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Accurate forecasting of Downlink Throughput Volume (DLThpVol) at the beam level is essential
for improving resource management in modern communication networks. This study addresses the
challenges posed by complex, high-dimensional spatio-temporal traffic data, leveraging multivariate
time series that include critical factors such as Physical Resource Block (PRB) utilization and user
count. Recent benchmarks on traditional and deep learning models (e.g., iTransformer, PatchTST,
DLinear) achieve Mean Absolute Errors (MAEs) ranging from 0.1967 to 0.2005 on short-term
targets and up to 0.2352 on longer-term forecasts, but opportunities remain for improvement through
domain-informed feature engineering.

We propose a dual-pipeline Gradient Boosting Decision Tree (GBDT)-based framework for beam-
level DLThpVol prediction that incorporates carefully engineered temporal and spatial features
(e.g., PRB utilization dynamics, beam-level user clustering). Our models achieve MAEs of 0.1919
(short-term) and 0.2261 (long-term), outperforming several deep learning benchmarks by up to
11.4% on short-term forecasts. These results demonstrate that interpretable, feature-driven ensemble
learners can provide competitive forecasting performance while maintaining computational
efficiency.

Although the work does not directly implement congestion-aware resource allocation, the improved
forecast accuracy lays the foundation for future studies on predictive resource management, such as
PRB provisioning and energy-efficient beam scheduling. Our findings highlight the importance of
combining domain knowledge with interpretable machine learning for advancing spatio-temporal
traffic forecasting in communication networks.

Keywords — Beam-level, downlink throughput volume, ensemble learning, feature engineering
spatio-temporal forecasting

1. INTRODUCTION

The exponential growth of mobile data traffic, driven by the proliferation of smart devices and
bandwidth-intensive applications, has placed unprecedented strain on communication network
management, particularly in the areas of traffic forecasting and dynamic resource allocation
[1, 2]. Accurate spatio-temporal forecasting of network traffic is essential to ensure Quality of
Service (QoS), minimize congestion, and optimize the use of network resources [3]. While
traditional cell-level traffic prediction methods have provided foundational insights [4], the
emergence of beamforming and massive Multiple-Input Multiple-Output (MIMO) technologies
which enable the use of multiple directed beams per cell have facilitated fine-grained traffic
management at the beam level, where multiple directional beams are deployed per base station
cell to serve users more efficiently [5, 6]. These technologies demand granular forecasting at the
beam level to optimize performance and energy efficiency. As a result, the ability to accurately
predict traffic at the beam level has become increasingly important, especially in the context of
ultra-dense 5th Generation (5G) networks and beyond [7]. This paradigm shift introduces new
complexities, as beam-level traffic exhibits finer spatial variability and stronger
interdependencies between neighboring beams, necessitating advanced modeling
approaches [8].
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Existing traffic forecasting methodologies, such as
Autoregressive Integrated Moving Average (ARIMA) [9]
and Holt-Winters exponential smoothing [10], have
demonstrated utility in low-dimensional, stationary time
series contexts. However, these models often struggle with
high-dimensional, nonlinear, and noisy data, which are
common in modern  communication  networks.
Consequently, Machine Learning (ML) techniques have
gained attention for their ability to model complex, nonlinear
dependencies in spatio-temporal data [11, 12].

Recent advances in machine learning offer promising
alternatives, particularly GBDT [13] architectures such as
LightGBM [14] and CatBoost [15]. These ML models excel
at capturing complex feature interactions and temporal
dependencies while maintaining computational efficiency
which is a critical advantage for real-time network
operations [16]. These ML models have demonstrated strong
performance on tabular data and multivariate time series
tasks. GBDT models offer robust feature handling,
interpretability, and scalability, making them well-suited for
forecasting tasks involving structured network telemetry.

Accurate forecasting of Downlink Throughput Volume
(DLThpVol) at the beam level is essential for optimizing
resource allocation and enhancing user experience in modern
wireless networks. Despite significant progress in spatio-
temporal traffic prediction, most existing approaches focus
on cell or sector-level forecasting, neglecting the fine-
grained spatial resolution enabled by beamforming [8].
Furthermore, other methods underutilize multivariate
operational metrics such as Physical Resource Block (PRB)
utilization that are strongly correlated with throughput
dynamics. Additionally, few studies explicitly link improved
forecasting accuracy to tangible network outcomes, such as
energy savings or congestion reduction.

Benchmarking efforts by [17, 18] have established strong
performance baselines using both traditional and deep
learning models. For example, models such as iTransformer
[19], PatchTST [20], and DLinear [21] achieved MAEs
ranging from 0.1967 to 0.2005 on short-term targets, and up
to 0.2352 on longer-term forecasts (see Table 1). While these
results represent significant progress in the field, the
complex and high-dimensional nature of spatio-temporal
traffic data leaves room for additional accuracy
improvements particularly through domain-specific feature
engineering and interpretable model architectures.

While these deep learning models benefit from automated
feature extraction, this often comes at the cost of
interpretability and significant computational overhead. In
contrast, a structured feature engineering approach, as
pursued in this work, allows for the explicit encoding of
known domain knowledge (e.g., diurnal and weekly cycles)
into the model and studying the feature importance later after
training. This strategy aims to create a framework that is not
only more accurate but also computationally efficient and
transparent, which are critical requirements for operational
deployment in real-world network management systems.

Table 1 — Comparative MAE scores for short and
long-term traffic forecasting by [17]

Target Hist.Avg. iTransformer | PatchTST DLinear Transformer
Week 6 Short 0.2108 0.1967 0.1973 0.2005 0.2166
Term
Week 11 0.2431 0.2348 0.2343 0.2352 0.2331
Long Term

To address these gaps, we challenge the trend of increasing
model complexity by proposing a GBDT-based framework
that demonstrates the superior performance of domain-
specific feature engineering combined with computationally-
efficient models. Our approach, leveraging LightGBM and
CatBoost, is designed not just for performance but for
practical  deployment, prioritizing efficiency and
transparency over the 'black-box' nature of more complex
alternatives. Our approach integrates structured feature
engineering with lightweight, interpretable model design,
achieving superior performance compared to both traditional
machine learning models and state-of-the-art deep learning
benchmarks. Specifically, our framework attains MAEs as
low as 0.1919 for short-term predictions (Week 6) one week
after the training period and 0.2261 for long-term forecasts
(Week 11) 6 weeks after the training period, outperforming
existing baselines. By explicitly modeling intra-beam
temporal patterns and inter-beam spatial correlations using
high-resolution hourly traffic data across multiple base
stations, our model captures the complex drivers of traffic
variability with extraordinary granularity.

