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Massive Multiple-Input Multiple-Output (MIMO) is a key enabler of 5G and beyond mobile
networks, significantly improving spectral efficiency through multiuser beamforming.
However, in massive MIMO systems, the multiuser scheduling problem, selecting which
users to serve concurrently on the same time-frequency resources, remains a critical challenge.
Due to potential channel correlation among users, suboptimal multiuser scheduling can lead
to inter-symbol interference and throughput degradation. Additionally, the scheduler must
balance the achieved spectral efficiency with user fairness. While the Optimal Proportional
Fair (Opt-PF) scheduler seeks to achieve this balance, applying it to the massive MIMO
scheduling problem leads to an NP-hard optimization problem. Although existing
approximation algorithms can reduce the computational complexity of the Opt-PF multiuser
scheduler, they often fail to provide adequate fairness or adapt to fast varying channels,
making them impractical for real-world deployment. As an alternative, Machine Learning
(ML)-based methods, particularly Deep Reinforcement Learning (DRL) models, have shown
promise in addressing this problem. To further foster innovation in this area, the
International Telecommunication Union (ITU) AI/ML in 5G Challenge hosted a competition
focused on enhancing the performance of a DRL-based multiuser scheduler. The provided
baseline scheduler employed a user-grouping algorithm to cluster users with low channel
correlation and a Soft Actor-Critic (SAC) DRL framework for user selection. This paper
presents the winning solution to the ITU competition, which proposes two approaches to
enhance the performance of the baseline scheduler. The first approach redefines the
baseline’s SAC DRL framework and redesigns the underlying neural network architecture,
whereas the second approach applies an ML-based clustering algorithm, specifically the
Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN), to the
user-grouping problem. Both approaches outperformed the baseline scheduler in terms of
user fairness, sum rate, and computational complexity.
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clustering, multiuser scheduling, Soft Actor-Critic (SAC)

1. INTRODUCTION

5G networks are designed to deliver significantly higher data rates and greater capacity to
meet the growing demands of mobile users and IoT devices. A foundational technology
enabling these enhancements is Multiple-Input Multiple-Output (MIMO). MIMO systems
use multiple antennas at both the Base Station (BS) and the User Equipment (UE) to
improve link robustness through transmit and receive diversity, increase data rates via
spatial multiplexing, and boost network capacity through multiuser beamforming. To
further accommodate the increasing traffic and user density, massive MIMO has been
adopted as a key 5G technology. By significantly increasing the number of antennas at
the BS, massive MIMO enables more efficient multiuser beamforming and allows a larger
number of users to be served concurrently on the same time-frequency resources.

A critical challenge in massive MIMO systems is multiuser scheduling, which involves
determining the optimal set of users for simultaneous transmission over the same radio
resource. Since scheduling decisions directly impact massive MIMO system performance,
it has been a central focus of research. In particular, achievable system throughput and
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capacity gains can degrade significantly if the selected
users exhibit high correlation in their wireless channels, as
this impairs beamforming efficiency in two fundamental
ways: (i) in the downlink, constructing orthogonal beams
toward the scheduled users becomes difficult due to their
channel correlation; (ii) in the uplink, accurately recover-
ing the users’ transmitted signals becomes challenging,
as correlated user channels increase the likelihood of
inter-user interference.

Furthermore, in rapidly changing environments, such
as those experienced by highly mobile users, the user’s
channel conditions can vary rapidly across frequency
resources. This dynamic behavior makes optimal user
scheduling significantly challenging, demanding efficient
and adaptive techniques to maximize spectral efficiency
and overall network performance.

A well-known optimal scheduler is the Optimal Propor-
tionally Fair (Opt-PF) scheduler. This scheduler seeks to
maximize the spectral efficiency while ensuring user fair-
ness. However, applying this scheduler to the massive
MIMO scheduling problem leads to an NP-hard optimiza-
tion problem [1], making it computationally intractable
for real-time or large-scale deployments. To address this
challenge, various approaches have been proposed in the
literature. These approaches can be broadly categorized
into two groups: heuristic-based methods and AI-based
methods.

Heuristic-based scheduling methods, [2], [3], [4], ap-
proximate the Opt-PF scheduler by reducing the com-
putational overhead while maintaining high spectral
efficiency. Although these methods aim to balance per-
formance and complexity, they often lack formal fairness
guarantees and scalability, limiting their applicability
in practical massive MIMO systems. These limitations
have motivated the exploration of AI-based solutions,
particularly those based on Deep Reinforcement Learn-
ing (DRL). DRL-based scheduling approaches [5], [6],
[7], [8], [9], model the multiuser scheduling problem
as a Markov Decision Process (MDP) and learn propor-
tional fair scheduling policies by interacting with the
environment. This model-free learning framework en-
ables adaptive decision-making under dynamic network
conditions while capturing long-term trade-offs between
spectral efficiency and user fairness.

In AI-based scheduling methods, the choice of the under-
lying DRL model plays a critical role, as the scheduling
problem inherently involves a discrete action space. In
general, DRL models for this problem can be classified
into two categories:

(i) DRL models with discrete action spaces: These
models naturally align with the discrete nature
of the user selection problem without requiring
structural modifications to the model’s output. Ex-

amples of such models include Deep Q-Networks
(DQN) [10], Double DQN [11], Advantage Actor-
Critic (A2C) [12], Asynchronous Advantage Actor-
Critic (A3C) [13], Actor-Critic with Experience Re-
play (ACER) [14], and Proximal Policy Optimiza-
tion (PPO) [15]. While these models offer direct
compatibility with discrete action settings, they
struggle to scale in scenarios with large discrete
action spaces (equivalently large number of users),
which naturally arise in real-world user scheduling
problems.

(ii) DRL models with continuous action spaces: These
models can be adapted to address the discrete na-
ture of the user selection problem. Examples in-
clude Deep Deterministic Policy Gradient (DDPG)
[16] and Soft Actor-Critic (SAC) [17]. These mod-
els offer a potential solution to scalability chal-
lenges by leveraging continuous-action formula-
tions; however, their application to inherently dis-
crete scheduling tasks remains an active area of
research.

