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Autonomous network management has gained momentum as a key feature of 5G advanced
and 6G systems. Autonomy builds on the use of intent-driven networks that involve
intelligent agents to configure various network sub-domains. In addition, the concept of
end-to-end network slicing would need to be appropriately managed to provide
differentiated Quality of Service (QoS) within 5G/6G networks. However, there is limited
work looking at intent-driven end-to-end network slice assurance. In this paper, we propose
Condense, a cognitive intent-driven system for network slice fulfilment and assurance. Via
the use of Artificial Intelligence (AI) planning agents, we demonstrate the decomposition of
high-level intent requirements to individual sub-intents. AI planning makes use of machine
reasoning techniques to search for issue resolutions that differs from other data-driven
approaches. AI planning agents are employed for resource allocation at the Radio Access
Network (RAN), transport and core domains to ensure intent fulfilment. The system is
implemented over a cognitive intent management system to demonstrate end-to-end
network slicing.

Keywords: AI planning, cognitive reasoning, intent management function, network slicing,
neurosymbolic reasoning

1. INTRODUCTION

The evolution of 5G towards 6G has led to multiple use cases requiring service differenti-
ation. A commonly proposed concept over recent years is the use of network slicing [1],
to meet differentiated service requirements of mobile broadband, gaming, enterprise and
eXtended Reality (XR). Network slicing achieves this differentiation by creating virtual
segregated subnets over the same physical network to meet service requirements.

As part of the network slice lifecycle [2], network slices cannot be statically configured
and require service assurance [3]. With the large scale deployments of 5G and 6G systems,
the end-to-end subnets have to be efficiently designed, managed and assured. This
process would involve translating the requirements to individual RAN, transport and
core sub-domains. Due to the complexity and large scale deployments, the configurations
have to be autonomous rather than expert managed.

Autonomous management of 5G/6G networks is a vision requiring multiple futuristic
technologies [4]. To this end, intent-driven [5] systems have been proposed that move
away from imperative networks to declarative management. Intents are the formal
requirements that must be satisfied by the network. Industry fora such as TM Forum have
suggested standardized intent definitions that are interoperable across multiple Commu-
nication Service Providers (CSPs) [5]. Standardized intent definition enable intents (or
sub-intents) to be passed between CSPs for issue resolution and management. In order
to create autonomous networks, another piece of the puzzle are AI agents. These agents
can participate in multiple phases of autonomous intent management including data
grounding, resolution proposals, prediction and reporting. An implementation of this
Intent Management Function (IMF) has been proposed via a cognitive intent management
framework [6]. This system also falls in line with 6G AI native architectures [7].
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While the intent definitions have reached some amount 
of maturity [5], the process of handling intents is yet to be 
fully demonstrated for 5G/6G network slicing assurance. 
Intents have to be appropriately handled to generate 
target goals towards RAN, transport and core levels. 
In addition, the IMFs are traditionally implemented on 
specific s ubnets, w hich require a n a dditional l ayer of 
service layer coordination. IMFs also have rule-based 
agents that are to be replaced by AI-driven agents for 
superior adaptation.

To clarify these issues, we consider the following three 
problems.
Problem 1: Decomposition of high-level service expecta-
tions to requirements at individual subnets via intent-
interfaces has not been demonstrated.
Problem 2: The ability of AI agents to autonomously 
assure end-to-end slice requirements with appropriate 
actions has not been suitably studied.
Problem 3: Feedback from lower intent management lay-
ers and closed loop control has not been considered. 
These problems require novel solutions, that are the main 
focus of this paper.

To solve these problems, we propose Condense, a cog-
nitive intent-driven framework for end-to-end network 
slicing. Using intent-driven network concepts, slice ser-
vice assurance is provided across RAN, transport and 
core domains. AI planning agents [8] are used to de-
compose high-level intents to low level requirements 
that can be handled within each domain. AI planning 
is once again used to propose efficient resource alloca-
tions to meet intent expectations. AI planning makes 
use of symbolic reasoning techniques to resolve the slice 
assurance issues, as opposed to traditional data-driven 
machine learning techniques. Queueing network mod-
els [9] are further used to evaluate the efficacy of  the 
proposals prior to network actuation. This approach is 
demonstrated over a realistic network slicing use case 
involving multiple intents.

The principal contributions of this paper include:

1. Solve the end-to-end intent-driven network slicing
problem using novel AI-driven planning agents and
standard-compliant interfaces.

2. Utilize AI planning agents to hierarchically decompose
service intents to subnet-specific intents.

3. Demonstrate end-to-end network slicing by using ap-
propriate AI plan proposal and evaluation agents at
RAN, transport and core levels. AI planning agents
use symbolic reasoning as opposed to data-driven
approaches.

4. Evaluate the system over a realistic case study from a
mobile network operator.

The rest of the paper is organized as follows: Related
work is reviewed in Section 2. Section 3 provides a brief

background on network slicing challenges. Slice man-
agement mapped to intent management functions are
presented in Section 4. Section 5 provides an overview of
the Condense system. Section 6 presents the service IMF
decomposition. The RAN, transport and core intent man-
agement functions and associated agents are described in
sections 7, 8 and 9, respectively. Experimental evaluation
of the network slicing techniques are presented in Section
10. This is followed by conclusions and future directions
in Section 11.

2. RELATED WORK

We provide a brief overview of the state of the art on
intent-driven networking, network slice assurance and
6G AI native systems.

2.1 Intent-driven networking

As specified in [5, 29], an intent is associated with two
parties: intent owner that creates and manages the intent
and intent handler that fulfils the requirements within an
autonomous domain. Intents may be formally defined
within RDF graphs as a way to structure intent models
and extract their semantic correlation. The use of Natural
Language Processing (NLP) and large language models
is also being explored in the intent space. In [30], the
proposed NLP tool can prompt the user to add the missing
information or generate intent grammar syntax. In [6], a
cognitive core solution is specified that can handle intent-
driven specifications. In [3], a comprehensive analysis of
the state of the art in intent-driven networks including the
intent description models, intent lifecycle management
and a generalized architectural framework is presented.
In [12], an overview of decomposing standardized intents
towards autonomous domains is provided. In [31], intent-
specific automation pipelines using closed loop micro-
services with self-declared capabilities are presented.

2.2 Network slice assurance

Table 1 provides an overview of the state of the art in
intent-driven network slice assurance. The first set of
papers [10, 11] in Table 1 focus on the need for end-to-
end slicing without specifying intent-driven techniques.
The techniques typically cover multiple subnets such as
RAN, transport and core. Though the use of automation
techniques are mentioned, intent-driven techniques are
not covered.

The second set of papers in Table 1 [12, 13] provide an
overview of intent-driven network slicing techniques.
The focus of these papers is to describe intent specifi-
cation techniques and how they are broken down to
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Table 1 – State of the art in intent-driven network slice assurance.

No. Paper Description Slicing Domains Intent Techniques AI Algorithms

1. End-to-end-
slicing [10,
11]

Value proposition for end-to-end net-
work slicing presented with a descrip-
tion of slice lifecycle management.

RAN, transport
and core domains

Though automation of slice fulfil-
ment and assurance is mentioned,
specific intent-driven techniques
not considered.

No specific mention of AI
agents.

2. Intent-
driven
network
slice man-
agement [12,
13]

Architecture view and hierarchical de-
composition of service intents.

RAN, transport
and core domains.

Business intent, service intent, and
resource intent, which is useful to
address high complexity

Agents not described.

3 RAN slicing
[14, 15, 16,
17, 18]

Intent-driven RAN slice design and
assurance via dynamic allocation of
physical resource blocks

RAN Service and operational intents to-
wards the RAN domain

AI planning proposal
agents with machine
learning forecast and
grounding. Reinforce-
ment learning for dy-
namic allocation of RAN
partitions.

4 Transport
slicing [19,
20], Cisco
[21]

To ensure differentiated services
within the transport domain, AI-
driven strategies and software de-
fined networks have been proposed.

Transport Intents on service performance
mapped to transport domains for
throughput and latency

Reinforcement learning
agents [19, 20] and poli-
cies [21]

5 Core slicing
[22, 23], Ju-
niper Astra
[24]

Agents are developed for fat tree net-
work management; intent-driven poli-
cies for management of data center
pods

Core Intents mapped to requirements on
pods and fat tree networks.

Multi-agent reinforce-
ment learning and
policies [24].

6 ML agents
for slicing
[25, 26, 27]

A Deep Reinforcement Learning
(DRL)-based network slicing tech-
nique to find out the resource allo-
cation policy. Application of ML
approaches for autonomous manage-
ment of resources in the network slic-
ing paradigm.

