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Accurate forecasting of Downlink Throughput Volume (DLThpVol) at the beam level is essential 
for improving resource management in modern communication networks. This study addresses the 

challenges posed by complex, high-dimensional spatio-temporal traffic data, leveraging multivariate 
time series that include critical factors such as Physical Resource Block (PRB) utilization and user 
count. Recent benchmarks on traditional and deep learning models (e.g., iTransformer, PatchTST, 
DLinear) achieve Mean Absolute Errors (MAEs) ranging from 0.1967 to 0.2005 on short-term 
targets and up to 0.2352 on longer-term forecasts, but opportunities remain for improvement through 
domain-informed feature engineering. 

We propose a dual-pipeline Gradient Boosting Decision Tree (GBDT)-based framework for beam-
level DLThpVol prediction that incorporates carefully engineered temporal and spatial features 

(e.g., PRB utilization dynamics, beam-level user clustering). Our models achieve MAEs of 0.1919 
(short-term) and 0.2261 (long-term), outperforming several deep learning benchmarks by up to 
11.4% on short-term forecasts. These results demonstrate that interpretable, feature-driven ensemble 
learners can provide competitive forecasting performance while maintaining computational 
efficiency. 

Although the work does not directly implement congestion-aware resource allocation, the improved 
forecast accuracy lays the foundation for future studies on predictive resource management, such as 
PRB provisioning and energy-efficient beam scheduling. Our findings highlight the importance of 

combining domain knowledge with interpretable machine learning for advancing spatio-temporal 
traffic forecasting in communication networks.  
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1. INTRODUCTION

The exponential growth of mobile data traffic, driven by the proliferation of smart devices and 

bandwidth-intensive applications, has placed unprecedented strain on communication network 

management, particularly in the areas of traffic forecasting and dynamic resource allocation 

[1, 2]. Accurate spatio-temporal forecasting of network traffic is essential to ensure Quality of 

Service (QoS), minimize congestion, and optimize the use of network resources [3]. While 

traditional cell-level traffic prediction methods have provided foundational insights [4], the 

emergence of beamforming and massive Multiple-Input Multiple-Output (MIMO) technologies 

which enable the use of multiple directed beams per cell have facilitated fine-grained traffic 
management at the beam level, where multiple directional beams are deployed per base station 

cell to serve users more efficiently [5, 6]. These technologies demand granular forecasting at the 

beam level to optimize performance and energy efficiency. As a result, the ability to accurately 

predict traffic at the beam level has become increasingly important, especially in the context of 

ultra-dense 5th Generation (5G) networks and beyond [7]. This paradigm shift introduces new 

complexities, as beam-level traffic exhibits finer spatial variability and stronger 

interdependencies between neighboring beams, necessitating advanced modeling 

approaches [8]. 
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Existing traffic forecasting methodologies, such as 

Autoregressive Integrated Moving Average (ARIMA) [9] 

and Holt-Winters exponential smoothing [10], have 

demonstrated utility in low-dimensional, stationary time 

series contexts. However, these models often struggle with 

high-dimensional, nonlinear, and noisy data, which are 

common in modern communication networks. 

Consequently, Machine Learning (ML) techniques have 

gained attention for their ability to model complex, nonlinear 

dependencies in spatio-temporal data [11, 12]. 

Recent advances in machine learning offer promising 

alternatives, particularly GBDT [13] architectures such as 

LightGBM [14] and CatBoost [15]. These ML models excel 

at capturing complex feature interactions and temporal 

dependencies while maintaining computational efficiency 

which is a critical advantage for real-time network 

operations [16]. These ML models have demonstrated strong 

performance on tabular data and multivariate time series 

tasks. GBDT models offer robust feature handling, 

interpretability, and scalability, making them well-suited for 

forecasting tasks involving structured network telemetry.  

Accurate forecasting of Downlink Throughput Volume 

(DLThpVol) at the beam level is essential for optimizing 

resource allocation and enhancing user experience in modern 

wireless networks. Despite significant progress in spatio-

temporal traffic prediction, most existing approaches focus 

on cell or sector-level forecasting, neglecting the fine-

grained spatial resolution enabled by beamforming [8]. 

Furthermore, other methods underutilize multivariate 

operational metrics such as Physical Resource Block (PRB) 

utilization that are strongly correlated with throughput 

dynamics. Additionally, few studies explicitly link improved 

forecasting accuracy to tangible network outcomes, such as 
energy savings or congestion reduction. 

Benchmarking efforts by [17, 18] have established strong 

performance baselines using both traditional and deep 

learning models. For example, models such as iTransformer 

[19], PatchTST [20], and DLinear [21] achieved MAEs 

ranging from 0.1967 to 0.2005 on short-term targets, and up 

to 0.2352 on longer-term forecasts (see Table 1). While these 

results represent significant progress in the field, the 

complex and high-dimensional nature of spatio-temporal 

traffic data leaves room for additional accuracy 

improvements particularly through domain-specific feature 
engineering and interpretable model architectures. 

While these deep learning models benefit from automated 

feature extraction, this often comes at the cost of 

interpretability and significant computational overhead. In 

contrast, a structured feature engineering approach, as 

pursued in this work, allows for the explicit encoding of 

known domain knowledge (e.g., diurnal and weekly cycles) 

into the model and studying the feature importance later after 

training. This strategy aims to create a framework that is not 

only more accurate but also computationally efficient and 

transparent, which are critical requirements for operational 

deployment in real-world network management systems. 

Table 1 – Comparative MAE scores for short and 

long-term traffic forecasting by [17] 

Target Hist.Avg. iTransformer PatchTST DLinear Transformer 

Week 6 Short 

Term 

0.2108 0.1967 0.1973 0.2005 0.2166 

Week 11 

Long Term 

0.2431 0.2348 0.2343 0.2352 0.2331 

To address these gaps, we challenge the trend of increasing 

model complexity by proposing a GBDT-based framework 
that demonstrates the superior performance of domain-

specific feature engineering combined with computationally-

efficient models. Our approach, leveraging LightGBM and 

CatBoost, is designed not just for performance but for 

practical deployment, prioritizing efficiency and 

transparency over the 'black-box' nature of more complex 

alternatives. Our approach integrates structured feature 

engineering with lightweight, interpretable model design, 

achieving superior performance compared to both traditional 

machine learning models and state-of-the-art deep learning 

benchmarks. Specifically, our framework attains MAEs as 
low as 0.1919 for short-term predictions (Week 6) one week 

after the training period and 0.2261 for long-term forecasts 

(Week 11) 6 weeks after the training period, outperforming 

existing baselines. By explicitly modeling intra-beam 

temporal patterns and inter-beam spatial correlations using 

high-resolution hourly traffic data across multiple base 

stations, our model captures the complex drivers of traffic 

variability with extraordinary granularity. 

