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Abstract – Path loss prediction models are essential in the planning of wireless systems, particularly in built-up 

environments. However, the efficacies of the empirical models depend on the local ambient characteristics of the 

propagation environments. This paper introduces artificial intelligence in path loss prediction in the VHF band 

by proposing an adaptive neuro-fuzzy (NF) model. The model uses five-layer optimized NF network based on 

back propagation gradient descent algorithm and least square errors estimate. Electromagnetic field strengths 

from the transmitter of the NTA Ilorin, which operates at a frequency of 203.25 MHz, were measured along four 

routes. The prediction results of the proposed model were compared to those obtained via the widely used 

empirical models. The performances of the models were evaluated using the Root Mean Square Error (RMSE), 

Spread Corrected RMSE (SC-RMSE), Mean Error (ME), and Standard Deviation Error (SDE), relative to the 

measured data. Across all the routes covered in this study, the proposed NF model produced the lowest RMSE 

and ME, while the SDE and the SC-RMSE were dependent on the terrain and clutter covers of the routes. Thus, 

the efficacy of the adaptive NF model was validated and can be used for effective coverage and interference 

planning 
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1. INTRODUCTION 
 
Predicting the propagation of electromagnetic waves is 

of great significance in the design and planning of 

wireless communication systems. Propagation models 

are essential in evaluating the performance of a 

wireless system and quality of the received signal. 

Empirical path loss models have been found to be the 

widely used models due to their simplicity and ease of 

use, as the implementation of the models do not require 

much computational efforts, and, are less responsive to 

the physical and geometrical structures of the 

environments [1]. These make them attractive, 

although a major drawback of utilizing these models is 

the lack of accuracy, especially when deployed in 

another environment other than the one where the 

measurement was taken. For example in [2-5], several 

of these models were tested in a typical urban and rural 

Nigerian terrain and they were found to be inconsistent 

in prediction, and have high prediction errors. 

Although, in [6-8], some of the most performing 

models, were tuned to minimize errors and improve 

prediction accuracy. Yet the tuned models were found 

to be site-specific. On the other hand, the deterministic 

models seem to have better prediction accuracy 

because of the availability of detailed information 

about the propagation environment. However, they are 

computationally intensive and time consuming [9]. 

Moreover, despite the inclusion of site-specific 

information, the deterministic models do not always 

provide more accurate predictions than the empirical 

models [9-10]. This therefore raises more questions to 

which model(s) can provide optimum prediction with 

minimal complexity, as such, the need to incorporate 

artificial intelligence (AI) and heuristic algorithms to 

improve path loss prediction. Different AI techniques 

have been adopted, as evident in the literature, for path 

loss prediction. Tamma et al [11] developed an 

artificial neural network (ANN) model for path loss 

prediction in the UHF (ultra-high frequency) band 

based on the measurement data collected in Tripoli, 

Turkey. The accuracy of the proposed model was 

evaluated and compared to that of the Hata model and 

it was found that the ANN model provided more 

accurate prediction. In [12], an adaptive network based 

fuzzy inference system (ANFIS) was used to predict 

path loss in the urban settlement of the Habiye region 

of Istanbul in the 900 MHz band. The ANFIS model 
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increased the prediction accuracy by 15% relative to 

the Bertoni-Walfisch model. Joel and Elmer in [13] 

conducted a comparative analysis of the neural network 

(NN), free space loss (FSL), and Egli models. The NN 

model was most efficient for path loss prediction in 

digital TV macro-cells in the UHF band. Achieving the 

lowest prediction error using the AI models was not the 

only benefit over the empirical path loss propagation 

models as Ozdemir et al [14] showed that the ANN 

model performed better than the theoretical and the 

empirical propagation models in terms of prediction 

accuracy, less complexity and time. Furthermore, the 

authors proved that within the ANN model, the model 

that employed the Levenberg-Marquardt learning 

algorithm had minimal prediction error compared to 

the one that used Epstein-Peterson. In [15] the 

performance of ANFIS for optimal power control for 

cognitive radio spectrum distribution was investigated. 

ANFIS produced the lowest prediction error and was 

recommended as the most suitable method for power 

scale control. Vishal and Sharma [16] employed a 

fuzzy logic (FL) model to predict path loss as a function 

of path loss exponent in the fringe areas of a suburban 

region of Clementown and Dehradun in India. It is 

worth mentioning that some efforts have also been 

made to compare the performance of some AI models 

used in path loss prediction. For instance, Vahala et al., 

[17] investigated the electromagnetic interference 

pattern caused by portable devices onboard Airbus 319 

and 320 with respect to various receivers on the aircraft 

using NF modelling (NFM). The results obtained were 

compared to the ANN model and it was found that the 

NFM performed better. 

