r; θi); (1)

see Fig. 2 . Here, the function Fi is a predefined function

which, however, depends on parameters θi that are deter-
mined in a training algorithm using a large set of training

data. Note that when the prediction is used in the final

codec, the parameters θi are fixed. For their determina-

tion, we developed a training algorithm that tries to sim-

ulate several aspects of modern video codecs. When exe-

cuting it, we applied recent machine learning techniques

like [15]. Key parts of our training algorithm are indepen-

dent from the specific form of the prediction function Fi.

Fig. 2 – Design of intra-prediction modes with fixed function Fi and its

trained parameters θi . The index i is transmitted.

A central problem one faces in the above design of more

flexible intra-prediction modes is their complexity in

comparison to traditional intra-prediction techniques de-

scribed above. The reason is that since the optimal

form of the intra-prediction modes in (1) is unkown, a

rather large capacity of the neural-networks is assumed

by which a larger set of functions can be approximated.

In the VVC standardization process, the complexity of the

prediction modes was assessed in two ways. First, the

complexity to execute the function Fi was taken into ac-

count. This complexity can be measured for example in

number of multiplications per sample or in terms of de-

coder runtime. Second, the memory requirement, i.e. the

size of the parameters θi which need to be stored, turned

out to be a very important aspect for a complexity evalua-

tion of the method. In the sequel, intra-prediction modes
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based on several variants of the functionFi that represent

different degrees of complexity will be discussed.

3. NEURAL-NETWORK-BASED INTRA PRE-

DICTORS

In our CfP response, each function Fi from (1) was given

by a fully connected neural-network with three hidden

layers, [21, 22]. For each rectangular block of width W
and heightH withW andH being integer powers of two

between 4 and 32, n prediction modes were supported.

The number n is equal to 35 formax(W,H) < 32 and is

equal to 11, otherwise.

The neural-network-based intra-prediction modes are il-

lustrated in Figures 3 and 4. Input for the prediction are

the d = 2(W +H+2) reconstructed samples r on the two

lines left and above the block, as well as the 2 × 2 corner
on the top left. The dimension of the three hidden layers

is equal to d. In order to improve the training and to re-

duce the number of parameters needed, these layers are

shared by all predictionmodesFi. Their output can be in-

terpreted as a set of features ftr ∈ Rd of the surrounding

samples. In the last layer, these features are affine-linearly

combinedwhere this combination depends on the predic-

tion mode i.

Fig. 3 – Overview of NN-based intra-prediction

For the signalization of themode index i ∈ {0, . . . , n−1},
weused a secondneural-networkwhose input is the same

vector of reconstructed samples r as above and whose

output is a conditional probability mass function p over

the n modes, given the reconstructed samples r. When

one of the intra-prediction modes is to be applied at the

decoder, a number index ∈ {0, . . . , n − 1} needs to be

parsed and the probability mass function p needs to be

computed. Then the index-th most probable mode with

respect to p has to be used; see Fig. 4. Here, the binariza-
tion of index is such that small values of index require

less bins.

Our signalling approach shares similarities with some

of the machine-learning based image compression ap-

proachesmentioned in the introduction. In [4], [18], [31],

an arithmetic coding engine with conditional probabili-

ties that are computed on the fly by a neural-network out

of reconstructed symbols is used. In our approach, how-

ever, the conditional probability p is not directly invoked
into the arithmetic coding engine in order to avoid a pars-

ing dependency.

