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Semantic communication systems, powered by Generative AI (GenAI), enable the efficient
transmission of semantic meaning rather than raw data. However, these systems remain
highly vulnerable to backdoor attacks, which embed malicious triggers into training datasets,
causing the misclassification of poisoned samples while leaving clean inputs unaffected.
Existing detection mechanisms often modify model structures, degrading clean inference
performance, or impose strict data format constraints that limit adaptability. Moreover, many
approaches rely on fixed similarity thresholds, making them ineffective against adaptive
backdoor attacks and unable to inspect hidden activations where backdoors are embedded.
To address these challenges, we propose a hybrid framework, CNN-AAE, which combines a
Convolutional Neural Network (CNN) with an Adaptive Autoencoder (AAE) to leverage
both spatial feature learning and semantic deviation analysis for robust backdoor detection.
Unlike prior methods, our approach preserves the original model structure, dynamically
adjusts detection thresholds, and analyzes internal layer activations to identify deeply
embedded backdoors. We evaluate CNN-AAE on the MNIST and CIFAR-10 datasets and
compare its performance against several State-Of-The-Art (SOTA) baselines, including CNN,
Multilayer Perceptron (MLP), Fully Connected Neural Network (FCNN), autoencoder, and
the Anti-Backdoor Model (ABM). The results demonstrate that CNN-AAE consistently
achieves higher detection accuracy and significantly lower attack success rates, while
maintaining efficient resource usage in terms of training time and memory consumption.
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1. INTRODUCTION

Traditional communication systems focus on the accurate transmission of bits without
considering the meaning of the transmitted information. Based on Shannon’s information
theory, these systems treat all data as equally important, regardless of its actual relevance
to the recipient [1]. However, as modern applications demand efficient, context-aware,
and intelligent communication, the limitations of conventional systems have become
evident. Semantic communication introduces a revolutionary paradigm in modern
networks by emphasizing the transmission of meaning rather than raw data. This
paradigm addresses the challenge by shifting the focus from data transmission to meaning
transmission, ensuring that only relevant and useful information is exchanged. Unlike
traditional communication systems that focus on delivering exact symbols or numerical
values, semantic communication systems identify, encode, and convey the essential
meaning embedded in the data. At the transmitter, a semantic encoder processes input
data, such as text, images, or speech, extracting key semantic features and converting
them into compact, low-dimensional representations [2]. In this context, instead of
transmitting the entire raw data, only the extracted semantic feature vectors are sent over
the communication channel, leading to a significant reduction in bandwidth consumption.
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At the receiver end, a semantic decoder processes these
feature vectors to reconstruct meaningful information
while ensuring that the original semantic context remains
intact [3]. This capability of efficiently conveying infor-
mation with minimal communication overhead makes
semantic communication a highly effective solution for
data-intensive applications, including the metaverse [4],
the Internet of Things (IoT) [5, 6], and autonomous
systems [7]. For instance, in the metaverse, semantic
communication ensures seamless and immersive virtual
experiences by reducing latency in interactive environ-
ments, improving real-time collaboration, and enhancing
the synchronization of digital avatars and objects [8].
Similarly, in IoT networks, semantic communication opti-
mizes bandwidth usage while ensuring precise real-time
operations, such as sensor data aggregation and remote
monitoring [9]. Generative AI (GenAI) [10, 3, 11] plays a
fundamental role in semantic communication by improv-
ing the efficiency of encoding and decoding processes.
It enables AI-driven systems to focus on transmitting
meaningful and relevant information while minimizing
redundancy. However, the integration of GenAI brings
major cybersecurity risks, particularly backdoor attacks
[12, 13], which pose serious threats to the integrity of
semantic communication systems. Backdoor attacks
involve embedding concealed triggers within a model
during the training phase, allowing adversaries to ma-
nipulate its behavior later [14, 15, 16]. This type of data
poisoning introduces compromised training samples con-
taining subtle, predefined patterns, such as minor pixel
alterations in images or slight modifications in textual
input, which remain inactive until a trigger activates
them during inference [14]. When the model encounters
such triggers, it produces an attacker-controlled response,
thereby distorting the intended meaning of transmitted
data [14]. For example, the Covert Semantic Backdoor At-
tack (CSBA) is a stealthy and trigger-free backdoor attack
that covertly alters the semantic interpretation of commu-
nications within Intelligent Connected Vehicles (ICVs)
[17]. Instead of adding visible triggers, CSBA removes
critical semantics (e.g., traffic signs) from transmitted
images, causing connected vehicles to miss essential road
information. By poisoning the semantic encoding and
decoding process, it remains undetectable, leading to se-
vere navigation failures and safety risks. To tackle these
challenges, numerous studies emphasize the pressing
need to develop defenses for semantic communication
systems [18, 17, 19, 20].