The contributions of this work are two-fold:

* We demonstrate that a GBDT-based forecasting
framework, when combined with deliberate, domain-
specific feature engineering, achieves consistent
performance gains over state-of-the-art deep learning
baselines. Our work provides empirical evidence that
prioritizing an interpretable and computationally-
efficient design can yield superior results compared to
more complex, automated architectures in this domain.
Our LightGBM, CatBoost, and ensemble models
outperform leading automated architectures such as
iTransformer, PatchTST, DLinear, and Transformer by
up to 4.21 percentage points for short-term forecasting
(Week 6) and 5.97 percentage points for long-term
forecasting (Week 11), on average across all evaluated
horizons.

*  We introduce a dual-pipeline forecasting design tailored
to short-term and long-term horizons. While the first
contribution focuses on model performance and
interpretability, this second contribution emphasizes
temporal adaptability offering a flexible blueprint for
optimizing forecast accuracy across varying time scales.
This design paradigm generalizes well to other spatio-
temporal prediction domains, including network traffic,
energy load, and mobility forecasting.
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The remainder of this paper is structured as follows:
Section 2 reviews related work; Section 3 details the
proposed methodology; Section 4 presents the data and
feature engineering; Section 5 reports the experimental
results; and Section 6 provides the conclusion.

2, LITERATURE REVIEW

Beam-level traffic forecasting has become increasingly
critical with the emergence of 5G and next generation
networks, where highly directional beams enable
unprecedented spatial control over signal distribution [22].
Unlike traditional cell-level prediction, beam-level
forecasting captures usage patterns at a much finer
granularity, facilitating intelligent resource allocation,
energy optimization, and congestion mitigation [23], [24].
Accurate prediction at the beam level is particularly vital for
ultra-dense network deployments, where user mobility and
interference management present significant operational
challenges [25]. Despite this potential, much of the prior
research on traffic forecasting has focused on broader spatial
resolutions such as cells or base stations thereby lacking the
specificity ~ required  for  modern,  beam-centric
architectures [26].

Time Series Forecasting (TSF) plays a foundational
methodology for network traffic prediction [27]. Classical
statistical approaches, including ARIMA [9] and Holt-
Winters exponential smoothing [10], have traditionally been
used to model time-dependent phenomena. While these
models are effective at capturing seasonality and linear
trends, they are inherently limited in high-dimensional,
nonstationary environments. Their univariate nature further
restricts their ability to account for complex interactions
among multiple correlated variables, a critical requirement
for cellular network traffic analysis [9].

To address these limitations, Multivariate Time Series
Forecasting (MTSF) has emerged as a more expressive
paradigm, enabling the modeling of multiple interrelated
time-dependent variables [27]. MTSF techniques allow for
simultaneous analysis of various traffic features, such as
Physical Resource Block (PRB) utilization, user count, and
throughput volume. Early work in this space employed
multivariate extensions of ARIMA (VARIMA) or state-
space models [28], but these techniques often fail to scale or
generalize effectively to nonlinear and high-dimensional
domains. In response, machine learning models particularly
Gradient Boosting Decision Trees (GBDT) such as
LightGBM [14] and CatBoost [15] have shown strong
predictive performance when paired with extensive feature
engineering [29], [30]. Features such as lag values, rolling
means, expanding statistics, and temporal encodings provide
the model with a rich representation of past behaviors,
allowing it to learn complex nonlinear dependencies in
multivariate settings [30].

In recent literature, spatio-temporal forecasting models have
increasingly incorporated beam-level data to improve
prediction granularity and accuracy [31]. Deep learning
methods, including Recurrent Neural Networks (RNNs)
[32], Long Short-Term Memory (LSTM) networks [33], and

more recently, transformer-based architectures [34], have
been widely adopted for modeling time-dependent
sequences with spatial embeddings. While these models
achieve state-of-the-art accuracy, they are often resource-
intensive and difficult to interpret. Conversely, studies have
demonstrated that GBDT models, though less complex, can
rival deep models when equipped with well-designed spatio-
temporal features especially in contexts where real-time
inference, computational  efficiency, and model
interpretability are essential [30], [35]. However, relatively
little work has focused specifically on beam-level traffic
forecasting using GBDTs, leaving a gap in understanding
their comparative effectiveness at this fine spatial resolution.

This study aims to address this gap by proposing a dual-
pipeline approach for beam-level traffic forecasting using
GBDT models. Specifically, we employ two feature
selection strategies tailored to short-term (Week 6) and long-
term (Week 11) prediction horizons, respectively. The use of
stratified K-fold cross-validation across base stations
ensures robust model evaluation, while advanced feature
engineering including target encoding, lag features, rolling
statistics, and weekly aggregations enhances predictive
fidelity. Unlike existing work that either relies heavily on
deep learning [29], [36] or operates at coarser spatial
resolutions [16], our approach demonstrates that GBDTs can
provide competitive performance in beam-level forecasting
when supported by carefully curated features.

In summary, this study introduces a novel dual-pipeline
GBDT-based framework specifically tailored for beam-level
traffic forecasting, thereby addressing several significant
gaps in the current literature. While prior work has largely
focused on deep learning-based spatio-temporal models or
limited itself to coarser spatial resolutions, our approach
bridges the methodological divide by demonstrating that
efficient, interpretable tree-based learners when coupled
with domain-specific feature engineering can achieve
competitive performance even at the fine-grained beam
level. The proposed framework is informed by the need for
lightweight, deployable models that maintain high accuracy
and interpretability in real-world network environments, an
area that has received limited attention despite its practical
importance. By systematically evaluating GBDT models
with advanced feature selection and cross-validation
strategies, this work not only fills the research gap
concerning interpretable forecasting at beam granularity but
also establishes a foundation for future exploration of hybrid
or transformer-based enhancements in network traffic
prediction. Thus, the present study advances both
methodological innovation and practical applicability,
offering actionable insights for network operators and
guiding future research toward more efficient, sustainable,
and intelligent communication systems.
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3. METHODOLOGY

3.1 Problem formulation

We aim to forecast Downlink Throughput Volume
(DLThpVol) for each base station at hourly intervals. Let:

D = {(Xtayt)}iil
denote the dataset, where:
X, € R?

is the vector of observed network features at time ttt
(e.g., PRB utilization, active user counts, categorical beam
IDs) and

y €R
is the corresponding DLThpVol.