In [1], the authors employ a continuous-action SAC DRL
framework to solve the multiuser scheduling problem in
massive MIMO networks. To convert the SAC’s output
to discrete actions, they combine SAC with the K-Nearest
Neighbors (KNN) algorithm [18] to generate discrete
actions corresponding to user scheduling decisions. Ad-
ditionally, they propose a dimension division strategy
that maps the discrete action sets to multiple dimensions
to enable robust scalability. However, the use of KNN
introduces additional computational overhead, increas-
ing the scheduler’s runtime. On the other hand, the
authors attempt to reduce the complexity of the sched-
uler by reducing the dimensionality of the SAC input
space. To capture the inter-user channel correlation,
they use a threshold-based user grouping algorithm that
clusters uncorrelated users and assigns user grouping
labels, which are further used in the model’s state input
instead of the raw Channel State Information (CSI) ma-
trix. While this approach reduces state dimensionality,
it incurs information loss and additional runtime due to
the inefficiency of the user grouping process.

In this paper, we propose two approaches to enhance the
performance of the multiuser scheduler proposed in [1].
In the first approach, we redesign the SAC DRL frame-
work and the underlying neural networks architecture.
The proposed SAC DRL framework incorporates new
state and reward definitions and minor modifications to
the baseline’s discretization method. The new state repre-
sentation omits the baseline user grouping, and instead,
leverages a compact and informative representation of
the full channel correlation matrix. Specifically, we con-
struct the state space using the non-diagonal elements
of the upper triangular part of the correlation matrix,
combined with the ℓ2 norms of each user’s channel vec-
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tor. This compact formulation retains crucial information
about the inter-user correlation while avoiding the dimen-
sionality explosion of using the full channel matrix. In
addition, we replace the baseline’s KNN action discretiza-
tion module with a more efficient approach. Furthermore,
we redesign the critic’s neural network architecture to
enhance the actor’s performance, and we take a novel
approach to incorporating the user fairness criteria in
our SAC model. Unlike the baseline model [1], which
explicitly incorporates a fairness term into the reward
function, our approach exploits the stochastic nature of
the SAC policy to implicitly promote fairness among
users.

In the second approach, we enhance the user group-
ing mechanism by introducing a new user grouping
technique based on the Machine Learning (ML)-based
Hierarchical Density-Based Spatial Clustering of Applica-
tions with Noise (HDBSCAN) algorithm [19]. Unlike the
baseline method, the HDBSCAN-based user grouping
does not require a predefined correlation threshold or
a fixed number of clusters, as is typical in conventional
clustering algorithms. Instead, it constructs a hierarchy
of clusters based on varying density levels and iden-
tifies the most stable configuration. This allows it to
adapt more effectively to inter-user correlation structure
variations and form more robust user groupings. By ap-
plying HDBSCAN to the inter-user channel correlation
matrix, our model forms more coherent user groups and
identifies outlier users as noise, enabling better input
representations and improved scheduling performance,
without requiring modifications to the SAC architecture.
Additionally, the efficient implementation of HDBSCAN
[20] helps reduce the overall computational complexity
of the scheduler.

Challenge description: Given the important role of DRL
methods in solving the multiuser scheduling problem in
massive MIMO systems and to further foster innovations
in this field, the International Telecommunication Union
(ITU) AI/ML in 5G Challenge (Fifth edition, 2024) hosted
a competition [21] focused on improving the performance
of the SAC-based multiuser scheduler presented in [1].
The competition emphasized optimizing three key perfor-
mance metrics: sum rate, runtime, and user fairness. In
this paper, we present the winning solution announced
in [22] to the ITU competition described in [21], which
builds upon the baseline’s solution by exploring two
independent enhancement approaches.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews the multiuser scheduling problem in mas-
sive MIMO systems and presents the baseline scheduling
solution. Section 3 presents the two enhancement ap-
proaches proposed in the winning solution. Approach
I redefines the baseline’s SAC DRL framework and the
underlying neural network architecture, while Approach
II improves the user-grouping strategy using the HDB-
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Figure 1 – Illustration of a massive MIMO cellular system with a
single BS equipped with M antennas and L = 8 single-antenna users.
Users with correlated channels are grouped into clusters, and the BS
simultaneously serves uncorrelated User 2 and User 8 over the same
time-frequency resources using multiuser beamforming.

SCAN algorithm. Section 4 reports the simulation setup
and the results. Finally, Section 5 concludes the paper
and outlines directions for future work.

2. BACKGROUND

In this section, we first provide an overview of the mul-
tiuser scheduling problem in massive MIMO systems,
and then describe the baseline solution provided in the
ITU AI/ML in 5G challenge [21] that the participants were
asked to enhance in terms of the sum rate, fairness, and
runtime (inference time).

2.1 Multiuser scheduling problem in massive
MIMO systems

To illustrate the multiuser scheduling problem in massive
MIMO systems, as in [1], we consider an OFDM system
with a single BS equipped with M antennas serving L
single antenna users. In each Transmission Time Interval
(TTI) t, the BS selects N users, where N <= L and N <=
M, for simultaneous transmission over the same time-
frequency resources. In 5G, the smallest transmission
unit in the frequency domain is known as a Physical
Resource Block (PRB), consisting of 12 subcarriers.

To enable multiuser transmissions and receptions over
the same PRB, multiuser beamforming is applied at the
BS. In multiuser beamforming, the channel matrix is used
to recover the transmitted signals in the uplink and to
form orthogonal beams in the downlink. As the selection
of the N users shapes the channel matrix, their selection
directly impacts the performance of the multiuser beam-
forming applied at the BS. More specifically, selecting
users with correlated channels impairs the beamforming
performance, impacting the massive MIMO gains. There-
fore, the BS must carefully select uncorrelated users for
simultaneous uplink and downlink transmissions. Fig. 1
illustrates a cell with a massive MIMO setup.