Recently, various studies have explored defense tech-
niques against backdoor attacks. For example, the work
in [18] introduces a new backdoor attack paradigm on
semantic symbols (BASS) and proposes corresponding
defense mechanisms tailored for Deep Learning (DL)-
enabled semantic communication systems. To mitigate
BASS, a specialized training framework is designed for
prevention. Additionally, reverse engineering-based and
pruning-based defense strategies are implemented to

enhance system resilience against backdoor attacks. An-
other study [20] highlights the susceptibility of DL-based
semantic communication systems to backdoor attacks
by embedding triggers into a subset of training samples.
The attack exploits the complex decision space of Deep
Neural Networks (DNNs) in autoencoder-based seman-
tic communications, where latent features are transmitted
over limited channel uses. The effectiveness of the attack
increases with higher signal-to-noise ratios, more channel
uses, and a greater proportion of poisoned training data.
To counteract these threats, novel design strategies are
proposed to preserve the integrity of semantic communi-
cations. [21] proposes an imperceptible backdoor attack
that avoids traditional visible trigger patterns, which
are easily detected by human inspection. This method
extracts both low-level and high-level semantic features
from clean images using a pretrained victim model. A
trigger pattern is then generated based on channel atten-
tion, influencing high-level features without noticeable
modifications. An encoder subsequently produces poi-
soned images that maintain low-level feature consistency
while embedding the backdoor trigger. This approach
achieves high attack success rates and remains robust
against existing backdoor defenses by ensuring stealth-
iness through imperceptible modifications. In [22], the
authors proposed a defense framework for task-oriented
multi-user semantic communication systems based on
adversarial Reinforcement Learning (RL). This approach
utilizes adversarial training to simulate poisoning at-
tacks, progressively enhancing model robustness. By
doing so, the system can efficiently identify and mitigate
poisoned data while maintaining effective communica-
tion. In contrast, [23] investigates backdoor attacks in
GenAI-driven semantic communication systems. Unlike
existing defenses that require modifications to the model
structure or impose constraints on data formats, the pro-
posed approach leverages semantic similarity to detect
backdoor attacks without such limitations. By analyzing
deviations in the semantic feature space and establishing
a threshold-based detection framework, the proposed
approach effectively identifies poisoned samples while
maintaining the system’s integrity. The study in [24]
proposes an ABM, a non-invasive defense mechanism
that removes backdoors from poisoned models without
altering their parameters. It introduces a controlled weak
trigger to identify poisoned samples, trains a student
model to learn only the backdoor behavior, and uses it
to cancel the backdoor effect in the teacher model via
knowledge distillation.

The aforementioned proposed approaches to defending
against backdoor attacks in semantic communication sys-
tems suffer from several key limitations that undermine
their effectiveness. Many approaches depend on model
modification techniques, such as neuron pruning, to elim-
inate backdoor triggers; however, these modifications
often degrade clean inference performance and reduce
semantic accuracy. Some approaches impose strict data
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format constraints, such as requiring paired image-text
inputs, which limit their applicability to diverse semantic
data representations. Another limitation is the reliance
on fixed similarity thresholds, leaving them vulnerable
to adaptive backdoor attacks where adversaries dynami-
cally adjust triggers to evade detection. Moreover, most
existing methods only analyze input-output behavior and
fail to inspect internal activations in the encoder and de-
coder layers, where backdoor attacks are often embedded,
thereby reducing their ability to detect deeply hidden
manipulations. Moreover, ABM, while non-invasive,
also presents a limitation: it requires the manual design
of a weak implanted backdoor, yet there is no univer-
sal or interpretable method for generating a trigger that
is both weak and effective. This dependency restricts
ABM’s scalability and practicality across different set-
tings. Additionally, many approaches require manual
tuning of similarity thresholds, making them unsuit-
able for large-scale deployment and inconsistent across
datasets. Finally, most proposed methods are evaluated
on a single dataset, which limits their generalizability
and robustness in real-world applications. To overcome
these limitations, we propose a hybrid CNN-AAE frame-
work that integrates a Convolutional Neural Network
(CNN) with an Adaptive Autoencoder (AAE), providing
a robust and scalable defense mechanism for backdoor
detection in GenAI-driven semantic communication sys-
tems. Based on this motivation, the central research
question addressed in this work is as follows: How can
backdoor attacks be effectively detected in GenAI-driven
semantic communication systems using an AI-based
method that achieves high detection accuracy while min-
imizing the Attack Success Rate (ASR)? Accordingly, the
objectives of this study are: (i) to investigate the vulnera-
bility of GenAI-based semantic communication systems
to backdoor attacks; (ii) to design a non-invasive and
input-flexible detection framework; and (iii) to enhance
detection accuracy and reduce ASR through a hybrid DL
approach that leverages both semantic features and recon-
struction consistency. Unlike methods that rely on model
modifications, the CNN-AAE framework preserves the
original architecture, ensuring that clean inference per-
formance remains unaffected. Additionally, it eliminates
data format constraints, allowing detection across di-
verse semantic data representations without requiring
paired image-text inputs. To counter adaptive backdoor
attacks, the CNN-AAE framework implements dynamic
thresholding, where the detection system continuously
learns and adjusts based on observed feature variations,
preventing adversaries from evading detection by alter-
ing backdoor triggers. In contrast to prior work that has
focused solely on input-output relationships, our frame-
work examines hidden activations within the encoder
and decoder layers, allowing it to detect deeply em-
bedded backdoors that may otherwise evade detection.
Moreover, the CNN-AAE framework is fully automated,
eliminating the need for manual similarity threshold tun-
ing. The main contributions of this work are summarized

• We propose a system model that mathematically for-
mulates semantic communications and the backdoor
threat as part of a classification problem.