To capture temporal dependencies, we augment X with
derived features to obtain:

XtERP

(where p>d), including lagged values, rolling statistics, and
periodic encodings. The forecasting problem then reduces to
learning a mapping function:

R R
that predicts future DLThpVol:
Y = f(xi) (1)

The model is trained to minimize the empirical loss over all
observations. We adopt the Mean Absolute Error (MAE) as
the loss function:

)= Y- fx) 2

3.2  Gradient boosting framework
We model fas an additive ensemble of M regression trees:
M

b= halx) 6

Here, (hm (Xi)) predicts an adjustment to the previous
ensemble for DLThpVol at time ¢, and N denotes the total
number of hourly observations across all base stations.

At each boosting iteration, a new tree is trained on the

pseudo-residuals, i.e., the negative gradient of the loss
function:

~(m—1
(m) _aL(yt~ yt( ))

Ty = o (4)
8‘§'t(m 1)

The new tree approximates these residuals:

o (¢) 2 (™ (5)

This procedure ensures that each subsequent tree focuses on
the prediction errors of the previous ensemble.

3.3 Temporal feature engineering

To capture sequential dependencies in DLThpVol, we
construct several temporal features:

* Lag features — capture immediate past network load:

lag-k .
€ tag = Yi—k (6)
* Rolling mean — averages throughput over the previous
www hours:

1

roll-mean

T = — E Ys—i 7

t w 4 i ( )
i=1

+ Expanding mean — accumulates historical trends:
t—1

1
JEXp-mean 27.

i=1
* The target encoding (with caution) of a categorical
feature such as beam ID is defined as:

T Eyeam = E[y; | beam 1D] (9)

Target encoding is computed in a time-aware manner to
avoid leakage, e.g., using out-of-fold schemes or expanding
means over past observations.

These features allow the model to capture both short-term
fluctuations and long-term trends in network throughput.

3.4 Dual-pipeline strategy for temporal
forecasting

A single, monolithic forecasting model often struggles to
optimize for both short-term and long-term prediction
horizons simultaneously. Short-term forecasting is highly
dependent on recency and autoregressive features. Long-
term forecasting is dominated by stable, long-term
periodicities. By employing a dual-pipeline, we can create a
specialized feature set and model for each task. This
architectural choice prevents a suboptimal trade-off and
allows each model to excel at its specific horizon.

+ Short-term forecasting (Week 6): ~1 week after
5 weeks of training data. Uses fine-grained temporal
features such as lag values, rolling statistics, and short-
term target encodings to capture hourly and daily
fluctuations.

* Long-term forecasting (Week 11): ~11th week after a
5 week gap. Uses a reduced, temporally stable feature
set, including aggregated trends and static variables
(e.g., PRB utilization trends, user counts, categorical
encodings). Highly time-sensitive variables are
excluded to improve generalization.

Week 6 and Week 11 were chosen based on the challenge
objective.
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3.5 Final objective and regularization

The overall training objective combines the MAE loss with
a regularization term to control model complexity:

Luar = 3l — £0x0)] + ()

* In LightGBM, Q(f ) penalizes large leaf weights and
tree depth.

* In CatBoost, ordered boosting, depth limits, and learning
rate adjustments achieve similar regularization.

This ensures strong predictive performance while avoiding
overfitting on noisy or high-dimensional network data.

4, DATA AND FEATURE
ENGINEERING

4.1 Dataset description and forecasting
problem

This study leverages a high-resolution multivariate time
series dataset collected from an operational cellular network
over five consecutive weeks. Captured at hourly intervals,
this dataset provides granular insights into network dynamics
across 2 880 unique directional beams distributed over
30 base stations, with each station comprising 3 cells and
32 beams (30 stations x 3 cells/station X 32 beams/cell =
2 880 beams). This hierarchical structure enables detailed
analysis of spatio-temporal traffic patterns at unprecedented
resolution [17].

The primary objective is to forecast the DLThpVol, which
represents the total volume of data transmitted to users
within a beam's coverage area during a one-hour period. This
target variable is the central indicator of user-perceived
network performance and resource consumption. To support
a robust multivariate forecasting approach, the target
variable is contextualized with several key exogenous
variables, provided in separate but time-aligned files.

*  Downlink Throughput Time (DLThpTime): This
variable measures the duration within each hour that the
downlink channel was active. It provides insight into the
temporal consistency of data transmission.

* PRB utilization This metric quantifies the percentage of
available frequency-time resource blocks that were
allocated for data transmission. PRB utilization is a
critical indicator of network load and resource
contention, serving as a primary explanatory variable for
throughput.

e User count (MR _number) This variable records the
number of unique user devices served by a beam in a
given hour. It directly reflects the spatial distribution of
demand and is a key driver of traffic volume.

Together, these variables form a rich multivariate framework
for modeling beam-level traffic dynamics. The forecasting
challenge is formally defined as the task of predicting the
hourly DLThpVol for each of the 2 880 individual beams.
The prediction problem is structured around two distinct
temporal horizons, designed to evaluate different aspects of
model generalization. The short-term forecasting which
predicts DLThpVol values for Week 6, immediately
following the training period to assess the model’s ability to
capture recent temporal patterns and near-term trends and the
long-term forecasting which predicts DLThpVol values for
Week 11, five weeks beyond the end of the training window.
This scenario is intended to evaluate the model’s capacity to
generalize over extended time intervals and to learn stable,
long-range dependencies that persist beyond immediate
historical contexts.

These dual forecasting objectives introduce varying levels of
complexity, particularly with respect to temporal drift and
feature relevance, making the task well-suited for assessing
robustness in time-series modeling under real-world
constraints.

4.2 Exploratory data analysis and
methodological implications

A comprehensive Exploratory Data Analysis (EDA) was
conducted to uncover the underlying structure, patterns, and
statistical properties of the dataset. The findings from this
analysis were instrumental in justifying the subsequent
feature engineering and modeling choices.