Although application of heuristic algorithms for path 

loss prediction in an urban macro-cellular environment 

[18-21] is gaining momentum, most of the works that 

focus on investigating the suitability of adaptive NF 

technique for path loss prediction in the VHF band are 

very limited. Moreover, due to the peculiar nature of 

our terrain environment and the wide deployments of 

wireless systems operating on the VHF bands, there is 

a need to test the efficacy of the NF model. Therefore, 

this paper introduces an adaptive neuro-fuzzy (NF) 

approach to path loss prediction in the VHF band 

within the Nigerian propagation terrain context. The 

predictions of the NF model were compared to those of 

the widely used empirical models such as Hata, COST 

231, Egli and ECC-33 models. The performances of the 

models under investigation were evaluated using the 

Root Mean Square Error (RMSE), Spread Corrected 

RMSE (SC-RMSE), Mean Error (ME), and Standard 

Deviation (SD), relative to the measured data. 

 

 

2. METHODOLOGY 
This section is divided into two parts: the first part 

describes the measurement procedure and the second 

part explains the adaptive NF approach to path loss 

modelling in the VHF band. 

 

2.1. Measurement Campaign Procedure 

 

Measurements were carried out in Ilorin, Kwara State, 

Nigeria (Long 4o36’25”E, Lat 8o25’55”N). The 

received signal power was measured from the NTA 

Ilorin transmitter which operates on VHF band at a 

frequency of 203.25 MHz. For the receiver, a dedicated 

Agilent spectrum analyzer, N9342C, was used and this 

was properly positioned in a vehicle and driven at an 

average speed of 40 km/hr to minimize Doppler effects. 

The analyzer has a displayed average noise level 

(DANL) of −164 dBm/Hz and can detect even very 

weak signals. A whip retractable antenna (70 MHz – 

1 GHz), a global positioning system (GPS) receiver 

and a dedicated memory stick for data storage were 

coupled to the analyzer. The external GPS receiver was 

attached to the roof of the vehicle, while the spectrum 

analyzer was positioned inside the vehicle. The four 

measurement routes visited are: Murtala Mohammed 

way, Old Jebba road, Pipeline road, and Ogbomoso 

road. These routes are characterized with complex 

terrain propagation features with the presence of hills, 

valleys and urban clutters. The terrain elevation varies 

between 350 m to 403.7 m. The routes i.e. MURTALA, 

PIPELINE, OLD JEBBA AND OGBOMOSO are dual 

carriage, single lane road, two-lane road and two-lane 

respectively. The MURALA route is considered the 

busiest among the routes. The average buildings along 

these routes are two storeys. The total length of the 

routes and total number of data points were 75.5 km 

and 92,280 respectively. The received signal strength 

data were filtered to minimize noise and preserve the 

shadowing effects. This reduced the number of data 

sets per route to 500. 

 

2.2. Prediction Model 

 

NF modelling is a kind of fuzzy inference system which 

prepares the mapping of inputs to outputs. It consists of 

both FL and ANN in the development of mapping the 

inputs to the output [15]. It consists of five layers as 

shown in Fig. 1. The nodes in these layers are either 

fixed or adaptive. The adaptive nodes are symbolized 

by the square shapes, while the fixed nodes are 

represented by the circular shapes. To describe the 

structure, a first order Sugeno model has been used 

because the output is a crisp value that does not require 

defuzzification. A Sugeno based NF has a rule of the 

form [15]: 
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Fig. 1. Neuro-fuzzy structure 

Rule 1: 

 

If x is A1 and y is B1 then f1 = p1x + q1y + r1  (1) 

 

Rule 2: 

 

If x is A2 and y is B2 then f2 = p2 x + q2y + r2   (2) 

 

Layer 1: A node in this layer is adaptable and is given 

as: 

 

𝐿𝑗
1 = μ𝐴𝑖(𝑥)       𝑖 = 1, 2 (3) 

 

x is the input to ith node, Ai is the alterable language 

related to this node and the membership function of Ai 

is μAi(x) and normally taken as: 

 

μ𝐴𝑖(𝑥) =
1

1+[(
𝑥−𝑓𝑖

𝑑𝑖
)2]𝑒𝑖

 (4) 

 

{di, ei, fi} is the antecedent parameters set. Eqn. (4) 

represents the generalized bell membership function 

(MF) which was chosen for this work because it 

produced the best accuracy when compared to the other 

membership functions. 