The contributions of this work are two-fold: 

• We demonstrate that a GBDT-based forecasting

framework, when combined with deliberate, domain-

specific feature engineering, achieves consistent

performance gains over state-of-the-art deep learning

baselines. Our work provides empirical evidence that

prioritizing an interpretable and computationally-

efficient design can yield superior results compared to

more complex, automated architectures in this domain.

Our LightGBM, CatBoost, and ensemble models

outperform leading automated architectures such as
iTransformer, PatchTST, DLinear, and Transformer by

up to 4.21 percentage points for short-term forecasting

(Week 6) and 5.97 percentage points for long-term

forecasting (Week 11), on average across all evaluated

horizons.

• We introduce a dual-pipeline forecasting design tailored

to short-term and long-term horizons. While the first

contribution focuses on model performance and
interpretability, this second contribution emphasizes

temporal adaptability offering a flexible blueprint for

optimizing forecast accuracy across varying time scales.

This design paradigm generalizes well to other spatio-

temporal prediction domains, including network traffic,

energy load, and mobility forecasting.

ITU Journal on Future and Evolving Technologies, Volume 6, Issue 4, December 2025 

338 ©International Telecommunication Union, 2025



The remainder of this paper is structured as follows: 

Section 2 reviews related work; Section 3 details the 

proposed methodology; Section 4 presents the data and 

feature engineering; Section 5 reports the experimental 

results; and Section 6 provides the conclusion. 

2. LITERATURE REVIEW

Beam-level traffic forecasting has become increasingly 

critical with the emergence of 5G and next generation 

networks, where highly directional beams enable 

unprecedented spatial control over signal distribution [22]. 

Unlike traditional cell-level prediction, beam-level 

forecasting captures usage patterns at a much finer 

granularity, facilitating intelligent resource allocation, 

energy optimization, and congestion mitigation [23], [24]. 

Accurate prediction at the beam level is particularly vital for 

ultra-dense network deployments, where user mobility and 

interference management present significant operational 
challenges [25]. Despite this potential, much of the prior 

research on traffic forecasting has focused on broader spatial 

resolutions such as cells or base stations thereby lacking the 

specificity required for modern, beam-centric 

architectures [26]. 

Time Series Forecasting (TSF) plays a foundational 

methodology for network traffic prediction [27]. Classical 

statistical approaches, including ARIMA [9] and Holt-

Winters exponential smoothing [10], have traditionally been 

used to model time-dependent phenomena. While these 

models are effective at capturing seasonality and linear 
trends, they are inherently limited in high-dimensional, 

nonstationary environments. Their univariate nature further 

restricts their ability to account for complex interactions 

among multiple correlated variables, a critical requirement 

for cellular network traffic analysis [9]. 

To address these limitations, Multivariate Time Series 

Forecasting (MTSF) has emerged as a more expressive 

paradigm, enabling the modeling of multiple interrelated 

time-dependent variables [27]. MTSF techniques allow for 

simultaneous analysis of various traffic features, such as 

Physical Resource Block (PRB) utilization, user count, and 

throughput volume. Early work in this space employed 
multivariate extensions of ARIMA (VARIMA) or state-

space models [28], but these techniques often fail to scale or 

generalize effectively to nonlinear and high-dimensional 

domains. In response, machine learning models particularly 

Gradient Boosting Decision Trees (GBDT) such as 

LightGBM [14] and CatBoost [15] have shown strong 

predictive performance when paired with extensive feature 

engineering [29], [30]. Features such as lag values, rolling 

means, expanding statistics, and temporal encodings provide 

the model with a rich representation of past behaviors, 

allowing it to learn complex nonlinear dependencies in 
multivariate settings [30]. 

In recent literature, spatio-temporal forecasting models have 

increasingly incorporated beam-level data to improve 

prediction granularity and accuracy [31]. Deep learning 

methods, including Recurrent Neural Networks (RNNs) 

[32], Long Short-Term Memory (LSTM) networks [33], and 

more recently, transformer-based architectures [34], have 

been widely adopted for modeling time-dependent 

sequences with spatial embeddings. While these models 

achieve state-of-the-art accuracy, they are often resource-

intensive and difficult to interpret. Conversely, studies have 

demonstrated that GBDT models, though less complex, can 

rival deep models when equipped with well-designed spatio-

temporal features especially in contexts where real-time 

inference, computational efficiency, and model 

interpretability are essential [30], [35]. However, relatively 
little work has focused specifically on beam-level traffic 

forecasting using GBDTs, leaving a gap in understanding 

their comparative effectiveness at this fine spatial resolution. 

This study aims to address this gap by proposing a dual-

pipeline approach for beam-level traffic forecasting using 

GBDT models. Specifically, we employ two feature 

selection strategies tailored to short-term (Week 6) and long-

term (Week 11) prediction horizons, respectively. The use of 

stratified K-fold cross-validation across base stations 

ensures robust model evaluation, while advanced feature 

engineering including target encoding, lag features, rolling 
statistics, and weekly aggregations enhances predictive 

fidelity. Unlike existing work that either relies heavily on 

deep learning [29], [36] or operates at coarser spatial 

resolutions [16], our approach demonstrates that GBDTs can 

provide competitive performance in beam-level forecasting 

when supported by carefully curated features. 

In summary, this study introduces a novel dual-pipeline 

GBDT-based framework specifically tailored for beam-level 

traffic forecasting, thereby addressing several significant 

gaps in the current literature. While prior work has largely 

focused on deep learning-based spatio-temporal models or 

limited itself to coarser spatial resolutions, our approach 
bridges the methodological divide by demonstrating that 

efficient, interpretable tree-based learners when coupled 

with domain-specific feature engineering can achieve 

competitive performance even at the fine-grained beam 

level. The proposed framework is informed by the need for 

lightweight, deployable models that maintain high accuracy 

and interpretability in real-world network environments, an 

area that has received limited attention despite its practical 

importance. By systematically evaluating GBDT models 

with advanced feature selection and cross-validation 

strategies, this work not only fills the research gap 
concerning interpretable forecasting at beam granularity but 

also establishes a foundation for future exploration of hybrid 

or transformer-based enhancements in network traffic 

prediction. Thus, the present study advances both 

methodological innovation and practical applicability, 

offering actionable insights for network operators and 

guiding future research toward more efficient, sustainable, 

and intelligent communication systems. 
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3. METHODOLOGY

3.1 Problem formulation

We aim to forecast Downlink Throughput Volume 

(DLThpVol) for each base station at hourly intervals. Let: 

denote the dataset, where: 

is the vector of observed network features at time ttt 
(e.g., PRB utilization, active user counts, categorical beam 

IDs) and 

is the corresponding DLThpVol. 