RAN and trans-
port

Intents not specifically considered Deep reinforcement
learning and machine
learning techniques.

7. LLM intents
[28]

Intents translated from natural lan-
guage for deployment, assurance, fea-
sibility and reporting

RAN, transport,
core

Intents described in natural lan-
guage translated to 3GPP specifi-
cations

LLM agents.

8. Condense Intents translated from natural lan-
guage for deployment, assurance, fea-
sibility and reporting

RAN, transport,
core

Intents described in TM-Forum
specifications are hierarchically bro-
ken down.

Symbolic AI planning
agents and queueing net-
work models.

requirements at lower subnets. However, the agents and
reasoning techniques to implement these intent-driven
techniques are not elaborated.

The set of papers 3 − 5 in Table 1 look at domain-specific
slicing. RAN slicing is presented in [14, 15, 16] with a fo-
cus on reinforcement learning and planning agents. Here,
the intents are translated to expectations on throughput
or latency at the RAN level. Physical Resource Block
(PRB) partitioning, priorities or rate limitations may be
applicable techniques. Transport slicing is provided
in [19, 20] with the use of reinforcement learning for
router/switch configuration. The paper [19] looks at fine-
grained changes within the router such as queue load
balancing or buffer size changes to ensure that the inter-
nal configurations meet intent requirements. Similarly,
agents are developed for core slicing in [22, 23]. Actions
such as pod load balancing, migration and scheduling
may be done via agent frameworks. Multi-agent RL

policies are further developed in [24] to control complex
data center networks.

The sixth set of papers in Table 1 apply ML and RL
strategies to network slicing, without specifically using
intent-driven approaches. The use of deep reinforcement
leaning agents for network slice resource allocation are
specified in [25, 26]. The more recent [27] makes use of
Graph Neural Network (GNN) techniques to perform
slice assurance within RAN and mobile edge computing
nodes. However, it does not make use of standardized
intents to change requirements. Furthermore, GNNs
require a significant amount of training data. Compara-
tively, AI planning techniques can start offwith limited
domain knowledge and proposed solutions.

Recent strategies also look at Large Language Model
(LLM) agents [28] for intent translation. Intents can be
specified in natural language and converted to 3GPP

©International Telecommunication Union, 2025 355

Kattepur et al.: Condense: Cognitive intent-driven end-to-end network slicing with AI planning agents



or TM Forum specifications. LLMs are also useful for 
mapping requirements efficiently.

Condense is one of the first papers to look at end-to-end 
intent-driven slice assurance with prototyped agents. We 
are compliant with intent-driven standards while incor-
porating novel AI agents for intent handling. Actions 
specified at the RAN, transport and core subnets are also 
done in an autonomous fashion. The system is developed 
using novel AI planning agents that can use symbolic do-
main knowledge, to reason about autonomous network 
slicing actions.

2.3 6G and AI-driven systems

The use of intents, AI-driven automation and data-driven 
training has received prominence with novel 6G architec-
tures [7]. This process has led to a rethinking of the use of 
AI within networking architectures. As specified in [32], 
slicing may be incorporated within Industry 4.0 to create 
ad hoc customized Network Slices Templates for digital 
transformation, such as robots and IoT devices. The 
use of intent-based automation towards 6G open RAN 
has been presented in [33]. This paper builds on these 
concepts by providing concrete details on how intents, 
agents and slice assurance may be integrated within a 
unified framework.

2.4 Neurosymbolic AI

Data-driven techniques such as deep learning, though 
efficient in finding patterns for classification and regres-
sion, fail to extract compositional and causal structures 
from data. Symbolic reasoning techniques are efficient in 
representing these compositional and causal structures. 
Neurosymbolic AI [34] aims to combine neural networks 
with symbolic reasoning techniques. This hybrid ap-
proach enables machines to reason symbolically while 
also leveraging the pattern recognition capabilities of 
neural networks.

Example of neurosymbolic methods include Logic Neural 
Networks (LNNs) [34]. An LNN consists of a neural 
network trained to perform symbolic reasoning tasks, 
such as logical inference, theorem proving, and planning, 
using a combination of differentiable l ogic g ates and 
differentiable inference rules. These gates and rules are 
designed to mimic the operations performed by symbolic 
reasoning systems and are trained using gradient-based 
optimization techniques [34]. Knowledge graphs are also 
a useful formalism to represent numerical embeddings 
from which patterns could be extracted. Recent studies 
have tried to integrate expert knowledge into knowledge 
graphs to enable superior reasoning and learning for 
neurosymbolic approaches [35].

In this paper, we make use of symbolic reasoning tech-
niques, such as AI planning, to create intent decomposi-
tions and network configurations. The AI planning tech-
niques are combined with grounded forecasting agents
that make use of regression methods. The combination
of such neurosymbolic agents would lead to scalable
and long-term reasoning for the management of 6G net-
works.

2.5 Condense

When compared to the state of art, this paper is one of the
first ones to apply AI planning agents for service intent
decomposition, resource allocation and optimization.
We further demonstrate end-to-end network slicing by
using appropriate proposal and evaluation agents at the
RAN, transport and core level. The use of AI-planning
is an alternative approach compared to traditional data-
driven agents. Such a detailed analysis of AI-driven
network slicing would be useful in advanced 5G and
6G deployments. In addition, the standardized intent
specifications ensure that the system can be deployed in
vendor-agnostic environments.

Condense is shown to solve the following problems:
(i) decomposition of high-level service expectations to
requirements at individual subnets using agents; (ii) end-
to-end slice assurance across the RAN, transport and
core; (iii) feedback from lower intent management layers
and closed loop control.

3. END-TO-END NETWORK SLICING

Network slicing [1, 10] has been proposed as a key technol-
ogy to provide differentiated QoS within 5G advanced
and 6G networks. The concept of network slicing in-
volves creating virtual dedicated pools of network re-
sources to serve different types of flows such as mobile
broadband, extended reality, gaming and Internet of
Things (IoT).

3.1 Network slice lifecycle

As seen in Fig. 1, there are multiple phases in instantiating
a network slice [2]:

– After the initial stakeholder onboarding and network
preparation, the fulfilment phase includes the creation
of the slice instance. During the network slice in-
stance creation all needed resources are allocated and
configured to satisfy the network slice requirements.

– The operation phase includes the activation, supervi-
sion, performance reporting, resource capacity plan-
ning and modification of a network slice instance.
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Figure 1 – Lifecycle of network slice provisioning and fulfilment.

Figure 2 – End-to-end network slicing.

– The slice may be decommissioned to provide addi-
tional capacity for other services.

This operation phase can have dynamic intent [3] re-
quirements, that needs to be assured. Resource capacity
planning includes any actions that calculate resource
usage based on a network slice instance provisioning,
and performance monitoring and generates modification
policies as a result of the calculation.

As seen in Fig. 2, there can be multiple services such
as premium enhanced Mobile Broadband (eMBB), nor-
mal eMBB, Fixed Wireless Access (FWA) and best effort
services. Resources are to be provisioned at the RAN,
transport and core domain levels to assure the required
slice service guarantees. These actions could involve
radio resource partitioning at the RAN, rate limitation
and prioritization at the transport and container pod
scaling at the core. The residual pool of resources will be
shared among non-sliced traffic.

3.2 3GPP network slice specification

Fig. 3 provides a representation of the 3GPP network
slice management architecture [36]. It consists of the
following key components:

1. Communication Service Management Function (CSMF):
This function acts as the interface between service order
management and Operations Support Systems (OSS).

2. Network Slice Management Function (NSMF): manages
the lifecycle of the end-to-end slice across the network
domains: RAN, core network and transport network.

3. Network Slice Subnet Management Function (NSSMF):
manages the lifecycle of the network slice subnets
within a network domain.

Figure 3 – Network slicing hierarchy.

4 Network Function Management Function (NFMF): central-
ized platform for managing and orchestrating network
functions. Some of the responsibilities of NFMF in-
clude: (i) Configuration: provisioning and configuring
network functions based on operator requirements;
(ii) monitoring: collecting and analyzing performance
data from network functions and infrastructure compo-
nents; (iii) scaling: dynamically adjusting the capacity
of network functions to handle varying workloads.

In addition to these specifications, slice instantiation and
identification also has standardized terms [1]:

– Network Slice Instance (NSI): a set of network function
instances and the required resources (e.g. compute,
storage and networking resources) which form a “de-
ployed” network slice.

– Network Slice Subnet Instance (NSSI): an instance of
network slice subnet that allocates resources to the
slice.