(a) Temporal patterns and periodicity: Fig. 1 presents the
mean hourly DLThpVol across three representative base
stations over a full weekly cycle. The visualizations reveal
pronounced and recurring temporal patterns, confirming the
presence of strong periodic behavior in cellular traffic. Two
dominant cycles are clearly identifiable.

(b) Diurnal cycle (24-hour): Each base station exhibits a
regular daily rhythm. Traffic volumes consistently rise to
a peak during the afternoon and evening hours and fall to a
distinct trough in the early morning, typically between 3 AM
and 5 AM. This bimodal or unimodal daily pattern directly
mirrors daily human activity.

(c) Weekly cycle (168-hour): The trendlines also
demonstrate a clear weekly periodicity, where weekday
traffic patterns (Monday to Friday) differ significantly from
weekend patterns (Saturday and Sunday). During weekdays,
the daily peaks are sharp and highly regular. In contrast, the
weekend shows a more varied and less predictable pattern.
For example, the sharp drop-off in traffic on Friday night is
followed by a more erratic and sustained, lower-level usage
on Saturday and a slightly different recovery pattern on
Sunday.

Additionally, cross-station comparisons highlight significant
spatial heterogeneity in traffic demand.

* Base station 2 consistently handles the highest traffic
volume, showing the most pronounced peaks and
troughs throughout the week.
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* Base station | shows a moderate traffic load, generally
following the same temporal pattern but at a lower
amplitude than Base station 2.

* Base station 0 consistently experiences the lowest traffic
volume of the three, though it still follows the same
fundamental diurnal and weekly cycles.

The distinct and consistent ordering of traffic volumes
(Base station 2 > Base station 1 > Base station 0) underscores
the necessity of treating each base station individually in the
modeling process.

These temporal and spatial insights validate the importance
of explicitly encoding time-based features (such as hour of
the day and day of the week) and station-specific identifiers.
Capturing these features allows a predictive model to learn
the cyclical structure of network demand for each location,
which is crucial for improving forecasting accuracy.

Full Weekly Cycle of Mean Target by Base Station
160 Base Station

Monday Tuesday Wegnesday Tharsday Friday Saturday Sunday
Hour of the Week

Figure 1 — Full weekly cycle of DLThpVol
for base stations 0,1 and 2

(d) Spatial heterogeneity: Fig. 2 presents a box plot of
DLThpVol by base station, revealing substantial variation in
both the average throughput volume and its variability across
locations. This variation exemplifies spatial heterogeneity,
which refers to differences in a variable across geographic
space. The observed disparities are likely influenced by
contextual factors such as whether a base station serves a
residential or commercial area, differences in user density,
or variations in physical environment and infrastructure.

Furthermore, a heatmap as shown in Fig. 3, depicting traffic
volume across beams, within a single base station illustrates
that certain beams consistently handle disproportionately
high or low shares of traffic. These spatial imbalances
underscore the limitations of adopting a uniform, “one-size-
fits-all” modeling approach, which fails to account for
localized usage patterns.

As a result, the findings motivated the development of
group-based feature engineering strategies, enabling the
model to learn distinct behavioral patterns for each base
station and beam. This approach enhances the model's
ability to capture spatial variability and improves predictive
accuracy in heterogeneous network environments.

Throughput Volume Distribution by Base Station
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Figure 2 — Throughput volume distribution by base station
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Figure 3 — Heatmap of beam-level traffic volume

(e) Target variable distribution: The distribution of the
target variable DLThpVol was found to be strongly right-
skewed, characterized by a large concentration of
observations with low or zero traffic volume and a long tail
representing rare but high-volume events, as shown in Fig. 4.
Common transformations, such as the square root
transformation, were applied to reduce skewness, but only
provided partial normalization, as shown in Fig. 5.

This distributional characteristic has two important
implications for model development and evaluation. Firstly,
it indicates that evaluation metrics such as Mean Squared
Error (MSE), which are highly sensitive to outliers, would
disproportionately penalize errors on infrequent high-
volume instances. As a result, MAE was selected as the
primary evaluation metric due to its greater robustness to
skewed distributions. Secondly, the non-Gaussian nature of
the data underscores the need for models capable of handling
complex, non-linear relationships and irregular distributions,
properties for which tree-based models like LightGBM are
particularly well-suited.
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4.3 Feature engineering strategy

Guided by insights from the EDA and building on the formal
definitions introduced in Section 3 (equations 6-9), a
comprehensive feature engineering pipeline was designed to
transform the raw time-series data into a rich, tabular feature
set. This process was essential for enabling the GBDT
models to learn the complex spatio-temporal dependencies
in the network data.

The engineered features were grouped into distinct
categories, each encoding different types of information
relevant to the forecasting task.

(a) Lag and rolling window features: As formulated in
equations (6) and (7), lag and rolling window features were
constructed to capture short-term temporal dependencies and
smoothed local trends in DLThpVol.

* Lag features: Lagged values of the target variable, PRB
utilization, and active user counts from the previous 1 to
4 hours were created to provide the model with
immediate historical context and momentum in network
load.

* Rolling window statistics: To provide a more stable
view of recent history, statistical aggregations were
computed over moving windows of 168 hours (1 week)
and 336 hours (2 weeks) to align with the observed
weekly seasonality.

To prevent data leakage, these windows were shifted by one
week, ensuring that each feature at time # was computed
strictly using data from times — #—168 and earlier. Within
each window, the mean, median, standard deviation, and
25th/75th percentiles were computed to capture both central
tendency and variability.

(b) Expanding window features: Following Equation (8),
expanding window features were designed to capture long-
term, cumulative trends in the data. Unlike rolling features
that emphasize short-term patterns, these compute statistics
using all historical observations available up to time ttt,
effectively encoding the cumulative “memory” of network
behavior. Specifically, expanding mean and standard
deviation were calculated for both the target variable and key
exogenous predictors, embedding information about their
evolving central tendency and variability.

This approach allowed the model to account for gradual
changes and persistent effects across the entire observation
period.

(¢) Group-based aggregations and fold-aware target
encoding: As formalized in Equation (9), target encoding
[37] was used to represent categorical variables (e.g., beam
ID, base station, cell type) through aggregated statistics of
the target variable. This step was crucial to capturing spatial
heterogeneity and entity-specific behavioral patterns
identified during EDA.

However, a naive implementation where the encoding for a
row is computed using its own target value leads to data
leakage and overfitting. To avoid this, a robust fold-aware
target encoding scheme was implemented.