• To achieve higher accuracy in detecting backdoor at-
tacks in semantic communications powered by GenAI,
we propose CNN-AAE, a novel approach that inte-
grates a CNN with an AAE model.

• Comprehensive experiments are conducted to evaluate
the proposed CNN-AAE model against SOTA base-
lines, including CNN, MLP, FCNN, autoencoder, and
the ABM approach, using the MNIST and CIFAR-10
datasets. The evaluation includes metrics such as accu-
racy, precision, recall, F1 score, and ASR. Additionally,
we assess the computational efficiency of the proposed
framework by analyzing its training time and memory
usage.

The remainder of this paper is organized as follows:
Section 2 presents the system model, including both the
semantic communication architecture and the backdoor
threat model. Section 3 introduces the proposed CNN-
AAE framework, describing its detection algorithm and
the integration of GenAI within the overall architecture.
Section 4 discusses the experimental results, and Section
5 concludes the paper with future work.

2. SYSTEM MODEL

Semantic communication systems powered by GenAI
aim to transmit information in a compressed form while
preserving its semantic meaning. However, these sys-
tems are highly susceptible to backdoor attacks, in which
adversaries embed hidden triggers during training to ma-
nipulate the model’s predictions. This section provides a
system model of the semantic communication pipeline,
defines the backdoor threat model, and introduces a
mechanism for detecting backdoor attacks.

2.1 Semantic communication model

In semantic communication systems, an input sample
x ∈ Rd, where d denotes the original input dimension-
ality, is first transformed into a compressed semantic
representation s ∈ Rm using a semantic encoder Es(·),
such that:

s = Es(x), with m≪ d (1)

Here, m represents the dimensionality of the latent se-
mantic space, which is significantly smaller than d. This
compression enables the system to retain only high-level
meaningful information while discarding redundant de-

as follows:
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tails. The semantic vector s captures the core intent
of the input and is transmitted to the receiver. At the
receiver end, a semantic decoder Ds(·) reconstructs an
approximation of the original input:

x̂ = Ds(s) (2)

where x̂ ∈ Rd denotes the reconstructed version of the
input. The quality of reconstruction is evaluated using a
semantic fidelity function:

F (x, x̂) = exp
(
−
∥x − x̂∥2

σ2

)
(3)

where ∥x− x̂∥2 is the squared Euclidean distance between
the original and reconstructed samples, and σ2 represents
the variance of the data distribution. A higher value of
F (x, x̂) ∈ (0, 1] indicates stronger semantic preservation.
This formulation allows the system to prioritize semantic
accuracy over exact bit-wise reconstruction, which is par-
ticularly advantageous in noisy or resource-constrained
communication settings.

2.2 Threat model

The backdoor attacks aim to manipulate the training
process by injecting malicious samples that include a
predefined trigger. These poisoned samples cause the
model to behave normally on clean inputs while misclas-
sifying triggered inputs to an attacker-specified target
class. Let x ∈ Rd denote a clean input sample and t ∈ Rd

the adversarial trigger. The poisoned input is defined as:

xp = x + t (4)

where xp represents the input modified with the backdoor
trigger. During communication, the semantic encoder
maps xp to a low-dimensional semantic representation
sp = Es(xp) ∈ Rm, which is then decoded by Ds to yield the
reconstructed poisoned output x̂p = Ds(sp). The model is
expected to classify clean reconstructions correctly, i.e.,
f (x̂) = y, where f (·) is the classifier and y is the true label.
However, under a successful backdoor attack, the goal is
to enforce:

f (x̂p) = yt (5)

where yt is the attacker’s target class. The likelihood of
successful misclassification increases with the poisoning
ratio β, which denotes the fraction of poisoned samples
in the training set. This relationship is captured by:

P( f (x̂p) = yt) = g(β) (6)

where g(·) is a monotonically increasing function model-
ing the attack’s effectiveness. To evaluate performance
empirically, the ASR is computed over Np poisoned test
inputs as:

ASR =
1

Np

Np∑
i=1

I( f (x̂p,i) = yt) (7)

where I(·) is the indicator function. Beyond classification
accuracy, backdoor attacks can also degrade the semantic
fidelity of transmitted content. Let F (x, x̂) denote the
semantic fidelity between a clean input and its recon-
struction. For poisoned samples, we define the fidelity
as:

Fp(xp, x̂p) = exp
(
−
∥xp − x̂p∥

2

σ2

)
(8)

where σ2 represents the variance of the data distribution.
The drop in semantic quality introduced by the backdoor
is quantified as:

∆F = F (x, x̂) − Fp(xp, x̂p) (9)

which reflects the degradation in reconstructive perfor-
mance due to adversarial perturbation.

