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Abstract – Next generation wireless networks (i.e., 5G and beyond), which will be extremely dynamic 

and complex due to the ultra-dense deployment of heterogeneous networks (HetNets), pose many critical 

challenges for network planning, operation, management and troubleshooting. At the same time, the 

generation and consumption of wireless data are becoming increasingly distributed with an ongoing 

paradigm shift from people-centric to machine-oriented communications, making the operation of future 

wireless networks even more complex. In mitigating the complexity of future network operation, new 

approaches of intelligently utilizing distributed computational resources with improved context 

awareness becomes extremely important. In this regard, the emerging fog (edge) computing architecture 

aiming to distribute computing, storage, control, communication, and networking functions closer to 

end users, has a great potential for enabling efficient operation of future wireless networks. These 

promising architectures make the adoption of artificial intelligence (AI) principles, which incorporate 

learning, reasoning and decision-making mechanisms, natural choices for designing a tightly integrated 

network. To this end, this article provides a comprehensive survey on the utilization of AI integrating 

machine learning, data analytics and natural language processing (NLP) techniques for enhancing the 

efficiency of wireless network operation. In particular, we provide comprehensive discussion on the 

utilization of these techniques for efficient data acquisition, knowledge discovery, network planning, 

operation and management of next generation wireless networks. A brief case study utilizing the AI 

techniques for this network has also been provided. 
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1. INTRODUCTION 
 

The advent of the fifth generation (5G) wireless 

network and its convergence with vertical applications 

constitute the foundation of a future connected society 

which is expected to support 125 billion devices by 

2030 (IHS Markit). As these applications and devices 

are featured by ubiquitous connectivity requirements, 

future 5G and beyond networks are becoming more 

complex. Aside from the complexity increase of base 

stations (BSs) and user equipment (UE), significant 

challenges arise from the initial network planning to the 

deployment and situation-dependent operation and 

management stages. 

 

The network architecture of 5G and beyond will be 

inevitably heterogeneous and multi-tier with 

ultra-dense deployment of small cells to achieve the 

anticipated 1000-fold capacity increase 

cost-effectively. For instance, the mixed use of planned 

and centrally controlled macro-BSs and randomly 

deployed wireless fidelity (WiFi) access points or 

femto-BSs in the ultra-dense heterogeneous network 

(HetNet) raises several unexpected operation scenarios, 

which are not possible to envision at the network design 

stage. This requires future wireless networks to have 

self-organizing, configuring and healing capabilities 

based on the operational condition through the tight 

coordination among different nodes, tiers and 

communication layers. These challenges highlight that 

existing network design strategies, which utilize a fairly 

simple statistics experience, delivers unacceptable 

performance (for example, in terms of spectrum and 

energy efficiency, coverage, delay and cost) [1], [2]. 
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The rapidly growing number of machine-type 

communication (MTC) devices contributes a 

considerable portion of the complexity of this ultra-dense 

network. Many of the future MTC applications 

supported by 5G and beyond will require the 

underlying wireless networks to achieve high 

availability, reliability and security, very short transit 

times and low latency [3]. Furthermore, in such use 

cases, uninterrupted and safe operation is often the top 

priority (for instance, connected vehicles). Taking an 

MTC application offline for any reason can cause 

significant business loss or non-tolerable customer 

experience, and many of the MTC devices are resource-

constrained and will not be able to rely solely on their 

own limited resources to fulfill their processing 

demands [4]. 

 

 
 

Fig. 1. Favorable conditions for the adoption of machine 

intelligence techniques in the next generation  

wireless networks. 

 

As a result, these latency critical applications cannot be 

moved to the network controller or cloud due to delay, 

bandwidth, or other constraints. Moreover, the data sets 

generated from these devices will be extremely diverse 

and may have large-scale missing (inaccurate) values 

[5]. In addition, a number of new data hungry MTC 

immersive use-cases will arise including wearables, 

virtual realities, intelligent product and support- 

systems where most of them will use built-in back-end 

data infrastructure and analytics engine to provide 

context-aware services. All these necessitate the next 

generation network (i.e., 5G and beyond) to adopt an 

intelligent and context-aware approach for network 

planning, design, analysis, and optimization. 