The procedure was as follows:

1. The training data was divided into K folds, stratified by
a key categorical feature (e.g., base_station).

2. For each fold i, category-level statistics (mean, standard
deviation, skewness, min, max, percentiles) were
computed using only the remaining k—1 folds.

3. These out-of-fold statistics were then used to encode the
categorical features within fold i.

4. The process was repeated until all folds were encoded,
ensuring that each encoded feature was leak-free.

5. Finally, the statistics computed from the full training
data was used to encode the unseen test set.

This method was applied across multiple grouping
hierarchies such as ['base station', 'beam'], ['base station',
'daily_hr'], and ['base_station', 'cell type', 'beam'], allowing
the model to capture nuanced spatial-temporal interactions.

By systematically applying this fold-aware target encoding,
the model gained a richer and more generalizable
representation of contextual dynamics, a critical factor in
achieving high forecasting accuracy.
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5. EXPERIMENTS

This section presents a comprehensive experimental
framework designed to evaluate the proposed forecasting
methodology. We outline the experimental setup,
comparative performance against state of the art baselines,
evaluating feature selection and model selection strategies,
performance and evaluation analysis and, lastly, feature
importance and interpretation.

5.1  Experimental setup

The experimental phase is structured around three
interrelated analyses designed to comprehensively evaluate
the effectiveness, robustness, and practical applicability of
the proposed forecasting methodology.

The first component involves benchmarking the proposed
model against a suite of state-of-the-art baseline models to
assess its predictive performance relative to existing
approaches in the field. The second analysis focuses on
evaluating the impact of different feature selection strategies
on model accuracy and generalization capability. This
includes assessing the contribution of temporal, spatial, and
contextual features through controlled ablation experiments.
The final component examines key operational metrics such
as computational efficiency i.e model size and inference
latency to evaluate the deployment feasibility of the model
under real-world constraints.

The overall experimental design is intended to rigorously
evaluate model performance under realistic operational
conditions, with particular emphasis on both short-term
prediction accuracy (e.g., next-hour forecasts) and long-term
trend capture (e.g., multi-day forecasting horizons). This
dual focus ensures that the methodology is not only accurate
in immediate predictions but also reliable in capturing
evolving patterns over extended periods.

5.2 Evaluating feature selection and model
selection strategies

This section presents an ablation study designed to assess the
impact of different feature engineering strategies on model
performance. The primary objective is to identify which
approaches to feature construction and selection yield the
most accurate and robust forecasts.

5.2.1 Forecasting scenarios and feature
strategies

To understand how temporal distance impacts predictability
and feature relevance, we defined two distinct forecasting
tasks, each with a tailored feature engineering strategy. The
first task is a short-term prediction scenario (Week 6
prediction). This scenario simulates operational, near-future
forecasting, requiring the model to predict the immediate
following week (Week 6) using training data from
weeks 1-5. For this task, we hypothesized that recent
temporal dynamics are highly predictive. We therefore
employed a dynamic feature set, which incorporates the full
suite of engineered features detailed in Section 4. This
includes highly time-sensitive predictors such as hourly lags,

short-term rolling window statistics, and expanding features
that capture the most recent system state and momentum.

The second task is long-term prediction scenario (Week 11
prediction). This scenario tests the model's ability to
generalize over a significant temporal gap, a common
challenge in strategic network planning. The model must
predict Week 11 using only training data from weeks 1-5,
contending with a five-week data gap where temporal
distribution shift (or concept drift) [38] is a major concern.
To mitigate this, we curated a stable feature set. This set
explicitly excludes features most susceptible to drift, such as
short-term lags, expanding statistics, and certain volatile
target encodings. The underlying hypothesis is that by
forcing the model to rely on fundamental, time-invariant
patterns such as stable weekly/daily cycles and core spatial
hierarchies it will achieve better generalization over
extended horizons.

5.2.2 Model selection and implementation

Two state-of-the-art Gradient Boosting Decision Tree
(GBDT) models were chosen for their proven efficacy on
structured, tabular data.

e LightGBM: A highly efficient GBDT framework
utilizing a leaf-wise growth strategy, enabling it to
converge quickly and capture complex patterns. Its
speed is a significant advantage for experiments
involving large datasets and extensive cross-validation.

e CatBoost: A GBDT framework distinguished by its
novel handling of categorical features and its use of
ordered boosting. This permutation-based approach
inherently reduces target leakage during the training
process, often leading to more robust and generalizable
models.

Both models were implemented in Python. To address the
severe right-skew of the target variable (DLThpVol), a
Square-root transformation was applied prior to training to
stabilize variance and make the error distribution more
amenable to learning. All predictions were inversely
transformed back to the original scale before evaluation.

5.2.3 Evaluation protocol and metrics

A robust evaluation protocol was established to ensure the
reliability and reproducibility of our findings. We employed
a [10-fold stratified cross-validation [39] methodology.
Critically, stratification was performed based on the
base_station identifier. This ensures that each fold contains
a proportionally representative sample of data from all 30
base stations, preventing situations where a model is trained
without seeing data from certain geographical clusters. This
spatial stratification is essential for obtaining a reliable
estimate of generalization performance in a real-world,
heterogeneous network. The MAE [40] was selected as the
primary performance metric. Its choice is motivated by two
key properties of the data. First, MAE is less sensitive to the
extreme outliers present in the long-tailed DLThpVol
distribution compared to the Root Mean Squared Error
(RMSE), providing a more stable measure of typical model
performance. Second, MAE is directly interpretable in the
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original units of the target variable (i.e., throughput volume),
facilitating clear communication of the model's accuracy.

5.2.4 Hyperparameter optimization and
model training

Optimal model performance is highly dependent on
hyperparameter configuration [41]. Separate hyperparameter
tuning was conducted for each model and for each of the two
forecasting scenarios using Optuna [42]. We utilized a
systematic approach to find configurations that balance
model complexity (e.g., max_depth, num_leaves) with

regularization (e.g., lambda ll, lambda [2) to prevent
overfitting. The final, optimized hyperparameters used for
generating our results are detailed in Table 2 below.

During training within each cross-validation fold, the models
were trained on the training partition and evaluated on the
validation partition at each boosting iteration. This allows for
the use of early stopping [43], a technique where training is
halted if the validation performance does not improve for a
specified number of rounds, preventing the model from
overfitting to the training data. The learning curves from this
process provide insight into model convergence.