– Single Network Slice Selection Assistance Information (S-
NSSAI): it identifies a network slice. S-NSSAI includes
the Slice/Service Type (SST) and Slice Differentiator
(SD). Requirements to be satisfied by the service may
be associated here including throughput, latency and
packet loss targets.

As specified in 3GPP standards [37] [38], there are multi-
ple counters that may be collected to measure end-to-end
slice metrics. A subset of these relevant metrics are
provided in Table 2. These requirements on throughput,
latency and resource utilization are the typical constraints
provided to intent management functions.

4. NETWORK SLICE MANAGEMENT VIA
IMF HIERARCHIES

Intents are the formal specification of requirements to be
met by the system [5]. The difference between an intent
and policy-based management arises from the level of
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Table 2 – 3GPP metrics for network slice performance.

Metric Description

UL/DL Delay NR–SNw Average packet transmission delay through the RAN
part to the UE.

UL/DL Delay gNBDU Ns Average packet transmission delay through the gNB-
DU part to the UE

Delay E2E UL/DL Ns Average e2e DL packet delay between the PSA UPF
and the UE for a network slice.

UL/DL UE Throughput–
Cell

Average DL RAN UE throughput for a NRCellDU.

PDUSesMeanNbr Mean number of PDU sessions that are successfully
established in a network slice .

VirtualResUtilization Utilization of virtualized resource (e.g. processor,
memory, disk) that are allocated to a network slice

UL/DL Total PRB Usage This measurement provides the usage (in percentage)
of physical resource blocks (PRBs) on the downlink
for any purpose

Figure 4 – Intent APIs between the intent owner and intent handler.

detail specified with the defined goals. Intent-based
management consists of providing requirements and
does not include additional information regarding the
implementation of the rules.

To achieve the envisioned concept of autonomous, intent-
driven networks, the TM forum standards have proposed
Intent Management Functions (IMFs) [5]. The IMFs may
be deployed throughout the network and have their own
management zones. As seen in Fig. 4, there are two
parties within an IMF, the intent owner and the intent
handler. The intent is set by the intent owner via the
intent interface and complied to with the intent handler.
IMFs may be organized hierarchically and communicate
with each other using intent Application Programming
Interfaces (APIs). An IMF registry provides details of
connected IMFs and their capabilities. The operations at
the intent interface include (Fig. 4):

1. SET: Send a new or modified intent to an intent handler.
2. REMOVE: Withdraw an intent.
3. REPORT: Report the intent handling status.
4. PROBE: Ask the handler to estimate the potential suc-

cess of an intent.
5. BEST: Ask the handler for the best intent expectation

that it can successfully handle (i.e., the most severe
requirement the handler would be able to successfully
comply with).

Mapping the end-to-end network slice management to
IMFs has not been done previously. Fig. 5 provides a
hierarchy of IMFs that may be exploited for the network
slicing use case. The service IMF receives service intent
requirements (e.g. throughput, latency) that has to be
assured by the system. This view maps to the S-NSSAI
requirements to be fulfilled. The service IMF is respon-
sible for decomposing the service intents to the RAN,
transport and core intents (further details in Section 6).
Once the intents are received by the RAN, transport and
core subnets, individual intent resolution actions and
sub-slice management (NSSMF) may be done. Actions
over the network resource as provided by the NFMF and
can be done per sub-domain. Details of the action space,
intent management and knowledge graphs related to the
RAN, transport and core subnets are specified in sections
7, 8 and 9 respectively.

4.1 Intent Management Function (IMF) inter-
nals

In order to implement the IMF, a cognitive intent handling
framework has been proposed [6]. It consists of three
essential components (Fig. 6):

1. Knowledge base: contains the ontology of intents along
with domain-specific knowledge such as the current
state of the system.

2. Reasoning engine: domain-independent reasoning en-
gine serves as the central coordinator function and
uses the knowledge graph to orchestrate a number of
registered agents for finding solution actions, evaluat-
ing their impact and ordering their execution.

3. Agent interfaces: allows any number of agent models
and services to be used. Agents can contain machine-
learned models or rule-based policies for implement-
ing services in the cognitive reasoning process.

In the IMF, the closed loop is implemented by a set of
agents operating on the knowledge base and orchestrated
by the reasoner. Here are the possible agents (Fig. 6):

– Data grounding agents: These agents are responsible
for grounding data external to the IMF.

– Goal setting: These agents map issues with intent
expectations to goals that the IMF needs to resolve.

– Proposal agents: These agents analyze the goals, and
propose one or more solutions. Each solution can be
a combination of direct actions on the underlying net-
work elements or further intents that can be delegated,
e.g., to other IMFs.

– Prediction agents: These agents analyze the proposals
from the proposal agent and make predictions, based
on information stored in the knowledge base and with
the help of the reasoner or AI/ML models, about the
possible impact of the proposals on all the IMF targets.

©International Telecommunication Union, 2025

ITU Journal on Future and Evolving Technologies, Volume 6, Issue 4, December 2025 

358



Figure 5 – Hierarchy of IMFs mapped to network slice management.

Figure 6 – Cognitive intent management with agents and phases.

– Evaluation agents: These agents take the predictions
from the prediction agents and select the more suit-
able action (e.g., by approving actions maximizing the
global utility of the IMF; this global utility is under-
stood as the utility of all the intents accepted by the
IMF).

– Actuation agents: These agents receive approved ac-
tions from the evaluation agents to implement the
solution (e.g., direct actuation or intent setting).

– Reporting: These agents collect the reports from other
IMFs and forward them to the cognitive core.

As presented in [39], there are four basic categories of
agents.

1. Simple reflex agent: These are the simplest agents
that select actions based on the current sensory percep-
tion. In most cases, these agents may be implemented
using condition-action rules that are triggered with
events. These agents do not store any knowledge of
environment nor do they receive feedback.

2. Model-based reflex agents: These agents maintain an
internal state of the system dynamics. It does this in
two steps: (i) information on how the world evolves

independent of the agent; (ii) information of the effect
of the agent’s action on the world.

3. Goal-based agents: Knowledge about the current
state of the environment is not always enough for
decision-making. Agents require goal information
that describes situations that are desirable. The agent
program can combine this with the model (the same
information as was used in the model-based reflex
agent) to choose actions that achieve the goal. Some-
times goal-based action selection is straightforward;
for example, when goal satisfaction results imme-
diately from a single action. Sometimes it will be
more involved that requires searching the state space
and planning action sequences. In addition, utility
functions may be provided, which is a performance
measure of the actions of the agent. The agent can try
to maximize the utility function outcomes.

4. Learning agents: Learning agents have a learning
element that uses feedback from a critic to determine
improvements in performance. The learning element
can suggest actions that may lead to new experiences.
Thus, the agent may trade off suboptimal actions in
the shorter term, in order to discover much better
actions for the long run.
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Figure 7 – AI-native 6G architecture with hierarchical IMFs.

In this work, we make use of goal-based agents that make
use of AI planning and scheduling techniques. Domain
knowledge with preconditions and effects of actions are
used to determine autonomous actions to resolve intent
issues.

4.2 6G native and intent-driven automation

The use of intents and IMFs is an important concept in
the future 6G platform architecture, as seen in Fig. 7. As
specified in the AI-native view of 6G [7], intents are an
important input that need to be handled by autonomous
networks. As further seen in Fig. 7, scalable deploy-
ments have a hierarchy of IMFs with specific scopes in
terms of, for example, a network domain (RAN, trans-
port, etc.) or geographical/administrative domains. This
includes transforming the set of global, high-level in-
tents into lower-level intents, and in the end detailed
configurations.

In addition, these IMFs would have multiple agents (AI
and rule-based) that would participate. This would mean
that AI execution and training environments need to be
available throughout the network. When the number of
AI models in the network grows, their lifecycle manage-
ment needs to be fully automated, deciding, for example,
which model version to use for execution, and where
and when to train a model. Models may require data
originating from several layers and network domains,
which may imply that layer and domain borders blur.

Soto et al. [40] propose a network intelligence stratum
for 6G. This stratum proposes an orchestrator that sup-
ports closed-loop network intelligence operations across
various network domains. Issues related to scalability,
conflict resolution and effective data management are
mitigated through this hierarchical network intelligence.
The use of hierarchical intent decomposition within 6G
networks has also been recently presented [41]. Agents
are used to efficiently decompose requirements from the
network management IMF to the RAN and core subnet
IMFs. We draw on these concepts to implement the
Condense system.

