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Abstract - The areas of machine learning and communication technology are converging. Today’s communication 
systems generate a large amount of traffic data, which can help to significantly enhance the design and 
management of networks and communication components when combined with advanced machine learning 
methods. Furthermore, recently developed end-to-end training procedures offer new ways to jointly optimize the 
components of a communication system. Also, in many emerging application fields of communication technology, 
e.g. smart cities or Internet of things, machine learning methods are of central importance. This paper gives an 
overview of the use of machine learning in different areas of communications and discusses two exemplar 
applications in wireless networking. Furthermore, it identifies promising future research topics and discusses 
their potential impact. 
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1. INTRODUCTION 
 
We are currently observing a paradigm shift towards 
“smart” communication networks that take 
advantage of network data. In fact, modern 
communication networks, and in particular mobile 
networks, generate a large amount of data at the 
network infrastructure level and at the user/customer 
level. The data in the network contains a wealth of 
useful information such as location information, 
mobility and call patterns. The vision of network 
operators is to either enable new businesses through 
the provisioning of this data (or the information 
contained within it) to external service providers and 
customers or to exploit the network data for in-house 
services such as network optimization and 
management. 
In order to make the vision reality, there is a strong 
need for the development and implementation of 
new machine learning methods for big data analytics 
in communication networks. The objective of these 
methods is to extract useful information from the 
network data while taking into account limited 
communication resources, and then to leverage this 
information for external or in-house services. 
Moreover, machine learning methods are a core part 
in many emerging applications of communication 
technology, e.g. smart cities [47] or the Internet of 
things [46]. Here, topics such as monitoring, fault 
prediction and scheduling are addressed with 
modern learning algorithms. The use of machine 

learning methods in communications may provide 
information about individuals that affect their 
privacy. Therefore, various privacy-preserving 
approaches to data analysis have been recently 
proposed (e.g. [1]). Machine learning methods are 
also widely applied to tackle security-related 
problems in communications, e.g. as part of defense 
mechanisms against spam attacks and viruses [21]. 
The increasing convergence can be also observed in 
specific domains of communications such as image 
and video communication. While the direct approach 
to designing compression algorithms using 
autoencoders has provided very limited results 
compared to the state-of-the-art approach, the use of 
machine learning as an enhancing component for 
aspects like video encoding, bit allocation or other 
parts became a promising research direction [55]. As 
most video signals are stored as compressed data, the 
topic of object recognition and tracking in the 
compressed domain is also of high relevance [41]. 
Video streaming is another application which 
benefits from the use of learning algorithms [28]. 
Despite the successful use of machine learning 
methods in various communication applications, 
there are still many challenges and questions that 
need to be addressed. For instance, the large size and 
high computational demands of modern machine 
learning algorithms prevent the large-scale use of 
these models in embedded devices. Also 5G 
networks call for novel machine learning-based 
approaches to radio resource management and 
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network management approaches that can cope with 
uncertainties and incomplete channel and network 
state information. Other problems concern reliability, 
privacy and security aspects of machine learning 
models. 
The following clauses review the literature (clause 2), 
present two applications (clause 3) and discuss future 
research topics in machine learning and 
communications (clause 4). The paper concludes 
with a summary (clause 5). 
 
2. MACHINE LEARNING IN 
COMMUNICATIONS 
 
This clause reviews the use of machine learning 
algorithms in different application fields of 
communications (see Figure 1). 
 