 

We are in the beginning phase of an intelligent era that 

has been driven by the rapid evolution of semiconductor 

industries, computing technologies, and diverse use 

cases. This is witnessed by the tight integration of 

networked information systems, sensing and 

communication devices, data sources, decision 

making, and cyber-physical infrastructures. The 

proliferation of tiny wireless sensors and MTC devices, 

and smart phones also show clear evidence of 

exceptional processing capability and 

cost-effectiveness of semiconductor devices. These 

promising developments facilitate distributed 

computing resources not only in the cloud but also in 

the fog and edge nodes. Both fog and edge computing 

attempt to push the intelligence and processing 

capabilities down closer to where the data originates. 

 

The edge computing aims to integrate intelligence and 

processing power capabilities closest to the original 

data source. The edge node, for example, intelligent 

programmable automation controllers (PACs), 

determines which raw input data should be stored 

locally or sent to the fog (cloud) for further analysis. 

On the other hand, in the fog computing, all the raw 

input data will first be converted to the appropriate 

Internet protocol (such as HTTP) before being sent to 

the fog nodes. Thus, higher-level data content i s  

processed, stored and sent to the cloud for further 

analysis in the fog devices (for example, intelligent 

routers, access points, Internet of things (IoT) 

gateways). Thus, the edge and fog enabled network 

allows distributed computing, storage, control, 

communication and networking functions by reducing 

the data transmitted and workload of the cloud, latency 

and system response time especially for applications 

demanding localized and location-dependent 

information [6]. Moreover, the node, user, sensor, or 

MTC device is potentially capable of generating raw 

data and processed data at different granularity levels, 

which ultimately helps the network to have a massive 

amount of data exhibiting a pattern. This will help 

different nodes to leverage data mining and analytics 

techniques to predict relevant network metrics such as 

user mobility, traffic behavior, network load 

fluctuation, channel variations, and interference levels. 

 

All these opportunities enable efficient and flexible 

resource allocation and management, protocol stack 

configuration, and signaling procedure and physical 

layer optimization, and facilitate existing devices to 

harness the powers of sensors, edge, fog and 

cloud-based computing platforms, and data analytics 

engines [7]-[9]. These also create favorable conditions 

to engineer a tightly integrated wireless network by 

adopting the AI principles (see Fig. 1) incorporating 

learning, reasoning and decision-making mechanisms 

which are crucial to realize the context-awareness 

capability. A typical next generation network utilizing 

the AI principles at different nodes is shown in Fig. 2. 

To this end, the current paper provides a comprehensive 

survey on the utilization of AI integrating machine 

learning, data analytics and natural language 

processing (NLP) techniques for enhancing the 
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efficiency of wireless systems. We particularly focus on 

the utilization of these techniques for efficient wireless 

data acquisition and knowledge discovery, planning, 

and operation and management of next generation 

wireless networks. A brief case study showing the 

utilization of AI techniques for this network has also 

been provided. 

 

The paper is organized as follows. In section 2, we 

discuss data acquisition and knowledge discovery 

approaches used in AI-enabled wireless networks. 

Then, a comprehensive discussion on how this 

knowledge can be used in network planning, operation 

and management of the next generation wireless 

network is given in sections 3 and 4. A case study 

discussing the applications of AI techniques for 

channel impulse response (CIR) prediction and 

context-aware data transmission is then provided in 

section 5. Finally, conclusions are drawn in section 6. 

 

2. DATA ACQUISITION AND 

KNOWLEDGE DISCOVERY 
 

Efficient data acquisition and knowledge discovery is 

one of the requirements of future wireless networks as 

it helps to realize situation aware and optimized 

decisions as shown in Fig. 3. The gathered data may 

need to be processed efficiently to extract relevant 

knowledge. Furthermore, as the available data may 

contain a large amount of erroneous (missing) values, 

a robust knowledge discovery may need to be devised 

[5]. 

 

A. Data acquisition 

 

AI-based tools relying on machine learning for the 

input data mining and knowledge model extraction at 

different levels could be applied [10]. This includes the 

cell level, cell cluster level and user level. In general, 

one can collect data from three main sources; network, 

user, and external devices. The network data 

characterizes the network behavior including outage 

and usage statistics of services or nodes, and the load 

of a cell. The user data could comprise user 

subscription information and user device type. And, the 

external data contains user specific information 

obtained from different sources such as sensors and 

channel measurements [11]. 