5. CONDENSE SYSTEM

To provide a cognitive intent-driven solution to end-to-
end slice management, Fig. 8 presents the Condense
system with the following components:

– The service IMF receives service intents (throughput,
latency targets) that the end-to-end network slice has
to fulfil. As specified previously, the IMF is imple-
mented via a cognitive intent management framework.
Multiple agents may be registered here: (i) ground-
ing agents to provide monitored/forecasted network
performance metrics; (ii) AI planning-based proposal
agents to decompose the service intents to expectations
at lower layers; (iii) an evaluation agent to evaluate
the efficacy of the decomposition; (iv) actuation agents
to initiate sub-intents to lower subnets. The intent reg-
istry information is used to determine the connected
IMFs.

– The RAN IMF receives the decomposed intent and
is responsible for assuring the RAN subnet perfor-
mance. This IMF also has different agents to complete
actions. Specifically, the AI planning agents would be
for allocating RAN resources optimally to meet intent
requirements. In addition, queueing network-based
evaluation agents will be used to estimate side effects
or efficacy of proposals.

– The transport IMF receives the decomposed intent
and is responsible for assuring the transport subnet
performance. This IMF also has different agents to
complete actions. Specifically, the AI planning agents
would be for allocating transport resources optimally
to meet intent requirements.

– The core IMF receives the decomposed intent and is
responsible for assuring the core subnet performance.
This IMF also has different agents to complete ac-
tions. Specifically, the AI planning agents would be
for allocating core resources optimally to meet intent
requirements.

Once each of the subnets complete the actions, the service
IMF receives feedback on the completion of the intent
expectation.

As presented in Fig. 8, there are in fact multiple closed
loops that interact with each other. This hierarchy of
closed loops has also been presented in [42]. The lower
loops at the RAN, transport and core IMFs are responsible
for setting new configurations with changes in network
state or intents. The upper level loop can set or reset
decompositions based on feedback received from lower
level IMFs. Note that we are compliant with TM Forum
interface specifications between different IMFs in the
hierarchy.

Note that while we have showcased just a single IMF at
the RAN, transport and core levels, more complex and
scalable 6G deployments could have further decomposi-
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Figure 8 – Condense system with hierarchical intent management.

Table 3 – Agents in the Condense system.

Domain Agents

Service IMF loop 1. Grounding agent to provide current state of network and BEST report from lower IMFs.
2. Proposal agent to decompose expectations.
3. Evaluation agent to rank possible decompositions.
4. Actuation agent to set targets to lower-level IMFs.

RAN IMF loop 1. Grounding agent to provide current or forecasted state of RAN network.
2. Proposal agent to propose planned actions such as radio resource partition change.
3. Evaluation agent to check efficacy and side effects of actions.
4. Actuation agent to set configuration on RAN network.

Transport IMF loop 1. Grounding agent to provide current or forecasted state of transport network.
2. Proposal agent to propose planned actions such as rate limit change.
3. Evaluation agent to check efficacy and side effects of actions.
4. Actuation agent to set configuration on transport network.

Core IMF loop 1. Grounding agent to provide current or forecasted state of core network.
2. Proposal agent to propose planned actions such as pod scaling change.
3. Evaluation agent to check efficacy and side effects of actions.
4. Actuation agent to set configuration on core network.

tions of IMFs based on: (i) geographic or administrative
zones that are logically monitored with a RAN or core
subnet to ensure monitored network KPIs are reliably
captured; (ii) subset of configurations that can be divided
between configuring applications such as rApps1. The
Condense system can be extended to these additional
hierarchies as well.

As presented in Table 3, there are 16 agents that interact
between the service, RAN, transport and core IMF levels.
These agents continuously run in individual closed loops.
Agents associated with the service IMF ensure that the
intents are decomposed. Agents associated with the
RAN, transport and core IMFs ensure configurations of
individual subnets.
1 https://www.ericsson.com/en/ran/intelligent-ran-automation/in

telligent-automation-platform/rapps

5.1 AI planning

As many of the proposal agents at the service, RAN,
transport and core layers make use of AI planning, we
will provide a brief overview of AI planning techniques.

AI planning [8] is a branch of artificial intelligence that
concerns the realization of strategies or action sequences,
to automate the solution towards a specified goal. AI
planning begins with the definition of domains, plans
and goals that are to be achieved.

Definition 1 Planning domain: A planning domain is a
state transition system Σ = (S,A, γ,C), where:

– S is a finite set of states of the system.
– A is a set of actions that may be performed by an agent.
– γ : S × A→ S is the state transition function. If γ(s, a)

is defined, then action a is applicable to state s, with
γ(s, a) being the predicted outcome.
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– C : S × A → [0,∞) is a cost function with the same
domain as γ. It can represent a cost function model-
ing monetary cost, latency or parameters within the
system.

Definition 2 Plan: A plan is a finite set of actions:

π = ⟨a1, a2, . . . , an⟩

A plan π is applicable to a state s0 ∈ S if there are states
s1, s2, . . . , sn so that γ(si−1, ai) = si for i = 1, . . . ,n. In this
case, γ(s0, π) = sn.

Definition 3 Planning Problem: A planning problem
is specified as a triple P = (Σ, s0, g) where Σ is a state-
transition domain, s0 is the initial state and g is a set
of ground literal goals. A solution for P is a plan π =
⟨a1, a2, . . . , an⟩ so that γ(s0, π) satisfies g.

Solutions to the planning problem may be developed us-
ing forward-search or backward-search techniques, with
multiple heuristics proposed to reduce the state space
search [8]. The Planning Domain Definition Language
(PDDL) [43] is an action-centered language that provides
a standard syntax to describe AI planning problems. It
consists of two descriptions: (i) the domain description
that decouples the parameters of actions from specific
objects, initial conditions and goals (ii) the problem descrip-
tion that instantiates a grounded problem with objects,
initialization, goals and metrics. The same domain de-
scription may be paired with multiple problem instances,
with varying grounded objects, initial conditions and
goals. We make use of the PDDL planning agents as for
both hierarchical decomposition and resource allocation.

In addition to specifying actions, it is possible to extend
plans with resource constraints (e.g. memory, energy
or network bandwidth) in order to perform an action.
This may be formulated as an optimization requirement:
minimize a cost criteria such as achieving all actions as
early as possible or using the least costly resources. This
may be specified in PDDL as:

metric minimize (resource-cost)

Solvers such as Metric-FF [44] enable these optimizations
to be specified during the planning process. Note that
AI-planning solvers use symbolic reasoning. They are
thus not as data-dependent as traditional ML or RL
techniques.

5.2 Queueing network models

To evaluate efficient allocation of resources within net-
work slices, we make use of queueing network models.

Table 4 – Queueing network metrics.

Vi Average number of times packet visits resource i
Si Mean service time per packet at resource i
Ui Utilization of resource i
Qi Queue length at resource i
Xi Throughput of resource i
X Throughput of the system
Di Service demand of resource i
N Average number of packets in the system
R Average response time of the system
Z Mean think time of a terminal user

Queueing network models have been used to perform
performance modelling and analysis of computer sys-
tems and networks. Fundamental laws applicable to
queueing networks have been proposed using the met-
rics in Table 4. We briefly review them; see [9] for further
details.

– Utilization law: utilization U is the fraction of time the
resource is busy and is dependent on throughput X
and service times S. Resources with high utilization
cause bottlenecks.

Ui = Xi · Si (1)

– Service demand law: total average service time re-
quired by a packet at resource i, denoted Di is depen-
dent on the visits Vi and service times Si.

Di = Vi · Si =
Ui

X
(2)

– Little’s law: if there are N users in the system, each
with think times Z (time waiting between interactions
with the system) and the throughput rate X producing
a wait time R, the following relationship applies:

N = X · (R + Z) (3)

5.2.1 Java Modelling Tools

We implement the queueing models using the Java Mod-
elling Tools simulator:

– Queueing station: The arriving packets join the queue
and wait to receive service from the first idle server.

– Multiple class models consist of C classes, with varying
traffic patterns and service demand at each station.
Packets are ordered according to their arrival time but
packets with higher priority jump ahead of packets
with lower priority.

– Routing station: In the routing section, for each class,
the generated packets are routed to the devices con-
nected to the analyzed station according to various
routing strategies. The routing probability for each
outgoing link must be defined.

– Performance parameters: Three typical parameters are
studied:
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1. Throughput (of a station or of the entire system):
At the station level it refers to the rate at which
customers depart from a station, i.e., the number of
requests completed in a time unit. These values are
described per each class.

2. Response time (of a station or of the entire system):
At the station level it refers to the average time spent
at that station by a customer for a single visit (sum
of queue time and service time). At the system level,
it refers to the average time a customer spends in the
system in order to receive services from the various
stations it visits.