2.1. Communication networks 
 
Routing has a significant impact on the network’s 

performance, and it is a well-studied topic in 
communications. Machine learning methods have 
been used to tackle different types of routing 
problems in the past, including shortest path routing, 
adaptive routing and multicasting routing. The 
authors of [7] proposed an algorithm for package 
routing in dynamically changing networks based on 
reinforcement learning. This algorithm learns a 
routing policy which balances between the route 
length and the possibility of congestion along the 
popular routes. Extensions on this idea have been 
proposed in [27]. Other researchers approached the 
routing problem with genetic algorithms [34]. Here 
alternative routes are created by crossover and 
mutation of the existing routes. Genetic algorithms 

have been also used for tackling the multicasting 
routing problem which emerges when data is sent to 
multiple receivers through a communication 
network [54]. Also, in mobile ad-hoc networks the 
construction of multicast trees has been addressed 
using genetic algorithms. Here additional objectives 
such as bounded end-to-end delay and energy 
efficiency are added to the optimization [30]. 
Several works (e.g. [17]) have also used machine 
learning techniques for throughput or traffic 
prediction in communication networks. This is an 
important topic as with a dynamic throughput control 
and allocation one can fulfill the quality of service 
(QoS) requirements while efficiently utilizing the 
network resources. For instance, the authors of [28] 
applied neural networks for variable-bit-rate video 
traffic prediction in order to dynamically allocate 
throughput for real-time video applications. Traffic 
identification is another important topic for network 
operators as it helps them to manage their networks, 
to assure the QoS and to deploy security measures. 

Here, machine learning methods recognize statistical 
patterns in the traffic data by analyzing 
packet-header and flow-level information. An 
excellent review of traffic classification with 
machine learning methods is [35]. 
 
2.2. Wireless communications 
 
To achieve a high efficiency at the desired QoS, it is 
essential in wireless systems to continuously adapt 
different parameters of MIMO-OFDM systems, in 
particular the link parameters, to the variations in the 
communication environment. Various work (e.g. 
[52]) tackle this parameter selection problem using 
machine learning. Due to the dynamic nature of the 

 

 
 

Fig. 1. Applications on machine learning in different areas of communications. 
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wireless communication environment, there is also a 
strong need for adapting hardware parameters, e.g. 
to select a suitable set of transmit and receive 
antennas [25]. 
The problem of reducing the peak-to-average power 
ratio (PAPR) is one of the key aspects in the design 
of OFDM-based wireless systems. This problem has 
attracted much attention for many years. Application 
examples of machine learning to the PAPR reduction 
problem include neural networks [23] and 
set-theoretic approaches [10] that are particularly 
suitable for online learning. Methods of machine 
learning and compressive sensing can also provide a 
key ingredient in enhancing the efficiency of OFDM 
channel estimation. For instance, the authors of [13] 
address the problem by considering a neural network 
with known pilot signals at its input and the 
corresponding channel response at its output. Other 
works (e.g. [39]) turn their attention towards the 
problem of channel estimation in MIMO systems in 
the presence of nonlinearities. Learning-based 
approaches have been also applied for the estimation 
of mmWave channels [32]. 
In order to enable an efficient and reliable 
opportunistic spectrum access, several approaches 
based on supervised, unsupervised, or reinforcement 
learning have been proposed in the literature. For 
instance, the study [44] considers a cognitive radio 
system with cooperative spectrum sensing where 
multiple secondary users cooperate to obtain robust 
spectrum-sensing results. Other approaches [8] 
apply distributed adaptive learning to tackle this 
problem. 
Power control is a key mechanism for resource 
allocation in wireless systems. Machine learning has 
attracted some attention in the context of MIMO 
power control (e.g. [31]). Various learning-based 
approaches (e.g. [19]) have also been proposed to 
tackle the inter-cell interference problem, which may 
have a detrimental impact on the performance of 
wireless users in mobile networks. Furthermore, 
human supervision is still an indispensable element 
of current network management tools that are used 
to operate and manage mobile networks. Much 
research effort has been spent in the last decade to 
fully automate the network management process and 
with it to realize the vision of self-organizing 
networks that operate without human intervention 
(see [2]). 
Information on the position of wireless devices is a 
key prerequisite for many applications. Machine 
learning methods have been used for localization [53] 
as well as navigation and positioning in car-to-car 
communication systems [40]. 
 