 

One way of collecting wireless data is by employing 

content caching where the idea is to store popular 

content at the network edge (at BSs, devices, or other 

intermediate locations). In this regard, one can enable 

the proactive cache type if the traffic learning algorithm 

predicts that the same content will be requested in the 

near future [12], [13].  

 

Moreover, since different users may request the same 

content with different qualities, each edge node may 

need to cache the same content in different granularity 

(for example, caching video data with different 

resolutions). This further requires the edge device to 

apply coded (adaptive) caching techniques based on the 

quality of service (QoS) requirement of the requester 

[14]. Coded caching also enables devices to create 

multicasting opportunities for certain content via coded 

multicast transmissions [15]. 

 

In some cases, a given edge (fog) may collect date from 

more than one source with different connectivity 

criteria [16]. In a fog-enabled wireless network this is 

facilitated by employing IoT devices which leverage a 

multitude of radio-access technologies such as wireless 

local area networks (WLAN) and cellular networks. In 

this regard, context-aware data collection from 

multiple sources probably in a compressed format by 

employing appropriate dimensionality reduction 

techniques under imperfect statistical knowledge of the 

data while simultaneously optimizing multiple 

objective functions such as delay and transmission 

power can be enabled [13]. 

 

B. Knowledge discovery 

 

Efficient knowledge discovery is critical for optimized 

operation and management of the network. The 

network may need to use a novel learning technique 

such as deep learning to extract the hidden contextual 

information of the network which is crucial for 

knowledge base (KB) creation. In general, context is 

related to any information used to characterize the 

situation of an entity, including surrounding location, 

identity, preferences, and activities. Context may affect 

the operation and management procedures of complex 

systems at various levels, from the physical device 

level to the communication level, up to the application 

level [17]. For instance, uncovering the relation 

between the device and network information (user 

location, velocity, battery level, and other medium 

access control (MAC) and higher layer aspects) would 

permit adaptive communication and processing 

capabilities based on the changes in the environment 

and application [2], [17]. 
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Fig. 2. Typical next generation network adopting AI principles with learning, reasoning and decision making. 

 

 

Fig. 3. Optimized network design with AI techniques. 

 

Analyzing wireless data contextually (semantically) 

facilitates wireless operators to optimize their network 

traffic. To realize semantic-aware traffic optimization, 

however, the network may need to understand the 

content of the signal. One way of understanding the 

information content of a data is by creating semantic-

aware ontology using predefined vocabulary of terms 

and concepts [18]. The ontology specification can 

provide an expressive language with many logical 

constructs to define classes, properties and their 

relationships. In this regard, the authors of [18] propose 

a semantic open data model for sensor data called 

MyOntoSens and write using ontology web language 2 

description logic language. The prooposed KB has 

been implemented using protégé  and pre-validated with 

pellet reasoner. In a similar context, an ontology for 

wireless sensor networks (WSNs) dedicated to the 

description of sensor features and observation has been 

presented in [19], [20]. 

Understanding the context also helps to produce 

context-aware compressed (summary) information 

which will utilize less radio resources for transmission. 

For instance, if a BS would like to transmit text 

information to a user, the BS can transmit only its 

contextual coded data. The user will then extract the 

desired content just from the context by utilizing 

appropriate decoder and big-data analytics techniques 

such as NLP. As context differs from the user’s world 

knowledge about the content, the coding and decoding 

technique may vary among users [17]. In general two 

types of content summarizing approaches are 

commonly adopted; abstractive and extractive. The 

extractive approach uses only the relevant content from 

the original information, whereas the abstractive 

approach may use new words (expressions or contents) 

as part of the summary information [21], [22]. 

Although most of the existing methods can extract 

useful information for the summary, they are very far 

from generating a human understandable summary. 

One of the main reasons is the loose associations and 

unordered information distribution which make it hard 

to extract syntactically correct and semantically 

coherent information from the summary. In fact, 

modeling the coherence of information summary is 

one of the active areas of research [21]. 