Table 2 — Model parameters used

LightGBM (Long Term)

LightGBM (Short Term)

Catboost (Long Term)

Catboost (Short Term)

learning_rate: 0.0205
num_leaves: 254
max_depth: 10
feature fraction:

* learning_rate: 0.0830
e num leaves: 151

e max_depth: 9

» feature fraction:

learning_rate: 0.020218465729343698
depth: 9
12 leaf reg: 1.339103723284128e-06

random_strength:
6.000809910512735e-07

bagging_temperature:
0.38040823680407604

leaf _estimation_iterations: 7
iterations: 15000

learning_rate:
0.020218465729343698
depth: 9

12_leaf reg:
1.339103723284128e-06
random_strength:
6.000809910512735¢-07
bagging_temperature:
0.38040823680407604

0.6697 0.7095

» bagging_fraction: » bagging_fraction:
0.7229 0.9362

» bagging freq: 8 » bagging_ freq: 1

* min_child_samples: * min_child_samples: 22
100 e lambda 11: 6.42

* lambda 11: 2.49¢-6 +  lambda_I2: 0.0034

* lambda_I2: 1.69e-8 * n_estimators: 5000

* n estimators: 1000

* leaf estimation_
iterations: 7

e iterations: 15000

5.3 Performance evaluation and analysis

This section presents the core empirical results of the study,
focusing on the predictive performance of LightGBM,
CatBoost, and a model ensemble combining both
approaches. The evaluation is conducted across both short-
term and long-term forecasting scenarios to assess the
robustness and generalization capability of each method.

5.3.1 Comparative performance against
other provided baselines

To contextualize the performance of the proposed models,
we benchmark them against publicly available baseline
results provided by the competition organizers [17]. These
baselines encompass both classical and deep learning
approaches, including iTransformer, PatchTST, DLinear,
and transformer.

Fig. 6 illustrates the MAE between benchmark models
(Hist.Avg, iTransformer, PatchTST, DLinear and
transformer) and our proposed models (LightGBM and
CatBoost) across two forecasting horizons; short-term
predictions for Week 6 and long-term predictions for
Week 11. These visual comparisons demonstrate the strong
competitiveness of our approach relative to benchmark
models.

In the short-term forecasting task, our proposed GBDT-
based LightGBM and CatBoost models outperform all deep
learning baselines. The proposed ensemble model achieves
an MAE of 0.1919, surpassing the best- performing baseline
model (iTransformer, MAE = 0.1967) by approximately
2.4%. This margin of improvement highlights the
effectiveness of gradient-boosted decision trees when paired
with carefully engineered temporal and contextual features.

In the case of the long-term forecasting scenario, our
proposed ensemble model again attains the lowest MAE of
0.2261, outperforming all baselines, including the
transformer architecture (MAE = 0.2331). This consistent
outperformance  across both  forecasting  horizons
underscores the advantages of domain-informed feature
engineering and ensemble learning in capturing temporal
dynamics and mitigating model drift over extended periods.

These findings emphasize the importance of model
interpretability, feature expressiveness, and computational
efficiency, particularly in real-world deployment scenarios
where inference latency and resource constraints are critical
considerations. Overall, the results affirm the suitability of
gradient-boosted tree models as a powerful alternative to
deep learning architectures in structured time-series
forecasting tasks.
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Forecasting MAE by Model and Horizon (Horizontal View)
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Figure 6 — Comparison of MAE between benchmark models and
our proposed models (LightGBM and CatBoost)

5.3.2 Baseline: single-pipeline modeling
results (no feature strategy split)

As an initial benchmark before implementing the dual-
feature strategy described in Section 3.5, we trained GBDT
models, specifically LightGBM and CatBoost, using a
unified feature set that did not distinguish between short-
term and long-term forecasting requirements. This single-
pipeline approach serves as a useful benchmark to evaluate
the effectiveness and added value of the dual-feature
strategy.

We applied standard GBDT models using all engineered
features, regardless of temporal horizon. The results,
summarized in Table 3, demonstrate acceptable performance
across both forecasting horizons. However, we observed
notably diminished generalization accuracy on the long-term
forecasting task, as shown in Table 3. This suggests that
features informative for short-term predictions may lose
relevance or introduce noise when applied to extended
temporal horizons.

These limitations motivated the development of the dual-
pipeline architecture, which enables model specialization
based on temporal context and feature stability. By tailoring
feature sets to each forecasting horizon, the proposed design
aims to improve both predictive accuracy and robustness
over time.

Table 3 — Results of the single pipeline

Model Scenario Feature Ccv Leaderboard A

Set MAE MAE (LB-CV)

LightGBM | Short Term Single 0.1923 0.1926 +0.0003
(W6) Pipeline

LightGBM Long Term Single 0.1923 0.2302 +0.0379
(W11) Pipeline

Catboost Short Term Single 0.1917 0.1918 +0.0001
(W6) Pipeline

Catboost Long Term Single 0.1917 0.2356 +0.0439
(W11) Pipeline

5.3.3 Dual pipeline modelling results
(with feature splits)

Table 4 presents an overview of the predictive performance
achieved by the models under the dual-pipeline framework.
The table reports two key evaluation metrics: the average
MAE obtained from 10-fold cross-validation (referred to as
CV MAE), which reflects the model’s ability to generalize
within the training distribution, and the final MAE on the
held-out competition test set (referred to as Leaderboard
MAE), which evaluates out-of-distribution generalization
over time. These results provide insight into both the
consistency of model performance during training and its
robustness when applied to unseen temporal data.

Table 4 — Model performance comparison

Model Scenario Feature Ccv Leaderboard A
Set MAE MAE (LB-CV)
LightGBM Short Term | Dynamic | 0.1913 0.1925 +0.0012
(W6)
Catboost Short Term | Dynamic | 0.1918 0.1919 +0.0001
(W6)
Ensemble Short Term | Dynamic _ 0.1919 _
(W6)
LightGBM | Long Term Stable 0.1971 0.2262 +0.0291
(W11)
CatBoost Long Term Stable 0.1972 0.2262 +0.0290
(W11)
Ensemble Long Term Stable _ 0.2261 _
(W11)

5.3.4 Single-pipeline vs. dual-pipeline
performance

In this study, we proposed a dual-modeling strategy to
improve forecasting performance across different temporal
horizons. To evaluate its effectiveness, we compare the
results obtained under the dual-pipeline approach with those
from the single-pipeline baseline. In the single-pipeline
approach, a unified feature set was used to train both short
and long-term forecasts together, whilst in the dual-pipeline
approach, features were explicitly split into dynamic (short-
term) and stable (long-term) sets, and separate models were
trained for each forecasting horizon.