2.3. Security, privacy and communications 
 
Machine learning methods play a pivotal role in 
tackling privacy and security-related problems in 
communications. For instance, they monitor various 
network activities and detect anomalies, i.e. events 
that deviate from the normal network behavior. 
Various machine learning methods have been 
applied for network anomaly detection in the past 
(see [45]). Other security applications are automatic 
spam filtering [21] and phishing attack detection [4]. 
Preserving data privacy is an important security 
aspect in communications, especially when sensitive 
data is involved. The design of machine learning 
algorithms that respect data privacy has recently 
gained increased attention. The authors of [1] 
demonstrated that it is possible to build a 
decision-tree classifier from corrupted data without 
significant loss in accuracy compared to the 
classifiers built with the original data, while at the 
same time it is not possible to accurately estimate the 
original values in the corrupted data records. This 
way one can hide private information from the 
algorithm, but still obtain accurate classification 
results. 
 
2.4. Smart services, smart infrastructure and 
IoT 
 
With the recent advances in communication 
technology the new field of “smart” applications has 
gained increased attention (e.g. smart homes, smart 
cities, smart grids, Internet of things). Machine 
learning algorithms are often the core part of such 
applications. For instance, the authors of [14] used a 
neural network based prediction algorithm to 
forecast and manage the power production of a 
photovoltaic plant. Other researchers have applied 
similar techniques to traffic light control [48] in 
smart cities or context aware computing in IoT [37]. 
Machine learning can also help detecting malicious 
events before they occur, e.g. in smart-grid networks 
[18]. Tasks such as the prediction of a resource usage, 
estimation of task response times, data traffic 
monitoring and optimal scheduling have also been 
tackled with learning algorithms [49]. 
 
2.5. Image and video communications 
 
Machine learning methods have been used for 
various tasks in multimedia communication and 
processing (e.g. more than 200 applications of neural 
networks for images are summarized in [16]). Signal 
compression is one important field of application of 
these methods as it is part of almost every 
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multimedia communication system. A survey on 
image compression methods with neural networks 
can be found in [24]. Tracking is another 
well-studied topic in machine learning which is also 
relevant in multimedia communication. A new 
generation of object tracking methods based on deep 
neural networks has been described in [12]. 
Tracking algorithms which make use of the 
compressed video representation have also gained 
attention recently [41]. In multimedia applications 
such as video streaming the quality of the displayed 
video is of crucial importance. Different machine 
learning methods have been proposed to estimate the 
subjective quality of images perceived by a human 
[5, 6]. 
 
3. EXEMPLAR APPLICATIONS IN 
WIRELESS NETWORKING 
 
The design and operation of wireless networks is a 
highly challenging task. On the road to the fifth 
generation of mobile networks (5G), researches and 
practitioners are, in particular, challenged by a 
multitude of conflicting requirements and promises 
as ever higher data-rates, lower-latency and lower 
energy consumption. 
The main cause of the problems and limitations in 
the context of 5G is the radio propagation channel. 
This so-called wireless channel can strongly distort 
transmission signals in a manner that varies with 
frequency, time, space and other system parameters. 
The channel distortions are therefore of random 
nature and are notoriously difficult to estimate and 
predict. In addition, the wireless channel is a shared 
communication medium so that different wireless 
(communication) links must share the available 
communication resources. In modern mobile 
networks, this leads to interference between different 
mobile users, which in turn may have a detrimental 
impact on network operation. As a result, the 
capacity of wireless links is of an ephemeral and 
highly dynamic nature, and it depends on global 
channel parameters such as path loss, path delay and 
carrier phase shifts, all of which vary with time, 
frequency and space. 
Against this background, it is not surprising that the 
problem of reconstructing, tracking and predicting 
channel parameters play a prominent role in the 
design and operation of modern wireless networks 
such as 5G. Traditional approaches to this problem 
are usually based on the assumptions that 1) the 
wireless channel can be modeled with a sufficient 
accuracy and 2) a sufficient number of pilot-based 
channel measurements can be performed in real time. 
However, the continuously increasing need for 