 

Layer 2: This layer comprises of fixed nodes and it 

solves the firing power wi of a rule. The multiplication 

of the incoming signals is the output of each node and 

is given by: 

 

𝐿𝑖
2 =  𝑤𝑖 =  μ𝐴𝑖(𝑥)  ×  μ𝐵𝑖(𝑦), 𝑖 = 1,2 (5) 

 

{p, q and r } is the consequent parameters set which are 

established by the least squares method. 

 

 

 

 

 

Layer 3: Each node is constant in this layer with the 

output given by 

 

𝐿𝑖
3 =  𝑤𝑙 =

𝑤𝑖

∑ 𝑤𝑖
 , 𝑖 = 1,2 (6) 

 

Layer 4: The adaptable output of this layer is given by 

 

𝐿𝑖
4 =  𝑤𝑖𝑓𝑖 =  𝑤𝑖(𝑝𝑖𝑥 + 𝑞𝑖𝑦 + 𝑟𝑖, 𝑖 = 1,2 (7) 

 

Layer 5: The output of this layer is the summation of 

all incoming signals and is given by 

 

𝐿𝑖
𝑠 =  ∑ 𝑤𝑙

2
𝑖=1 𝑓𝑖 =

∑ 𝑤𝑖𝑓𝑖

∑ 𝑤𝑖
  (8) 

 

The optimization method used for training the network 

in this work is the hybrid method which combines both 

the back propagation gradient descent algorithm and 

the least square errors estimate used to establish the 

input and output parameters respectively. The output 

parameters are adjusted first using the least squares 

algorithm and those of input parameters by back 

propagating the faults from the output using the 

gradient descent method until the training is completed. 

 

3. RESULTS AND DISCUSSION 
 

Figs. 2 to 5 show the graphical depiction of the 

measured and predicted path losses as a function of 

distance for each of the four routes considered. It is 

worth pointing out that from the figures, the prediction 

by the NF model in all the four routes performed the 

best among all the considered models as it mimicked 

the measured data. In Fig 2, the variation of path loss 

with distance for MURTALA along the route and the 

predictions of the four empirical models were 

superimposed on the measured loss. The Egli, COST 

231 and Hata models under-predicted the path loss 

throughout the measurement route, except within 

3-4.5 km where the Hata model provided good fitness. 

The ECC-33 model generally fluctuated between over 

and under-prediction of the path losses with respect to 

the measured path losses. Along this route, it can be 

concluded that the Egli model has the worst prediction 

with a mean error of −34.5 dB when compared to 

−1.27 dB for the ECC-33 model and −6.52E-07 dB for 

the neuro-fuzzy model. The mean error for the NF 

model is insignificant and this result indicated the good 

fitness of the model along this route. 
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Fig. 2. Comparison of NF model path loss with measured 

path loss and other empirical models path loss for the 

MURTALA route 

 

Fig. 3 depicts the result for the PIPELINE route. Again, 

the ECC-33 model gave optimum prediction up to 3 

km; thereafter, it overestimated the path losses while 

the Hata model provided good fitness at distances 

above 3 km. Other models underestimated the path 

losses throughout the measurement distances. In 

Figures 4 and 5, the ECC-33 model provided good 

fitness, while all other empirical models 

underestimated the losses with various offset values. 

 

 

Fig.3. Comparison of NF model path loss with measured 

path loss and other empirical models path loss for the 

PIPELINE route 

 

Fig. 4. Comparison of NF model path loss with measured 

path loss and other empirical models path loss for the 

OLD JEBBA route 
 

From the figures, it was observed that the NF model 

provided better prediction as it followed the measured 

losses. In Table 1, the statistical analysis of the errors 

for each model across all the routes is provided. Table 

1 shows how each of the models performed in terms of 

their RMSE, SC-RMSE, ME and SDE. RMSE between 

0-7 dB is considered acceptable for urban areas [21], 

although for typical suburban and rural areas up to 

10-15 dB [22] can still be acceptable. 