 

3. NETWORK PLANNING 
 

One of the most critical aspects determining the 

performance of a wireless network is the initial 

planning. This includes infrastructure (node 

deployment), frequency, number of parameters and 
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their configuration setting procedures, and energy 

consumption to run the network in both idle (no data 

communication takes place between the network and a 

user) and active (data communication takes place 

between the network and a user) conditions. 

A well-planned network may need to guarantee 

satisfactory user QoS (in terms of data rate, reliability 

and latency) and the network operator requirements 

(in terms of cost). The machine learning technique can 

be used for planning different parts of the network by 

utilizing the network and user data. 

 

A. Node deployment, Energy consumption and RF 

planning 

 

The future generation wireless networks will be 

extremely dense and heterogeneous, likely equipped 

with moving and flying BSs, and featured by 

continually varying network conditions [23]. This fact 

makes the existing network planning techniques, which 

are mainly static and designed from expensive field 

tests, not suitable for future wireless networks [2], [24]. 

The utilization of AI techniques for network planning 

has recently received an interest in the research 

community. For instance, a machine learning technique 

is suggested for content popularity and request 

distribution predictions of a cache where its design in 

the network considers several factors including cache 

placement and update strategy which are determined by 

utilizing the users’ content request distribution and 

frequency, and mobility pattern [25]. 

 

In [26] an AI-based system which leverages graph 

theory based problem formulations for the fiber to 

home network is proposed to automate the planning 

process. To solve the problems, mixed integer linear 

programming (MILP), ant colony optimization (ACO) 

and genetic algorithm (GA) have been applied. The 

authors of [10] employ the principles of AI for radio 

access network (RAN) planning which includes new 

cell, radio frequency (RF) and spectrum of the 5G 

wireless network. The analysis is performed by 

processing input data from multiple sources, through 

learning based classification, prediction and clustering 

models, and extracting relevant knowledge to drive the 

decisions made by the 5G network. 

 

Wireless networks contribute an increasing share in the 

energy consumption of the information communication 

technology (ICT) infrastructure. Over 80% of a 

wireless network power consumption is used by the 

RANs, especially at the BS, since the present BS 

deployment is designed on the basis of peak traffic 

loads and generally stays active irrespective of the huge 

variations in traffic load [27]. This makes the current 

energy planning inefficient for the future smart cities 

aiming to realize green communication. To enable 

energy-efficient wireless networks, different AI 

techniques have been suggested. For instance, the 

authors of [28] propose a method to realize the efficient 

use of electricity by autonomously controlling network 

equipment such as servers, air-conditioners in an 

integrated manner. Furthermore, the authors of [29] 

suggest predictive models, including neural network 

and Markov decisions, for the energy consumption of 

IoT in smart cities. Along this line, a BS-switching 

solution for traffic aware greener cellular networks 

using AI techniques has also been discussed in [27]. 

 
B. Configuration parameter and service planning 

 

The number of configurable parameters in cellular 

networks fairly increases when moving from one 

generation to the next. For instance, in typical 3G and 

4G nodes these parameters are around 1000 and 1500, 

respectively. It is anticipated that this trend will 

continue and the recently suggested 5G network node 

will likely have 2000 or more parameters. In addition, 

unlike the current and previous generation networks 

which provide static services, the next generation 

network may need to support continuously evolving 

new services and use cases, and establish sufficient 

network resource and provisioning mechanisms while 

ensuring agility and robustness. These necessitate the 

next generation network to understand parameter 

variations, learn uncertainties, configure network 

parameters, forecast immediate and future challenges, 

and provide timely solutions by interacting with the 

environment [27]. In this direction, the utilization of 

big data analytics has been discussed for protocol stack 

configuration, signaling procedure and physical layer 

procedure optimizations in [9]. 

 

Future smart cities require well-planned wired and 

wireless networks with ubiquitous broadband 

connectivity, and flexible, real-time and distributed 

data processing capability. Although most modern 

cities have multiple cellular networks that provide 

adequate coverage and data processing capability, 

these networks often have limited capacity and peak 

bandwidths and fail to meet the real-time constraint of 

different emerging tactile applications. These make the 

realization of advanced delay critical municipal 

services envisioned in a smart city (e.g., real-time 

surveillance, public safety, on-time advisories, and 

smart buildings) challenging [1]. One way of 

addressing this challenge would be by deploying an AI 

integrated fog-based wireless architecture which 

allows data processing of the network using a number 

of distributed nodes. This will help analyze network 
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status, detect anticipated faults and plan new node 

deployment using AI techniques [1]. 