2.3 Backdoor detection model

To detect backdoor attacks in semantic communication
systems, we model deviations in the semantic feature
space caused by poisoned inputs. Let Xc denote the set of
clean training samples, and Es(x) be the semantic encoder
that maps an input x ∈ Rd to a semantic embedding
Es(x) ∈ Rm. The mean semantic representation of clean
data is computed as:

µc =
1
|Xc|

∑
xi∈Xc

Es(xi) (10)

where µc ∈ Rm is the average semantic feature vector
over clean inputs. For any input x, its semantic deviation
from the clean distribution is measured as:

D(x) =
∥∥∥Es(x) − µc

∥∥∥ (11)
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where ∥ · ∥ denotes the Euclidean norm. In the case of a
poisoned input xp = x + t, where t ∈ Rd is the backdoor
trigger, the semantic deviation becomes:

D(xp) =
∥∥∥Es(xp) − µc

∥∥∥ (12)

A test sample is flagged as poisoned if its deviation
exceeds a predefined threshold τ ∈ R+, that is, when
D(x) > τ. To quantify the likelihood of detecting a
poisoned input, the detection probability is defined as:

Pdet = P(D(xp) > τ) (13)

where Pdet ∈ [0, 1] captures the probability that a back-
doored input lies outside the clean semantic distribution.
This formulation enables inference-time detection of poi-
soned samples without altering the encoder–decoder
architecture of the semantic communication system.

3. ADAPTIVE HYBRID CNN-AAE FRAME-
WORK

In this section, we present the proposed CNN-AAE frame-
work for backdoor detection in GenAI-driven semantic
communication systems. Our framework integrates a
CNN-based semantic encoder, simulating GenAI ab-
straction on the sender side, with an autoencoder-based
anomaly detector at the receiver. By combining spatial
feature extraction with semantic consistency checks and
adaptive thresholding, the framework enables dynamic
detection of static and adaptive backdoor attacks while
preserving clean transmission integrity.

3.1 Architecture of the CNN-AAE framework

The proposed CNN-AAE framework is formulated as a
joint detection model that integrates CNN-based feature
analysis and autoencoder-based semantic deviation de-
tection. Given an input sample x ∈ RH×W×C, the CNN
feature extraction process is defined as:

F = fθ(x) (14)

Here, fθ denotes the CNN feature extraction function,
parameterized by weights θ, while F ∈ Rd represents
the corresponding extracted feature vector. In addition,
CNN is highly effective in capturing spatial dependencies
within the input data. By applying a series of convolu-
tional layers, the model learns hierarchical patterns that
differentiate normal from backdoor-embedded inputs.
However, CNN alone might struggle to detect adaptive
backdoor triggers that mimic natural variations. There-
fore, we introduce an additional layer of security through

autoencoder-based anomaly detection. Once the feature
vector F is obtained, the sample is classified using a fully
connected layer:

ŷ = gϕ(F) (15)

where gϕ is the classification function with parameters ϕ.
If the CNN classifier produces a low-confidence decision
or identifies a sample as anomalous, it is passed to the
autoencoder for further analysis. For semantic deviation
detection, the input sample is encoded and reconstructed
using an autoencoder:

s = Eψ(x), x̂ = Dω(s) (16)

where Eψ denotes the encoder function with parameters
ψ, mapping the input x to a latent space representation
s; Dω denotes the decoder function with parameters ω,
reconstructing x as x̂; and x̂ represents the reconstructed
version of the original input x. Since the autoencoder
learns the distribution of clean data, its ability to ac-
curately reconstruct backdoored inputs is significantly
reduced. The reconstruction error quantifies the seman-
tic discrepancy between the original and the generated
samples:

R(x) = ∥x − x̂∥2 (17)

A low reconstruction error suggests that the sample
conforms to the clean distribution, whereas a high re-
construction error indicates that the input is an outlier,
potentially embedded with a backdoor trigger. Thus, the
reconstruction error serves as a secondary confirmation
of the CNN’s feature-based anomaly detection.

3.2 Decision framework for backdoor identifi-
cation

To enhance robustness, we employ an adaptive threshold-
ing mechanism that dynamically adjusts detection sensi-
tivity based on variations in observed feature space. Tra-
ditional fixed-threshold methods are ineffective against
adaptive attacks, as adversaries can modify backdoor
patterns to bypass static detection limits. To counter-
act this, our approach computes detection thresholds
based on the statistical properties of clean samples, en-
suring adaptability across datasets and environments.
The threshold for CNN feature deviations is defined as:

τF = µF + λF · σF (18)

Similarly, the threshold for autoencoder reconstruction
errors is given by:
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τR = µR + λR · σR (19)

where µF and µR denote the mean feature deviation and
mean reconstruction error of clean samples, respectively,
and σF and σR represent their corresponding standard
deviations. The parameters λF and λR are tunable fac-
tors that control the detection sensitivity with respect
to statistical variations. Their values are empirically se-
lected through cross-validation and remain fixed during
evaluation. These parameters are not learned during
training; instead, they are adjusted to balance detection
performance and the trade-off between false positives
and false negatives under varying poisoning ratios. Un-
like traditional approaches that rely on static thresholds,
our method derives τF and τR from the statistical prop-
erties (mean and variance) of clean samples, allowing
thresholds to adapt across datasets and environments
even though λF and λR remain fixed. A sample x is
classified as poisoned if:

I(D(F) > τF ∨ R(x) > τR) = 1 (20)

where D(F) > τF indicates that the CNN has detected
an anomaly in the extracted feature representation, and
R(x) > τR implies that the autoencoder reconstruction
error exceeds the threshold, signaling a deviation from
the clean distribution. The logical OR condition (∨)
ensures that a sample is flagged as poisoned whenever
either model detects an anomaly. This dual-detection
mechanism minimizes false positives while maintaining
high sensitivity to adaptive and sophisticated backdoor
attacks. By combining the CNN’s spatial awareness
with the autoencoder’s anomaly detection capability, the
framework provides a robust backdoor defense suitable
for semantic communication applications.