 

For the RMSE and ME, the NF model is the lowest in 

average across all the routes with 5.2 dB, and 

−0.00000388 dB respectively, which proved to be the 

fittest among all the models. These values fell within 

the acceptable range for urban environments and as 

such the model did not either underestimate or 

overestimate the losses as the ME was found to be 

insignificant. The ECC-33 model gave the least values 

when compared to other empirical models. The average 

RMSE and ME were 9.48 dB and 2.27 dB respectively, 

although the RMSE was found to be a bit higher than 

the threshold limit for urban environments and the ME 

clearly indicated that the model underestimated the 

losses. Surprisingly, this model was developed to suit 

fixed wireless systems and recommended for European 

cities but is found to provide optimum predictions 

when compared to other contending empirical path loss 

propagation models. 
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Table 1. Performance metrics for the measurement routes 

 
 

MODEL 

ROUTES 

OGBOMOSO MURTALA PIPELINE OLD 

JEBBA 

AVERAGE 

 

NF 
RMSE (dB) 5.0377 5.3232 5.5736 4.6727 5.1518 

SC-RMSE (dB) 5.8071 11.3713 4.5005 3.6978 6.3442 

ME (dB) −4.88E-06 −6.52E-07 −3.33E-06 −6.65E-06 −3.88E-06 

SDE (dB) 8.6174 14.7883 7.3182 5.7409 9.1162 

 

COST 

231 

RMSE (dB) 17.6246 22.0911 13.4102 21.6572 18.696 

SC-RMSE (dB) 11.8382 11.2586 8.0229 19.7363 12.7140 

ME (dB) −15.8773 −20.1378 −9.9811 −20.4191 −16.6038 

SDE (dB) 6.7797 13.3675 9.2027 2.0496 7.8499 

 

HATA 

RMSE (dB) 12.985 17.3235 10.0662 16.6762 14.264 

SC-RMSE (dB) 8.138 8.592 6.2476 14.8439 9.4554 

ME (dB) −10.4914 −14.752 −4.5952 −15.0332 −11.2180 

SDE (dB) 6.7797 13.3675 9.2027 2.0496 7.8499 

 

 

EGLI 

RMSE (dB) 21.8275 36.0905 24.4704 29.1706 27.890 

SC-RMSE (dB) 13.8329 19.7112 14.5071 26.5375 18.6472 

ME (dB) −20.2792 −34.5799 −21.9709 −28.2467 −26.2692 

SDE (dB) 9.0246 17.7937 12.2498 2.7283 10.4491 

 

ECC-33 

RMSE (dB) 8.2447 9.1536 12.5833 7.3857 9.487 

SC-RMSE (dB) 5.0961 7.8597 7.0676 5.9038 6.4818 

ME (dB) 3.0725 −1.273 8.8542 −1.5622 2.2729 

SDE (dB) 6.8434 13.3076 9.1691 2.0619 7.8455 

 

 

Despite the fact that the system parameters, such as the 

operating frequency, height of the transmitter and 

distance of the measurement routes fell within the 

validity of the Hata, COST 231 and Egli models, the 

models performed woefully, with an RMSE and ME of 

14.26 dB, and −11.21 dB, 18.69 dB and −16.60 dB, and 

27.89 dB and −26.26 dB respectively. The average 

standard deviation error (SDE) for the NF model is 

9.11 dB, while, 7.84 dB, 7.84 dB, 10.44 dB and 

7.84 dB for COST 231, Hata, Egli and ECC-33 models 

respectively. However, the excellent performance of 

the NF in terms of the mean prediction error and RMSE 

may not be over-emphasized as the route specific SDEs 

were 8.61 dB, 14.78 dB, 7.31 dB and 5.74 dB for 

OGBOMOSO, MURTALA, PIPELINE and OLD 

JEBBA routes. These are quite high and this is because 

the model mimicked the measured data and the 

deviations are noticeable along each route with varying 

degree of clutter effects. Furthermore, in terms of 

SC-RMSE, no significant impacts were observed for 

the NF model when compared to RMSE, apart from the 

MURTALA route. Ordinarily, SC-RMSE negates the 

impact of dispersion from the overall errors attributed 

 

 

 

 

to a noisy link. For other models, the SC-RMSE was 

very significant as their respective mean prediction 

errors were quite high. The prediction errors as a 

function of radial distance from the transmitter for each 

route were equally investigated and the results are 

presented in Figures 6 to 9. 

 

In Fig. 6, it was observed that the shadowing effects on 

the PE for the NF model along the MURTALA route, 

as the PE undulated along the 0 dB baseline with a 

varying degree of impact due to different clutter types 

along the route. Other models also undulated but with 

high amplitudes of PE with varying offsets. 