high-spectral efficiency and the utilization of 
extremely high frequencies (above 6 GHz) makes 
these assumptions untenable in future networks. A 
potential solution will not be an adaptation or 
extension within an existing framework, but rather a 
paradigm shift is necessary to meet the requirements 
of 5G networks. This in turn requires large strides 
both with respect to theoretical foundations and 
practical implementations. 
Modern wireless networks collect and process a 
large amount of data and this data (including 
measurement data) can be used for tackling the 
previously mentioned problem of channel 
reconstruction, tracking and prediction. Therefore, in 
this context, special attention has been given to the 
development of new machine learning algorithms 
that are able to process spatially distributed data in 
real time while efficiently using scarce wireless 
communication resources. This calls for the 
development of distributed algorithms that in 
addition must provide robust results, have good 
tracking (online) capabilities, and exhibit a relatively 
low complexity. Finally, they need to exploit context 
and side information such as spatial and temporal 
sparsity in the wireless channel. 
In the following subclause, we present one 
promising machine learning approach to the problem 
of reconstructing and tracking path loss maps in 
cellular networks. Clause 3.2 exemplifies the 
possibility of designing deep neural networks that 
exploit sparsity in the input data and which are 
amenable to real-time implementation. 
 
3.1. Reconstruction of radio maps 
 

 
Fig. 2. An example of a path loss map for the downlink 
scenario with multiple base stations. The path loss map 

is a 2-dimensional function that assigns to a 
geographical position its path loss to the strongest base 

station. 
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We consider the downlink of a cellular network in 
which a number of base stations (transmitters) send 
the data to mobile users. While the users move over 
a geographical area covered by the network and send 
periodically their path loss measurements to the base 
stations, the problem is to reconstruct and track a 
(complete) path loss map in an online fashion from 
these measurements. The path loss determines the 
reduction in the power density of a transmission 
signal as it propagates from a base station to a 
geographical position. Note that for every 
geographical position, its path loss is defined with 
respect to the strongest base station, which is the 
base station with the smallest path loss. A radio map 
is then a function f : 2 → ≥0 that assigns to every 
geographical position in a given area its path loss 
associated with the strongest base station. Figure 2 
shows an example of a path loss map (the 
2-dimensional function over the geographical area) 
for the downlink of a cellular network. 
The general setting is as follows: Each base station 
collects path loss measurements sent by a subset of 
mobile users and it updates its estimate of the path 
loss map in an online manner whenever a new 
measurement arrives. Measurements may contain 
errors since geographical location cannot be 
determined with arbitrary precision and measured 
path loss values can be erroneous. Finally, 
measurements are not uniformly distributed over a 
given geographical area so that more measurements 
may be available for some sub-areas than for others. 
The challenge is to reliably reconstruct the path loss 
map, including the path loss values for geographical 
positions for which no path loss measurements are 
available. 
The problem was considered in [26] where the 
authors propose using a multi-kernel approach based 
on adaptive projection methods. To be more precise, 
consider an arbitrary base station and let 
(xn,yn) ∈ 2×  be its measurement at time n ∈ , 
where xn ∈ 2 is a sample (position measurement) at 
time n and yn ∈ ≥0 is the corresponding response (a 
noisy path loss measurement). An estimate 
𝑓𝑓  : 2  ↦ ≥0 of the path loss map must be consistent 
with the available measurements. To this end, we 
require that ∀𝑛𝑛∈ℕ 

|yn − 𝑓𝑓(𝑥𝑥n)| ≤  𝜖𝜖  
 for some 

suitably chosen small 𝜖𝜖 > 0. In [26], this requirement 
is met by projecting the estimate 𝑓𝑓 on the hyperslabs 
given by Sn = {f ∈ ℋ : |𝑦𝑦n −  〈𝑓𝑓, 𝜅𝜅(𝑥𝑥n,·)〉| ≤  𝜖𝜖},n ∈ 