The parameters θi of the prediction modes, which corre-

Fig. 4 – Construction of the prediction signal pred at the decoder using

neural-networks. A hidden layer maps an input vector x to σ(Ahidx +
bhid) with σ being the exponential linear unit function [22]. The mode

layer maps its input x toAmodex+ bmode which represents, up to nor-

malization, the logarithms of the discrete probability distribution of the

modes [22]. The output of hidden layer 3 on the right is the feature vec-

tor ftr ∈ Rd . The i-th output layer maps its input x toAix+ bi which
represents theW ×H-dimensional prediction signal.

spond to the matrix coefficients and the offset-vector en-

tries of the neural-network, were determined by attempt-

ing to minimize a specific loss function over a large set

of training data. This loss function was defined as a lin-

ear combination of the `1 norm of the DCT-II-transform

coefficients of the prediction residual and of a sigmoid

term on these coefficients. The sigmoid term has a steep

slope in someneighborhoodof zero and its slopebecomes

smaller the farther away from zero. In this way, during

training by gradient descent, the prediction modes are

steered towards modes for which the energy of the pre-

diction residual is concentrated in very few transform co-

efficients while most of the transform coefficients will be

quantized to zero. This reflects the well-known fact that

in the transform coding design of modern hybrid video

codecs, it is highly beneficial in terms of rate-saving if a

transform-coefficient can be quantized to zero; see for

example [28]. In the training algorithm, all prediction

modes over all block shapes were trained jointly. The pa-

rameters of the neural-network used in the mode signal-

izationwere also determined in that algorithm. In the op-

timization, a stochastic gradient descent approach with

Adam-optimizer [15]was applied. Formoredetails on the

training algorithm, we refer to [14].

The neural-network-based intra-prediction modes were

integrated in a software that was equivalent to the HEVC

reference software anchor with the extension that it also

supported non-square partitions, [22]. They were added

as complementary to theHEVC intra-predictionmodes. In

the all-intra configuration, they gave a compression ben-

efit of −3.01%; see [22, Table 1]. Here and in the se-

quel, all objective results report luma Bjøntegaard delta

(BD) rates according to [5], [6]. Moreover, the standard

QP-parameters 22, 27, 32 and 37 are used and the simu-

lations are performed following JVET common test con-

ditions, [7]. For the test sequences of [22], the neural-

network prediction modes were used for approximately

50% of all intra blocks.

As reported in [22], the measured average decoding time

was 248%. Throughout the paper, a conventional CPU-
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based cluster was used for measuring decoder runtimes.

No SIMD- or GPU-based optimization was applied. Ac-

cording to the architecture of the neural-networks used,

the total number of parameters needed for the prediction

modes described in this section is about 5.5million. Since

all parameterswere stored in 16-bit-precision, this corre-

sponds to a memory requirement of about 11 Megabyte.

Our method should be compared to the method of [16],

where also intra-prediction modes based on fully con-

nected layers are trained and integrated into HEVC.While

the compression benefit reported in [16] is similar to

ours, its decoder runtime is significantly higher; see Ta-

ble III of [16].

4. PREDICTION INTOTHETRANSFORMDO-

MAIN

The complexity of the neural-network-based intra-

prediction modes from the previous section increases

with the block-sizes W and H . This is particularly true

for the last layer of the prediction modes, where for each

output sample of the final prediction, 2 · (W + H + 2)
many multiplications have to be carried out and a

(W ·H)× (2 · (W +H + 2))-matrix has to be stored for

each prediction mode.

Thus, instead of predicting into the sample domain, in

subsequent work [21, 14] we transformed our predictors

such that they predict into the frequency domain of the

discrete cosine transform DCT-II. Thus, if T is the matrix

representing the DCT-II, the i-th neural-network predic-

tor from the previous section predicts a signal predi,tr
such that the final prediction signal is given as

predi = T−1 · predi,tr.

The key point is that each predictionmode has to follow a

fixed sparsity pattern: For a lot of frequency components,

predi,tr is constrained to zero in that component, inde-

pendent of the input. In other words, ifAi,tr is the matrix

used in the last layer for the generation of predi,tr , then
for each such frequency component, the row of the ma-

trix Ai,tr corresponding to that component consists only

of zeros. Thus, the entries of that row do not need to be

stored andnomultiplications need to be carried out in the

matrix vector productAi,tri · ftr for that row. The whole
process of predicting into the frequency domain is illus-

trated in Figure 5.