Interestingly, all the empirical models tend to have high 

prediction errors between the 0-1 km distance and 

which is due to their initial offset values for the models. 

Between 3-4.5 km, the PEs of COST 231 and Hata 

models were close to the 0 dB baseline, this conformed 

to the earlier findings reported in Fig 2. The ECC-33 

model provided the least errors when compared to other 

empirical models but with a high prediction error 

within 3 and 4.5 km. 
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Fig. 6. Comparison of NF model prediction errors with 

other empirical models prediction errors for the 

MURTALA route 

 

 

Fig. 7. Comparison of NF model prediction errors with 

other empirical models prediction errors for the 

PIPELINE route 

 

In Fig. 7 it was shown that the NF model provided the 

least PE along the route. However, the ECC-33 model 

tried to emulate the NF model aside the initial spike 

between 0-1 km and d > 3 km, while all other models 

converged towards the 0 dB baseline afterwards. The 

situation in Figs 8 and 9 were quite different, as severe 

clutter effects on the PE were noticeable with several 

spikes along the routes. 

 

Fig. 8. Comparison of NF model prediction errors with 

other empirical models prediction errors for the OLD 

JEBBA route 

 

Generally, the NF model can be said to have the best 

PE in all the routes among the considered models as it 

wavered close to the 0 dB line between over and under-

prediction in a uniform manner throughout the 

distances. The result obtained in Fig. 9, for the 

OGBOMOSO route showed that the PEs for the Egli 

and COST 231 are almost similar. They largely under-

predicted and showed slight over-predictions between 

20-25 km and 30-35 km. The NF and the ECC-33 

models’ predictions are similar as well. 

 

 

Fig. 9. Comparison of NF model prediction errors with 

other empirical models prediction errors for the 

OGBOMOSO route 
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Fig. 10. Effects of membership functions types and the 

number of epochs on the training RMSE for the 

OGBOMOSO route 
 

In Fig. 10, the impact of membership function types 

and epochs size on the RMSE were investigated, and 

these were done to establish which of the membership 

function types provided stability and attained fast 

convergence at the minimum number of epochs 

(number of iterations). For this exercise the 

OGBOMOSO route was used. Generally, the figure 

showed that an increase in the number of epochs for the 

different types of membership functions translated to a 

decrease in the RMSE. However, the increment in the 

number of epochs got to a point where the antecedent 

and consequent parameter sets could no longer be 

updated or the updates were infinitesimal and 

negligible, and therefore attained a steady state output 

for the RMSE. Also, it could be seen that the 

generalized bell membership function produced the 

lowest RMSE among the membership functions 

considered for this route. 

 

4. CONCLUSION 
 

This work is centered on the incorporation of artificial 

intelligence in path loss prediction. A neuro-fuzzy 

model was developed and used to predict path losses in 

the VHF band. The path loss predictions as well as the 

prediction errors of the proposed model were compared 

to that of four widely used empirical models. The 

proposed NF model provides the lowest errors with an 

average RMSE and ME of 5.2 dB and −0.00000388 dB 

respectively, across all the routes. The ECC-33 model 

gave the least values when compared to other empirical 

models. The average RMSE and ME were 9.48 dB and 

2.27 dB respectively, although the RMSE was found to 

be a bit higher than the threshold limit for urban areas 

and the ME clearly indicated the model overestimated 

the losses. The work showed that the Hata, COST 231 

and Egli models performed woefully, with higher 

errors despite the fact that the system parameters such 

as the operating frequency, height of the transmitter 

and distance of the measurement routes fell within the 

validity of the models. Furthermore, the paper showed 

that route-specific SDEs of the proposed model are 

quite high, as the model mimicked the measured data 

and the clutter effects were noticeable along each route 

with varying degrees. It was also discovered that the 

SC-RMSE had no significant impact on the NF model 

when compared to the RMSE. For other models, the 

SC-RMSE was very significant as their respective 

mean prediction errors were quite high. The paper also 

showed that an increase in the number of epochs for the 

different types of membership functions translated to a 

decrease in the RMSE and the generalized bell 

membership function produced the lowest RMSE 

among the membership functions considered for this 

route. In conclusion, the NF model proved to be the 

fittest for path loss prediction among the other models 

for this work. However, future work can be extended to 

other frequency bands, more routes with respect to the 

same transmitter and other transmitters, consideration 

of more path loss models and extension to other 

geographical areas. 
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