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The privacy and security concerns related to execution data, model parameters, and processing 
algorithms have assumed an increasing pivotal role in the rapid development and massive 
deployment of Large Language Model (LLM) technology. This paper provides an overview of 
private LLM by addressing its working principles, application scenarios, security requirements, 
training and inference algorithms, and more importantly, its silicon and chip implementation in order 
to bring this game-changing technology to real-world products. This paper is organized into five 
sections. The first section is devoted to the background and motivations for proposing private LLM 
technology. According to different requirements for privacy and security, in the second section we 
categorize the proposed private LLM technology into three application scenarios (security levels) 

and then present the corresponding algorithms related to training and inferences. In order to converge 
private LLM into optimum silicon implementation, we present the proposed Cornami solution and 
its comparisons with existing solutions (GPU and ASIC) in terms of power consumption, cost and 
processing latency in Section 3 and Section 4. In the last section, we make some conclusions and 
note further discussions. 
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1. BACKGROUND AND MOTIVATIONS

Driven by Large Language Model (LLM) and Generative Pre-trained Transformers (GPT) 

technology, Generative Artificial Intelligence (GenAI) is now finding a use in almost every 

aspect of industry and society due to its powerful capabilities in extracting, processing and 

expanding data, information and knowledge. GenAI can help to meet the increasing demands of 

our digital life in terms of cost, power, capacity, coverage, latency, efficiency, flexibility, 

compatibility, quality of experience and service [1].  

According to OpenAI’s publications [2], an LLM could be considered as nonlinear mapping 

from the input X (query) to output Y (response) by performing the following major processing 

blocks, shown in Fig. 1, namely, Embedding and Encoding, Multiple Head Attentions, Feed 

Forward Perceptron, Layer Normalization and Softmax function. In an LLM layer of Fig. 1, 

Embedding and Encoding is a pre-processing unit which mainly performs the matrix 
multiplications between the input matrix and the corresponding weight matrices. Multiple Head 

Attentions perform multiple matrix multiplications according to three weight matrices called 

Query Matrix, Key Matrix and Value Matrix, respectively. Feed Forward Perceptron layer is a 

conventional feedforward neural network which has at least one hidden layer. Layer 

Normalization simply normalizes each of its inputs. Softmax is an activation function that scales 

numbers/logits into probabilities. As shown in reference [3], it can be seen that the output of an 

LLM can uniquely be generated by all the pre-determined weight matrices and its inputs. These 

weight matrices can be obtained during an off-line training stage. During the inference stage, 

LLM simply performs all the above matrix multiplications and corresponding nonlinear 

functions such as layer normalization and softmax operations. Different LLMs have different 

parameter sizes (the total element number of the weight matrices) which mainly depends on the 

number of attention heads and number of LLM layers. For example, GPT-3 has 96 heads and 96 
layers and hence there are about 175 billion parameters (elements of weight matrices) in total. 

In terms of training and inference, the application and implementation scenarios of LLM could 

be mainly categorized into the following three groups, namely; “General LLM”, “Fine-Tune 

LLM”, and “Private LLM.”
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As shown in Fig. 2, General LLM is actually the one that is 
being most commonly used now where W denotes the entire 

weight matrix and F(W,X) represents the nonlinear mapping 

that LLM is to perform.  

For the General LLM case, the processing steps include: 

• The Client sends their data 𝑋 to the server which

owns LLM parameters.

• The Server performs the LLM operation with  𝑋
as inputs of LLM as shown in Fig. 1.

• The Server sends the Client the generated output

𝑌  which equals to 𝐹(𝑊, 𝑋).

Meanwhile, taking the existing pre-trained General LLM as 

a starting point, it is possible to perform processing using 

very specific knowledge to produce LLMs that are experts in 

the narrow knowledge domain, which is defined as a Fine-

Tune LLM [4]. A Fine-Tune LLM involves taking a pre-

existing general model that has been trained on a large 
dataset, such as a language model like Llama3 and refining 

it for a specific task or domain. During fine-tuning, the 

model is further trained on a smaller, domain-specific dataset. 