©International Telecommunication Union, 2025

Al-kokhon et al.: Enhancing multiuser scheduling in massive MIMO mobile channels

379



ITU Journal on Future and Evolving Technologies, Volume 6, Issue 4, December 2025

We further illustrate the multiuser scheduling problem 
mathematically below. We consider uplink transmission; 
however, the same approach can be applied to downlink 
transmission. Let the uplink channel between user i and 
the M BS antennas be represented by

hi =
[
h1,i, h2,i, h3,i, . . . , hM,i

]T
, (1)

where hi ∈ CM×1 is the channel vector of user i, and
hm,i ∈ C denotes the channel coefficient between receive
antenna m and user i. The channel correlation coefficient
between users (i, j) is denoted by ci, j and is calculated as

ci, j =

〈
hi

∥hi∥2
,

h j∥∥∥h j

∥∥∥
2

〉
=

hH
i h j

∥hi∥2

∥∥∥h j

∥∥∥
2

. (2)

At the BS, the received signal vector over a single subcar-
rier is given by

y =
N∑

i=1

xihi + n, (3)

where y ∈ CM×1 is the received signal vector, xi ∈ C is
the symbol transmitted by user i, and n ∈ CM×1 is the
receiver noise vector with distribution n ∼ CN(0, σ2IM).
Eq. (3) can be expressed compactly as

y = Hx + n, (4)

where H ∈ CM×N is the channel matrix with columns hi,
and x ∈ CN×1 is the transmitted symbol vector.

To recover x from y, the zero-forcing beamforming (ZF-
BF) receiver is employed at the BS. The ZF-BF weight
matrix is calculated using the estimated channel matrix
Ĥ ∈ CM×N as

W = Ĥ
(
ĤHĤ

)−1
, (5)

where W ∈ CM×N is the ZF-BF weight matrix.

Applying ZF-BF to the received vector yields

x̂ =WHy =
(
ĤHĤ

)−1
ĤH(Hx + n), (6)

where x̂ ∈ CN×1 is the ZF-BF estimate of the transmitted
symbol vector x.

From Eq. (6), it follows that for
(
ĤHĤ

)−1
to exist and

for the ZF-BF receiver to be numerically stable, Ĥ must
have full column rank (rank(Ĥ) = N) and the Gram
matrix ĤHĤ must be well-conditioned (i.e., it has a small
condition number). This is promoted by selecting users
with low channel correlation, e.g., enforcing

ci, j ≤ τ, for all i , j,

where τ ∈ [0, 1) is a design threshold.

In addition to managing channel correlation, the mul-
tiuser scheduler must also account for user fairness and
computational complexity, both of which are essential for
practical and scalable deployment in real-world systems.

2.2 Baseline solution

To solve the multiuser scheduling problem in massive
MIMO systems, the authors in [1] propose a dynamic
AI-based scheduler called SMART. SMART serves as the
baseline solution in the ITU AI/ML in 5G Challenge, and
is based on the SAC DRL model. It also incorporates the
following techniques:

• User grouping algorithm: Clusters users with low
channel correlation (ci, j ≤ Threshold), and assigns a
group label to each cluster. These group labels are
further used in the SAC state input.

• Output discretization: Maps continuous proto-actions
generated by the SAC policy to the discrete scheduling
space.

• K-Nearest Neighbors (KNN): Selects the closest dis-
crete actions to mitigate precision loss from discretiza-
tion.

• Dimension division: Splits the discrete action space
into multiple lower-dimensional subspaces to improve
resolution and scalability in large action spaces.

An overview of the baseline SAC model and its key
techniques is presented in the following subsections.

2.2.1 Baseline SAC model

SAC is an off-policy deep reinforcement learning al-
gorithm designed for learning stochastic policies with
continuous action spaces [23]. Unlike traditional DRL
methods that solely aim to maximize the expected re-
turn, SAC introduces an entropy term into its objective
function. This encourages the agent to explore the action
space more thoroughly and avoid premature conver-
gence to suboptimal policies. SAC is known for its
sample efficiency, stability, and robustness.
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Figure 2 – SAC framework. The actor receives the current environment
state and samples an action from the learned stochastic policy. The critic
evaluates the Q-value of state-action pairs, guiding the actor during
training to improve policy performance.

In SAC, the agent consists of two main components:
the actor and the critic. The actor employs a neural
network to learn a stochastic policy, i.e., a probability
distribution over actions, by maximizing the following
objective function [23]:

π∗ = arg max
π
E(st,at)∼ρt

∑
t

R(st, at) + αH
(
π(· | st)

) , (7)

where:

• st is the state at time t,
• at is the action taken at time t,
• ρt is the state–action distribution induced by the policy
π,

• R(st, at) is the reward received at time t,
• α ∈ R+ is the temperature parameter that controls the

trade-off between reward maximization and entropy,
and

• H(π(·|st)) denotes the entropy of the policy at state st.

The entropy term is defined as

H(π(·|st)) = −
∑

a

π(a|st) logπ(a|st), (8)

where π(a|st) is the probability of selecting action a under
policy π given state st.

As shown in Fig. 2, in SAC, the actor receives the current
state of the environment and outputs an action that is
sampled from the learned stochastic policy π. In contrast,
the critic takes as input the state-action pair and uses a
neural network to estimate the corresponding Q-value.
The critic is used only during the actor’s training phase,
where the estimated Q-values are used in the actor’s
policy update. During the critic’s training, both the
observed reward and the entropy of the policy are used
in its network update.

The baseline SMART scheduler [1] employs the SAC
algorithm by formulating the multiuser scheduling prob-
lem in massive MIMO systems as a Markov Decision
Process (MDP). This MDP consists of three fundamental
components: the state space, the action space, and the
reward function. The baseline MDP is defined as follows.

• State space: The state si,t for user i at TTI t is defined as

si,t = [γi,t, fi,t, gi,t] ∈ S := [T ,F ,G], (9)

where γi,t denotes the maximum achievable single-
user MIMO spectral efficiency for user i at TTI t, and
T ⊆ R+ = [0,∞) represents the set of all feasible values
of γi,t; fi,t is the cumulative amount of data transmitted
by user i up to TTI t, and F ⊆ R+ = [0,∞) is the set of
feasible fi,t; and gi,t is the group label associated with
user i at TTI t, with G := {1, 2, . . . ,L} denoting the finite
set of possible user group labels. The total state input
size is equal to 3 × L.