3. Utilization (of a station): percentage of time a station
is used (i.e., busy), evaluated over the simulation
run. It ranges from 0 (0%), when the station is
always idle, to a maximum of 1 (100%), when the
station is constantly busy servicing customers for
the entire simulation run.

– What-if analysis: increase in traffic of all classes keep-
ing constant the population mix.

6. CONDENSE SERVICE IMF DECOMPOSI-
TION

We will now describe the knowledge base, intent reasoner
and agents developed at the service IMF level.

6.1 Knowledge base

The first step in initializing the service IMF is to specify
the services and 5G QoS Identifier (5QI) requirements
[37]. The 5QI values provide standardized templates for
service specification QoS related to bit rate guarantees,
packet delay budget and packet loss. These are initialized
at a particular time of day with eMBB premium, eMBB
normal, fixed wireless access and best effort services. The
specification is done in resource description format2.

Listing 1 – Knowledge base RDF.

1 tel:EMBB_Premium_Service
2 a tel:EMBB_Premium_Service ;
3 tel:day 01042023;
4 tel:hour 11;
5 tel:5QI 8 .
6 tel:EMBB_Normal_Service
7 a tel:EMBB_Normal_Service;
8 tel:day 01042023;
9 tel:hour 11;

10 tel:5QI 9 .
11 tel:FWA_Service
12 a tel:FWA_Service ;
13 tel:day 01042023;
14 tel:hour 11;
15 tel:5QI 9 .
16 tel:Best_Effort_Service
17 a tel:Best_Effort_Service ;
18 tel:day 01042023;
19 tel:hour 11;

2 https://www.w3.org/RDF/

20 tel:5QI 12 .

As specified in Listing 1, there are multiple types of
services such as EMBB_Premium_Service and FWA_Service.
These services are initialized at particular hours, days
with a target 5QI value. This knowledge base can be
appended or modified with new artefacts.

6.2 Intents and expectations

Once the knowledge base artefacts have been initialized,
the intents are specified according to the TM Forum
standard [5] composed of the following information:

1. Intent name: an identifier for human readability.
2. Expectations: expectations of observed metrics are ex-

pressed with semantics such as MinMetricExpectation:
minimum value to satisfy the intent; MaxMetricExpectation:
maximum value to satisfy the intent.

3. Target: target object for this expectation (e.g. network
service or slice).

4. Params: metric and value for expectation (e.g. through-
put).

Listing 2 – Intent expectations RDF.

1 cc:eMBB-DL-throughput-intent
2 a cc:Intent ;
3 cc:hasExpectation
4 [ a cc:MinMetricExpectation ;
5 cc:target tel:EMBB_Premium_Service ;
6 cc:params [ tel:averageThroughput 500];
7 ] .
8 cc:eMBB-DL-latency-intent
9 a cc:Intent ;

10 cc:hasExpectation
11 [ a cc:MaxMetricExpectation ;
12 cc:target tel:EMBB_Premium_Service ;
13 cc:params [ tel:averageLatency 100 ];
14 ] .

The example in Listing 2 specifies the eMBB premium
service, the averageThroughput target to be 500 Mbps
and the averageLatency to be 100 ms. It follows the
standardized intent templates that are being specified
within TM Forum [5] and 3GPP [29].

6.3 Agents

As presented in Fig. 6, there are multiple agents partici-
pating in the process of intent management. The agents
register to particular phases (grounding, proposal, eval-
uation, actuation) to the IMF using python templates
that may be converted to RDF specifications. Note that
there may be multiple agents that could participate in
each phase. Furthermore, the phases may be expanded
to other logical steps such as root-cause analysis or pre-
dictions, dependent on the use case.
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Grounding agent

Based on current value of network load, the grounding 
agent monitors the average throughput and average la-
tency expectations. As seen in Listing 3, the target expec-
tations for EMBB_Premium_Service are not met, causing 
an issue to be raised.

Listing 3 – Grounding agent RDF.

1 cc:issue1
2 a cc:UnmetMetricExpectation ;
3 cc:condition "=<" ;
4 cc:currvalue 108.8 ;
5 cc:expectation _:bn2 ;
6 cc:metric im_telco:averageLatency ;
7 cc:target im_telco:EMBB_Premium_Service ;
8 cc:value 100 .
9

10 cc:issue2
11 a cc:UnmetMetricExpectation ;
12 cc:condition ">=" ;
13 cc:currvalue 302.0 ;
14 cc:expectation _:bn2 ;
15 cc:metric im_telco:averageThroughput ;
16 cc:target im_telco:EMBB_Premium_Service ;
17 cc:value 500 .

The objective is to take the current values (currvalue) and
bring them close to intent targets (value).

Proposal agent

As the intents are not met, there are goals on throughput
and latency that need to be decomposed and provided
to the RAN, transport and core subnets. To subdivide
the latency goals, we make use of AI planning agents.
The domain and problem files of the agents are shown in
Listing 4. Different ranges of latencies may be provided
as targets. These latencies at the RAN, transport and
core level can be broken down into further granularity.
As seen in Listing 4, lines 6-12, the PDDL domains have
precondition steps, to be checked before triggering the
action and effect steps to determine the output of ac-
tions. We also notice an action_cost value that comes
from historical statistics on latency targets achievable by
each sub-domain (PROBE data from IMFs). This value of
cost captures the probability of expectations not being
fulfilled (e.g. a stringent latency target may be repeatedly
violated). The target latency of 100ms is then broken
down to expectations at the RAN, transport and core
level.

Listing 4 – Service IMF PDDL proposal agents.

1 #PDDL Domain
2
3 (:action RAN_latency_50
4 :parameters
5 (?r - RAN ?t - transport ?l - metric )
6 :precondition
7 (and (unallocated_ran ?l ?r) )
8 :effect
9 (and (not (unallocated_ran ?l ?r))

10 (unallocated_transport ?l ?t)
11 (decrease (target_latency) 50)
12 (increase (action_cost) 20) ))
13
14 (:action Transport_latency_30
15 :parameters
16 (?t - transport ?c - core ?l - metric )
17 :precondition
18 (and (unallocated_transport ?l ?t) )
19 :effect
20 (and (not (unallocated_transport ?l ?t))
21 (unallocated_core ?l ?c)
22 (decrease (target_latency) 30)
23 (increase (action_cost) 30) ))
24
25 (:action Core_latency_20
26 :parameters (?c - core ?l - metric )
27 :precondition
28 (and (unallocated_core ?l ?c) )
29 :effect
30 (and (not (unallocated_core ?l ?c))
31 (decomposed ?l)
32 (decrease (target_latency) 20)
33 (increase (action_cost) 30) ))
34
35 #PDDL Problem
36
37 (:init
38 (unallocated_ran latency RAN1)
39 (= (action_cost) 0)
40 (= (target_latency) 100))
41
42 (:goal
43 (and (allocated latency)
44 (= (target_latency) 0)))
45
46 (:metric minimize (action_cost)) )

Outputs of these decomposed planners are further pre-
sented in Section 10. The advantage of these planners is
that they may be rerun with new problem sets without
the need to chain domain files. The decomposition is
based on the values of the BEST API response that is re-
turned (the most severe requirement the handler would
be able to successfully comply with). Thus, there can
be multiple ways to decompose the same intent, as long
as they are within the stringent limits provided by each
subnet IMF. If there are changes to the BEST data returned
from lower IMFs, the planners can re-decompose the
target expectations. Using an AI planner thus brings in
more dynamism compared to more static optimization
or rule-based techniques.

Planners have stringent preconditions and effects to be
maintained for relevant plans. Thus we can encode
operators such as min (throughput), + (latency) and ×
(availability) to ensure valid decompositions. Further
details on the decomposition approach may be found
in [41]. There is a further evaluation agent that can
rank the decompositions based on COST or efficacy of
decompositions.

This process demonstrates a solution towards Problem
1: decomposition of high-level service expectations to
requirements at individual subnets via intent interfaces.
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Figure 9 – RAN PRB partitioning.

7. CONDENSE RAN INTENT MANAGEMENT
FUNCTION

Once the intents arrive to the RAN, actions may be taken
at the RAN subnet level to change configurations.

7.1 Knowledge base

We make use of Physical Resource Block (PRB) partition-
ing and priorities to achieve the targets for throughput
and latency [15, 16]. The 5G throughput and PRB alloca-
tions are done according to [45], as represented in Fig. 9.
Depending on the spectrum, allocated bandwidth and
selected subcarriers, the number of PRBs may be calcu-
lated. In addition to the number of PRBs, the throughput
is affected by the modulation scheme. The supported
data rate is presented in [45] and presented in Appendix
A.