To capture temporal dependencies, we augment with 

derived features to obtain: 

(where p>d), including lagged values, rolling statistics, and 

periodic encodings. The forecasting problem then reduces to 

learning a mapping function: 

that predicts future DLThpVol: 

The model is trained to minimize the empirical loss over all 

observations. We adopt the Mean Absolute Error (MAE) as 

the loss function: 

3.2 Gradient boosting framework 

We model f as an additive ensemble of M regression trees: 

Here,  predicts an adjustment to the previous 

ensemble for DLThpVol at time t, and N denotes the total 

number of hourly observations across all base stations. 

At each boosting iteration, a new tree is trained on the 

pseudo-residuals, i.e., the negative gradient of the loss 

function: 

The new tree approximates these residuals: 

This procedure ensures that each subsequent tree focuses on 

the prediction errors of the previous ensemble. 

3.3 Temporal feature engineering 

To capture sequential dependencies in DLThpVol, we 

construct several temporal features: 

• Lag features – capture immediate past network load:

• Rolling mean – averages throughput over the previous

www hours:

• Expanding mean – accumulates historical trends:

• The target encoding (with caution) of a categorical

feature such as beam ID is defined as:

Target encoding is computed in a time-aware manner to 

avoid leakage, e.g., using out-of-fold schemes or expanding 
means over past observations. 

These features allow the model to capture both short-term 

fluctuations and long-term trends in network throughput. 

3.4 Dual-pipeline strategy for temporal 
forecasting 

A single, monolithic forecasting model often struggles to 
optimize for both short-term and long-term prediction 

horizons simultaneously. Short-term forecasting is highly 

dependent on recency and autoregressive features. Long-

term forecasting is dominated by stable, long-term 

periodicities. By employing a dual-pipeline, we can create a 

specialized feature set and model for each task. This 

architectural choice prevents a suboptimal trade-off and 

allows each model to excel at its specific horizon. 

• Short-term forecasting (Week 6): ~1 week after

5 weeks of training data. Uses fine-grained temporal

features such as lag values, rolling statistics, and short-

term target encodings to capture hourly and daily

fluctuations.

• Long-term forecasting (Week 11): ~11th week after a

5 week gap. Uses a reduced, temporally stable feature
set, including aggregated trends and static variables

(e.g., PRB utilization trends, user counts, categorical

encodings). Highly time-sensitive variables are

excluded to improve generalization.

Week 6 and Week 11 were chosen based on the challenge 

objective. 
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3.5 Final objective and regularization 

The overall training objective combines the MAE loss with 

a regularization term to control model complexity: 

• In LightGBM,  penalizes large leaf weights and 

tree depth.

• In CatBoost, ordered boosting, depth limits, and learning

rate adjustments achieve similar regularization.

This ensures strong predictive performance while avoiding 
overfitting on noisy or high-dimensional network data. 

4. DATA AND FEATURE

ENGINEERING

4.1 Dataset description and forecasting
problem

This study leverages a high-resolution multivariate time 

series dataset collected from an operational cellular network 

over five consecutive weeks. Captured at hourly intervals, 
this dataset provides granular insights into network dynamics 

across 2 880 unique directional beams distributed over 

30 base stations, with each station comprising 3 cells and 

32 beams (30 stations × 3 cells/station × 32 beams/cell = 

2 880 beams). This hierarchical structure enables detailed 

analysis of spatio-temporal traffic patterns at unprecedented 

resolution [17]. 

The primary objective is to forecast the DLThpVol, which 

represents the total volume of data transmitted to users 

within a beam's coverage area during a one-hour period. This 

target variable is the central indicator of user-perceived 
network performance and resource consumption. To support 

a robust multivariate forecasting approach, the target 

variable is contextualized with several key exogenous 

variables, provided in separate but time-aligned files. 

• Downlink Throughput Time (DLThpTime): This

variable measures the duration within each hour that the

downlink channel was active. It provides insight into the

temporal consistency of data transmission.

• PRB utilization This metric quantifies the percentage of

available frequency-time resource blocks that were

allocated for data transmission. PRB utilization is a

critical indicator of network load and resource

contention, serving as a primary explanatory variable for

throughput.

• User count (MR_number) This variable records the

number of unique user devices served by a beam in a

given hour. It directly reflects the spatial distribution of

demand and is a key driver of traffic volume.

Together, these variables form a rich multivariate framework 

for modeling beam-level traffic dynamics. The forecasting 

challenge is formally defined as the task of predicting the 

hourly DLThpVol for each of the 2 880 individual beams. 

The prediction problem is structured around two distinct 

temporal horizons, designed to evaluate different aspects of 

model generalization. The short-term forecasting which 

predicts DLThpVol values for Week 6, immediately 

following the training period to assess the model’s ability to 

capture recent temporal patterns and near-term trends and the 
long-term forecasting which predicts DLThpVol values for 

Week 11, five weeks beyond the end of the training window. 

This scenario is intended to evaluate the model’s capacity to 

generalize over extended time intervals and to learn stable, 

long-range dependencies that persist beyond immediate 

historical contexts. 

These dual forecasting objectives introduce varying levels of 

complexity, particularly with respect to temporal drift and 

feature relevance, making the task well-suited for assessing 

robustness in time-series modeling under real-world 

constraints. 

4.2 Exploratory data analysis and 
methodological implications 

A comprehensive Exploratory Data Analysis (EDA) was 

conducted to uncover the underlying structure, patterns, and 

statistical properties of the dataset. The findings from this 

analysis were instrumental in justifying the subsequent 
feature engineering and modeling choices. 

(a) Temporal patterns and periodicity: Fig. 1 presents the

mean hourly DLThpVol across three representative base

stations over a full weekly cycle. The visualizations reveal

pronounced and recurring temporal patterns, confirming the

presence of strong periodic behavior in cellular traffic. Two

dominant cycles are clearly identifiable.