• Action space: The action at TTI t is represented by

at = [a1,t, . . . , ai,t, . . . , aL,t] ∈ A := {0, 1}L, (10)

where at represents the binary user selection vector at
TTI t with ai,t = 1 indicating the selection of user i for
transmission in TTI t and ai,t = 0 indicating otherwise.
The action spaceA comprises all binary vectors at that
satisfy the scheduling constraint |at| ≤ Nmax with |at|

denoting the total number of scheduled users in TTI t
and Nmax representing the maximum number of users
to be scheduled in one TTI. This constraint ensures that
no more than Nmax users are selected for transmission
at any given t.

• Reward: The reward function rt is designed to balance
system throughput and user fairness. rt is defined as

rt = c ·
[
βγtotal

t + (1 − β)JFIt

]
, (11)

where γtotal
t represents the total spectral efficiency at

TTI t, JFIt denotes the Jain’s Fairness Index at TTI t,
β ∈ [0, 1] is a weight parameter controlling the trade-off
between fairness and throughput, and c is a reward
scaling constant. γtotal

t is calculated as the sum of the
spectral efficiencies of the scheduled users, normalized
by the sum of the maximum achievable rates of the
Nmax users. JFIt is calculated as:

JFIt =

(∑L
i=1 fi,t

)2

L
∑L

i=1( fi,t)2
, (12)

Incorporating Jain’s Fairness Index into the reward
function encourages the scheduler to allocate resources
evenly across users over time.
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Figure 3 – Baseline discretized SAC architecture using KNN (K = 3).
The nearest three discrete actions to the proto-action in each dimension
are selected for further evaluation.

2.2.2 User grouping algorithm

DRL methods for massive MIMO scheduling often face
convergence challenges as the dimensionality of the neu-
ral network input increases, an issue commonly referred
to as the curse of dimensionality. To address this, SMART
replaces the full complex channel matrix input H ∈ CM×L,
which is typically used to capture inter-user correlations,
with scalar group labels derived from the inter-user
channel correlation matrix [1]. The proposed user group-
ing algorithm clusters users with correlation coefficient
ci, j < Threshold into the same group and assigns them
a shared group label. These labels are then included
in the SAC model’s state input, effectively reducing the
dimensionality of the state space and the overall model
complexity.

Although the user grouping method succeeds in reducing
the state space size, it introduces information loss that
can negatively affect the model’s ability to select optimal
actions. In particular, the correlation distances between
users within the same cluster and across different clusters
are not preserved. Another limitation of this approach
lies in the computational complexity of the grouping algo-
rithm, which significantly increases the model’s inference
time, and consequently, the scheduler’s runtime.

2.2.3 Output discretization

The massive MIMO user scheduling problem inherently
involves selecting a subset of users for each transmis-
sion, making the action space discrete and combinatorial.
While this might suggest using DRL models with discrete
action spaces, such as DQN, the exponential growth of the
action space with the number of users (2L combinations)
renders traditional discrete DRL models infeasible.

To address this challenge, the approach in [1] employs
the SAC algorithm, which is designed for continuous
action spaces. SAC generates a continuous proto-action
aproto ∈ [−1, 1]. To map this continuous output to a

valid scheduling decision at ∈ {0, 1}L, the range [−1, 1]
is discretized into 2L intervals, with each interval cor-
responding to one of the possible binary user selection
vectors. The proto-action aproto is then mapped to the
nearest interval, and the corresponding discrete schedul-
ing action at is selected. However, this approach suffers
from accuracy loss due to quantization; as L increases,
the number of intervals grows exponentially while the
size of each interval shrinks, leading to finer quantization
and higher sensitivity to small perturbations in aproto.To
mitigate this loss of precision and improve action resolu-
tion, the baseline further employs K-Nearest Neighbors
(KNN) and dimension division techniques, which are
described in the following subsections.

2.2.4 K-Nearest Neighbors (KNNs)

To improve the accuracy of the SAC continuous-to-
discrete action mapping, the baseline solution [1] em-
ploys the KNN technique. Rather than selecting the
single discrete action closest to the proto-action aproto, the
algorithm first identifies the K-nearest discrete-valued
actions. These candidate actions are then evaluated by
the critic network, which estimates their corresponding
Q-values. Finally, the discrete action with the highest
Q-value is selected. This technique helps reduce the
quantization error by minimizing the sensitivity to small
perturbations in aproto. However, this added precision
comes at the cost of increased computational complexity,
since the critic must evaluate multiple candidate actions
per dimension at each decision step.

2.2.5 Dimension division

To enhance the scheduler’s scalability, i.e., to accommo-
date larger action spaces, the approach in [1] introduces
a dimension division strategy, which leverages SAC’s ca-
pability to handle high-dimensional tasks. Instead of
outputting a single proto-action, the actor generates D
proto-actions, where each is mapped to a separate discrete
action space.

By partitioning the original discrete action space into D
dimensions, the number of discrete actions per dimen-
sion is reduced from 2L to 2L/D, thereby improving the
mapping resolution from 2

2L to 2
2L/D . This mitigates the

risk of the required resolution falling below the network’s
output precision. As a result, the SAC-generated proto-
actions can more effectively distinguish between discrete
actions, reducing ambiguity and improving both decision
accuracy and training stability in large-scale systems.

The baseline output discretization mechanism, along
with the KNN technique and the dimension division
strategy, is illustrated in Fig. 3.
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3. PROPOSED SOLUTION

To enhance the performance of the baseline SMART sched-
uler, the proposed solution introduces two independent
enhancement approaches.

Approach I proposes a redefined SAC DRL framework,
which incorporates novel state and reward definitions
and minor modifications to the baseline’s discretization
method. It also incorporates new neural network ar-
chitecture designs. The proposed SAC DRL framework
is presented in Section 3.1.1, and the proposed neural
network architecture is described in Section 3.1.2.

Approach II introduces a novel user grouping technique,
which leverages the ML-based HDBSCAN clustering
algorithm. It also introduces targeted modifications to
the SAC DRL framework, which incorporates a new state
representation and modified action representation. This
approach maintains the baseline’s neural network archi-
tecture. The HDBSCAN-based user grouping methodol-
ogy is detailed in Section 3.2.1, and the SAC DRL modifi-
cations with the new state representation are outlined in
Section 3.2.2.

