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Abstract – Predicting the near future of primary user (PU) channel state availability (i.e., spectrum occupancy) 

is quite important in cognitive radio networks in order to avoid interfering its transmission by a cognitive 

spectrum user (i.e., secondary user (SU)). This paper introduces a new simple method for predicting PU channel 

state based on energy detection. In this method, we model the PU channel state detection sequence (i.e., “PU 

channel idle” and “PU channel occupied”) as a time series represented by two different random variable 

distributions. We then introduce Bayesian online learning (BOL) to predict in advance the changes in time series 

(i.e., PU channel state.), so that the secondary user can adjust its transmission strategies accordingly. 

A simulation result proves the efficiency of the new approach in predicting PU channel state availability.  
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1. INTRODUCTION 
 

In cognitive radio networks a secondary user is 

allowed to opportunistically utilize the vacant 

spectrum channels left by the primary user without 

interfering with their transmission. One of the key 

challenges for secondary users in cognitive radio 

networks is how to know when to occupy or leave 

the spectrum (i.e., the channels) for primary users’ 

transmission. To tackle this problem, the secondary 

user must be capable of predicting in advance the 

channel availability of the primary user (i.e., whether 

the PU channels’ status are “idle” or “busy”) so that 

it can occupy or leave the channels for PU 

transmission.  

 

The spectrum occupancy prediction problem has 

been widely investigated, for example, the idea of 

predictive spectrum access was first introduced in 

[1], in which the authors utilize Hidden Markov 

Model (HMM) to solve the spectrum occupancy 

prediction problem. Later on, the HMM-based 

spectrum prediction model received great attention 

in the literature [2-4]. And, due to the fact that 

HMM-based approaches require a priori knowledge 

of the PUs’ traffic pattern, other machine learning 

approaches such as neural network [5], Bayesian 

inference [6] and online support vector regression 

(SVR) [7] have been adopted for the prediction of 

PU channel availability. However, these prediction 

techniques consider only time-invariant PU model 

behaviors. While in real-world cognitive radio 

systems, PU traffic patterns can also exhibit 

time-variant traffic 

above-mentioned machine 

learning algorithms. On the other hand, the Bayesian 

online learning algorithm (BOL) [8] has a capability 

to track both time-variant and time-invariant 

dual-states switching time series behaviors. 

Motivated by the fact that the nature of the PUs 

channel state availability can be also modeled as 

dual-states switching time series, we propose a new 

spectrum occupancy (PUs channel state) prediction 

technique that utilizes BOL to perform PU channel 

availability prediction in cognitive radio network. In 

more details, we captured the PU channel state 

energy detection sequence using a time series that 

switches over the time between two different random 

distributions representing the PU channel state 

(i.e., PU idle or PU occupied). We then fed this time 

series as an observations sequence into a BOL 

prediction algorithm to estimate or predict in 

advance the point of the time when the change will 

occur between the two states of the time series so 

that SUs can adjust their transmission strategies 

accordingly. The experimental results show the 

effectiveness of the BOL algorithm in predicting the 

changing points of the time series that were 

generated to capture PU channel availability. 
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The paper is organized as follows: first, we introduce 

the system model for energy detection and time 

series generation. Second, we present the BOL 

method to predict the time series that is generated to 

capture the PU channel state, followed by the 

simulation results and the overall work conclusion. 

 

2. SYSTEM MODEL 
 

The system model for predicting the PU channel 

state is illustrated by the block diagram Fig. 1. This 

diagram contains the energy detection block model 

that detects the PU channel state (PU signal present 

or absent), the time series generation block model to 

capture the PU channel state detection sequence 

followed by the Bayesian online learning algorithm 

block to predict the near future of the PU channel 

state (i.e., to detection changing points or the 

switching point of the time series) by utilizing the 

previously detected channel state information.  

 

 

Fig. 1. Block diagram of PU channel state perdition 

based on BOL algorithm 

 

In the diagram depicted in Fig.1, Yt  : is the 

instantaneous energy statistic,  λ  : is the detection 

threshold, xt : is the time series that is generated to 

capture the detection sequence or PU channel states 

(i.e., PU present or PU absent) over the time. The 

time series xt  is represented using two different 

random distributions for each state (i.e.,  xt ∈
{ v1,  v2 …  vL} for PU signal absent state, and  xt ∈
 { vL+1 … .  vM} for PU signal present state). 