3.3 CNN-AAE algorithm

The proposed adaptive hybrid CNN-AAE framework
functions as a dual-stage detection pipeline, integrating
CNN-based semantic feature extraction with autoencoder-
based semantic consistency checks to identify backdoor
attacks in GenAI-driven semantic communication sys-
tems. As illustrated in Algorithm 1, the framework pro-
ceeds through four systematic phases: semantic em-
bedding extraction, reconstruction analysis, adaptive
thresholding, and final classification.
Step 1: Semantic feature extraction (Simulating GenAI):
Each input sample xi is passed through a pretrained
CNN encoder fθ, which simulates the semantic embed-
ding layer of a GenAI. The CNN maps xi to a lower-
dimensional semantic vector si = fθ(xi), capturing high-
level features. The feature deviation D(Fi) = ∥si − µF∥2
is then computed to assess how much si diverges from

Algorithm 1: Adaptive Hybrid CNN–AAE Detector
Inputs: Dataset of input samples X = {x1, x2, . . . , xN}

CNN semantic encoder fθ trained on clean +
poisoned data
Autoencoder (Eψ,Dω) trained on clean CNN features
Statistical parameters: µF, σF, µR, σR
Tunable sensitivity factors: λF, λR
Outputs: Classification result yi ∈ {Clean,Poisoned}

for each xi ∈ X
for each sample xi ∈ X do

Step 1: Semantic Feature Extraction (Simulating
GenAI)

Extract semantic embedding using CNN:
si = fθ(xi)

Compute feature deviation from clean
distribution:
D(Fi) = ∥si − µF∥2

Step 2: Semantic Consistency Check via
Autoencoder

Reconstruct semantic embedding:
ŝi = Dω(Eψ(si))

Compute reconstruction error:
R(si) = ∥si − ŝi∥

2
2

Step 3: Adaptive Thresholding
Compute semantic anomaly thresholds:
τF = µF + λF · σF
τR = µR + λR · σR

Step 4: Backdoor Detection Decision
if D(Fi) > τF OR R(si) > τR then

yi ← Poisoned ;
end
else

yi ← Clean ;
end

end
return Classification results {y1, y2, . . . , yN}

the expected clean feature distribution, defined by the
mean µF.
Step 2: Semantic consistency check via autoencoder:
The extracted semantic representation si is further pro-
cessed through an autoencoder composed of encoder
Eψ and decoder Dω, trained solely on clean embed-
dings. The autoencoder reconstructs the semantic in-
put as ŝi = Dω(Eψ(si)), and the reconstruction error
R(si) = ∥si − ŝi∥

2
2 is used to detect anomalies. Clean

samples result in low reconstruction error, while poi-
soned samples yield significant deviations, indicating
semantic inconsistency.
Step 3: Adaptive thresholding: To account for variations
across environments and model behavior, the framework
employs dynamic thresholding. The semantic deviation
threshold τF and the reconstruction error threshold τR
are defined in (18) and (19), respectively.
Step 4: Backdoor detection decision: A sample is clas-
sified as poisoned if either the CNN-based feature devi-
ation D(Fi) exceeds τF or the autoencoder-based recon-
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Figure 1 – End-to-end adaptive hybrid CNN-AEE framework for backdoor detection in GenAI-driven semantic communication system.

struction error R(si) exceeds τR. This OR-based decision
rule enhances the framework’s robustness by combining
spatial and semantic anomaly cues. By combining the se-
mantic encoding capabilities of CNNs with Autoencoder-
based anomaly detection, the CNN-AAE framework
simulates a GenAI-driven semantic communication set-
ting and provides a resilient mechanism for detecting
both static and adaptive backdoor attacks at the receiver
side.

3.4 Framework description with GenAI inte-
gration

The proposed framework is designed to detect backdoor
attacks in GenAI-driven semantic communication sys-
tems, structured around a sender, channel, and receiver,
as illustrated in Fig. 1. The process begins at the sender
side, where a raw input image xi is either clean or poten-
tially poisoned by an attacker. A backdoor injection can
occur at this point, embedding a malicious trigger into
the image to manipulate the system’s behavior during
inference. This image is then processed by a pretrained
CNN encoder fθ, which simulates the semantic abstrac-
tion behavior of a GenAI model at the sender side. The
CNN encoder acts as a lightweight proxy for GenAI,
extracting a compact semantic representation si = fθ(xi).
This semantic embedding serves as the compressed form
of the message to be transmitted over the communication
channel. The semantic vector si is transmitted through
the channel to the receiver, which may receive either a
clean or poisoned semantic representation. The com-
munication channel itself is considered neutral in this
framework, focusing on the threat model on the sender-
side injection. At the receiver, the detection mechanism
is activated. The received semantic embedding si is first
evaluated for feature deviation by comparing it to the
expected distribution of clean semantic vectors, using
the metric D(Fi) = ∥si − µF∥2, where µF is the mean of
clean embeddings computed during training. This step
flags semantic vectors that are statistically distant from
the normal distribution.