This process adapts the model's parameters to the nuances of 

the target task, improving its performance and making it 

more capable in handling specific tasks. A Fine-Tune LLM 

is a cost-effective and efficient way to leverage the 

knowledge learned by a pre-trained general model while 

tailoring it to specific applications, reducing the need for 

extensive training from scratch. Fine-tune LLM allows for 

rapid development of domain specific AI solutions with high 

accuracy and applicability. Fig. 3 shows how to perform a 

Fine-Tune LLM task where ∆𝑊 is the difference between 

the new modified weight matrix (from specific datasets) and 

the original weight matrix 𝑊 (from larger datasets). 

More specifically, the processing steps of Fig. 3 includes: 

• The Client sends their data 𝑋 to the server which

owns LLM parameters and fine-tune parameters.

• The Server performs the LLM operation with 𝑋
as inputs of Fine-Tune LLM.

• The Server sends the Client the generated output

𝑌  which equals to 𝐹(𝑊, 𝑋) + 𝐹(∆𝑊, 𝑋)  or

𝐹(𝑊 + ∆𝑊, 𝑋).

In the above General LLM and Fine-Tune LLM, both client 

and server are fully transparent and there is neither privacy 

or protection nor security among their input data and output 

data as well as those customized fine-tuning parameters 

owned by the server. Hence, there are three problems 

regarding privacy and data protection [5].  

(1) From the owner of the fine-tuned LLM models’

perspective, the theft of one of these fine-tuned LLM

parameters is catastrophic. The LLM can enable competitors
to produce products or offer services that compete with the

original LLM owners’ business or if simply released on the

Internet can drive the revenue of the original LLM owners’

company to zero. There is a need to prevent the use by

unauthorized third parties of a company’s fine-tuned LLM.

(2) A client of these LLMs is providing queries to the

LLM and receiving results from these queries.  The client’s

queries may contain intellectual property and the answers to

these queries may contain new and novel intellectual

Figure 1 – Illustration of an LLM layer 

Figure 2 – Illustration of General LLM 

Figure 3 – Illustration of Fine-Tune LLM 
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property that the owner of the LLM now has access to. There 

is a need to prevent the leakage of a user’s intellectual 

property into the LLM from the user’s queries as well as to 

protect any new and novel intellectual property in the LLM’s 

responses. 

(3) The information that is used for the fine-tuning

LLM may be highly sensitive, proprietary, classified or

protected under privacy laws such as the European GDPR

rules or the US HIPPA rules. There is a need to be able to

perform training without exposing the training information
during the fine-tuning process.

2. PRIVATE LLMS

It is the goal of the proposed Private LLM technology to 

attack the above three problems. In theory, this could be 

accomplished by using Fully Homomorphic Encryption 

(FHE) approaches [6]. According to different requirements 

for privacy and security, Private LLM can be grouped into 
three levels by taking different data format (plaintext or 

ciphertext) for input query, weights and output responses of 

an LLM as shown in Table 1 and figures 4-6. It should be 

noted that superscript “C” denotes the ciphertext format in 

the rest of this section. The processing steps of Level-1 

Private LLM include: 

• The Client first encrypts their data 𝑋 (plaintext)

to the ciphertexts 𝑋𝐶  by using some schemes to

support Fully Homomorphic Encryption (FHE)

such as CKKS or tFHE algorithms.

• The Client sends their encrypted data 𝑋𝐶  to the

server which owns general LLM parameters.

These parameters are in plaintext format.

• The Server performs LLM operation with 𝑋𝐶   as

inputs of the General LLM as shown in Fig. 4.

• The Server sends to Client the generated output

𝑌𝐶  which equals to 𝐹(𝑋𝐶)  and also should

equal to (𝐹(𝑋))𝐶 ; that is, the ciphertexts

corresponding to the plaintexts 𝐹(𝑋).

• The Client decrypts the received ciphertext 𝑌𝐶

to finally get the desired result which equals to

𝐹(𝑋).

Likewise, the processing steps of Level-2 Private LLM in 

Fig. 5 include: 

• The Client first encrypts their data 𝑋 (plaintext)

to the ciphertexts 𝑋𝐶  with FHE algorithms.