 where ℋ is a reproducing kernel Hilbert space 
(RKHS) and κ : 2 × 2 ↦   is the reproducing 
kernel for ℋ so that 〈𝑓𝑓, 𝜅𝜅(𝑥𝑥n,·)〉  = f(xn) (the 
reproducing property). Due to a lack of space, we 

refer the reader to [26] for a rigorous definition of the 
concept of RKHS. 
Since Sn is a closed convex set, the method of 
projection on convex sets (POCS) [20] provides the 
basis for the development of an iterative algorithm. 
However, the POCS framework cannot be directly 
applied to our problem at hand because the number 
of measurements grows without bound as time 
evolves. Therefore, the authors of [26] considered a 
different algorithmic approach that is a special case 
of the adaptive projected sub-gradient methods 
(APSM) developed in [50, 11, 9]. These methods 
open the door to distributed implementation and 
real-time online processing via adaptive parallel 
projections on closed convex sets such as the 
hyperslabs. Moreover, they allow for incorporating 
context information in a systematic manner, while 
exhibiting relatively low-complexity and robustness 
against errors. For more details the reader is referred 
to [50, 11, 9, 26]. 
The main disadvantage of the APSM-based 
approach is the need for choosing appropriate kernel 
functions. In fact, in practical scenarios, different 
geographical positions require different kernel 
functions that in addition need to be adapted over 
time due to the dynamic nature of the wireless 
environment. Since a real-time optimization of the 
kernel functions is an intricate task, inspired by the 
work [51], the authors of [26] developed a multi-
kernel approach that adapts kernel functions over 
time and space by choosing them from a large set of 
predefined kernel functions, while maintaining low-
complexity and real-time capabilities. In the 
following, we briefly explain this approach. 
To this end, let {κm}M

m=1 with κm : 2 × 2 ↦  be a 
given set of some predefined kernel functions, where 
𝑀𝑀 ≫ 1 is sufficiently large to include all relevant 
kernel functions. 
 

 
Fig. 3. Illustration of the APSM-based approach: Using 
parallel projection methods, the estimate 𝑓𝑓n follows the 
intersections of the hyperslabs at times n+1 and n+2 to 
ensure consistency with new measurements and good 
tracking capabilities with online processing. At each 
time, there are two hyperslabs corresponding to two 

measurements. 
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Since the number of measurements grows linearly 
with n, we take into account only the most relevant 
data which is contained in the dictionary {(xi,yi)}n∈In 

where Ιn ⊆ {n,n − 1,...,1} is the dictionary index set 
at time n. The cardinality In = |In| of the dictionary 
must be sufficiently small to satisfy the hardware 
limitations on memory size and processor speed. 
With these definitions, for an arbitrary time n, the 
estimate 𝑓𝑓n (x) of the path loss at position x can be 
written as a weighted sum of kernel functions: 𝑓𝑓n (x) 
= 〈𝐴𝐴𝑛𝑛,𝐾𝐾𝑛𝑛〉 = trace(𝐴𝐴T𝑛𝑛,𝐾𝐾𝑛𝑛). Here Kn = Kn(x) ∈ M×In 