(b) Diurnal cycle (24-hour): Each base station exhibits a

regular daily rhythm. Traffic volumes consistently rise to

a peak during the afternoon and evening hours and fall to a

distinct trough in the early morning, typically between 3 AM

and 5 AM. This bimodal or unimodal daily pattern directly
mirrors daily human activity.

(c) Weekly cycle (168-hour): The trendlines also

demonstrate a clear weekly periodicity, where weekday

traffic patterns (Monday to Friday) differ significantly from

weekend patterns (Saturday and Sunday). During weekdays,

the daily peaks are sharp and highly regular. In contrast, the

weekend shows a more varied and less predictable pattern.

For example, the sharp drop-off in traffic on Friday night is

followed by a more erratic and sustained, lower-level usage

on Saturday and a slightly different recovery pattern on

Sunday.

Additionally, cross-station comparisons highlight significant 

spatial heterogeneity in traffic demand. 

• Base station 2 consistently handles the highest traffic

volume, showing the most pronounced peaks and

troughs throughout the week.
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• Base station 1 shows a moderate traffic load, generally

following the same temporal pattern but at a lower

amplitude than Base station 2.

• Base station 0 consistently experiences the lowest traffic

volume of the three, though it still follows the same

fundamental diurnal and weekly cycles.

The distinct and consistent ordering of traffic volumes 

(Base station 2 > Base station 1 > Base station 0) underscores 

the necessity of treating each base station individually in the 

modeling process. 

These temporal and spatial insights validate the importance 

of explicitly encoding time-based features (such as hour of 

the day and day of the week) and station-specific identifiers. 

Capturing these features allows a predictive model to learn 

the cyclical structure of network demand for each location, 

which is crucial for improving forecasting accuracy. 

Figure 1 – Full weekly cycle of DLThpVol 
for base stations 0,1 and 2 

(d) Spatial heterogeneity: Fig. 2 presents a box plot of

DLThpVol by base station, revealing substantial variation in

both the average throughput volume and its variability across

locations. This variation exemplifies spatial heterogeneity,

which refers to differences in a variable across geographic

space. The observed disparities are likely influenced by

contextual factors such as whether a base station serves a
residential or commercial area, differences in user density,

or variations in physical environment and infrastructure.

Furthermore, a heatmap as shown in Fig. 3, depicting traffic 

volume across beams, within a single base station illustrates 

that certain beams consistently handle disproportionately 

high or low shares of traffic. These spatial imbalances 

underscore the limitations of adopting a uniform, “one-size-

fits-all” modeling approach, which fails to account for 

localized usage patterns. 

As a result, the findings motivated the development of 

group-based feature engineering strategies, enabling the 
model to learn distinct behavioral patterns for each base 

station and beam. This approach enhances the model's 

ability to capture spatial variability and improves predictive 

accuracy in heterogeneous network environments.  

Figure 2 – Throughput volume distribution by base station 

Figure 3 – Heatmap of beam-level traffic volume 

(e) Target variable distribution: The distribution of the

target variable DLThpVol was found to be strongly right-

skewed, characterized by a large concentration of

observations with low or zero traffic volume and a long tail

representing rare but high-volume events, as shown in Fig. 4.

Common transformations, such as the square root

transformation, were applied to reduce skewness, but only
provided partial normalization, as shown in Fig. 5.

This distributional characteristic has two important 

implications for model development and evaluation. Firstly, 

it indicates that evaluation metrics such as Mean Squared 

Error (MSE), which are highly sensitive to outliers, would 

disproportionately penalize errors on infrequent high-

volume instances. As a result, MAE was selected as the 

primary evaluation metric due to its greater robustness to 

skewed distributions. Secondly, the non-Gaussian nature of 

the data underscores the need for models capable of handling 

complex, non-linear relationships and irregular distributions, 
properties for which tree-based models like LightGBM are 

particularly well-suited. 
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Figure 4 – Distribution of throughput volume 

Figure 5 – Sqrt distribution of throughput volume 

4.3 Feature engineering strategy 

Guided by insights from the EDA and building on the formal 

definitions introduced in Section 3 (equations 6–9), a 

comprehensive feature engineering pipeline was designed to 

transform the raw time-series data into a rich, tabular feature 

set. This process was essential for enabling the GBDT 

models to learn the complex spatio-temporal dependencies 
in the network data. 

The engineered features were grouped into distinct 

categories, each encoding different types of information 

relevant to the forecasting task. 

(a) Lag and rolling window features: As formulated in

equations (6) and (7), lag and rolling window features were

constructed to capture short-term temporal dependencies and

smoothed local trends in DLThpVol.

• Lag features: Lagged values of the target variable, PRB

utilization, and active user counts from the previous 1 to

4 hours were created to provide the model with

immediate historical context and momentum in network

load.

• Rolling window statistics: To provide a more stable

view of recent history, statistical aggregations were
computed over moving windows of 168 hours (1 week)

and 336 hours (2 weeks) to align with the observed

weekly seasonality.

To prevent data leakage, these windows were shifted by one 

week, ensuring that each feature at time t was computed 

strictly using data from times – t−168 and earlier. Within 

each window, the mean, median, standard deviation, and 

25th/75th percentiles were computed to capture both central 

tendency and variability. 

(b) Expanding window features: Following Equation (8),

expanding window features were designed to capture long-

term, cumulative trends in the data. Unlike rolling features

that emphasize short-term patterns, these compute statistics
using all historical observations available up to time ttt,

effectively encoding the cumulative “memory” of network

behavior. Specifically, expanding mean and standard

deviation were calculated for both the target variable and key

exogenous predictors, embedding information about their

evolving central tendency and variability.

This approach allowed the model to account for gradual 

changes and persistent effects across the entire observation 

period. 

(c) Group-based aggregations and fold-aware target

encoding: As formalized in Equation (9), target encoding
[37] was used to represent categorical variables (e.g., beam

ID, base station, cell type) through aggregated statistics of

the target variable. This step was crucial to capturing spatial

heterogeneity and entity-specific behavioral patterns

identified during EDA.

However, a naive implementation where the encoding for a 

row is computed using its own target value leads to data 

leakage and overfitting. To avoid this, a robust fold-aware 

target encoding scheme was implemented. 

The procedure was as follows: 

1. The training data was divided into K folds, stratified by

a key categorical feature (e.g., base_station).

2. For each fold i, category-level statistics (mean, standard

deviation, skewness, min, max, percentiles) were

computed using only the remaining k−1 folds.

3. These out-of-fold statistics were then used to encode the

categorical features within fold i.

4. The process was repeated until all folds were encoded,

ensuring that each encoded feature was leak-free.