Next, the framework applies a semantic consistency check
by passing si through an autoencoder trained exclusively

on clean samples. The autoencoder, composed of an
encoder Eψ and decoder Dω, reconstructs the seman-
tic vector as ŝi = Dω(Eψ(si)). The reconstruction error
R(si) = ∥si − ŝi∥

2
2 serves as an anomaly signal, with higher

errors indicating potential poisoning, since backdoored
samples typically fall outside the learned manifold of
clean semantics. To enhance robustness across different
operational environments, adaptive thresholds are com-
puted based on training statistics: τF for feature deviation
and τR for reconstruction error. The final classification
rule determines a sample as poisoned if either D(Fi) > τF
or R(si) > τR. If neither threshold is exceeded, the sample
is classified as clean. Based on this detection decision,
the receiver proceeds accordingly. Clean samples are
accepted and decoded or used as intended, while poi-
soned samples are flagged, discarded, or subjected to
mitigation measures. The proposed end-to-end seman-
tic communication and detection pipeline captures both
spatial anomalies at the feature level and structural in-
consistencies in semantic relationships, enabling robust
detection of backdoor attacks in GenAI-enabled systems.

4. EXPERIMENT

4.1 Experiment settings

The experiment is conducted to simulate backdoor at-
tacks in a GenAI-driven semantic communication system
and to evaluate the CNN-AAE framework for detection.
Two datasets are used: MNIST [25] and CIFAR-10 [26].
As listed in Table 1, the MNIST dataset consists of 28× 28
grayscale digit images, while CIFAR-10 contains 32 × 32
RGB images from 10 object categories. Both datasets
are split into 80% training and 20% testing subsets. To
emulate GenAI-driven semantic encoding at the sender,
the raw input images are passed through a pretrained
CNN encoder fθ, which extracts semantic embeddings
si = fθ(xi) ∈ Rm. This CNN encoder acts as a lightweight
proxy for a full GenAI model, capturing high-level seman-
tic features that represent the transmitted message. These
semantic embeddings simulate how GenAI compresses
and abstracts content for communication. Preprocessing
includes pixel normalization to [0, 1]. For CIFAR-10, data
augmentation techniques such as random cropping and
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Table 1 – Characteristics of MNIST and CIFAR-10 datasets

Dataset Classes Image Size Color Channels Training Samples Test Samples Common Uses
MNIST 10 28×28 Grayscale (1) 60,000 10,000 Digit Recognition
CIFAR-10 10 32×32 RGB (3) 50,000 10,000 Object Recognition

Table 2 – Evaluation metrics of DL models on the MNIST and CIFAR-10 datasets

Dataset Model Accuracy (%) Precision (%) Recall (%) F1 Score (%) ASR (%)

MNIST

CNN 96.2 95.1 94.5 94.8 3.0
MLP 94.5 93.2 92.3 92.7 5.2
FCNN 92.8 91.5 90.2 90.8 8.1
Autoencoder 95.3 94.2 93.1 93.6 4.1
ABM 96.4 95.0 94.0 94.5 2.4
CNN-AAE 97.8 96.7 96.2 96.4 2.2

CIFAR-10

CNN 92.5 91.2 90.5 90.8 7.2
MLP 89.1 87.5 86.8 87.1 10.5
FCNN 85.3 84.0 83.2 83.6 15.2
Autoencoder 90.2 89.0 88.3 88.6 9.4
ABM 93.6 92.2 91.5 91.8 6.0
CNN-AAE 95.4 94.3 93.7 94.0 5.1

horizontal flipping are applied. The experiment operates
entirely in a semantic feature space, allowing detection to
occur based on deviations from the distribution of clean
embeddings.

The CNN-AAE framework is trained alongside baseline
models, CNN, MLP, FCNN, autoencoder, and ABM ap-
proach, on both clean and poisoned data. All models are
trained using the Adam optimizer with a fixed learning
rate of 0.001 and a batch size of 64. For the classifica-
tion tasks, categorical cross-entropy is used as the loss
function, whereas the autoencoder is trained separately
using mean squared error. Evaluation is performed on a
disjoint test set including both clean and poisoned inputs.
By simulating GenAI-driven abstraction via the CNN
encoder and performing detection based on semantic
deviation and reconstruction error, the proposed frame-
work effectively identifies poisoned samples in semantic
communication pipelines.

4.2 Evaluation metrics for detection perfor-
mance

To evaluate the effectiveness of the proposed CNN-AAE
approach and baseline models in detecting backdoor
attacks, we utilize several standard performance met-
rics. These include accuracy, precision, recall, F1 score,
and ASR. Table 2 presents the evaluation metrics for
various models in detecting backdoor attacks within
GenAI-powered semantic communication systems under
a 3% poisoning ratio. The results cover the MNIST and
CIFAR-10 datasets. Among the baseline models, the CNN
demonstrates high robustness, achieving 96.2% accuracy
on MNIST and 92.5% on CIFAR-10, with ASR values of
3.0% and 7.2%, respectively. While CNN performs well,

its relatively higher ASR on CIFAR-10 suggests it can
still be bypassed by sophisticated backdoor attacks. The
autoencoder model also performs competitively, espe-
cially in learning semantic deviations. It achieves 95.3%
accuracy and 4.1% ASR on MNIST, and 90.2% accuracy
and 9.4% ASR on CIFAR-10. These results demonstrate
its sensitivity to semantic anomalies, although its perfor-
mance declines on more complex datasets.