 

3. ENERGY DETECTION MODEL 
 

In energy detection based spectrum sensing the SU 

sensor observes the licensed spectrum to determine 

whether the primary user signal is present or absent 

by doing the binary hypothesis test on the received 

signal over the time 1 ≤ t ≤  T, as follows: 

 

yt(n) = {
wt(n)                     H0 (absent)  

√γt st(n) + wt(n)  H1(present)   
  (1) 

 

where yt(n) the observed received signal st(n) the 

primary user’s signal, and it is assumed to be 

Gaussian i.i.d random process with zero mean and 

variance σt
2, wi(n) is the noise, and assumed to be 

Gaussian i.i.d random process with zero mean and 

variance σt
2  , γt : the SNR at time t. The 

instantaneous energy statistic at the secondary user 

sensing node Yt can be represented by 

 

       Yt =
1

N
∑ |(yt(n))|2     , 1 ≤ t ≤ T    N

n=1  (2) 

 

where, N: is the number of samples used by the sensing 

node SU for energy detection,T:  the overall system 

simulation time and  Yt is a random variable whose 

probability density function (PDF) is chi-square 

distribution with 2N  degrees of freedom for the 

complexed value (yt(n),and  N degrees of freedom for 

the real value case. For the value of N ≥ 200, Yt can be 

approximated using the Gaussian distribution. 

Therefore, the distribution of the power test Yt for wide 

band signal follows: 

 

  Yt~ {
(σt

2, 2σt
4 N⁄ )                                H0  

(σt
2(1 + γt), 2σt

4(1 + γt)2 N⁄   H1   
 (3) 

 

If we assume that the noise variance and SNR at every 

sensing node remains unchanged during the 

observation time t, then σt
2 and can be written as γt 

σt
2 = σu

2, γt = γu . Thus, for a chosen threshold  

λt = λ the probability of false alarm Pf can be written 

as: 

 

                    Pf(λ) = Pr(Yt > λ|H0) 

        =
1

√2πσu

∫ e−(λ−σu)2/√2σu
2

∞

λ

 

     = Q (
λ

σu
2 − 1)   (4) 

 

where  Q (. ) is the complementary distribution 

function of Gaussian distribution with zero mean and 

unit variance. From equation (4) and for a given 

probability of false alarm Pf, the single user decision 

threshold can be written as: 

 

λ = (√
2

N
Q−1 + 1) σu

2      (5) 

 

where  Q−1( . ) is the inverse of the Q (. ) function. 

And the instantaneous primary user channel state 

detection sequences the sensing results over the time 

can be written as a function of the decision threshold 

as follows: 

 

Dt = {
0        PU  signal absent     Yt < λ  

1       PU signal present     Yt ≥  λ   
 

                 ,1 ≤ t ≤ T.                                               (6) 
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4. TIME-SERIES GENERATION BASED ON 

ENERGY PRIMARY USER DETECTION 

SEQUENCE 
 

After the detection of the instantaneous primary user 

channel state Dt  (i.e., PU signal present or PU 

absent) based on the energy detector as explained  in 

the previous section (other spectrum-sensing 

algorithms such as data fusion based cooperative 

sensing approach could be also used here ). Our next 

goal is to predict the near future of the primary user 

channel state. In order to do so, we denote the period 

that the primary user signal is absent as “idle state” 

and the period that the primary user signal present 
as “occupied state”. And to estimate the time when 

the channel state will switch from idle to occupied or 

vice versa (i.e., the change-points time) we generate 

a time series  xt  to capture the instantaneous 

detection sequence signal Dt .Then we transfer the 

two states of the time series (“PU present” or 

“absent”,) into observations using two different 

random distributions for each state (i.e.,  xt ∈
{ v1,  v2 …  vL} for idle state and  xt ∈
 { vL+1 … .  vM} for occupied state. The equation that 

capture PU detection sequence xt can be written as 

follows: 

 

 xt ∈ {
{ v1,  v2, … ,  vL}    Yt   < λ     

  { vL+1, . . . , vM}   Yt ≥  λ      
,

 1 ≤ t ≤ T      

 (7) 

 

We can note that  𝑥t formulates a time series of two 

non-overlapping states over  the time T. The 

effectiveness of the Bayesian online learning 

algorithm in predicting the change-points in such a 

time series has been shown in many applications 

such as finance, biometrics, and robotics [8]. 