In the single-pipeline setup, as reported in Fig. 7, both
models achieved reasonable performance across both tasks.
However, we observed a notable drop in generalization
accuracy for the long-term forecasting scenario. This
suggests that features effective for short-term predictions
introduced noise when applied to extended horizons, limiting
model robustness.

By contrast, the dual-pipeline strategy significantly
improved model specialization. In the short-term task
(Week 6), the ensemble achieved a final Leaderboard MAE
of 0.1919, outperforming all individual baselines and
demonstrating strong competitiveness. For the long-term
task (Week 11), the ensemble improved the best individual
model results slightly, achieving a Leaderboard MAE of
0.2261 suggesting that both models successfully leveraged
the more constrained and temporally stable feature set.
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Single vs Dual Pipeline Inference on Test Performance
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Figure 7 — Comparison between dual and single pipeline

This comparison confirms the effectiveness of separating
temporal contexts during training. The dual-pipeline design
not only enhances predictive accuracy but also improves
interpretability and robustness by aligning feature relevance
with forecasting horizons.

5.3.5 Analysis of results and model
convergence (understanding
beam-level traffic forecasting)

The results summarized in Table 4 offer several key insights
into the characteristics and challenges of beam-level traffic
forecasting.

Efficacy in short-term forecasting

In the Week 6 (short-term) forecasting scenario, both
LightGBM and CatBoost models demonstrate strong and
nearly identical performance. The small discrepancy
between Cross-Validation MAE (CV MAE) and the final
Leaderboard MAE (A < 0.001) indicates excellent
generalization capability. This supports our hypothesis that
the dynamic feature set enriched with recent temporal
patterns is highly effective for near-future predictions,
enabling accurate modeling of short-term traffic behavior.

Impact of temporal drift in long-term forecasting

The Week 11 (long-term) forecasting scenario highlights the
significant challenge posed by temporal distribution shift.
While the CV MAE (~0.197) suggests that the models
effectively capture patterns within the training data, the
Leaderboard MAE increases to 0.226, indicating a notable
performance drop (A = 0.029). This degradation reflects the
diminishing relevance of short-term patterns over extended
time horizons. However, the stable feature set plays a crucial
role in maintaining model reliability by leveraging time-
invariant structural features, thereby preventing complete
model breakdown despite the five-week gap in temporal
context.

Model convergence behavior

Figures 8 and 9 depict the learning curves of the CatBoost
and LightGBM models, respectively, for both the short
and long-horizon forecasting tasks.

In the long-horizon scenario, both models show a rapid
decline in training and validation errors during the early
boosting rounds, followed by a smooth plateau. The close
alignment between the curves indicates stable convergence
and effective generalization, suggesting that the models
adequately capture longer-term temporal dependencies
without substantial overfitting.

In contrast, the short-horizon models exhibit a gradual but
continuous reduction in training error while the validation
error stabilizes early, revealing mild overfitting. This pattern
implies that, beyond a certain number of boosting iterations,
further training primarily benefits the fit on the training data
rather than improving predictive performance on unseen
samples.

Overall, both CatBoost and LightGBM demonstrate
consistent convergence behavior across forecasting
horizons, with early stopping effectively preventing
divergence and ensuring that training terminates near the
point of optimal validation performance.

CatBoost Learning Curves (Fold 0)
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Figure 8 — Catboost training and validation curves for fold 0

Lightgbm Learning Curves (Fold 0)
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Figure 9 — Lightgbm training and validation curves for fold 0

Visualization of predicted hourly traffic volume trend

To gain a deeper understanding of the model’s temporal
behavior, we visualize the predicted hourly downlink
throughput volume across three representative base stations:
Base station 0, Base station 1, and Base station 2. This
analysis highlights the model’s ability to capture fine-
grained spatio-temporal dynamics across geographically
distributed network nodes.

As shown in Fig. 10, the model effectively learns distinct
diurnal traffic patterns, characterized by pronounced peaks
during daytime hours and troughs during the night. These
periodic fluctuations reflect realistic user behavior and align
with known daily activity cycles. (i) Base station 0 exhibits
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the highest traffic intensity with clear, sharp peaks recurring
every 24 hours, indicative of a densely populated or highly
utilized area. (ii) Base station I demonstrates a more stable
and lower-volume profile, with moderate peaks and minimal
variability. (iii) Base station 2 shows an intermediate pattern,
with elevated traffic during business hours but less intensity
compared to Base station 0.

This visualization confirms that the forecasting model adapts
its predictions to the unique traffic rhythms of individual
base stations, supporting the hypothesis that beam and cell-
level traffic exhibit heterogeneous usage profiles. Such
insights are critical for operators seeking to implement
targeted optimization strategies for specific network regions.

Predicted Hourly Target Trends by Base Station

Figure 10 — Predicted hourly volume trends for base station 0,
1 and 2

Relative performance gains over baseline models

To quantify the efficacy of the proposed forecasting models,
we conducted a comparative analysis against baseline results
published by the competition organizers. These baselines
include both traditional statistical techniques (e.g., historical
average) and recent deep learning models such as
iTransformer, PatchTST, DLinear, and transformer.

Table 5 reports the percentage improvement in MAE
achieved by each of our models, LightGBM, CatBoost, and
their ensemble on the official test set (Leaderboard MAE),
relative to each baseline. Results are shown for both the

short-term (Week 6) and long-term (Week 11) forecasting
scenarios.

The findings reveal consistent performance gains across all
baselines. In the short-term scenario, the ensemble model
achieved up to 2.44% improvement over the best baseline
(iTransformer) indicating the model's effectiveness in
capturing recent temporal patterns. Similarly, in the long-
term scenario, the ensemble approach delivered gains of
nearly 3% over the best baseline in that
horizon(transformer).

These results demonstrate that our GBDT-based framework,
particularly the dual-pipeline strategy, not only matches but
in many cases outperforms state-of-the-art deep learning
methods. The improvements validate the strength of domain-
informed feature engineering and ensemble learning in real-
world traffic forecasting tasks.