• The Client sends their encrypted data 𝑋𝐶  to the

server which owns the general LLM parameters

and fine-tune parameters which are both still in

plaintext format.

• The Server performs the fine-tune LLM

operation with 𝑋𝐶  being the inputs of the Fine-

Tune LLM as shown in Fig. 5.

• The Server sends the Client the generated output

𝑌𝐶  which equals to  𝐹(𝑊, 𝑋𝐶) + 𝐹(∆𝑊, 𝑋𝐶) ,

also should equal to (𝐹(𝑊, 𝑋) + 𝐹(∆𝑊, 𝑋))𝐶 ;

that is, the ciphertexts corresponding to the

desired output.

• The Client decrypts the received ciphertext 𝑌𝐶

to finally get the desired result 𝑌.

Figure 4 – Illustration  of Level-1 Private LLM 

Private LLM 
Input 

(Query) 
𝑋 

Output   
(Responses) 

𝑌 

Fine-Tuning 
Weights 

∆𝑊 

General 
Weights 

𝑊 

   Level -1 Ciphertexts Ciphertexts N/A Plaintexts 

Level- 2 Ciphertexts Ciphertexts Plaintexts Plaintexts 

Level- 3 Ciphertexts Ciphertexts Ciphertexts Plaintexts 

Figure 5 – Illustration of Level-2 Private LLM 

Table 1 – Three levels of Private LLMs 
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As given in Table 1 and Fig. 6, not only input and 

output are encrypted, but also the fine-tune weights 

are encrypted by the Server side in Level-3 Private 

LLM. With this, its processing steps include: 

• The Client first encrypts their data 𝑋 (plaintext)

to the ciphertexts 𝑋𝐶  with FHE algorithms.

• The Client sends their encrypted data 𝑋𝐶  to the

server which owns the general LLM parameters
in the format of plaintexts and the fine-tune

parameters in the format of ciphertexts

encrypted by the server itself.

• The Server performs the fine-tune LLM

operation with 𝑋𝐶  being  the inputs as shown in

Fig. 6.

• The Server sends the Client the generated output

𝑌𝐶  which equals to  𝐹(𝑊, 𝑋𝐶) + 𝐹(∆𝑊𝐶 , 𝑋𝐶),

also should equal to (𝐹(𝑊, 𝑋) + 𝐹(∆𝑊, 𝑋))𝐶 ,

that is, the ciphertexts corresponding to the

desired output.

• The Client decrypts the received ciphertext 𝑌𝐶

to finally get the desired result 𝑌.

In comparison with General LLM and Fine-Tune LLM in 

plaintext format, the computational complexity and the 

corresponding hardware implementation cost and power 

consumption for Private LLM will be greatly increased 
mainly because most matrix multiplications are performed in 

ciphertexts format and also a large amount of extra 

bootstrapping operations are required  in order to reduce the 

growth of noise incurred by FHE. Table 2 presents a 

quantitative comparison of two kinds of representative 

implementation  platforms (ASIC and GPU) in terms of the 

total cost and power consumption in order to generate the 

desired responses for a complete sequence of tokens with 

using the parameters setting in GPT-3 [7].   

Since the cost and power consumption even for exactly the 

same processing algorithm will greatly vary with many 

hardware factors such as the overall architecture, processing 
units, control and instruction units, data read and write 

(Cache, DRAM and SRAM), address-generation and process 

technologies, we propose a new unified metric called 

“hardware Multiplier-Equivalent (ME)”, which could serve 

as a future standard metric based on taking all the above 

factors into account. For example, performing a complex-

valued multiplication, an ASIC platform would use at least 6 

MEs but a GPU platform would use at least 50 MEs because 

a data-read for multiplication from DRAM into GPU costs at 

least five times more than the operation of multiplication 

itself. 

The first column of Table 2 is the listing of five LLMs. The 

second and third column of Table 2 indicate the number of 

trillion MEs (TME)  to be needed by ASIC and GPU in order 

to generate the desired output for a complete sequence of 

tokens in GPT-3, respectively. For the case of General LLM 

inference as an example, 30.5 TME and 336 TME are 

required by ASIC solution and GPU solution, respectively. 