Fig. 5 – intra-prediction into the DCT-II domain. The white samples in

the output predi,tr denote the DCT-coefficients which are constrained

to zero. The pattern depends on the mode i.

In the underlying codec, the inverse transform T−1 is al-

ready applied to the transform coefficients c of the pre-

diction residual res. Thus, at the decoder, one can re-

place the computation of T−1(c) by the computation of

T−1(c+predi,tr). Consequently, as long as the prediction
residual is non-zero, no extra inverse transform needs to

be executed when passing from predi,tr to predi.
The weights θi of the involved neural-networks were ob-

tained in two steps. First, the same training algorithm

as in the previous section was applied and the predictors

were transformed to predict into the frequency domain.

Then, using again a large set of training data, for each pre-

dictor it was determined which of its frequency compo-

nents could be set to zero without significantly changing

its quality on natural image content. For more details, we

refer to [14].

As a further development, for the signalization of con-

ventional intra-predictionmodes, amapping fromneural-

network-based intra-prediction modes to conventional

intra-prediction modes was implemented. Via this map-

ping, whenever a conventional intra-prediction mode is

used on a given block, neighboring blocks which use the

neural-network-based prediction mode can be used for

the generation of the list of most probable modes on the

given block. For further details, we refer to [14].

In an experimental setup similar to the one of the pre-

vious section, the intra-prediction modes of the present

section gave a compression benefit of −3.76% luma-BD-

rate gain; see [14, Table 2]. Compared to the results of the

previous section, these results should be interpreted as

saying that theprediction into the transform-domainwith

the associated reduction of the last layer does not yield

any significant coding loss and that the mapping from

neural-network-based intra-prediction modes to conven-

tional intra-prediction modes additionally improves the

compression efficiency. As reported in [14], the mea-

sured decoder runtime overhead is 147%, the measured

encoder runtime overhead is 284%. Thus, from a de-

coder perspective, the complexity of themethod has been

significantly reduced. Also, the memory requirement of

the method was reduced significantly. In the architecture

from Figure 5, approximately 1Megabyte of weights need

to be stored.

5. MATRIX-BASED INTRA-PREDICTION

MODES

In the further course of the standardization, the data-

driven intra-predictionmodeswere again simplified lead-

ing to matrix-based intra-prediction (MIP) modes, [23,

26]. These modes were adopted into the VVC-standard

at the 14-th JVET-meeting in Geneva [9]. The complexity

of the MIP modes can be described as follows. First, the

number of multiplications per sample required by each

MIP-prediction mode is at most four and thus not higher

than for the conventional intra-prediction modes which

require four multiplications per sample either due to the

four-tap interpolation filter for fractional angle positions

or due to PDPC. Second, the memory requirement of the

method is strongly reduced. Namely, thememory to store
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all MIP-prediction modes is equal to 8 Kilobyte. This cor-

responds to amemory reduction by a factor 1000 andby a

factor 100 in comparison to the methods of section 3 and

section 4, respectively. The key idea to achieve the afore-

mentioned two complexity constraints is to use down-

sampling and up-sampling operations in the domain of

the prediction input and output.

For predicting the samples of aW×H-block,W andH in-

teger powers of two between 4 and 64, MIP takes one line

of H and W reconstructed neighboring boundary sam-

ples left andabove theblock as input. Then, theprediction

signal is generated using the following three steps which

are also summarized in Figure 6:

1. From the boundary samples, four samples in the case

W = H = 4 and eight samples, else, are extracted by

averaging.

2. A matrix-vector multiplication, followed by addition

of an offset, is carried out with the averaged samples

as an input. The result is a reduced prediction signal

on a subsampled set of samples in the original block.

3. The prediction signal at the remaining positions is

generated from the prediction signal on the subsam-

pled set by linear interpolation.

Fig. 6–The flowchart ofmatrix-based intra-prediction forW×H-block.