An example of the initialized knowledge base is presented
in Listing 5 with the slice specifications and allocated
partition shares.

Listing 5 – RAN knowledge base.

1 tel:slice1
2 a tel:Slice ;
3 tel:id "slice1";
4 tel:spectrum "n5";
5 tel:total_prb 273;
6 tel:mimo 2 .
7
8 tel:P1_slice
9 a tel:Slice_config ;

10 tel:day 01042023;
11 tel:hour 11;
12 tel:prb_share 10 .
13
14 tel:EMBB_Premium_Service
15 a tel:EMBB_Premium_Service ;
16 tel:day 01042023;
17 tel:hour 11;
18 tel:5QI 8;
19 tel:has_topup "yes";
20 tel:slice "P1_slice" .

21
22 tel:EMBB_Normal_Service
23 a tel:EMBB_Normal_Service ;
24 tel:day 01042023;
25 tel:hour 11;
26 tel:5QI 9;
27 tel:has_topup "yes";
28 tel:slice "P1_slice" .

The total_prb is initialized to be 273 and we provide 10
per cent of the share to the P1_slice. Both
EMBB_Premium_Service and EMBB_Normal_Service are asso-
ciated with the slice. We notice here that the services have
the option to have PRB “top-up” in case of deteriorating
QoS. This process would enable adding additional PRBs
to the partition to improve service performance.

7.2 Intents and expectations

RAN operational intents

In addition to the sub-intents provided by the service
layer, the RAN can have additional intents [15, 16].

Listing 6 – RAN operational intents.

1 cc:p1-partition-intent
2 a cc:Intent ;
3 cc:hasExpectation
4 [ a cc:MaxMetricExpectation ;
5 cc:target tel:P1_slice ;
6 cc:params [ tel:unused_PRB 1 ] ;
7 ] ,
8 [ a cc:MaxMetricExpectation ;
9 cc:target tel:P1_slice ;

10 cc:params [ tel:prb_util 95 ] ;
11 ] ,
12 [ a cc:MinMetricExpectation ;
13 cc:target tel:P1_slice ;
14 cc:params [ tel:prb_share 10 ] ;
15 ] .

As presented in Listing 6, the operational expectations
can include limits on unused PRBs (optimize usage), max-
imum PRB utilization (to trigger additional resources)
and minimum guaranteed shares (fairness). The proposal
agents have to keep these restrictions in account while
allocating resources to slices.

7.3 Agents

Grounding agent

The grounding agent forecasts/monitors the current through-
put, latency, PRB utilization and Modulation and Coding
Scheme (MCS) index for the service. As we notice in
Listing 7, the targets for throughput and latency are not
met, triggering intent issues and proposals.
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1 Grounding Agent forecasted 302.0 Throughput
for eMBB DL Premium Service service 13h
2023 02 01

2 Grounding Agent forecasted 96.20000000000002
PRButil for eMBB DL Premium Service
service 13h 2023 02 01

3 Grounding Agent forecasted 24.64 PDUsessions
for eMBB DL Premium Service service 13h
2023 02 01

4 Grounding Agent forecasted 11.6 MCSindex for
eMBB DL Premium Service service 13h 2023
02 01

5 Grounding Agent forecasted 51.8 latency for
eMBB DL Premium Service service 13h 2023
02 01

Proposal agents

The AI planning agents for the RAN subnet propose
actions such as topping up partition share, ramping down
partition share or changing priority of the service (Listing
8). These actions are encoded with preconditions and
effects that reflect the operational intent constraints. A
plan is produced (Listing 8 line 30) to meet the throughput
target of 500 Mbps and intent target of 40 ms.

Listing 8 – RAN PDDL proposal agents.

1 (:action topup_partition_percent_share
2 :parameters
3 (?service - service ?band - G5_band
4 ?partition - slice_partition)
5 :precondition (and
6 (suboptimal ?service ?band ?partition )
7 (underutilized eMBB_normal n5 Residual)
8 (<= (PRB_share ?service)
9 (PRB_share_req ?service)))

10 :effect (and
11 (assign (PRB_share ?service)
12 (PRB_share_req ?service))
13 (not (suboptimal ?service ?band
14 ?partition ))
15 (alloc ?service ?band ?partition )))
16
17 (:action change_priority
18 :parameters
19 (?service - service ?band - G5_band
20 ?partition - slice_partition)
21 :precondition (and
22 (low_priority ?service ?band ?partition))
23 :effect (and
24 (not (low_priority ?service ?band
25 ?partition))
26 (high_priority ?service ?band
27 ?partition)))
28
29 # Plan:
30 0: (change_priority embb_premium n5 p1) [1]
31 0: (topup_partition_percent_share embb_premium

n5 p1) [1]
32 1: (allocate_partition_n5 embb_premium n5 p1)

[1]

As provided in Listing 8, lines 1-27, actions such as top-
ping up partition and changing priority may be enabled
actions at the RAN IMF domain. As provided in Listing
8, lines 29-32, the planned actions to meet targets are

Figure 10 – Queueing network model for RAN PRB allocation.

changing priority of the eMBB premium service and top-
ping up the partition of the slice associate with the eMBB
premium service. Depending on the targets set for each
scenario, the planner may suggest alternate actions.

Evaluation agent

To evaluate the output proposed by the planner, we
make use of a queueing network model with multiclass
queues. Fig. 10 provides a queueing model in Java
Modelling Tools3 that has 10 queues with each queues
representing 10 per cent of PRB shares. Based on router
1, the different classes of services (eMBB, FWA) may be
allocated resources. The throughput and latency are
affected as additional resources are allocated or removed
per slice.

An example of the output of the RAN network slicing is
presented later in Section 10.

8. CONDENSE TRANSPORT INTENT MAN-
AGEMENT FUNCTION

We describe the knowledge base, action space and intents
specified within the transport IMF.

8.1 Knowledge base

The transport network in typical 5G/6G network slicing
use cases consists of edge routers, front-haul switches
and backhaul switch connectivity to the core. As seen in
Fig. 11, these routers are to be configured effectively to
meet the end-to-end slice intent requirements.

3 https://jmt.sourceforge.net
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Figure 11 – 5G/6G transport network with multiple switches/routers.

Rather than differentiating network traffic based on the
requirements of an individual flow, DiffServ [46] operates
on the principle of traffic classification, placing each data
packet into one of a limited number of traffic classes. Each
router on the network is then configured to differentiate
traffic based on its class. Each traffic class can be managed
differently, ensuring preferential treatment for higher-
priority traffic on the network. DiffServ uses a 6-bit
Differentiated Services Code Point (DSCP) in the 6-bit
Differentiated Services field (DS field) in the IP header
for packet classification purposes.

The DSCP forwarding classes mapped to services may
be specified in the knowledge base as in Listing 9, with
class-of-service 1.

Listing 9 – Transport knowledge base.

1 tel:EMBB_Premium_Service
2 a tel:EMBB_Premium_Service ;
3 tel:day 01042023;
4 tel:hour 11;
5 tel:5QI 8;
6 tel:class-of-service 1 .
7
8 tel:EMBB_Normal_Service
9 a tel:EMBB_Normal_Service ;

10 tel:day 01042023;
11 tel:hour 11;
12 tel:5QI 9;
13 tel:class-of-service 1 .

8.2 Intents and expectations

The sub-intents to this IMF are provided here, where tar-
gets for throughput and latency are decomposed towards
the transport domain in Listing 10.

Listing 10 – Transport IMF expectations.

1 cc:eMBB-DL-throughput-intent
2 a cc:Intent ;
3 cc:hasExpectation
4 [ a cc:MinMetricExpectation ;
5 cc:target tel:EMBB_Premium_Service ;
6 cc:params [ tel:averageThroughput 500];
7 ] .
8 cc:eMBB-DL-latency-intent
9 a cc:Intent ;

10 cc:hasExpectation
11 [ a cc:MaxMetricExpectation ;
12 cc:target tel:EMBB_Premium_Service ;
13 cc:params [ tel:averageLatency 30 ] ;

14 ] .

Note that the target averageLatency is set to 30 ms based
on the decomposition step.

8.3 Agents

Proposal agents

Given the subdivided intent from the service IMF on
throughput and latency, the proposal agents set the ap-
propriate DSCP service class, as well as limit the rate of
transmission. This ensures that the routers and switches
are configured to meet appropriate expectation targets.

Listing 11 – Transport PDDL proposal agents.