5. Finally, the statistics computed from the full training

data was used to encode the unseen test set.

This method was applied across multiple grouping 

hierarchies such as ['base_station', 'beam'], ['base_station', 

'daily_hr'], and ['base_station', 'cell_type', 'beam'], allowing 

the model to capture nuanced spatial-temporal interactions. 

By systematically applying this fold-aware target encoding, 

the model gained a richer and more generalizable 

representation of contextual dynamics, a critical factor in 

achieving high forecasting accuracy. 
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5. EXPERIMENTS

This section presents a comprehensive experimental 

framework designed to evaluate the proposed forecasting 

methodology. We outline the experimental setup, 

comparative performance against state of the art baselines, 
evaluating feature selection and model selection strategies, 

performance and evaluation analysis and, lastly, feature 

importance and interpretation. 

5.1 Experimental setup 

The experimental phase is structured around three 

interrelated analyses designed to comprehensively evaluate 

the effectiveness, robustness, and practical applicability of 

the proposed forecasting methodology.  

The first component involves benchmarking the proposed 

model against a suite of state-of-the-art baseline models to 

assess its predictive performance relative to existing 
approaches in the field. The second analysis focuses on 

evaluating the impact of different feature selection strategies 

on model accuracy and generalization capability. This 

includes assessing the contribution of temporal, spatial, and 

contextual features through controlled ablation experiments. 

The final component examines key operational metrics such 

as computational efficiency i.e model size and inference 

latency to evaluate the deployment feasibility of the model 

under real-world constraints. 

The overall experimental design is intended to rigorously 

evaluate model performance under realistic operational 
conditions, with particular emphasis on both short-term 

prediction accuracy (e.g., next-hour forecasts) and long-term 

trend capture (e.g., multi-day forecasting horizons). This 

dual focus ensures that the methodology is not only accurate 

in immediate predictions but also reliable in capturing 

evolving patterns over extended periods. 

5.2 Evaluating feature selection and model 
selection strategies  

This section presents an ablation study designed to assess the 

impact of different feature engineering strategies on model 

performance. The primary objective is to identify which 

approaches to feature construction and selection yield the 

most accurate and robust forecasts. 

5.2.1 Forecasting scenarios and feature 
strategies 

To understand how temporal distance impacts predictability 

and feature relevance, we defined two distinct forecasting 

tasks, each with a tailored feature engineering strategy. The 

first task is a short-term prediction scenario (Week 6 
prediction). This scenario simulates operational, near-future 

forecasting, requiring the model to predict the immediate 

following week (Week 6) using training data from 

weeks 1‑5. For this task, we hypothesized that recent 

temporal dynamics are highly predictive. We therefore 

employed a dynamic feature set, which incorporates the full 

suite of engineered features detailed in Section 4. This 

includes highly time-sensitive predictors such as hourly lags, 

short-term rolling window statistics, and expanding features 

that capture the most recent system state and momentum. 

The second task is long-term prediction scenario (Week 11 

prediction). This scenario tests the model's ability to 

generalize over a significant temporal gap, a common 

challenge in strategic network planning. The model must 

predict Week 11 using only training data from weeks 1-5, 

contending with a five-week data gap where temporal 

distribution shift (or concept drift) [38] is a major concern. 

To mitigate this, we curated a stable feature set. This set 
explicitly excludes features most susceptible to drift, such as 

short-term lags, expanding statistics, and certain volatile 

target encodings. The underlying hypothesis is that by 

forcing the model to rely on fundamental, time-invariant 

patterns such as stable weekly/daily cycles and core spatial 

hierarchies it will achieve better generalization over 

extended horizons. 

5.2.2 Model selection and implementation 

Two state-of-the-art Gradient Boosting Decision Tree 

(GBDT) models were chosen for their proven efficacy on 

structured, tabular data.  

• LightGBM: A highly efficient GBDT framework

utilizing a leaf-wise growth strategy, enabling it to

converge quickly and capture complex patterns. Its
speed is a significant advantage for experiments

involving large datasets and extensive cross-validation.

• CatBoost: A GBDT framework distinguished by its

novel handling of categorical features and its use of

ordered boosting. This permutation-based approach

inherently reduces target leakage during the training

process, often leading to more robust and generalizable

models.

Both models were implemented in Python. To address the 

severe right-skew of the target variable (DLThpVol), a 

square-root transformation was applied prior to training to 

stabilize variance and make the error distribution more 

amenable to learning. All predictions were inversely 

transformed back to the original scale before evaluation. 

5.2.3 Evaluation protocol and metrics 

A robust evaluation protocol was established to ensure the 

reliability and reproducibility of our findings. We employed 

a 10-fold stratified cross-validation [39] methodology. 

Critically, stratification was performed based on the 

base_station identifier. This ensures that each fold contains 

a proportionally representative sample of data from all 30 

base stations, preventing situations where a model is trained 

without seeing data from certain geographical clusters. This 

spatial stratification is essential for obtaining a reliable 

estimate of generalization performance in a real-world, 

heterogeneous network. The MAE [40] was selected as the 
primary performance metric. Its choice is motivated by two 

key properties of the data. First, MAE is less sensitive to the 

extreme outliers present in the long-tailed DLThpVol 

distribution compared to the Root Mean Squared Error 

(RMSE), providing a more stable measure of typical model 

performance. Second, MAE is directly interpretable in the 
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original units of the target variable (i.e., throughput volume), 

facilitating clear communication of the model's accuracy. 

5.2.4 Hyperparameter optimization and 

model training 

Optimal model performance is highly dependent on 

hyperparameter configuration [41]. Separate hyperparameter 

tuning was conducted for each model and for each of the two 

forecasting scenarios using Optuna [42]. We utilized a 

systematic approach to find configurations that balance 

model complexity (e.g., max_depth, num_leaves) with 

regularization (e.g., lambda_l1, lambda_l2) to prevent 

overfitting. The final, optimized hyperparameters used for 

generating our results are detailed in Table 2 below. 

During training within each cross-validation fold, the models 

were trained on the training partition and evaluated on the 

validation partition at each boosting iteration. This allows for 

the use of early stopping [43], a technique where training is 

halted if the validation performance does not improve for a 

specified number of rounds, preventing the model from 

overfitting to the training data. The learning curves from this 
process provide insight into model convergence. 