Table S — Percentage improvement over benchmark models

(MAE)
Benchmark Light Light | Catboost | Catboost | Ensem. | Ensem.
Models GBM GBM Wwe W11 W6 Wil
Wwé Wil

Hist. Avg 8.68% | 6.95% 8.97% 6.95% 8.97% | 6.99%

iTransformer | 2.14% 3.66% 2.44% 3.66% 2.44% | 3.71%

PatchTST 2.43% 3.46% 2.74% 3.46% 2.74% | 3.50%

Dlinear 3.99% | 3.83% 4.29% 3.83% 4.29% | 3.87%

Transformer | 11.13% | 2.96% 11.40% 2.96% 11.40% | 3.00%

5.3.6 Ensemble strategy

Given the complementary performance characteristics of
LightGBM and CatBoost, a final weighted ensemble model
was constructed by linearly combining their predictions. The
ensemble was formulated as:

Ensemble prediction = 0.6 x CatBoost + 0.4 x LightGBM,

with weights derived from a combination of cross-validation
performance and an analysis of feature importance patterns,
which revealed distinct yet complementary sensitivities of
the two models to different input features.

For the short-term forecasting task (Week 6), this ensemble
approach achieved a final Leaderboard MAE of 0.1919,
outperforming individual model results and yielding a
competitive submission. In the long-term forecasting
scenario (Week 11), the ensemble demonstrated
performance comparable to the best individual models,
suggesting that both models had converged toward similar
solutions when constrained by the more stable and
temporally invariant feature set.

This result highlights the value of ensemble learning in
leveraging model diversity while reinforcing the importance
of feature stability in long-horizon forecasting tasks.

5.4 Feature importance and interpretation

To understand the key drivers of the predictions and validate
our feature engineering strategy, we analyzed the gain-based
feature importances as calculated by LightGBM and
CatBoost. This metric quantifies the total reduction in the
loss function attributable to a given feature across all splits
in the ensemble of trees.
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LightGBM Feature Importance (Top 10) - Short-Horizon
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Figure 11 — Top 10 features for the short-term scenario

The feature importance analysis for the short-term
forecasting scenario in Fig. 11 confirms that the model
predominantly relies on recent, dynamic patterns in the data.
The most influential features include indicators of weekly
seasonality specifically, values from the same hour in the
previous week which reflect the model’s ability to capture
recurring temporal rhythms in traffic behavior. Highly
ranked features also include granular spatio-temporal
interactions derived from target-encoded combinations of
beam, base_station, and daily _hr. These engineered features
enable the model to learn fine-grained behavioral patterns,
such as “the average traffic for beam 5 at base station 10
during the 9 AM hour,” demonstrating its capacity to localize
predictions based on both spatial and temporal contexts.

Additionally, features extracted from short-term rolling
windows such as the standard deviation of the target variable
over the past seven hours rank among the most important.
These statistics allow the model to adapt its predictions
dynamically in response to recent load fluctuations, further
enhancing its responsiveness to evolving network
conditions.

In stark contrast to the short-term forecasting scenario, the
feature importance ranking for the long-term task shown in
Fig. 12 reveals a clear and meaningful shift in the model’s
reliance on different types of predictors. Deprived of access
to recent dynamic features, the model adapts by prioritizing
structurally stable and temporally invariant characteristics of
the data.

LightGBM Feature Importance (Top 10) - Long-Horizon
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Figure 12 — Top 10 features for the long-term scenario

This explicit shift in feature reliance between the two
scenarios provides powerful validation for our dual-strategy
approach. It demonstrates that the models successfully
adapted their learning to the nature of the forecasting task,
exploiting transient dynamics when available and relying on
stable structural patterns when forced to generalize over a
long temporal gap.

The most influential features fall into three primary
categories.

Core spatial hierarchy: Target-encoded features based on
beam and base_station identity dominate the importance
rankings. These features serve as a stable baseline, capturing
the average traffic level associated with each spatial entity
independently of short-term fluctuations.

Fundamental cyclical patterns: Basic temporal features
such as daily hr and day of week emerge as critical
predictors. In the absence of fine-grained dynamic signals,
the model leverages these reliable, long-term periodicities as
its primary temporal reference.

Long-term averages: Aggregated weekly mean features
provide a robust historical context, offering generalized
insights into traffic behavior that are less sensitive to
transient noise or outlier events.

This explicit shift in feature dependence between the two
forecasting scenarios offers strong empirical validation of
our dual-strategy modeling approach. It demonstrates that
the models successfully adapt their learning mechanisms to
the nature of the prediction task leveraging high-resolution,
dynamic patterns when available, and falling back on stable,
structural relationships when generalizing over extended
time horizons.
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6. CONCLUSION

This study challenged the prevailing trend of increasing
model complexity in network traffic forecasting. We
demonstrated that a GBDT-based framework, grounded in
deliberate, domain-specific feature engineering, can achieve
superior performance over state-of-the-art deep learning
benchmarks for the task of beam-level DLThpVol
prediction. Our approach prioritizes interpretability,
computational efficiency, and practical deployability,
critical requirements for real-world network management
that are often overlooked by more complex “black-box”
models.

Our proposed dual-pipeline architecture, leveraging
LightGBM and CatBoost, proved highly effective. By
specializing separate models for distinct forecasting
horizons, one sensitive to short-term autoregressive patterns
and another focused on long-term seasonal stability, the
framework achieved state-of-the-art accuracy. Our ensemble
model attained a Mean Absolute Error (MAE) of 0.1919 for
short-term (Week 6) and 0.2261 for long-term (Week 11)
forecasts, outperforming established benchmarks including
iTransformer, PatchTST, and DLinear.

The primary contribution of this work is the empirical
evidence that for structured time-series data with strong
periodicities, a method that explicitly encodes domain
knowledge can be more powerful than generic automated
feature extraction. This work provides a robust and efficient
forecasting blueprint that serves as a critical enabler for
downstream network optimization. While we do not propose
a new resource allocation algorithm, the high accuracy of our
forecasts provides the foundation needed to reduce safety
margins in resource provisioning, mitigate network
congestion, and enhance energy efficiency in 5G and future
cellular systems.

Ultimately, our findings advocate for a pragmatic approach
to machine learning in network management, one that proves
high performance and actionable insight are not mutually
exclusive.
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