1 (:action set_service_class
2 :parameters
3 (?service1 - service
4 ?slice1 - slice_partition)
5 :precondition (and
6 (< queue_utilization 70)
7 (latency_not_met ?service1 ?slice1))
8 :effect
9 (and (not (latency_not_met

10 ?service1 ?slice1))
11 (latency_met ?service1 ?slice1)
12 (assign (latency ?service1) 30 )))
13
14 (:action set_rate_limit
15 :parameters
16 (?service1 - service
17 ?slice1 - slice_partition)
18 :precondition
19 (and (< queue_utilization 70)
20 (throughput_not_met
21 ?service1 ?slice1))
22 :effect
23 (and (not (throughput_not_met
24 ?service1 ?slice1))
25 (throughput_met ?service1 ?slice1)
26 (assign (throughput ?service1) 500 )))
27
28 # Plan:
29 0: (set_rate_limit embb_normal p1) [1]
30 1: (set_service_class embb_premium

assured_forwarding) [1]

As provided in Listing 11, lines 1-26, actions such as
setting DSCP service class or setting rate limits may be
enabled actions at the transport IMF domain. As pro-
vided in Listing 11, lines 28-30, the planned actions to
meet targets are setting rate limits on the eMBB nor-
mal service and setting assured forwarding for the eMBB
premium service. These actions ensure that both through-
put and latency intent expectations of these services are
reached.
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Figure 12 – Queueing network model for a transport router.

Evaluation agent

Once the proposals are made, we simulate the traffic
within the queueing network model for a router with
eight queues, as shown in Fig. 12 [19]. This queuing
model may be used to evaluate the efficacy of the pro-
posals.

An example of the output of the transport network slicing
is presented later in Section 10.

9. CONDENSE CORE INTENT MANAGEMENT
FUNCTION

We describe the action space, intents and outputs of the
core IMF.

9.1 Knowledge base

Intents provided to the core would be used to ensure the
appropriate 5QI values [47] and the container capacities
needed for the network functions. As seen in Fig. 13,
there is a fat tree network assumed at the core that can
be connected to multiple pods. The pods can be scaled
up/down in conjunction with the 5QI requirements.

9.2 Intents and expectations

In addition to the intents on throughput and latency
propagated by the service IMF, there are additional ex-
pectations on pod utilization. We see in Listing 12, intents
on the maximum and minimum utilization levels that
can trigger actions at the pod level.

Figure 13 – Fat tree networks and containers.

Listing 12 – Core IMF expectations.

1 cc:pod-intent
2 a cc:Intent ;
3 cc:hasExpectation
4 [ a cc:MaxMetricExpectation ;
5 cc:target tel:EMBB_Premium_Service ;
6 cc:params [ tel:pod_utilization 80] ;] ,
7 [ a cc:MinMetricExpectation ;
8 cc:target tel:EMBB_Normal_Service ;
9 cc:params [ tel:pod_utilization 20] ;] .

9.3 Agents

Proposal agent

The proposal agent at the core level in Listing 13 can
suggest pod scale up/down and set 5QI values. These
agents are instantiated to resolve issues created by the
intents.

Listing 13 – Core PDDL proposal agents.

1 (:action pod_scale_up
2 :parameters ( ?service1 - service ?slice1 -

slice_partition)
3 :precondition (and
4 (throughput_not_met ?service1 ?slice1)
5 (< (pod_utilization ?service1) 80))
6 :effect (and
7 (not (throughput_not_met ?service1 ?slice1)

)
8 (throughput_met ?service1 ?slice1)
9 (assign (throughput ?service1) 500 )))

10
11 (:action set_5QI
12 :parameters ( ?service1 - service ?slice1 -

slice_partition)
13 :precondition (and
14 (>= (pod_utilization ?service1) 80))
15 :effect (and
16 (assign (pod_utilization ?service1) 30 )))
17
18 # Plan:
19 1: (set_5qi embb_premium slice1) [1]
20 1: (pod_scale_up embb_premium slice1) [1]

As provided in Listing 13, lines 1-16, actions such as pod
scale up or changing 5QI values may be proposed at
the core IMF domain. As provided in Listing 13, lines
18-20, the planned actions to meet targets are setting 5QI
and pod scale up for the eMBB premium service. These
actions ensure that both throughput and latency intent
expectations of these services are reached.
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Figure 14 – Queueing network model of a fat tree network.

Table 5 – Experimental setting.

Domain Parameter Value

Service Number of services 4 (eMBB premium, eMBB normal, FWA, best effort)
eMBB Premium throughput expectation 500 Mbps
eMBB Premium latency expectation 100 ms
eMBB Premium users [min, Max] [40, 160]
eMBB Premium user arrival Poisson

RAN Number of cell sites 1
Number of PRBs 273
Number of initial RAN slice partitions 2
Percentage of PRBs per partition 10

Transport Number of switches 1
Number of internal queues 8

Core Number of containers 8
Number of fabric layers 3 (leaf, spine, super-spine)
Leaf interconnect capacity 10 Gbps
Spine interconnect capacity 40 Gbps
Super-spine interconnect capacity 100 Gbps

Evaluation

The evaluation is done on the queueing network pre-
sented in Fig. 14. It demonstrates the flow of traffic in a
fat-tree network and the resource utilization at individual
pods. It showcases eight container nodes with leaf, spine
and super-spine network fabric. The network load can be
load-balanced or make use of actions such as pod scale
up to meet target requirements.

An example of the output of the core network slicing is
presented later in Section 10.

10. EXPERIMENTAL EVALUATION

To create a realistic scenario for network slicing, we make
use of the use case presented in Fig. 2 and described
further in Section 6. As specified by a mobile network
operator in Asia, the priority eMBB users are expected
to meet the target requirements. This instance specifies

the averageThroughput target to be 500 Mbps and the 
averageLatency to be 100 ms.

Table 5 presents the experimental settings used for the 
evaluation. Four services are considered with the eMBB 
premium service expectations chosen for assurance. The 
RAN has 273 physical resource blocks that may be allo-
cated to radio resource partitions. Transport has eight 
virtual queues within the switch that has to be configured. 
The core has eight containers with leaf-spine-superspine 
network fabric.

Table 6 presents a snapshot of the dataset from an op-
erator eMBB deployment that provides historical PRB 
utilization, active users and user throughput uplink (UL) 
and downlink (DL). This dataset is used by the ground-
ing agent to ground the hourly increase in eMBB traffic 
growth. There can be hourly fluctuations in traffic pat-
terns requiring the assurance agent to resolve the issues.
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Table 6 – eMBB service dataset.

Cell Date UL PRB util UL active users UL user throughput DL PRB util DL active users DL user throughput

NE618 11/01/19 0.932115467 1.879057284 1032.072471 91.16519295 1.457330379 10277.46439
NE618 12/01/19 0.955579017 1.879057284 1032.072471 93.4983892 1.490459507 10277.46439
NE618 01/01/20 0.979042567 1.879057284 1032.072471 95.83158545 1.523588635 10277.46439
NE618 02/01/20 1.002506118 1.879057284 1032.072471 98.1647817 1.556717763 10277.46439

Table 7 – Events seen during intent decomposition.

Report Events

Grounding Agent Grounding Agent estimates 302.0 Throughput for eMBB DL Premium Service service 13h 2023 02 01
Grounding Agent estimates 108.8 Latency for eMBB DL Premium Service service 13h 2023 02 01

Proposal Agent 0: ran latency 40 ran1 transport1 latency
1: transport latency 30 transport1 core1 latency
2: core latency 30 core1 latency
3: decompose latency

Evaluation Agent Decomposition Plan 1 selected for eMBB DL Premium Service 2023 02
Cognitive Reasoner Intent Decomposed to meet target intents 500 Mbps and 100 ms for service eMBB DL premium

The grounding can be done in two ways to create intent 
issues:
1. Use the current state of the network to provide an

estimate of service metrics.
2. Use the historic load on the network to forecast growth

in traffic. The assurance can then be based on predicted
deviations that may be hours or days away. Note that
there may be uncertainties or suboptimal allocation of
resource depending on the time horizon of forecasts.

The assurance actions may be then planned to mitigate
issues created due to the grounding in either of these
cases.

Service IMF decomposition

Once grounding is done (Table 7) and issues are generated,
the first step would be to create decomposed targets
(using the PDDL specification in Section 6). Here is a
solution using Metric FF [44] plan solvers:

Listing 14 – Service IMF PDDL plan.

1 #Plan
2 0: ran latency 40 ran1 transport1 latency
3 1: transport latency 30 transport1 core1

latency
4 2: core latency 30 core1 latency
5 3: decompose latency

Listing 14 showcases an example where the latency target
of 100 ms is broken down to 40 ms for the RAN, 30 ms for
transport and 30 ms for the core. The final decomposed
actions to be sent to the lower subnets from the service
IMF are provided in Table 7. We see that the targets on
throughput are 500 Mbps for all subnets. For the latency,
it is additive to meet the 100 ms target.