Table 2 – Model parameters used 

LightGBM (Long Term) LightGBM (Short Term) Catboost (Long Term) Catboost (Short Term) 

• learning_rate: 0.0205

• num_leaves: 254

• max_depth: 10

• feature_fraction:
0.6697

• bagging_fraction:

0.7229

• bagging_freq: 8

• min_child_samples:

100

• lambda_l1: 2.49e-6

• lambda_l2: 1.69e-8

• n_estimators: 1000

• learning_rate: 0.0830

• num_leaves: 151

• max_depth: 9

• feature_fraction:
0.7095

• bagging_fraction:

0.9362

• bagging_freq: 1

• min_child_samples: 22

• lambda_l1: 6.42

• lambda_l2: 0.0034

• n_estimators: 5000

• learning_rate: 0.020218465729343698

• depth: 9

• l2_leaf_reg: 1.339103723284128e-06

• random_strength:
6.000809910512735e-07

• bagging_temperature:

0.38040823680407604

• leaf_estimation_iterations: 7

• iterations: 15000

• learning_rate:

0.020218465729343698

• depth: 9

• l2_leaf_reg:

1.339103723284128e-06

• random_strength:
6.000809910512735e-07

• bagging_temperature:

0.38040823680407604

• leaf_estimation_
iterations: 7

• iterations: 15000

5.3 Performance evaluation and analysis 

This section presents the core empirical results of the study, 

focusing on the predictive performance of LightGBM, 

CatBoost, and a model ensemble combining both 
approaches. The evaluation is conducted across both short-

term and long-term forecasting scenarios to assess the 

robustness and generalization capability of each method. 

5.3.1 Comparative performance against 

other provided baselines 

To contextualize the performance of the proposed models, 

we benchmark them against publicly available baseline 

results provided by the competition organizers [17]. These 

baselines encompass both classical and deep learning 

approaches, including iTransformer, PatchTST, DLinear, 

and transformer. 

Fig. 6 illustrates the MAE between benchmark models 

(Hist.Avg, iTransformer, PatchTST, DLinear and 

transformer) and our proposed models (LightGBM and 
CatBoost) across two forecasting horizons; short-term 

predictions for Week 6 and long-term predictions for 

Week 11. These visual comparisons demonstrate the strong 

competitiveness of our approach relative to benchmark 

models.  

In the short-term forecasting task, our proposed GBDT-

based LightGBM and CatBoost models outperform all deep 

learning baselines. The proposed ensemble model achieves 

an MAE of 0.1919, surpassing the best- performing baseline 

model (iTransformer, MAE = 0.1967) by approximately 
2.4%. This margin of improvement highlights the 

effectiveness of gradient-boosted decision trees when paired 

with carefully engineered temporal and contextual features. 

In the case of the long-term forecasting scenario, our 

proposed ensemble model again attains the lowest MAE of 

0.2261, outperforming all baselines, including the 

transformer architecture (MAE = 0.2331). This consistent 

outperformance across both forecasting horizons 

underscores the advantages of domain-informed feature 

engineering and ensemble learning in capturing temporal 

dynamics and mitigating model drift over extended periods. 

These findings emphasize the importance of model 
interpretability, feature expressiveness, and computational 

efficiency, particularly in real-world deployment scenarios 

where inference latency and resource constraints are critical 

considerations. Overall, the results affirm the suitability of 

gradient-boosted tree models as a powerful alternative to 

deep learning architectures in structured time-series 

forecasting tasks. 
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Figure 6 – Comparison of MAE between benchmark models and 
our proposed models (LightGBM and CatBoost) 

5.3.2 Baseline: single-pipeline modeling 
results (no feature strategy split) 

As an initial benchmark before implementing the dual-

feature strategy described in Section 3.5, we trained GBDT 

models, specifically LightGBM and CatBoost, using a 

unified feature set that did not distinguish between short-

term and long-term forecasting requirements. This single-
pipeline approach serves as a useful benchmark to evaluate 

the effectiveness and added value of the dual-feature 

strategy. 

We applied standard GBDT models using all engineered 

features, regardless of temporal horizon. The results, 

summarized in Table 3, demonstrate acceptable performance 

across both forecasting horizons. However, we observed 

notably diminished generalization accuracy on the long-term 

forecasting task, as shown in Table 3. This suggests that 

features informative for short-term predictions may lose 

relevance or introduce noise when applied to extended 
temporal horizons. 

These limitations motivated the development of the dual-

pipeline architecture, which enables model specialization 

based on temporal context and feature stability. By tailoring 

feature sets to each forecasting horizon, the proposed design 

aims to improve both predictive accuracy and robustness 

over time. 

Table 3 – Results of the single pipeline 

Model Scenario Feature 

Set 

CV 

MAE 

Leaderboard 

MAE 

Δ  

(LB-CV) 

LightGBM Short Term 

(W6) 

Single 

Pipeline 

0.1923 0.1926 +0.0003 

LightGBM Long Term 

(W11) 

Single 

Pipeline 

0.1923 0.2302 +0.0379 

Catboost Short Term 

(W6) 

Single 

Pipeline 

0.1917 0.1918 +0.0001 

Catboost Long Term 

(W11) 

Single 

Pipeline 

0.1917 0.2356 +0.0439 

5.3.3 Dual pipeline modelling results 

(with feature splits) 

Table 4 presents an overview of the predictive performance 

achieved by the models under the dual-pipeline framework. 

The table reports two key evaluation metrics: the average 

MAE obtained from 10-fold cross-validation (referred to as 

CV MAE), which reflects the model’s ability to generalize 

within the training distribution, and the final MAE on the 

held-out competition test set (referred to as Leaderboard 

MAE), which evaluates out-of-distribution generalization 

over time. These results provide insight into both the 

consistency of model performance during training and its 
robustness when applied to unseen temporal data. 

Table 4 – Model performance comparison 

Model Scenario Feature  

Set 

CV  

MAE 

Leaderboard 

MAE 

Δ  

(LB-CV) 

LightGBM Short Term 

(W6) 

Dynamic 0.1913 0.1925 + 0.0012 

Catboost Short Term 

(W6) 

Dynamic 0.1918 0.1919 + 0.0001 

Ensemble Short Term 

(W6) 

Dynamic _ 0.1919 _ 

LightGBM Long Term 

(W11) 

Stable 0.1971 0.2262 + 0.0291 

CatBoost Long Term 

(W11) 

Stable 0.1972 0.2262 + 0.0290 

Ensemble Long Term 

(W11) 

Stable _ 0.2261 _ 

5.3.4 Single-pipeline vs. dual-pipeline 

performance 

In this study, we proposed a dual-modeling strategy to 

improve forecasting performance across different temporal 

horizons. To evaluate its effectiveness, we compare the 

results obtained under the dual-pipeline approach with those 

from the single-pipeline baseline. In the single-pipeline 

approach, a unified feature set was used to train both short 
and long-term forecasts together, whilst in the dual-pipeline 

approach, features were explicitly split into dynamic (short-

term) and stable (long-term) sets, and separate models were 

trained for each forecasting horizon. 