3.1 Approach I: Proposed SAC DRL frame-
work and neural network architecture

3.1.1 Proposed SAC DRL framework

The proposed SAC DRL framework introduces three key
modifications compared to the baseline scheduler: (i)
a novel state representation, (ii) a refined action repre-
sentation with an improved discretization strategy, and
(iii) a redesigned reward formulation. These changes
are designed to enhance scheduling performance while
simultaneously reducing inference time.

3.1.1.1 State space

The proposed state at TTI t is defined as

st =
[
U(Ct),

∥∥∥h1,t

∥∥∥
2
, . . . ,

∥∥∥hL,t

∥∥∥
2

]
, (13)

where Ct ∈ RL×L is the channel correlation matrix, U(Ct)
denotes the set of non-diagonal elements of U(Ct), i.e.,
U(Ct) = {ci, j,t | i < j, 1 ≤ i, j ≤ L}, and ∥hi,t∥2 is the
ℓ2-norm of the channel vector of user i. The size of U(Ct)
is equal to L(L−1)

2 , and the total state input size is equal to
L(L−1)

2 + L.

By comparing Eq. (13) with the baseline state in Eq. (9),
the following distinctions emerge:

instead, directly incorporates inter-user channel
correlations by using U(Ct). This design choice
preserves complete channel correlation informa-
tion while avoiding the computational overhead
of processing the full channel correlation matrix.

(ii) The ℓ2-norm of each user’s channel vector is used
instead of the maximum achievable user spectral
efficiency γi,t. This reduces computational com-
plexity while maintaining relevant information.

(iii) The proposed state omits the use of the user’s data
transmission history fi,t and instead leverages the
stochastic nature of the SAC output to promote fair-
ness among users, further reducing computational
complexity.

As mentioned in Section 2.2.2, the baseline user grouping
algorithm introduces information loss. To mitigate this
limitation without resorting to the use of the full channel
matrix, the proposed model redesigns its state space
and incorporates the non-diagonal elements of the upper
triangular channel correlation matrix in it. Since the
correlation matrix is symmetric and the diagonal entries
do not contain inter-user correlation information, only the
coefficients ci, j,t for i < j, where 1 ≤ i, j ≤ L, are included
in the state space. This new state space captures the full
inter-user channel correlation information included in
Ct, while reducing the state space input size by a factor
of half compared to using the full Ct.

Another novel contribution is the elimination of the user
transmission history from the state input and, instead,
incorporating the stochasticity of the SAC output to
incorporate fairness among the selected users. This is
further explained in Section 3.1.1.3.

In addition, the proposed model replaces γi,t with ∥hi,t∥2.
Since channel strength and throughput are correlated,
capturing the channel strength reduces the preprocessing
required at the state while maintaining relevant informa-
tion.

Although the proposed model has a larger state input
size compared to the baseline, the computational over-
head reduction and the information gain achieved by
the proposed model design results in an overall model
performance enhancement as shown in Section 4.4.

3.1.1.2 Action space

The proposed action at TTI t is defined as in the baseline
formulation in Eq. (10). Unlike the baseline model, the
proposed action does not include a constraint on N, thus,
|at| ≤ L.

To discretize the output of the SAC DRL model and to al-
low for action space scalability, the proposed framework
adopts the baseline’s output discretization and dimension

(i) The proposed state eliminates user grouping and,
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Figure 4 – Proposed discretized SAC architecture. Instead of using
KNN with K = 3 as in the baseline, the proposed method selects only
the nearest discrete action per dimension. This is enabled by increasing
the proto-action dimensionality from d = 8 to d = 32, allowing for more
precise and efficient action selection without KNN.

division methods. However, to reduce the computational
complexity of the baseline scheduler while preserving
the precision of the output, the proposed framework
eliminates the baseline KNN technique and, instead, in-
creases the number of discrete action space dimensions
(D) from 8 to 32 and selects the nearest discrete value in
each dimension. Consequently, the number of discrete
actions in each dimension is reduced from 2

L
8 to 2

L
32 , en-

larging the spacing between discrete-valued actions and
improving the accuracy of continuous-to-discrete action
mapping while eliminating the computational overhead
of the KNN technique. The proposed discretized strategy
is illustrated in Fig. 4.

3.1.1.3 Reward

The reward at TTI t is defined as

rt = γ
total
t , (14)

where γtotal
t denotes the normalized sum rate of the sched-

uled users. Unlike the baseline model, the proposed re-
ward does not include JFI. Instead, fairness is implicitly
promoted through the stochastic nature of the SAC policy.
In SAC, the proto-actions are sampled from a learned
probability distribution; hence, users are randomly se-
lected. Moreover, the entropy maximization in the SAC
DRL model encourages continued exploration, leading
to diverse user selections rather than repeatedly favoring
a subset of users and thereby promoting more diverse
user selection over time.

In summary, the proposed SAC DRL framework elimi-
nates the computational overhead associated with user
grouping and the KNN technique, reduces preprocessing
requirements for the state input, and removes explicit JFI
computation from the reward function. It further lever-
ages the stochastic nature of SAC and enriches the state
representation by incorporating full inter-user channel
correlation information. Although this design increases

the state input size compared to the baseline, it achieves
improved overall performance in terms of sum rate, fair-
ness and runtime, as validated in Section 4.4.

3.1.2 Proposed neural network architecture

The SAC DRL model consists of two main components:
the policy network (actor) and the value network (critic).
The actor learns a stochastic policy from which actions
are sampled, while the critic evaluates the quality of
selected actions by estimating their corresponding Q-
values. These Q-value estimates play a critical role in
guiding the actor toward high-reward actions during
training. Consequently, the accuracy of the critic’s Q-
value predictions directly impacts the efficiency and
stability of the learned policy.