 

4. NETWORK OPERATION AND 

MANAGEMENT 
 

Energy and spectrum efficiency, latency, reliability, and 

security are the key parameters that are taken into 

account during the network operation stage. And 

properly optimizing these parameters usually yields 

satisfactory performance for both the service providers 

and end users. In addition, these optimization 

parameters usually require simple and real-time 

learning and decision-making algorithms. 

 

A. Resource allocation and m anagement 

 

Different AI techniques have been proposed for 

resource allocation, management and optimization of 

wireless networks such as cellular, wearable, WSN, 

and body area network (BAN) [24]. In [30], the 

potential of AI in solving the channel allocation 

problem in wireless communication is considered. It is 

demonstrated that the AI-based approach has shown 

better performance than those of randomized-based 

heuristic and genetic algorithms (GAs). In [31], radio 

access technology (RAT) selection utilizing the 

Hopfield neural networks as a decision-making tool 

while leveraging the ability of AI reasoning and the use 

of multi-parameter decisions by exploiting the options 

of IEEE 802.21 protocol is proposed. Machine learning 

based techniques including supervised, unsupervised, 

and reinforcement learning techniques, have been 

exploited to manage the packet routing in many 

different network scenarios [32]. Specifically, in [33], 

[34], a deep-learning approach for shortest traffic route 

identification to reduce network congestion is 

presented. A deep-learning technique aiming to shift 

the computing needs from rule-based route 

computation to machine learning based route 

estimation for high throughput packet processing is 

proposed in [32]. Along this line, a fog computing 

based radio-access network which exploits the 

advantage of local radio signal processing, cooperative 

radio resource management, and distributed storage 

capability of fog has been suggested to decrease the 

load on the front haul and avoid large-scale radio signal 

processing in the centralized baseband controllers [1]. 

 

The utilization of unlicensed spectrums as a 

complement to licensed ones receives an interest to 

offload network traffic through the carrier aggregation 

framework, while critical control signaling, mobility, 

voice and control data will always be transmitted on the 

licensed bands. In this respect, the authors of [35] 

propose a hopfield neural network scheme for 

multi-radio packet scheduling. The problem of 

resource allocation with uplink-downlink decoupling 

in a long term evolution-unlicensed (LTE-U) system 

has been investigated in [36] for which the authors 

propose a decentralized scheme based on neural 

networks. The authors in [37] propose a distributed 

approach based on Q-learning for the problem of 

channel selection in an LTE-U system. Furthermore, in 

a multi-RAT scenario, machine learning techniques can 

allow the smart use of different RATs wherein a BS can 

learn when to transmit on each type of frequency band 

based on the network conditions. For instance, one can 

apply machine learning to predict the availability of a 

line of sight (LoS) link, by considering the users’ 

mobility pattern and antenna tilt, thus allowing the 

transmission over the millimeter wave band. 

 

B. Security and privacy p rotection 

 

The inherent shared nature of radio propagation 

environment makes wireless transmissions vulnerable 

to malicious attacks, including eavesdropping and 

jamming. For this reason, security and privacy 

protection are fundamental concerns of today’s 

wireless communication systems. Wireless networks 

generally adopt separate security levels at different 

layers of the communication protocol stack. 

Furthermore, different applications usually require 

different encryption methods [42]. The utilization of AI 

techniques for wireless security has received 

significant interest. 

 
TABLE 1. Main issues in AI-enabled wireless network 

 
Data acquisition and knowledge discovery Ref. 