In the single-pipeline setup, as reported in Fig. 7, both 

models achieved reasonable performance across both tasks. 

However, we observed a notable drop in generalization 

accuracy for the long-term forecasting scenario. This 

suggests that features effective for short-term predictions 

introduced noise when applied to extended horizons, limiting 

model robustness. 

By contrast, the dual-pipeline strategy significantly 
improved model specialization. In the short-term task 

(Week 6), the ensemble achieved a final Leaderboard MAE 

of 0.1919, outperforming all individual baselines and 

demonstrating strong competitiveness. For the long-term 

task (Week 11), the ensemble improved the best individual 

model results slightly, achieving a Leaderboard MAE of 

0.2261 suggesting that both models successfully leveraged 

the more constrained and temporally stable feature set. 
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Figure 7 – Comparison between dual and single pipeline 

This comparison confirms the effectiveness of separating 

temporal contexts during training. The dual-pipeline design 

not only enhances predictive accuracy but also improves 

interpretability and robustness by aligning feature relevance 

with forecasting horizons. 

5.3.5 Analysis of results and model 

convergence (understanding 
beam‑level traffic forecasting) 

The results summarized in Table 4 offer several key insights 

into the characteristics and challenges of beam-level traffic 

forecasting. 

Efficacy in short-term forecasting 

In the Week 6 (short-term) forecasting scenario, both 

LightGBM and CatBoost models demonstrate strong and 

nearly identical performance. The small discrepancy 

between Cross-Validation MAE (CV MAE) and the final 

Leaderboard MAE (Δ < 0.001) indicates excellent 

generalization capability. This supports our hypothesis that 

the dynamic feature set enriched with recent temporal 

patterns is highly effective for near-future predictions, 

enabling accurate modeling of short-term traffic behavior. 

Impact of temporal drift in long-term forecasting 

The Week 11 (long-term) forecasting scenario highlights the 

significant challenge posed by temporal distribution shift. 

While the CV MAE (~0.197) suggests that the models 

effectively capture patterns within the training data, the 

Leaderboard MAE increases to 0.226, indicating a notable 

performance drop (Δ ≈ 0.029). This degradation reflects the 

diminishing relevance of short-term patterns over extended 

time horizons. However, the stable feature set plays a crucial 

role in maintaining model reliability by leveraging time-

invariant structural features, thereby preventing complete 

model breakdown despite the five-week gap in temporal 

context. 

Model convergence behavior 

Figures 8 and 9 depict the learning curves of the CatBoost 

and LightGBM models, respectively, for both the short 

and long-horizon forecasting tasks. 

In the long-horizon scenario, both models show a rapid 

decline in training and validation errors during the early 

boosting rounds, followed by a smooth plateau. The close 

alignment between the curves indicates stable convergence 

and effective generalization, suggesting that the models 

adequately capture longer-term temporal dependencies 

without substantial overfitting. 

In contrast, the short-horizon models exhibit a gradual but 

continuous reduction in training error while the validation 

error stabilizes early, revealing mild overfitting. This pattern 
implies that, beyond a certain number of boosting iterations, 

further training primarily benefits the fit on the training data 

rather than improving predictive performance on unseen 

samples. 

Overall, both CatBoost and LightGBM demonstrate 

consistent convergence behavior across forecasting 

horizons, with early stopping effectively preventing 

divergence and ensuring that training terminates near the 

point of optimal validation performance. 

Figure 8 – Catboost training and validation curves for fold 0 

Figure 9 – Lightgbm training and validation curves for fold 0 

Visualization of predicted hourly traffic volume trend 

To gain a deeper understanding of the model’s temporal 

behavior, we visualize the predicted hourly downlink 

throughput volume across three representative base stations: 
Base station 0, Base station 1, and Base station 2. This 

analysis highlights the model’s ability to capture fine-

grained spatio-temporal dynamics across geographically 

distributed network nodes. 

As shown in Fig. 10, the model effectively learns distinct 

diurnal traffic patterns, characterized by pronounced peaks 

during daytime hours and troughs during the night. These 

periodic fluctuations reflect realistic user behavior and align 

with known daily activity cycles. (i) Base station 0 exhibits 
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the highest traffic intensity with clear, sharp peaks recurring 

every 24 hours, indicative of a densely populated or highly 

utilized area. (ii) Base station 1 demonstrates a more stable 

and lower-volume profile, with moderate peaks and minimal 

variability. (iii) Base station 2 shows an intermediate pattern, 

with elevated traffic during business hours but less intensity 

compared to Base station 0. 

This visualization confirms that the forecasting model adapts 

its predictions to the unique traffic rhythms of individual 

base stations, supporting the hypothesis that beam and cell-
level traffic exhibit heterogeneous usage profiles. Such 

insights are critical for operators seeking to implement 

targeted optimization strategies for specific network regions. 

Figure 10 – Predicted hourly volume trends for base station 0, 
1 and 2 

Relative performance gains over baseline models 

To quantify the efficacy of the proposed forecasting models, 

we conducted a comparative analysis against baseline results 
published by the competition organizers. These baselines 

include both traditional statistical techniques (e.g., historical 

average) and recent deep learning models such as 

iTransformer, PatchTST, DLinear, and transformer. 

Table 5 reports the percentage improvement in MAE 

achieved by each of our models, LightGBM, CatBoost, and 

their ensemble on the official test set (Leaderboard MAE), 

relative to each baseline. Results are shown for both the 

short-term (Week 6) and long-term (Week 11) forecasting 

scenarios. 

The findings reveal consistent performance gains across all 
baselines. In the short-term scenario, the ensemble model 

achieved up to 2.44% improvement over the best baseline 

(iTransformer) indicating the model's effectiveness in 

capturing recent temporal patterns. Similarly, in the long-

term scenario, the ensemble approach delivered gains of 

nearly 3% over the best baseline in that 

horizon(transformer). 

These results demonstrate that our GBDT-based framework, 

particularly the dual-pipeline strategy, not only matches but 

in many cases outperforms state-of-the-art deep learning 

methods. The improvements validate the strength of domain-

informed feature engineering and ensemble learning in real-
world traffic forecasting tasks. 