In the proposed Approach I, we focused on redesign-
ing the critic’s network to learn more accurate Q-value
estimates. Since these estimates are used in the actor’s
gradient update during training, inaccuracies may lead
to suboptimal or unstable policy updates, which can fur-
ther result in the selection of poor or suboptimal actions.
Conversely, more accurate Q-value estimation leads to
more reliable policy updates, enabling the actor to assign
higher probabilities to genuinely high-value actions. This
results in improved learning stability, faster convergence,
and better overall performance of the SAC model.

In the baseline model, both the actor and critic are imple-
mented using identical neural networks. The baseline’s
neural network is composed of two fully connected hid-
den layers, each with 256 neurons. In contrast, the
proposed model adopts distinct neural network designs
for the actor and the critic, as detailed below.

• Actor: As illustrated in Fig. 5, the actor network con-
sists of two fully connected hidden layers, similar to
the baseline design. However, since the proposed SAC
framework employs a larger state input, the number of
neurons in the first hidden layer is increased from 256
to 512 to support richer feature extraction. The second
hidden layer remains unchanged with 256 neurons.
The input layer has a size of L(L−1)

2 +L, while the output
layer has a size of L.

In neural networks, there is a fundamental trade-off
between information capacity and computational com-
plexity. Increasing the number of neurons enhances the
network’s representation capacity, but also increases
computational costs. Conversely, reducing the num-
ber of neurons decreases complexity at the expense
of reduced capacity and limited learning ability. For
the case of L = 64 users and a state input size of 2080,
we doubled the number of neurons in the first hidden
layer to achieve a more balanced design. However,
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Figure 5 – Proposed actor neural network architecture.

tuning this parameter has not been fully explored and
is left for future work. Although larger architectures
may yield additional performance gains, they come
with higher risks of overfitting and increased training
overhead.

• Critic: As illustrated in Fig. 6, the critic processes the
state and action inputs separately through dedicated
input branches. The state input passes through two
fully connected hidden layers with 512 and 256 neu-
rons, respectively. The action input passes through
a single hidden layer with 256 neurons. The outputs
of both branches are then concatenated and passed
through a common hidden layer with 256 neurons
(referred to as the state-action hidden layer), which
has a combined input size of 512. The output from
the state-action hidden layer is further input into the
output layer, which outputs the Q-value estimate of
the state-action input pair.

The separation of the state input and the action input in
the critic allows it to perform different levels of feature
extraction for each input type before combining them
for Q-value estimation. This architectural separation
enables the network to learn rich, task-specific repre-
sentations of the state space independently from the
action space. As a result, the critic can better model the
interaction between state features and action choices,
leading to more accurate Q-value estimates.

As the actor and critic input dimensions depend on the
variable L, the networks are designed to accommodate
a predefined maximum number of users per cell. When
the number of users per cell is less than L, the inputs
corresponding to inactive users can be muted by assign-
ing negative placeholder values. The agent can then be
trained on such data to learn an adaptive policy. This
approach has not yet been evaluated and is left for future
work.

Figure 6 – Proposed critic neural network architecture.

3.2 Approach II: User grouping optimization

3.2.1 HDBSCAN-based user grouping

During the evaluation of the baseline model, it was ob-
served that the user grouping algorithm represented a
significant portion of the overall runtime , more specifi-
cally around 32% of the total step runtime. To improve
the efficiency of the multiuser scheduler, we introduce
a novel user grouping algorithm based on HDBSCAN.
HDBSCAN is an unsupervised density-based clustering
algorithm that automatically identifies clusters of vary-
ing densities without requiring the number of clusters to
be specified [19]. It handles noise effectively by labeling
outliers and is well-suited for high-dimensional or com-
plex datasets where the underlying cluster structure is
unclear.

For the HDBSCAN implementation, the function in [19,
20] is used. The function is fed with two inputs: the
distance matrix D′, representing the distance between
each pair of data elements, and the minimum cluster size
n, defining the minimum number of elements required
to form a cluster. In this approach, n is set to 2 and D′ to
the inter-user channel correlation matrix C after setting
its diagonal elements to 0. Since the inter-user channel
correlation represents the distance, small ci, j would be in-
terpreted as a small inter-element distance. However, this
represents a logical distance between users and should
not be confused with the physical inter-user distance.
Therefore, logically, users with low correlation are con-
sidered close together, and those with high correlation
are considered farther apart. The HDBSCAN function
is then applied to the logical distance matrix D′ to form
clusters of uncorrelated users based on their pairwise
correlation.

Unlike the baseline user grouping algorithm, HDBSCAN
identifies natural groupings in the data by locating high
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density regions and labeling users that do not belong to
any group as noise. This leads to more coherent group
formation and reduces the likelihood of assigning cor-
related users to clusters intended for uncorrelated ones.
Furthermore, HDBSCAN enhances clustering efficiency
by eliminating the need for manual correlation threshold
tuning and exhaustive pairwise comparisons. Instead,
it relies on density-based criteria to identify meaningful
clusters, enabling the clustering process to scale more
effectively with the number of users.

In terms of computational complexity, the baseline
threshold-based user grouping requires approximately
0.01127 seconds per execution, whereas the HDBSCAN-
based grouping requires only 0.0013 seconds. This corre-
sponds to nearly a 9× reduction in runtime (about 88%
faster). The improved efficiency arises from eliminating
iterative pairwise searches and manual threshold checks,
while simultaneously providing more coherent clusters.

3.2.2 SAC design with HDBSCAN grouping

To improve the convergence and performance of the SAC
model, the following modifications were made to the
baseline SAC model.

• State space: Compared to the baseline, a new state
representation is defined. This state incorporates stan-
dardized features to improve learning stability. Similar
to Approach I, it uses the L2 norm of the user channel
vector

∥∥∥hi,t

∥∥∥
2

instead of the maximum achievable user
spectral efficiency γi,t. The state si,t for user i at TTI t is
defined as

si,t =< gi,t, h̃i,t, f̃i,t >∈ S := [G,H ,F ], (15)

where gi,t represents the user group ID computed by
the HDBSCAN function, h̃i,t represents the standard L2
norm of the ith user channel vector, and f̃i,t represents
the standard user’s data transmission history fi,t.

h̃i,t is computed as

h̃i,t =

∥∥∥hi,t

∥∥∥
2
− µh

σh + 1e-8
, (16)

where µh and σh are the mean and standard deviation
of

∥∥∥hi,t

∥∥∥
2

over all users, and 1e-8 is added for numerical
stability.