 

5. TIME-SERIES PREDICTION BASED ON 

BAYESIAN ONLINE LEARNING 

ALGORITHM 
 

We assume a sequence of observations xt =
 x1,  x2,  x3, …  with two non-overlapping states, as 

denoted by equation (7). The delineations between 

the two non-overlapping states are called the change-

points. To determine these change-points we need to 

estimate the posterior distribution over the current 

“run length=: rt”or the time since the last change-

point, given the data so far observed. Under the 

assumption that change-points occur as a stochastic 

process, the data between change-points are i.i.d 

distributed, the parameters are independent across 

the change-points, and when the change-point has 

occurred the run length  rt  will drop to zero; 

otherwise, the run length is increased by one. We use 

the BOL algorithm to calculate the posterior run 

length at time t, i.e. P (rt|x1:t),  sequentially. This 

posterior is used to make online predictions robust to 

underlying regime changes through marginalization 

of the run length variable as follows: 

 

P(xt+1|x1:t) = ∑ P(xt+1|x1:t, rt)P(rt|x1:t)

rt

 

                    = ∑ P(xt+1|xr)P(rt|x1:t)rt
    (8) 

 

where  xr  refers to the set of observations 

 xtassociated with run length  rt, and P(xt+1|xr) is 

computed using the underlying predictive model 

UPM (the training model set), to find P(rt, x1:t), we 

estimate the run length distribution P(rti, x1:t),  for 

i =  1, 2, . . . , tof run length rt . For each time step t, 
the run length distribution contains i -elements of 

probabilities such that ∑ rti
t
i=1 = 1. The run length 

posterior is found by normalizing the joint likelihood 

as: 

 

P(rt|x1:t) =
P(rti,x1:t)

∑ P(rti ,x1:t)rti

                                          (9) 

 

If we denote the joint likelihood distribution of the 

run length  rt  at time t  for the observed data 

x1:t, P (rti, x1:t)  as ϕt : =P (rti, x1:t)  we can update 

the joint likelihood online recursively using: 

 
 ϕt = P(rti, x1:t)= P(x|r)P(r) 

 = ∑ P(rti, x1:t|  r(t−1)i, x1:t−1)P(rt−1, x1:t−1)

(rt−1)i

 

= ∑ P(rti|, r(t−1)i)P(xt|r(t−1)i, xr)(rt−1)i           (10) 

 

where P(rti|, r(t−1)i)  is the change-point prior or 

hazard function and P(xt|r(t−1)i, xr)is the likelihood 

or the underlying predictive model UPM (the model 

training data set). All the distributions mentioned so 

far are implicitly conditioned on the set of hyper-

parameters θ. 

 
Assuming a simple BOL model represented using a 

constant hazard function H (r|θh) : = θh , this means 

P ( rt = 0|rt−1, θ h)  is independent of rt−1  and is 

constant. We can represent the underlying predictive 

model with a basic predictive model that model a scalar 

(xt ∈ ℛ) by placing a normal-inverse-gamma prior on 

i.i.d Gaussian observations [9]: 

xt~(μt, σt
2) (11) 

 μt~(μ0, σt
2 κt⁄ ), σt

−2 ~Gamma(αt, βt)          (12) 
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For this model the parameters are η ≔  {μt, σt
2} and 

the model hyper-parameters are  

θ = {μt, σt
2, κt, αt, βt}. A new value for μtand σt

2 

are sampled at each change-point. The posterior on 

η is updated at every new data point for each run 

length, for example for a model with a training set 

{x1,  x3, …  xL} or x1:Land initial mean and variance 

μ0, σ0
2  respectively the first update of η (the 

corrected prior mean and variance) is:  

μ1 = (μ0 − E( x1:L)) std ( x1:L)⁄ and σ1
2 =

σ0
2 std ( x1:L)⁄  where std ≔ standard deviation. 

 

The BOL algorithm after the training is written as 

given in [10] is as follows: 

 

1. Initialize or calculate from the training data set 

the corrected prior mean μ1 , the corrected prior 

variance σ1
2, the degree of freedom β1 , the run 

length distribution P (r(1)i) = 1, α1 and κ1. 