The averaging step on the boundary, which is performed

for all MIP-modes, could be interpreted as a low complex-

ity version of the joint feature extraction that was part

of the neural-network-based intra-prediction; see section

3. Moreover, one could rephrase the linear interpolation

stepby saying that eachMIP-modepredicts into the trans-

form domain of the (5, 3)-wavelet transform, where only

low subbands are predicted to be non-zero. Thus, con-

ceptionally, this part of MIP-prediction is similar to the

prediction into the DCT-domain described in the previous

section 3. However, note that for the predictors predict-

ing into the DCT-domain, not all high frequency compo-

nents of the prediction signal were set to zero but rather a

more flexible sparsity patternwas usedwhereas theMIP-

predictors are constrained to generate only low-pass sig-

nals.

We now describe each of the three steps in the MIP pre-

diction in more detail. In the first step, the left and

top input boundaries bdrytop and bdryleft are reduced to

smaller boundaries bdrytopred and bdryleftred . Here, bdrytopred

and bdryleftred both consists of 2 samples in the case of a

4×4-block andboth consist of 4 samples in all other cases.

In the case of a 4× 4-block, for 0 ≤ i < 2, one defines

bdrytopred[i] = bdrytop[2i] + bdrytop[2i+ 1].

In all other cases, if the block-width W is given as W =
4 · 2n, for 0 ≤ i < 4 one defines

bdrytopred[i] =
1

2n

2n−1∑
j=0

bdrytop[2n · i+ j].

The reduced left boundary bdryleftred is defined analo-

gously. The two boundaries bdrytopred and bdryleftred are con-

catenated to form the reduced boundary

bdryred = [bdryleftred , bdrytopred]; (2)

see Fig. 7. It has size 4 for 4 × 4 blocks and size 8, else-

where.

Fig. 7 – The averaging step for an 8× 8-block. This results in four sam-

ples (two in the case of 4× 4-blocks) along each axis.

In the second step, out of the reduced input vector bdryred
one generates a reduced prediction signal predred. The

latter signal is a signal on thedownsampledblockofwidth

Wred and height Hred. Here, Wred and Hred are defined

as:

Wred = 4, Hred = 4; ifW = H = 4

Wred = min(W, 8), Hred = min(H, 8); elsewhere.

The reduced prediction signal predred of the i-th predic-

tion mode is computed by calculating a matrix vector-

product and adding an offset:

predred = Ai · bdryred + bi. (3)

Here, Ai is a matrix that has Wred · Hred rows and 4

columns ifW = H = 4 and 8 columns in all other cases.

Moreover, b is a vector of sizeWred ·Hred.

The matrices and offset vectors needed to generate the

prediction signal are taken from three sets S0, S1, S2. The

set S0 consists of 18 matrices each of which has 16 rows

and 4 columns and 18 offset vectors of size 16. Matrices

and offset vectors of that set are used for blocks of size

4×4. The setS1 consists of 10matrices , each ofwhich has

16 rows and 8 columns and 10 offset vectors of size 16.

Matrices and offset vectors of that set are used for blocks

of sizes 4×8, 8×4 and 8×8. Finally, the set S2 consists of

6matrices , each of which has 64 rows and 8 columns and
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of 6 offset vectors of size 64. Matrices and offset vectors

of that set or parts of thesematrices and offset vectors are

used for all other block shapes.

In the third step, at the sample positions that were left

out in the generation of predred, the final prediction signal
arises by linear interpolation from predred. This linear in-
terpolation is not needed if W = H = 4. To describe it,

assume without loss of generality that W ≥ H . One ex-

tends the prediction signal to the top by the reconstructed

values and writes predred[x][−1] for the first line. Then

the signal predups,verred on a block of widthWred and height

2 ∗Hred is given as

predups,verred [x][2y + 1] =predred[x][y]

predups,verred [x][2y] =
1

2
(predred[x][y − 1]

+predred[x][y])

The latter process is carried out k times until 2k ·Hred =
H . Next, a horizontal up-sampling operation is applied

to the result of the vertical up-sampling. The latter up-

sampling operation uses the full boundary left of the pre-

diction signal; see Fig. 8.