RAN slicing

The targets for the RAN IMF are average throughput of
500 Mbps and latency of 40 ms. The plan output (based
on PDDL specification in Section 7) is:

Listing 15 – RAN PDDL plan.

1 # Plan:
2 0: (change_priority embb_premium n5 p1) [1]
3 0: (topup_partition_percent_share embb_premium

n5 p1) [1]
4 1: (allocate_partition_n5 embb_premium n5 p1)

[1]

Listing 15 showcases the planned RAN IMF actions, such
as changing priority and topping up partitions. Fig. 15
shows the what-if analysis generated by the queueing
model (increase in traffic N). We notice in Fig. 15 that the
throughput increases with the plan implementation, with
positive effect also to the fixed wireless access service.
However, this is traded offwith latency increase, which
is still within the 40 ms target.

Based on the chosen plan, the actuation takes place with
17 per cent PRBs topped up. The issue is resolved and
the RAN intents are met.

Listing 16 – RAN events.

1 Plan actuated with new schedule , 17 percent
Physical Resource Blocks for eMBB DL
premium in 13h 2023 02 01

2 Issue Resolved Average throughput 500 Mbps,
Average Latency 40 ms for eMBB DL premium
in 13h 2023 02 01

Listing 16 showcases that after the PRBs have been topped
up, the throughput at the RAN IMF reaches target for
the eMBB premium service. As seen in Fig. 18, a top-
up for a premium eMBB service is triggered at hour 4,
which ensures SLA compliance. An alternative case with
no top-up option produces an SLA violation, despite
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Figure 15 – RAN throughput and latency estimated improvements.
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Figure 16 – Transport throughput and latency estimated improvements.

residual resources being available. Thus, it is crucial to
dynamically modify the resources for efficient service
and slice management.

Transport slicing

An example output of the IMF is presented below that
ensures that the intent expectations (based on PDDL
specification in Section 8) are met:

Listing 17 – Transport PDDL plans.

1 # Plan:
2 0: (set_rate_limit embb_normal p1) [1]
3 1: (set_service_class embb_premium

assured_forwarding) [1]

Listing 17 showcases the planned transport IMF actions
such as setting rate limits and setting service class. We no-
tice from Fig. 16 that the throughput and latency improve
for the premium service. Thus the new configuration

may be applied to meet the intent requirements.

Core slicing

Similarly, the core slicing is done according to the pro-
posals provided by agents (based on PDDL specification
in Section 9):

Listing 18 – Core PDDL plans.

1 # Plan:
2 1: (set_5qi embb_premium slice1) [1]
3 1: (pod_scale_up embb_premium slice1) [1]

Listing 18 showcases the planned core IMF actions such
as setting 5QI and scaling up pods. We notice an im-
provement in latency and throughput in Fig. 17 after
action changes.

This process of service IMF decomposition and allocation
of resources across the RAN, transport and core subnets
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Figure 17 – Core throughput and latency estimated improvements.

Figure 18 – Service assurance example with PRB top-up.

is envisioned to be non-real time. As slice reconfigura-
tions are not triggered in the seconds time-scale, they can
complete the intent reasoning, AI planning proposals,
queueing evaluations and actuations in a matter of min-
utes. The outputs can be written to policy rules that may
be applied to near real-time configuration engines.

10.1 Multi-slice PRB partitioning

We further show an example of autonomous decisions
taken at the RAN, transport and core levels in the multi-
slice scenario of Fig. 2 and in Section 6. The simulator
using realistic scheduling decisions is based on partition
sizes, priorities and number of user equipment (UE). The
initial state of the network is shown in Fig. 19 where the
service and level traffic is showcased. Here we notice that
there is deterioration in the eMBB premium service target
of 500 Mbps average throughput. When the intent of

500 Mbps needs to be met for eMBB, Condense proposes
automated actions such as setting partition changes in
the RAN, DSCP class in transport and appropriate 5QI
at the core. These changes impact the observed outputs
in Fig. 20, where the higher priority eMBB traffic reaches
the target.

As the intents can be dynamic and be based on traffic
patterns, we simulate another case in Fig. 21. With lower
traffic in eMBB premium, the system can now satisfy
the FWA throughput target of 400 Mbps. Thus, given
system capacity, Condense can satisfy multiple intent
requirements in parallel.

Via the use of the RAN, transport and core slicing ac-
tions, we demonstrate a solution to Problem 2: the ability
of AI agents to autonomously assure end-to-end slice
requirements with appropriate actions.
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Figure 19 – Initial observations for service and UE level traffic.

Figure 20 – Condense reconfigured observations for service and UE level traffic (eMBB premium intent).

Figure 21 – Condense reconfigured observations for service and UE level traffic (eMBB premium and FWA intent).

Figure 22 – Expectations at each level aggregated at the service IMF.

10.2 Condense feedback to service IMF

As presented in Table 8, the expectations of the service
IMF are met as a result of individual subnets meeting
the required targets. These values are reported back via
intent reports [48] to the service IMF. However, as seen
in Fig. 22, when the expectations are not successfully
met, there is a need for replanning. The planner can
be used in two ways: (i) If the goal remains the same,
the cost function may be updated to reflect that the
targets were not met; (ii) in case the targets are changed,
the planner can be rerun with the new goals (common

domain file). We notice the new plans with changes in
target expectations shown in Listing 19.

Listing 19 – Replanning with feedback.

1 ## change in cost
2 0: ran latency 30 ran1 transport1 latency
3 1: transport latency 40 transport1 core1

latency
4 2: core latency 30 core1 latency
5
6 ## change in latency goal to 140
7 0: ran latency 50 ran1 transport1 latency
8 1: transport latency 50 transport1 core1

latency
9 2: core latency 40 core1 latency

As seen in Listing 19, in the first case, there may be
updating of the cost function for planning, resulting in
new decompositions. In the second case, the intent targets
may change, which would instantiate a new problem file.

This process demonstrates a solution to Problem 3: feed-
back from lower intent management layers and closed
loop control.
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Table 8 – IMF expectations.

IMF Min Throughput Max Latency Target met?

Service 500 Mbps 100 ms Y
RAN 500 Mbps 40 ms Y
Tranport 500 Mbps 30 ms Y
Core 500 Mbps 30 ms Y

11. CONCLUSIONS

The evolution of 5G and 6G networks has brought out the
need for autonomous management of networks. How-
ever, there is limited research work in the end-to-end
network slice assurance front dealing with practical im-
plementation of agents. In this paper, we propose Con-
dense, a novel intent-driven system for end-to-end net-
work slice management. The intents are specified using
TM Forum compliant standards. The system begins with
decomposing intent-driven requirements across multiple
intent management function hierarchies. Through the
extensive use of AI planning agents, resources may be
then efficiently allocated at the RAN, transport and core
levels. AI planning agents using symbolic reasoning as
opposed to data-driven approaches. In addition, evalu-
ation and replanning agents are proposed to provide a
robust framework for intent-driven slicing. The system
is demonstrated over a real-world example with multi-
ple types of intents. The Condense system effectively
demonstrates the autonomous management of network
slices.

In future, we will be deploying this system over a real
testbed to collect network statistics and closed loop con-
figuration data. Further improvements and challenges
within AI-native 6G network architectures are also envi-
sioned within the framework.

A. PHYSICAL RESOURCE BLOCK ALLO-
CATION

Throughput as a result of PRB allocation:

10−6
·

J∑
j=1

(
v( j)
· f ( j)

·Q( j)
m · Rm ·

12·N( j)
PRB

Tµ
·

(
1 −OH( j)

))
S (4)

– J is the number of aggregated carriers,
– v( j) is the number of MIMO layers per carrier,
– f ( j) is the scaling factor per carrier in the range [0.4, 1],
– Q( j)

m is the modulation order per carrier,
– Rm is the modulation code rate divided by 2048,
– Tµ is the average OFDM symbol duration in a subframe

for numerology µ, calculated as 10−3/(14 · 2µ),
– N( j)

PRB is the number of physical resource blocks per
carrier j, for the given bandwidth and numerology,

– OH is the overhead in range [0.08, 0.18],
– and S is the symbols allocation which determines how

much of a slot is dedicated to uplink or downlink.

In typical scenarios, parameters that can be configured
are NPRB and the modulation scheme (Qm and Rm). Each
PRB partition can be configured with a share of resources
for which the users belonging to the partition has priority.
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