Similarly, f̃i,t is computed as

f̃i,t =
fi,t − µ f

σ f + 1e-8
, (17)

where µ f and σ f are the mean and standard deviation
of fi,t over all users.

The SAC’s state input at time t is defined as

st =< gt, h̃t, f̃t >∈ S, (18)

where gt = [g1,t, . . . , gL,t] , h̃t = [h̃1,t, . . . , h̃L,t] , and
f̃t = [ f̃1,t, . . . , f̃L,t]. The dimensionality of st is equal to
3 × L, which is unchanged compared to the baseline
model.

• Action space: The action at TTI t is defined in Eq. (10).
However, the constraint over the maximum number
of scheduled users Nmax is omitted, i.e. |at| ≤ L.
To convert the continuous SAC output into a binary
action vector, Approach II adopts the baseline’s output
discretization and dimension division methods. How-
ever, similar to Approach I, the KNN step is omitted.
Additionally, the number of proto-actions (or action
dimensions) is increased from 8 to 16. As a result, the
number of discrete actions per dimension is reduced
from 2

L
8 to 2

L
16 .

• Reward: The baseline’s reward presented in Eq. (11)
is adopted.

Similar to the baseline, this approach employs fi,t in its
state representation. However, practical Proportional-
Fair (PF) schedulers typically compute throughput
using a finite moving window in order to capture re-
cent service conditions and short-term fairness. In
contrast, fi,t grows monotonically with time and be-
comes increasingly insensitive to recent performance
fluctuations. This reduces the ability of the SAC agent
to accurately capture recent scheduling dynamics, as
the input feature becomes dominated by long-term
history rather than meaningful short-term information.
We acknowledge this limitation in the current model
design and note that extending the state to include a
windowed throughput history measure is a promising
direction for future work

4. EVALUATION

4.1 Simulation setup

To evaluate the performance of the proposed solution,
challenge participants received two channel datasets
representing low-mobility and stationary scenarios, along
with the baseline solution code [24]. Both datasets are
based on a single 64-antenna massive MIMO BS serving
64 single-antenna users and a channel bandwidth of 52
frequency subcarriers. Each dataset contains 500 channel
realizations, where each realization represents the uplink
channel between the 64 users and the 64 BS antennas
across all 52 subcarriers. Further details on the datasets
and baseline implementation can be found in [24]. The
SAC model parameters of the proposed approaches are
presented in Table 1, and the simulation parameters are
summarized in Table 2.

In the baseline simulation, each frequency subcarrier
is treated as a PRB, and user-scheduling decisions are
performed independently per PRB. The same method-
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Table 1 – SAC model parameters for proposed approaches.

Parameter Approach I Approach II

User Grouping None HDBSCAN

State [U(Ct),
∥∥∥h1,t

∥∥∥
2 , . . . ,

∥∥∥hL,t
∥∥∥

2] < gt, h̃t, f̃t >

State Dimension 2080 192

Final Action at ∈ [0, 1]64 at ∈ [0, 1]64

Final Action
dimension

64 64

No. of
Proto-Actions

32 16

No. of Discrete
Actions per
Dimension

22 24

Reward γtotal
t (βγtotal

t + (1−β)JFIt) ∗c

Reward Control
Parameter β

None 0.5

Reward Scaling
Parameter c

None 2

ology was adopted in our approach. Additionally, the
baseline checkpoint file was provided to facilitate perfor-
mance comparisons and final score computation. The
results and the final score calculation of our proposed
approaches are presented in Section 4.4.

4.2 Model training

In the baseline code, the 21st subcarrier of the low-
mobility dataset is used for training. However, using only
one subcarrier in training may lead to overfitting and
reduced generalization to other subcarriers and different
mobility scenarios. To enhance the model’s generaliza-
tion capability, we adopt an improved training strategy.

Specifically, instead of training on a single subcarrier
from one scenario, we utilize the first 40 subcarriers from
both the low-mobility and stationary datasets, resulting
in 80 subcarriers in total. During each training episode,
one of the two datasets is randomly selected with a
probability of 0.8 for the low-mobility dataset and 0.2 for
the stationary dataset. Subsequently, one subcarrier from
the selected dataset is chosen uniformly at random.

Biasing the sampling towards the low-mobility scenario
ensures that the model is trained on a larger propor-
tion of samples with faster channel variations. Since
the low-mobility dataset exhibits more rapid temporal
fluctuations compared to the stationary case, frequent
exposure to such conditions enables the model to learn
a more adaptive and generalizable scheduling policy.
In addition, training on multiple subcarriers exposes
the model to frequency-selective fading effects, thereby
improving robustness across the frequency domain.

However, it is worth noting that the velocity difference
between the low-mobility and stationary datasets is rela-
tively small. Consequently, when the sampling probabil-

Table 2 – Simulation parameters for proposed approaches.

Parameter Approach I Approach II

No. of BS antennas 64

No. of UEs 64

Carrier Frequency 3.6 GHz

UE Speed 0 and 2.8 m/s

TTI Duration 1 ms

Modulation 16 QAM

Training Episodes 1400

TTIs per Episode 500

Alpha Learning Rate 3 × 10−5

Actor Learning Rate 3 × 10−5

Critic Learning Rate 3 × 10−5

Automatic Entropy
Tuning

True

Optimizer Adam

Batch Size 256

Replay Buffer Size 106

Scenario Sampling
Probability

0.8

ity was set equally between the two datasets, only minor
performance differences were observed. Table 3 com-
pares the sum rate and fairness achieved by Approach
II when the scenario sampling probability, Psample, is set
to 0.5 and 0.8. It can be noted that both probabilities
achieve relative equal fairness in both scenarios; however,
Psample = 0.8 achieves a relatively small improvement in
terms of the sum rate. Due to the limited scope of the
available datasets, a more extensive exploration of this
sampling strategy and its hyperparameter was not possi-
ble and is left for future work.