• Context-aware data acquisition from single/multiple sources 

• Coded (adaptive) caching 

• Semantic-aware Ontology (KB) creation from network data 

• Robust knowledge discovery from erroneous (missing) data 

[13] 

[14], [15] 

[18]-[20] 

[5] 

Network planning  

• Node deployment and radio frequency allocation 

• Caching and computing placement and content update 

• Energy consumption modeling and prediction (idle/active) 

• Parameter and service configuration procedure 

[10], [26] 

[38] 

[27], [28] 

[1], [9] 

Network operation and management  

• Resource allocation: RAT and channel selection,  

packet routing, distributed storage and processing,  

multi-RAT packet scheduling 

• Security: Spoofing attack and intrusion detection 

• Latency: Context-aware edge computing and scheduling 

[30], [31] 

[1], [32] 

[35] 

[39]-[41] 

[5], [38] 

 

In [39], a spoofing attack detection scheme using a 

random key distribution based artificial immune 

system (AIS) has been proposed. In a similar way, an 

approach based on GA and AIS, called GAAIS, for 

dynamic intrusion detection in mobile ad-hoc networks 

(MANETs) is suggested in [41]. In [40], advanced 

detection of intrusions on sensor networks (ADIOS) 

based intrusion detection and prevention system is 
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developed. The ADIOS is designed to mitigate denial-

of-service attacks in wireless sensor networks by 

capturing and analyzing network events using AI and 

an expert system developed using the C language 

integrated production system tool. In a similar work, 

the authors of [43] propose an AI-based scheme to 

secure the communication protocol of connected 

vehicles. 

 

C. Latency optimization for tactile applications 

 

Next generation wireless networks are featured by 

several mission critical (tactile) applications such as 

lane switching in automated vehicles. For vehicular 

networks, different levels of automation has been 

defined by the USA department of transportation 

(DOT) ranging from a simple driver assistance 

(level 1) to the full automation mode (level 5). For this 

application, one can apply different message 

representations including warning alarm, picture and 

audio information to request intervening. In fact, 

recently it has been demonstrated via an experiment 

that the use of natural language generation techniques 

from imprecise data improves human decision-making 

accuracy. Such a linguistic description of data could be 

designed by modeling vague expressions such as small 

and large, which are norms in daily life conversation, 

using fuzzy logic theory [44]. All these facilitate the 

utilization of predictive machine learning as in [45], 

[46]. 

 

 

Fig. 4. Comparison of analytical and machine learning 

(ML) approaches in terms of achieved average SE for 

different future OFDM block index CIR. 

 

From the computing side, edge devices can be used for 

effective low-latency computations, using the 

emerging paradigm of mobile edge computing. 

However, optimizing mobile edge computing faces 

many challenges such as computing placement, 

computational resource allocation, computing task 

assignment, end-to-end latency, and energy 

consumption. In this respect, a machine learning 

technique can be used to address these challenges by 

utilizing historical data. Predicting computational 

requirements enable the network devices to schedule 

the computational resources in advance to minimize the 

global latency. In this respect, the authors of [38] 

propose a cross-system learning framework in order to 

optimize the long-term performance of multi-mode 

BSs, by steering delay-tolerant traffic towards Wi-Fi. 

Furthermore, in a fog-enabled wireless system, latency 

can be addressed by exploiting different levels of 

awareness at each edge network. In fact, a number of 

learning techniques can be applied to achieve this 

awareness including incremental, divide and conquer, 

parallel and hierarchical [5]. A brief summary of 

different issues in the AI-enabled wireless network is 

presented in Table 1. 

 

5. DESIGN CASE STUDIES 
 

This section discusses typical design case studies in 

which the AI techniques can be applied for the context-

aware wireless network. 

 

A. Machine learning for CIR prediction 

 

This study demonstrates the utilization of machine 

learning tools for optimizing wireless system 

resources. In this respect, we select the wireless CIR 

prediction as the design objective. To solve this design 

objective, the first possibility could be to apply 

different analytical CIR prediction techniques (for 

example, the recursive least square (RLS) prediction 

proposed in [45]). The second possibility could be to 

predict future CIRs by leveraging the past experience. 

The former possibility is very expensive particularly 

when real-time prediction is needed. Furthermore, in 

most cases, the analytical prediction approach may fail 

whenever there is a modeling error or uncertainty. The 

latter possibility, however, is simple as it employs past 

experience and applies standard vector multiplication 

and addition operations [47]. This simulation compares 

the performances of RLS and machine learning 

prediction approaches. For the machine learning, we 

employ the well-known multivariate linear regression. 