For the same inference task, if we use Level-1 Private LLM, 

1530 TME and 59, 670 TME are required, which is more 
than 100 times for General LLM. If we use Level-3 Private 

LLM, 175,950 TME and 6,719,333 TME are required, which 

is another 100 times increase. For further illustrations, the 

fourth column gives the ratio of five LLMs with the General 

LLM in terms of the number of GPUs. More specifically, if 

we assume that the total GPU needed to perform General 

LLM is the unity, 178 GPUs, 190 GPUs, 19,998 GPUs are 

required for implementing Level-1, Level-2 and Level-3 

Private LLM, respectively, which is not practical and even 

impossible for Level-3 Private LLM. To attack this challenge, 

we will present our proposed solution and show its 
effectiveness in the following sections..  

3. CORNAMI’S RECONFIGURABLE

COMPUTING ARCHITECTURE

As shown In Fig. 7, Cornami has developed and 

implemented an architecture that combines aspects of both 

dataflow and reconfigurable computing to stream data 

through a computational fabric architecture with highly 

functional computational elements that can dynamically 

scale over many chips. The computational fabric is 

represented by one or many custom ASIC chip(s) residing in 

one or multiple PCIe cards within one or multiple host 

servers. Each host server has x86 processor(s) running Linux 

as an interface to the computational fabric. The custom 

ASICs have several key functional components that are 
linked by following three types of core communication 

mechanisms. The first is the adjacent core-to-core which is 

one core communicating with a physically adjacent core as 

laid out on the silicon substrate. Adjacent core 

communication is the most efficient inter-core 

communication mechanism and takes place via the north, 

south, east, or west core interfaces. The second is Network-

On-Chip (NOC) which generalizes cores to core 

communication interface where they are NOT side-by-side 

on the same chip or when cores reside on different chips. The 

third is PCIe for intra-system communications between the 
host and PCIe boards.  

Figure 6 – Illustration of Level-3 Private LLM 
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There are two versions of computational cores which can 

dynamically switch from one type to the other.  

• A full RISC-V processor with associated SRAM

able to execute traditional Control Flow programs

as a function representing the computation within a

dataflow node.

• Sixteen independently reconfigurable and

programmable ALUs, called FracTLcoresTM, each
with associated SRAM supporting multiple

simultaneous integers and floating-point

computations of up to 128-bits.

This reconfigurable computing architecture allows  different 

functions to also be defined by dynamically changing the 

topological linkages of processing cores within a 

computational fabric to achieve superior silicon utilization in 

terms of application performance, throughput, power 

consumption, and processing latency. The computational 

fabric significantly reduces the dependence on memory to 

store intermediate computational results and exceeds the 
flexibility and programmability of an FPGA or DSP or GPU 

while still providing near (ASIC)-level solution performance. 

4. PROPOSED SOLUTION FOR

PRIVATE LLM

As suggested in the above section, FracTLcore Fabric is a 

very powerful hardware computing platform to perform 

extensive matrix multiplications required in General LLM 

and Private LLM with near zero programming complexity. 

However, it is still not practical if we simply use 

FracTLcores to implement Level-3 Private LLM without 

further reducing its computational complexity because fine-

tune weights need to be operated in ciphertext format. To 
attack this problem, a low-rank adaption (LoRA) algorithm 

can be used to first reduce the size of the fine-tune weights 

∆𝑊 where ∆𝑊 (dxd) can be generated  by two much lower-

rank matrices 𝐴  and 𝐵 , that is, ∆𝑊 = 𝐴 × 𝐵  as shown in 

Fig.8. The rank  𝑟 could be as small as 1 which is 1000 times 

less than d.     