The MLP and FCNN models show notably reduced re-
silience. MLP reaches 94.5% accuracy with a 5.2% ASR
on MNIST, dropping to 89.1% accuracy and a 10.5% ASR
on CIFAR-10. FCNN records the lowest performance
among all baselines, with only 85.3% accuracy and a high
ASR of 15.2% on CIFAR-10, confirming its limited capa-
bility in extracting discriminative features for backdoor
detection. The ABM approach demonstrates competitive
performance. On MNIST, it achieves 96.4% accuracy
with a 2.4% ASR, outperforming most baseline models
but remaining slightly behind the proposed CNN-AAE.
On CIFAR-10, an ABM approach reaches 93.6% accu-
racy with a 6.0% ASR, showing improved robustness
compared to CNN and autoencoder. ABM’s ability to
suppress backdoor effects stems from its non-invasive,
gradient-insensitive training strategy, which aligns well
with high-level semantic purification.

The proposed CNN–AAE framework significantly out-
performs all baseline and comparative models. It achieves
the highest accuracy of 97.8% on MNIST and 95.4% on
CIFAR-10. Its ASR is the lowest among all models, regis-
tering only 2.2% on MNIST and 5.1% on CIFAR-10. This
improved resistance is attributed to its dual-stage detec-
tion mechanism: CNN-based spatial feature analysis and
autoencoder-based semantic consistency checks. Further-
more, CNN-AAE benefits from adaptive thresholding
based on statistical deviations, enhancing detection sen-
sitivity under dynamic and complex attack scenarios.
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Figure 2 – Impact of poison ratio on backdoor attack in the MNIST dataset: (a) Accuracy (ACC) and (b) Attack Success Rate (ASR).

4.3 Robustness analysis under varying poi-
soning levels

To evaluate model robustness against semantic backdoor
attacks, a portion of the training samples is poisoned by
embedding imperceptible triggers into input images and
relabeling them to a fixed target class. This type of attack
manipulates the semantic space rather than relying on
visible pixel patterns, making detection more difficult.
Poisoning ratios of 5%, 7.5%, 10%, 12.5%, and 15% are
used to simulate varying levels of adversarial influence.
In this setting, we assess the proposed CNN-AAE model
alongside baseline methods (CNN, MLP, FCNN, autoen-
coder, and ABM) on MNIST and CIFAR-10 datasets.
We focus on two key metrics: classification accuracy
on clean data and ASR on poisoned data, to determine
each model’s resilience as the poisoning level increases.
According to Fig. 2, the CNN-AAE model continues to
outperform all baselines, achieving the highest accuracy
of 97.1% at 5% poisoned ratio and maintaining strong
performance with 88.9% at 15%. Its ASR remains the
lowest, increasing modestly from 2.7% to 9.1%, indicating
high robustness to backdoor attacks due to its hybrid
architecture that combines spatial feature learning and
semantic reconstruction. Notably, the ABM approach
also demonstrates strong performance, achieving 94.3%
accuracy at 5% poisoning and sustaining 83.0% accu-
racy at 15%. Its ASR remains relatively low, rising from
4.6% to 13.7%, positioning ABM as a competitive defense
method that surpasses traditional baselines while remain-
ing slightly less robust than CNN-AAE. In contrast, the
CNN model, although effective in spatial feature extrac-
tion, shows a decline in accuracy from 93.8% to 79.3%
and an increase in ASR from 5.2% to 16.1%, due to its
lack of a dedicated mechanism for filtering poisoned

patterns. The MLP model performs moderately, with
accuracy falling from 91.2% to 77.0% and ASR increasing
from 8.1% to 19.2%, demonstrating higher vulnerabil-
ity to subtle perturbations. FCNN exhibits the steepest
degradation, dropping from 88.9% to 73.9% in accuracy
and spiking from 12.0% to 26.7% in ASR, indicating poor
resilience under attack. The autoencoder performs better
than FCNN and MLP, with accuracy decreasing from
92.9% to 78.2% and ASR growing from 7.3% to 20.1%,
benefiting from its reconstruction-based detection yet
struggling as poisoning increases.

Fig. 3 presents the results obtained from the CIFAR-10
dataset, highlighting the challenges of detecting back-
door attacks in more complex, high-dimensional datasets.
Compared to simpler datasets like MNIST, the color im-
ages in CIFAR-10 introduce additional difficulties, re-
sulting in lower accuracy and higher ASR across all
models. This confirms that backdoor detection becomes
significantly more challenging as dataset complexity in-
creases. The CNN-AAE model demonstrates superior
performance, achieving 94.07% accuracy at 5% poisoning
and sustaining 83.10% at 15%, outperforming all other
models. Its ASR remains the lowest, increasing only from
5.86% to 15.56%, confirming its robustness. CNN-AAE
leverages both spatial feature extraction through CNN
and semantic reconstruction via autoencoder, allowing it
to maintain high accuracy and detect backdoor anomalies
even in high-dimensional data. The newly introduced
ABM approach also shows strong performance, achiev-
ing 91.2% accuracy at 5% poisoning and maintaining
79.4% at 15%. Its ASR remains relatively low, increasing
from 6.4% to 15.9%, positioning ABM as a highly resilient
model, second only to CNN-AAE.