is a given kernel matrix (evaluated at x) with [Kn]i,m 

= κm(x,xi), and An ∈ M×In is a parameter matrix that 
needs to be optimized. We point out that since the 
kernel matrix depends on the position x ∈ 2, the 
parameter matrix should be optimized for different 
geographical positions. 
The most obvious requirement on the parameter 
matrix A is that it must be chosen to fit the estimate 
to the measurements. This can be achieved by 
minimizing the distance (with some suitably chosen 
metric) of A from the set Sn = {A ∈ M×In : 
|〈𝐴𝐴𝑛𝑛,𝐾𝐾𝑛𝑛〉 − 𝑦𝑦n| ≤  𝜖𝜖} for some sufficiently small 𝜖𝜖 
> 0. Since M is large, the problem is however 
computationally prohibitive for many applications in 
wireless networks. Therefore, the authors of [26] 
extended the objective function by adding to the 
distance metric two regularization terms that impose 
some sparsity in A when the new regularized 
objective function is minimized. As a result, the 
approach not only fits the estimate function to the 
measurements but also discards irrelevant data in the 
dictionary and reduces the impact of unsuitable 
kernels. 
The regularized objective function provides a basis 
for the development of new iterative algorithms in 
[26] based on the forward-backward splitting 
methods and sparsity-based iterative weighting 
methods. The algorithms provide good tracking 
capabilities for the problem of reconstructing and 
tracking time-varying path loss maps. For more 
details, we refer the reader to [26]. 
 
3.2. Deep neural networks for sparse recovery 
 
Recently, compressed sensing and deep learning 
have emerged as theoretical and practical toolsets to 
unleash full potential and approach fundamental 
theoretical bounds, whether it be for pilot 
decontamination in channel estimation, user 
identification, activity detection or PAPR reduction. 
While in many cases researchers are well aware of 
optimal solutions, e.g. in terms of optimization 
problems for channel estimation using a minimal 
number of pilots, implementing these solutions in 

embedded devices is considered unfeasible due to 
unpredictable termination times and incalculable 
loss of early stopping. In this regard, a provisional 
solution aimed at large-scale measurement 
campaigns and utilizing black-box data-driven 
machine learning techniques. While this approach 
fits well with many imaging problems, it was soon 
stripped of its enchantment for communication 
systems due to the necessity of measuring and 
preprocessing RF signals under diverse sets of 
environmental conditions resulting in extremely 
large training times and disappointing performance 
gains. In addition, there is still no commonly 
accepted neural network de-facto standard or 
baseline architecture for particular communication 
problems akin to AlexNet or GoogleNet in the 
imaging domains. One step to close this important 
gap was made in [29] by using multidimensional 
Laplace transform techniques to design optimal 
neural networks for particular sparse recovery 
problems revealing a very intriguing connection 
between commonly employed neural networks 
comprising weights, threshold functions, rectified 
linear (ReLU) and rectified polynomial (ReP) 
activation functions and volume and centroid 
computation problems over sparsity inducing sets. 
We refer the reader to Figure 4 for a geometric 
illustration of a small sparse recovery problem. Here, 
x is to be recovered from dimensionality reduced 
measurement y = Ax given that x belongs to a 
particular sparsity inducing set (blue). Then, the 
neural network of [29] outputs the estimate 𝓍̂𝓍 that 
minimizes the expected error over the uncertainty set 
(intersection between red and blue). Using such 
geometric ideas in the design of neural networks 
allows for bypassing costly search over exponential 
candidate networks that consume large portions of 
available computing resources. Indeed, practitioners 
can still apply fine-tuning to reduce a possible model 
mismatch and reduce reconstruction errors even 
further. 
 

 
Fig. 4. Geometry of sparse recovery. 
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4. FUTURE RESEARCH TOPICS 
 
This clause discusses four future research topics in 
machine learning and communications. 
 
4.1. Low complexity models 
 
State-of-the-art machine learning models such as 
deep neural networks are known to work excellently 
in practice. However, since the training and 
execution of these models require extensive 
computational resources, they may not be applicable 
in communication systems with limited storage 
capabilities, computational power and energy 
resources, e.g. smartphones, embedded systems or 
IoT devices. Recent work addressed this problem 
and proposed techniques for reducing the complexity 
of deep neural networks. For instance, the authors of 
[22] demonstrated that the size of VGG-16, a popular 
deep neural network for image classification, can be 
reduced by over 95% with no loss of accuracy. In 
communication applications such compression 
techniques can be used to store and transmit models 
efficiently. Other authors (e.g. [15]) targeted the 
problem of weight binarization in deep neural 
networks. This type of discretization can be useful, 
e.g. when adapting models to processor architectures 
which do not allow floating point operations. 
Further research on these topics is of high 
importance as it can be expected that a large number 
of new applications would emerge, if the complexity 
of state-of-the-art models can be reduced to a level, 
which allows their use in computationally limited 
environments at minimal performance loss. 
 