Table 2 – Cost and power comparisons for five LLMs 

Application 
Scenarios 

ASIC Solution 
(Unit: TME) 

GPU Solution 
(Unit:  TME) 

Ratio with 
GPU Solution 

for General LLM 

General LLM 30.5 336. 1.00 

Fine-Tune LLM 33.6 369. 1.09 

Private LLM Level-1 1,530. 59.670. 178 

Private LLM Level-2 1,615. 63, 851. 190 

Private  LLM Level-3 175,950. 6,719,333. 19,998 

Figure 7 – The schematic diagram of the reconfigurable computing architecture 
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With this decomposition, instead of encrypting weights ∆𝑊 

which have the same dimensions and sizes as 𝑊, we can first 

encrypt the small size matrices 𝐴 and 𝐵 and then use their 

encrypted version to replace ∆𝑊𝐶  and further perform the 

computations in the ciphertext domain as required in all the 

processing steps of Level-3 Private LLM of Fig. 6. Since the 

dimensions of matrices 𝐴  and 𝐵  are much smaller, the 

corresponding computational complexity for ciphertext 

would be as low as the ones for plaintexts, which means the 

reduction in 100 times can be achieved by the proposed 

LoRA based algorithm. Fig. 9 further illustrates the data-

flow of the inference stage of LoRA based Leve-3 Private 
LLM.  

Using the same metric unit (TME) and the same ratio 

definition as those in Table 2, Table 3 presents a quantitative 

comparison of the GPU platform to Cornami’s platform in 
terms of the total cost and power consumption in order to 

generate the desired responses for a complete sequence of 

tokens using the parameters setting for GPT-3. It can be seen 

from the fifth column that Cornami’s platform costs are only 

about one tenth of the GPU platform costs for performing the 

same General LLM inference task. For performing a Level‑1 

Private LLM inference task, the GPU platform costs 

179 times but Cornami’s platform costs only 3.03 times. As 

shown in the last row for performing a Level-3 Private LLM 

inference task by using a LoRA-based algorithm, the GPU 

platform costs 196 times but Cornami’s platform costs only 

3.51 times, which suggests that the GPU platform is still not 
practical. Instead, Cornami’s platform serves as a feasible 

and practical solution for the deployment of all three levels 

Private LLM into real-world applications [8]. 

5. CONCLUSIONS

According to different requirements for privacy and security 

of both a client’s data and a server’s model, three levels 

(layers) of Private-LLM have been defined in this paper. For 

a Level-1 Private LLM scenario, all the client-related data 
(such as query and inference output) are fully encrypted, but 

the server holds public LLM models in a plaintext format. In 

a Level-2 Private LLM scenario, everything is the same as 

for Level-1 except that the server also owns, in a plaintext 

format, some fine-tune models to be used for specific-

domain service tasks. In a Level-3 Private LLM scenario, not 

only the client data but also the fine-tune models that the 

server owns are encrypted, which could offer the highest 

protection between the client and server. 

Through quantitative results in terms of computational 

complexity, memory accessing and processing latency, we 

have shown that trillions of matrix multiplications in the 
ciphertext-to-ciphertext format or cyphertext-to-plaintext 

format are required for all these Private LLM tasks, which 

means that it is not practical and, even not possible if the 

current GPU platforms are used to perform all operations in 

Private LLM. 

In order to attack the above implementation challenge, the 

Cornami solution has been proposed and reported in this 

paper. Having the features with minimum data movement, 

near-zero programming complexity and reconfigurable 

capability, Cornami FracTLcore Fabric is a very powerful 

hardware computing platform to perform extensive matrix 
multiplications and nonlinear functions in both plaintext and 

ciphertext formats required in Private LLMs. These 

operations and computations include Plaintext-Ciphertext 

Matrix Multiplication (PCMM) and Ciphertext-Ciphertext 

Matrix Multiplication (CCMM), KV cache compression, 

mixture-of-experts routing, rotary positional embedding and 

load balancing as well as the related bootstrapping and key 

switching [9]. It is hoped that this paper could offer some 

useful insights and perspectives for privacy and security 

standardization, technical regulations and specifications as 

well as practical implementations and deployment of LLM 

technology.  

Figure 8 – Low-rank decomposition of fine-tune weights

Figure 9 – Inference data-flow of LoRA Based Level-3 Private LLM 
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