In comparison, the CNN model maintains decent ro-
bustness, with accuracy declining from 90.8% to 76.3%
and ASR rising from 8.2% to 19.77%. While CNN cap-
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Figure 3 – Impact of poison ratio on backdoor attack in the CIFAR-10 dataset: (a) Accuracy (ACC) and (b) Attack Success Rate (ASR).

tures spatial features effectively, its vulnerability grows
at higher poisoning levels due to a lack of semantic-level
defenses. The MLP model struggles to cope with poison-
ing, as accuracy drops from 88.12% to 72.1% and ASR
increases significantly from 11.4% to 24.1%. MLP’s lack of
spatial modeling makes it more susceptible to pixel-level
backdoor perturbations. The FCNN model performs the
worst, with accuracy falling from 84.9% to 68.7% and
ASR sharply rising from 16.1% to 31.2%. The absence of
hierarchical feature extraction makes FCNN ineffective
against sophisticated poisoning. The autoencoder model
provides moderate resilience, with accuracy dropping
from 89.5% to 74.3% and ASR increasing from 10.11% to
24.07%. While its reconstruction capability helps identify
minor anomalies, its detection power weakens as poison-
ing increases and the model begins adapting to poisoned
samples as normal.

These results confirm that the proposed CNN-AAE is the
most effective model for backdoor detection in GenAI-
powered semantic communication systems due to its
hybrid architectural design. CNN-AAE integrates a
CNN for spatial feature extraction with an AE for se-
mantic reconstruction-based anomaly detection. The
CNN component excels at capturing local pixel-level
patterns and spatial hierarchies in image data, enabling
it to highlight irregularities introduced by backdoor trig-
gers. Meanwhile, the autoencoder reconstructs input
data based on learned clean distributions, and any de-
viation in reconstruction helps flag anomalies caused
by poisoned inputs. This combined architecture not
only preserves high classification performance but also
enhances detection sensitivity to subtle perturbations.
Unlike baseline models such as MLP and FCNN, which
lack explicit mechanisms for modeling spatial structure
or reconstruction consistency, CNN-AAE enforces both
discriminative and generative constraints during learn-
ing, leading to robust anomaly detection. Unlike ABM,

which detects backdoors after training by analyzing neu-
ron activations, CNN-AAE embeds detection within its
architecture by fusing CNN-based spatial analysis and
autoencoder-driven semantic evaluation. This integra-
tion enables efficient and responsive detection during
inference and consistently achieves lower ASR, making
CNN-AAE more effective for GenAI-based backdoor
detection.

Table 3 – Training time and memory usage comparison

Model Training Time (s) Peak Memory (MB)

CNN 120.4 650
MLP 98.7 430
FCNN 105.2 470
Autoencoder 145.9 710
ABM 185.3 925
CNN-AAE 197.5 917

4.4 Computational resource analysis

To evaluate the computational efficiency of each model,
we analyze both training time and memory usage. These
metrics are essential to assess the scalability and resource
demands of backdoor detection methods under consis-
tent experimental conditions. Table 3 reports the training
time and memory usage of all evaluated models. The
proposed CNN-AAE requires 197.5 s of training time and
917 MB of memory, reflecting its dual architecture that
combines spatial pattern learning (via CNN) with seman-
tic anomaly detection (via the autoencoder). Despite this
increased cost compared to simple baselines like MLP or
CNN, it remains close to the recent ABM model (185.3s,
925MB) while delivering superior backdoor detection
accuracy and lower ASR. This confirms that CNN-AAE
maintains an effective trade-off between computational
efficiency and detection robustness, making it suitable
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for GenAI-powered semantic communication systems
where both reliability and scalability are essential.

5. CONCLUSION AND FUTURE WORK

This paper introduced CNN-AAE, an adaptive hybrid
framework for detecting backdoor attacks in GenAI-
powered semantic communication systems. By integrat-
ing CNN-based spatial feature extraction with autoencoder-
based semantic deviation analysis, CNN-AAE improves
detection robustness while minimizing the impact on
clean inference accuracy. Our experimental evaluation on
MNIST and CIFAR-10 datasets, across multiple poisoning
ratios, demonstrated that CNN-AAE consistently out-
performs SOTA baselines, including CNN, MLP, FCNN,
and autoencoder, as well as the recent ABM approach for
backdoor detection. CNN-AAE achieved higher accuracy
and significantly lower ASR, while maintaining competi-
tive computational efficiency. We further analyzed the
training time and memory usage of all models, show-
ing that CNN-AAE offers an effective trade-off between
robustness and resource consumption, making it suit-
able for secure GenAI-based semantic communications.
Future work will extend this approach to larger-scale
datasets, evaluate resilience against more complex adap-
tive backdoors, and enhance model interpretability using
explainable AI techniques. Additionally, we aim to opti-
mize computational efficiency for practical deployment
in real-world applications.
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