4.3 Evaluation framework

The performance of the trained models is assessed using
the official challenge evaluation framework [21], [24]. In
this framework, each model is evaluated over 200 steps
or TTIs using the following performance metrics.

• Sum rate (R): The average sum rate achieved over 200
TTIs. R is defined as

R =
1

200

200∑
t=1

Rt, (19)

where Rt denotes the sum rate achieved by the N
scheduled users at TTI t.

• Fairness (F): The user fairness, measured using JFI at
TTI 200. F is defined as

F =

(∑L
i=1 fi,200

)2

L
∑L

i=1
(

fi,200
)2 , (20)
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Table 3 – Approach II performance relative to different scenario sam-
pling probabilities Psample.

Psample
Low-mobility Scenario Stationary Scenario

Sum Rate Fairness Sum Rate Fairness

0.5 1971.74 0.952 1247.99 0.956

0.8 1984.13 0.949 1256.56 0.952

where fi,200 is the total data transmitted by user i up to
TTI 200.

• Runtime (T): The average inference time of the actor,
measured in seconds. It represents the mean time
required for the actor to generate an action during a
single inference step.

These metrics are further combined to compute the eval-
uation score set by the ITU challenge [21], [24] for low-
mobility and stationary scenarios. The score for the
low-mobility scenario is calculated as

Slow = 0.4
(

Rs,low

Rb,low

)
+ 0.2

(
Fs,low

Fb,low

)
+ 0.4

(
Tb,low

Ts,low

)
, (21)

where the metric subscript s refers to the submitted model
and b to the baseline model. That is, Rs,low denotes the
sum rate achieved by the proposed model and Rb,low
refers to the sum rate of the baseline model, all achieved
in a low-mobility scenario.

Similarly, the score for the stationary scenario is calculated
as

Sstat = 0.4
(

Rs,stat

Rb,stat

)
+ 0.2

(
Fs,stat

Fb,stat

)
+ 0.4

(
Tb,stat

Ts,stat

)
. (22)

The final evaluation score presented in Table 4 is calcu-
lated as

Score =
Slow + Sstat

2
. (23)

The weights of the evaluation metrics (0.4, 0.2, 0.4) in
(21) and (22) are set by the challenge organizers and are
not part of the solution design. Since the sum rate and
runtime components are given a higher weight (0.4) com-
pared to the fairness component (0.2), the competition
places greater emphasis on the scheduler’s sum rate and
runtime performance than on its fairness.

4.4 Results

Table 4 presents the evaluation results of the baseline
scheduler and the two proposed approaches for the low-
mobility and stationary scenarios. In both scenarios,
the proposed methods outperform the baseline across

Table 4 – Evaluation results of proposed models.

Model Low-mobility Scenario Stationary Scenario Score

R F T R F T

Baseline 1907.82 0.8382 0.00908 1218.64 0.8688 0.00949 1.00

Approach
I

2128.75 0.9807 0.00394 1289.52 0.9779 0.00306 1.74

Approach
II

1984.12 0.9491 0.00131 1256.56 0.9520 0.00137 3.41

all three metrics: sum rate, fairness, and runtime. Ap-
proach I achieves the highest improvements in sum rate
and fairness, while Approach II delivers the most signifi-
cant runtime reduction.

In the low-mobility scenario, Approach I increases the
baseline sum rate by 11.6%, compared to a 4.0% im-
provement achieved by Approach II. In terms of fairness,
Approach I achieves near-perfect fairness with 17.0%
gain, while Approach II achieves a 13.2% improvement
relative to the baseline.

In the stationary scenario, Approach I achieves a 5.8%
increase in the sum rate compared to the baseline, while
Approach II provides a smaller gain of 3.1%. For fair-
ness, Approach I yields a 12.6% improvement, while
Approach II achieves a 9.6% gain.

In both scenarios, Approach II achieves the most signifi-
cant reduction in runtime, with an average improvement
of approximately 85% compared to the baseline, while
Approach I achieves an average runtime reduction of
around 62%.

From the above results, it can be seen that both ap-
proaches yield larger improvements in the low-mobility
scenario compared to the stationary scenario. This high-
lights the ability of the proposed approaches to better
adapt to varying channels compared to the baseline
model.

Finally, the evaluation score, which aggregates through-
put, fairness, and runtime, highlights the overall advan-
tage of the proposed approaches. Approach I achieves a
score of 1.74, corresponding to a 74% improvement over
the baseline. Approach II achieves the highest score of
3.41, more than tripling the baseline. This substantial
gain is primarily driven by its drastic runtime reduction,
while still maintaining competitive performance in sum
rate and fairness.

These results reveal a clear trade-off between through-
put and fairness maximization versus computational
efficiency. Approach I emphasizes higher sum rate and
fairness but with a modest runtime improvement com-
pared to the baseline. In contrast, Approach II achieves
the best overall score by prioritizing runtime efficiency
while maintaining competitive throughput and fairness.
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5. CONCLUSION

In this paper, we presented the winning solution to the
ITU AI/ML in 5G Challenge, which focused on enhanc-
ing an ML-based multiuser massive MIMO scheduler.
We proposed two approaches for improving the base-
line scheduler’s performance. Both approaches outper-
formed the baseline solution in terms of sum rate, fairness,
and runtime. In Approach I, we demonstrated how the
stochastic nature of the SAC output can be leveraged to
promote user fairness, representing a novel contribution
to DRL-based schedulers. We also emphasized the im-
portance of balancing the SAC model’s complexity with
the richness of the input state information. Although the
state space in Approach I was larger than in the base-
line, the omission of user grouping and output KNN,
combined with an increase in the information provided
to the SAC model and optimizations in neural network
design, led to improved scheduler performance. In Ap-
proach II, we showcased the effectiveness of applying
ML-based clustering techniques, specifically HDBSCAN,
for user grouping. By improving both the accuracy and
the efficiency of the clustering process and standardizing
the state input, Approach II outperformed the baseline
scheduler by more than threefold. The combination of
using HDBSCAN-based user grouping and leveraging
the stochastic nature of SAC output for fairness, i.e., omit-
ting explicit fairness criteria from the reward function,
was not explored in this study and is left as an avenue
for future work.
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