4.2. Standardized formats for machine learning 
 
The standardization of algorithms and data formats 
is of high importance in communications, because it 
increases the reliability, interoperability and 
modularity of a system and its respective 
components. With the increasing use of learning 
algorithms in communication applications, the need 
for standardized formats for machine learning is also 
rising. 
For instance, standardized formats could be used to 
specify how to train, adapt, compress and exchange 
machine learning models in communication 
applications. Furthermore, there could be 
standardized formats for the data and standards 
which determine how multiple machine learning 
models interact with each other. Other formats could 
be specifically designed for ensuring that a model 
fulfills certain security or privacy requirements. 
 

4.3. Security and privacy mechanisms 
 
Machine learning models are often used in a 
black-box manner in today’s applications. This 
prevents the human expert from comprehending the 
reasoning of the algorithm and from validating its 
predictions. Although recent works [3, 33] proposed 
techniques for explaining the predictions of a 
machine learning model, further research on this 
topic is of high importance as the lack of 
transparency can be a large disadvantage in 
communication applications. 
Moreover, it is well-known that deep neural 
networks can be easily fooled or may behave in an 
unexpected way when being confronted with data 
with different properties to the data used for training 
the model [43]. Thus, the establishment of 
mechanisms which increase the reliability of the 
model is a prerequisite for large-scale use in 
communication applications. Such mechanisms can 
be implemented on different levels, e.g. be an 
integral part of the model, be integrated into the 
communication protocol or be part of a separate 
inspection process. 
Besides interpretability and security aspects, future 
research also needs to investigate how to effectively 
encrypt machine learning models and how to ensure 
data privacy during and after learning. 
 
4.4. Radio resource and network management 
 
The end-to-end performance of mobile networks is 
strongly influenced by the choice of radio resource 
(e.g. beamforming and medium access control 
parameters) and network management (e.g. 
handover parameters, neighborhood lists, loads and 
power budgets) parameters. Moreover, some of the 
parameters must be continuously adapted on a 
relatively short time scale to time-varying radio 
propagation conditions and changing network 
topologies [42]. 
Current approaches are inadequate to cope with the 
growth of autonomous network elements in 5G small 
cell deployments based on mobile cloud RAN 
architectures. Therefore, 5G networks call for new 
model and data-driven radio resource management 
and network management methods that are 
augmented by machine learning techniques for 
extracting knowledge from the system and gradual 
learning in the presence of inherent uncertainties and 
the lack of complete channel and network state 
information [38]. The realization of these ideas in the 
context of 5G will require modifications of existing 
protocols and the development of new ones. 
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5. CONCLUSION 
 
This paper discussed the increasing mutual influence 
of machine learning and communication technology. 
Learning algorithms were not only shown to excel in 
traditional network management tasks such as 
routing, channel estimation or PAPR reduction, but 
also to be a core part of many emerging application 
fields of communication technology, e.g. smart cities 
or Internet of things. The availability of large 
amounts of data and recent improvements in deep 
learning methodology will further foster the 
convergence of these two fields and will offer new 
ways to optimize the whole communication pipeline 
in an end-to-end manner [36]. 
However, before resource-intensive models such as 
deep neural networks can be applied on a large scale 
in communication applications, several practical 
challenges (e.g. complexity, security, privacy) need 
to be solved. Furthermore, more research is required 
on theoretical topics at the intersection of 
communications and machine learning, e.g. 
incremental learning, learning in non-stationary 
environments or learning with side information. 
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