Fig. 8 – The final interpolation step for an 8 × 8-block. The second up-

sampling operation uses the full boundary.

For each prediction mode generated by Ai, bi ∈ S0/1/2

with i > 0, also the transposed prediction mode is sup-

ported. This means that one interchanges bdrytopred and

bdryleftred , computes the matrix vector product and the off-

set addition as before and then interchanges the x and

the y coordinate in the resulting reduced prediction sig-

nal. The up-sampling step is then carried out as before.

As a consequence, for blocks of size 4× 4, a total number

of 35 MIP modes is supported. For blocks of size 8 × 4,
4 × 8 and 8 × 8, a total number of 19 MIP modes is sup-

ported. For all other block shapes, a total number of 11

MIP modes is supported.

The MIP-prediction mode was signalled using a most

probable mode scheme that is based on intra-prediction

modes of neighboring blocks, similar to the well-known

signalization of conventional intra-predictionmodes. The

neural-network that predicts the conditional probability

of an intra-prediction mode out of neighboring recon-

structed samples was removed for complexity reasons.

In order to determine the matrices of the MIP-prediction

modes, a training algorithm similar to the algorithm out-

lined in section 3 was used. Here, the constraints given

by the input down-sampling, the output up-sampling and

the sharing of the predictors across different block shapes

were incorporated into the training algorithm.

TheMIP-tool gave a compression benefit of−0.79% luma

BD-rate gain, [23, Table 1]. The measured decoder run-

time was 99% which means that MIP did not cause any

decoder runtime overhead. The measured encoder run-

time overhead was 138%. As for the other variants of

our data-driven intra-prediction modes, different trade-

offs between compression performance and encoder run-

time overhead are possible and were developed subse-

quently. In this paper, the complexity issue is mainly con-

sidered from a decoder perspective. A software reference

for the current version of MIP can be found in the docu-

ment [32].

After its adoption into VVC, several further modifications

were performed for the final design of MIP in the current

VVC draft international standard [10]. Most importantly,

all matrix coefficients of the involved matrices are repre-

sented by 8-bit integers and the offset vectors bi from (3)

are set to zero. For an efficient 8-bit implementation, the

matrix-vector multiplication Ai · bdryred from (3) is re-

placed by the matrix-vector multiplication

Ãi · yred + bdryred[0] · 1, (4)

where the vector yred is defined by

yred[0] = bdryred[0]− 2B−1,

yred[i] = bdryred[i]− bdryred[0], i > 0.

Here, 1 denotes the vector of ones andB denotes the bit-

depth. Since the entries of yred are typically smaller than

the entries of bdryred, this modification of the matrix-

vector multiplication leads to a smaller impact of the ap-

proximation error that arises when one passes from the

trained floating point matrices to the 8-bit integer matri-

ces. The result of the matrix-vector multiplication (4) is

right-shifted by 6 to generate the final prediction signal.

The constant right-shift 6 was achieved by smoothly re-

stricting the dynamic range of the matrix-entries already

during the training process. Also, several non-normative

encoder-speedups for MIP were included into the refer-

ence software.

6. CONCLUSION

In this paper, several variants of data-driven intra-

prediction modes were presented. Such modes can im-

prove the compression efficiency of state-of-the-art video

codecs. However, a standard like the emerging versatile

video coding is targeted to both enable high compression

rates and to be implementable on multiple types of con-

sumer devices at moderate complexity and costs. The

latter requirement forms a particular challenge for the

presented approach since, a priori, the resulting intra-

prediction modes are much less structured than conven-

tional ones and thus require a lot of parameters to be

stored. As a consequence, architectural constraints that

reflect somewell-known image processingmethodswere

invoked into the training and design of the predictors.

In particular, sparsification in the transform domain and
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subband decomposition were employed. In this way, one

could significantly decrease the complexity of the predic-

tors and finally make them suitable for a broad applica-

tion scenario like versatile video coding.
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