Table 5 – Percentage improvement over benchmark models 

(MAE) 

Benchmark 

Models 

Light 

GBM 

W6 

Light 

GBM 

W11 

Catboost 

W6 

Catboost 

W11 

Ensem. 

W6 

Ensem. 

W11 

Hist. Avg 8.68% 6.95% 8.97% 6.95% 8.97% 6.99% 

iTransformer 2.14% 3.66% 2.44% 3.66% 2.44% 3.71% 

PatchTST 2.43% 3.46% 2.74% 3.46% 2.74% 3.50% 

Dlinear 3.99% 3.83% 4.29% 3.83% 4.29% 3.87% 

Transformer 11.13% 2.96% 11.40% 2.96% 11.40% 3.00% 

5.3.6 Ensemble strategy 

Given the complementary performance characteristics of 

LightGBM and CatBoost, a final weighted ensemble model 

was constructed by linearly combining their predictions. The 

ensemble was formulated as: 

Ensemble prediction = 0.6 × CatBoost + 0.4 × LightGBM, 

with weights derived from a combination of cross-validation 

performance and an analysis of feature importance patterns, 

which revealed distinct yet complementary sensitivities of 

the two models to different input features. 

For the short-term forecasting task (Week 6), this ensemble 

approach achieved a final Leaderboard MAE of 0.1919, 

outperforming individual model results and yielding a 

competitive submission. In the long-term forecasting 

scenario (Week 11), the ensemble demonstrated 

performance comparable to the best individual models, 

suggesting that both models had converged toward similar 
solutions when constrained by the more stable and 

temporally invariant feature set. 

This result highlights the value of ensemble learning in 

leveraging model diversity while reinforcing the importance 

of feature stability in long-horizon forecasting tasks. 

5.4 Feature importance and interpretation 

To understand the key drivers of the predictions and validate 

our feature engineering strategy, we analyzed the gain-based 

feature importances as calculated by LightGBM and 

CatBoost. This metric quantifies the total reduction in the 

loss function attributable to a given feature across all splits 
in the ensemble of trees. 
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Figure 11 – Top 10 features for the short-term scenario 

The feature importance analysis for the short-term 

forecasting scenario in Fig. 11 confirms that the model 

predominantly relies on recent, dynamic patterns in the data. 

The most influential features include indicators of weekly 
seasonality specifically, values from the same hour in the 

previous week which reflect the model’s ability to capture 

recurring temporal rhythms in traffic behavior. Highly 

ranked features also include granular spatio-temporal 

interactions derived from target-encoded combinations of 

beam, base_station, and daily_hr. These engineered features 

enable the model to learn fine-grained behavioral patterns, 

such as “the average traffic for beam 5 at base station 10 

during the 9 AM hour,” demonstrating its capacity to localize 

predictions based on both spatial and temporal contexts. 

Additionally, features extracted from short-term rolling 

windows such as the standard deviation of the target variable 
over the past seven hours rank among the most important. 

These statistics allow the model to adapt its predictions 

dynamically in response to recent load fluctuations, further 

enhancing its responsiveness to evolving network 

conditions. 

In stark contrast to the short-term forecasting scenario, the 

feature importance ranking for the long-term task shown in 

Fig. 12 reveals a clear and meaningful shift in the model’s 

reliance on different types of predictors. Deprived of access 

to recent dynamic features, the model adapts by prioritizing 

structurally stable and temporally invariant characteristics of 
the data.  

Figure 12 – Top 10 features for the long-term scenario 

This explicit shift in feature reliance between the two 

scenarios provides powerful validation for our dual-strategy 

approach. It demonstrates that the models successfully 

adapted their learning to the nature of the forecasting task, 
exploiting transient dynamics when available and relying on 

stable structural patterns when forced to generalize over a 

long temporal gap. 

The most influential features fall into three primary 

categories. 

Core spatial hierarchy: Target-encoded features based on 

beam and base_station identity dominate the importance 

rankings. These features serve as a stable baseline, capturing 

the average traffic level associated with each spatial entity 

independently of short-term fluctuations. 

Fundamental cyclical patterns: Basic temporal features 

such as daily_hr and day_of_week emerge as critical 
predictors. In the absence of fine-grained dynamic signals, 

the model leverages these reliable, long-term periodicities as 

its primary temporal reference. 

Long-term averages: Aggregated weekly mean features 

provide a robust historical context, offering generalized 

insights into traffic behavior that are less sensitive to 

transient noise or outlier events. 

This explicit shift in feature dependence between the two 

forecasting scenarios offers strong empirical validation of 

our dual-strategy modeling approach. It demonstrates that 

the models successfully adapt their learning mechanisms to 
the nature of the prediction task leveraging high-resolution, 

dynamic patterns when available, and falling back on stable, 

structural relationships when generalizing over extended 

time horizons. 
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6. CONCLUSION

This study challenged the prevailing trend of increasing 

model complexity in network traffic forecasting. We 

demonstrated that a GBDT-based framework, grounded in 

deliberate, domain-specific feature engineering, can achieve 
superior performance over state-of-the-art deep learning 

benchmarks for the task of beam-level DLThpVol 

prediction. Our approach prioritizes interpretability, 

computational efficiency, and practical deployability, 

critical requirements for real-world network management 

that are often overlooked by more complex “black-box” 

models. 

Our proposed dual-pipeline architecture, leveraging 

LightGBM and CatBoost, proved highly effective. By 

specializing separate models for distinct forecasting 

horizons, one sensitive to short-term autoregressive patterns 

and another focused on long-term seasonal stability, the 
framework achieved state-of-the-art accuracy. Our ensemble 

model attained a Mean Absolute Error (MAE) of 0.1919 for 

short-term (Week 6) and 0.2261 for long-term (Week 11) 

forecasts, outperforming established benchmarks including 

iTransformer, PatchTST, and DLinear. 

The primary contribution of this work is the empirical 

evidence that for structured time-series data with strong 

periodicities, a method that explicitly encodes domain 

knowledge can be more powerful than generic automated 

feature extraction. This work provides a robust and efficient 

forecasting blueprint that serves as a critical enabler for 
downstream network optimization. While we do not propose 

a new resource allocation algorithm, the high accuracy of our 

forecasts provides the foundation needed to reduce safety 

margins in resource provisioning, mitigate network 

congestion, and enhance energy efficiency in 5G and future 

cellular systems. 

Ultimately, our findings advocate for a pragmatic approach 

to machine learning in network management, one that proves 

high performance and actionable insight are not mutually 

exclusive. 
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