 

For the comparison, we consider an orthogonal 

frequency domain multiplexing (OFDM) transmission 

scheme where a BS equipped with N antennas is 

serving a single antenna IoT device. The CIR is 

modeled by considering a typical scenario of the IEEE 

802.11 standard with channel correlation both spatially 

and temporarily. The spatial channel covariance matrix 

is modeled by considering the uniform linear array 
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(ULA) structure, and the temporal channel correlation 

is designed by the well-known Jake’s model [48]. 

 

The number of multipath taps L = 4, fast Fourier 

transform (FFT) size M = 64, N = 8, OFDM symbol 

period Ts = 166 µs, RLS window size Sb = 8, forward 

prediction window size Sf = 8, carrier frequency 

5.6 GHz, and mobility speed of the IoT device 

30 km/hr. The signal to noise ratio (SNR) for each 

subcarrier is set to 10 dB. With these settings, Fig. 4 

shows the average spectrum efficiency (SE) obtained 

by the RLS and machine learning approaches for 

subcarrier s = 4. In both cases, the achieved SE 

decreases as the future OFDM-block index increases. 

This is expected since the number of unknown CIR 

coefficients increase as the future block index increases 

leading to a degraded CIR prediction quality. However, 

for a fixed future prediction index, the machine 

learning approach yields better performance than the 

RLS one1 

 
Fig. 5. Data traffic of a sample abstract information:  

In this figure, (sets) 1 to 5 denote, Background, Objective, 

Method and Result, Conclusion, and Related  

and Future Works, respectively. 

 

B. Context-aware data transmission using NLP 

techniques 

 

Context (semantic) aware information transmission is 

crucial in the future generation network. To validate 

this, we employ abstract texts from scientific articles 

[49]. According to this paper, each scientific abstract 

text consists of different types of information including 

research background, methodology, main results etc. 

Fig. 5 shows the expert annotated data size for different 

types for 2000 biomedical article abstracts. As can be 

seen from this figure, different information types use 

different portions of the overall data set. And for a 

given user, one can transmit the desired information 

1 Note that similar average performance is observed for other 

subcarriers. 

according to the context. For instance, for a user who is 

interested in the basics of the article, transmitting the 

background information could be sufficient which 

accounts for only 9% of the total traffic. This shows 

that semantically-enabled data transmission will reduce 

the network traffic while simultaneously maintaining 

the desired QoS experience of users. 

 

Such a transmission, however, is realized when 

sentences of similar types are clustered correctly for 

each abstract. In scientific papers, the location and part-

of-speech voice of a sentence are crucial features to 

identify its class set [49]. We have employed these 

features with the commonly used data clustering 

algorithms (i.e., K-means and Agglomerative) and 

present the accuracy achieved by these algorithms for 

each type as shown in Table 2. As can be seen from this 

table, different clustering algorithms yield different 

accuracy. One can also notice from this table that 

significant research work may need to be undertaken to 

reach the ideal performance. 

 
Table 2. Accuracy of different clustering methods 

Clustering Method Set 1 Set 2 Set 3 Set 4 Set 5 

K-Means 

Agglomerative 

0.34 

0.21 

0.17 

0.18 

0.35 

0.38 

0.31 

0.30 

0.16 

0.15 

 

6. CONCLUSIONS 
 

Next generation wireless networks, which will be more 

dynamic, complex with dense deployment of BSs of 

different types and access technologies, pose many 

design challenges for network planning, management 

and troubleshooting procedures. Nevertheless, wireless 

data can be generated from different sources including 

networked information systems, and sensing and 

communication devices. Furthermore, the emerging 

fog computing architecture aiming for distributed 

computing, storage, control, communication, and 

networking functions closer to end users contribute to 

the efficient realization of wireless systems. This article 

provides a comprehensive survey on the utilization of 

AI integrating machine learning, data analytics and 

NLP techniques for enhancing the efficiency of 

wireless networks. We have given a comprehensive 

discussion on the utilization of these techniques for 

efficient wireless data acquisition and knowledge 

discovery, planning, operation and management of next 

generation wireless networks. A brief case study 

showing the utilization of AI techniques has also been 

provided. 

 

Sample Traffic Data 

 

 

 

1 

2 

3 

4 

5 
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