 
2. While (new data xt is available) do: 

 

3. Compute the Gaussian prediction function by the 

student’s t-distribution (which gives a posterior 

predictive distribution on xt of) 

 

 πt
(r) = P(xt|xr, θ) = P(xt|μt, σt

2, βt, κt) =

St2αt
(μt,

βt

 σt
2

κt

κt+1
)                                         (13) 

 

St  =: Student’s t-distribution probability density 

function 

 

4. For i = 1  = 1 to t − 1 , compute growth 

probabilities 

 

P(rti, x1:t) = P(rt−1, x1:t−1) πt
(r) (1 −

H(rt))                                                                         (14) 

 

where we assume that the hazard function 

H(rt) =   λ−1 ,where λ is a timescale parameter. 

 

5. Compute change-point probabilities 

 

P(rti, x1:t) = ∑
P(rti ,x1:t)

λ−1

t−1
i=1                               (15) 

 

6. Compute run length distribution  

 

P(rti|x1:t) =
P(rti,x1:t)

P(x1:t)
=

P(rti,x1:t)

∑ P(rti,x1:t)t
i=1

             (16) 

 

7. Update sufficient statistics  

 

μt+1 =
κtμt+xt

κt+1
                                                   (17) 

κt+1 = κt + 1                                                            (18) 

σt+1
2 =

1

βt
[(κt + 1) +

1

2
(xt − μt)2]                   (19) 

βt+1 = βt +
κt (xt−  μt)2

2(κt +1)
                                (20) 

αt+1 = αt +
1

2
                                                        (21) 

 

8.  If 
 

argmax
i

     P(rti|x1:t)                                           (22) 

 

Then the change-point has occurred, reset run length 

to zero rt = 0. If not, increment rt = rt−1 + 1. 

 

9.  Perform prediction 

 

P(xt+1|xt) = ∑ P(xt+1|xt, rt) P(rti, x1:t)t−1
i=1       (23) 

 

10. Go to step 2. 

 

6. SIMULATION RESULTS  
 

To evaluate the performance of the BOL algorithm 

in predicting PU channel state availability we 

generate a simulated detection sequence considering 

single user cognitive radio system with noise 

variance σu
2 =1 and SNR γu = −22dB. The local 

energy detection decision is made after 

observing  N =1000 samples. We employ equation 

(6) to generate the time series that captures the 

simulated detection sequence.  

 

Figure 2 shows the performance of the BOL 

algorithm in predicting the time series that is 

generated to capture the primary user channel state 

detection sequence for single user “sensing node” 

cognitive radio network with a randomly distributed 

channel occupancy over T = 350 time points after 

training the algorithm offline over a set of training 

observations L = 150 time points (we use 

millisecond as time point here).  For training the 

algorithm we use μ0 =  2  and σ0
2 = 1 , the 

timescale parameter λ =  2000 , α1 = 1 , and κ1 =
β1 = 1 σ1

2⁄ . In Fig.2 the top plot shows the 

simulated detection sequence signal, where 

150 ms of the simulated detection sequence signal 

used for training the hyper-parameters θ , and the 

remaining 350 ms is used for testing the algorithm. 

The middle plot shows the generated time series to 

capture the primary user channel state detection 

sequence with the random distribution for idle states 

represented by xt ∈ {1,2,3}  and xt ∈ {4,5,6}  for 

occupied states.  
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Fig. 2. The simulated detection sequence signal (150 time points used to train the hyper-parameters θ), the generated time 

series to capture the detection sequence and the performance of the BOL algorithm in predicting the change-points for 

350 time points testing time series, (assuming the time point is in millisecond: = 𝑚𝑠) 

 

The bottom plot shows the posterior probability of 

the current run length P(rt|x1:t)at each time step, 

using a logarithmic color scale; the lighter pixels 

indicate higher probability, the red crosses are the 

change-points and the darker pixels represent the 

current run length. As we can see run-length is 

dropped to zero immediately after the change-point. 

The time consumed for training the model is 

5.223582 milliseconds while the testing time is only 

0.204281 milliseconds.  

 

7. CONCLUSION  
 

In this paper, we have studied the problem spectrum 

occupancy prediction for a single user cognitive 

radio network based on the Bayesian online learning 

model. We modeled the detection sequence of 

primary user channel state availability as a time 

series changing over the time between two states 

(PU idle and PU occupied). We introduced Bayesian 

online learning to predict in advance the changes in 

the states of the time series. Finally, we evaluated the 

performance of our algorithm using a simulated PU 

detection sequence. The simulation results have 

verified the effectiveness of the BOL model in 

predicting PU channel state availability. 
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