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Secure generative Al using Fully Homomorphic Encryption (FHE) enables the utilization of
cutting-edge Al capabilities while preserving the privacy of both the model and user queries.
Despite its promise, the development and maintenance of scalable solutions in this area
remain obscure with challenges that require further exploration. In this paper, we examine
key management challenges that are often overlooked in modern research, particularly in
offline flows. We identify gaps in current NIST KMS standardization, introduce the concept
of a Hierarchical Key Management System (HKMS) solution, and share insights from a recent
demonstration of IBM’s He4Cloud design.
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1. INTRODUCTION

Generative Al enables creating content based on input from a user: text, images, video,
audio, or software code, where the user’s input can include private sensitive information.
This data is most likely something that should not be freely moving around the Internet
unprotected. Clearly, one possibility is to not move data anywhere and leave it where
it is. However, while this solution solves the issue of protecting the data, it may block
the user from using the newest Al capabilities. Particularly, a main issue preventing
enterprises from implementing this solution is having to develop a system of machine
learning in their own infrastructure. Developing their own models is time intensive and
expensive, not to mention requires an amount of data that they might not have access to
easily or legally. It is difficult for a business that is not large enough to support these costs
to train on their own. However, if they rely on others that have done the work training
models and are willing to lease or lend their models for use, then this becomes a reality.

Notably, enterprises who have trained models often consider this data as valuable
Intellectual Property (IP) that they want to protect as well. That helps explain why they
are hesitant to let it leave their servers. This can be seen on any attempt to interact with
generative Al ChatGPT!, Claude?, Copilot’, and most other generative Al models do
not leave their original servers.

This can change if a model or a query is encrypted before use, and it is exactly what
can happen if FHE is used. Informally, an FHE scheme is a cryptosystem that allows its
users to evaluate any circuit (function) on encrypted data (see a survey in [1]) using the
following four methods: Gen, Enc, Dec, Eval. The client uses Gen to generate a secret key
sk together with an associated public key pk and an evaluation key ek. Using pk and ek,
all parties can encrypt sensitive data m; by calling ¢; = Encyk(m;). Subsequently, the user
can ask an untrusted entity to execute the function c,es = Evalye(f, (c1, .. .,¢,)) in order
to evaluate a function f on some ciphertexts ¢; and store the results in another ciphertext
Cres- TO decrypt c,es using sk, the user calls 11,,s = Decg(cres). An FHE scheme (e.g., BGV
[2], B/FV [3, 4]) is correct when

1 https://chatgpt.com/
https://claude.ai/

3 https://copilot.microsoft.com/
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f(my,...,my) = Dec(Eval(f, Enc(m), ..., Enc(my,)))) (1)
and is approximately correct (e.g., CKKS [5]) when

f(my,...,my) = Dec(Eval(f, Enc(my), ..., Enc(my)))) + €
(2)

for some small €.

Scenarios. Typically, there are two scenarios, where
we defer key-related discussion to a later section: 1)
encrypting a model; 2) encrypting the query. In the first
scenario, the model owner homomorphically encrypts
their model and then sends it to another server. The other
server, which is called the leasing server, can construct
the environment to their own specifications, and input
their data to the encrypted model if they wish to run
an inference operation. This lends results that are also
encrypted. In order for the leasing server to see their
results they need to decrypt using the secret key. But if
the model owner gives over the secret key it gives away
access to the model. Thus, there needs to be another third
party server that controls access to the decrypted data
and secret key, so the model owner cannot see the results
as they are decrypted, and the leasing server does not
get access to the private key.

One solution for this is using a Trusted Execution Environ-
ments (TEEs) such as IBM’s Hyper Protect Virtual Server
(HPVS) [6] or Intel’s Secure Guard Extension (SGX) [7] as
a decryption service, which enables a secure environment
for these specific tasks, and controls who can authenticate
and what is accessible to them. Note that while the TEE
gets permission to see the secret key, it can only use it for
the dedicated task of decrypting a given query, otherwise
the leasing server can trick it to decrypt the encrypted
model. In that sense, it is still a challenge to audit or
verify that only legitimate queries are provided to the
decryption service. Moreover, in order for the decryption
service to not learn the decrypted results, some kind of
encryption mask should be used in the process.

Even if we assume a semi-honest leasing server archi-
tecture that always provides legitimate queries, using
another model is not a simple endeavor. It takes a large
amount of infrastructure in order for it to function. There
are environments that need to be set up for inference and
environments set up for decryption. Specifically, differ-
ent keys: public, private and evaluation, are needed to be
in different places, and access will need to be restricted
to the appropriate parties. Creation of these keys is also
a concern, as well as where they are stored in order to
achieve scalable and efficient solutions. Moreover, the
size of a generative Al model is usually measured in
GBs and even the simpler inference operation is required
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to run in less then several seconds. This may require
dedicated hardware that clients do not possess.

In the second scenario, the model is uploaded in plaintext
to a trusted environment, which provides it as a Machine
Learning as a Service (MLaaS) solution to the users. To
protect the input data, the users encrypt their queries
using FHE and upload them to the MLaaS who performs
the inference operation and returns the encrypted results
to the user. Finally, the user decrypts the results to obtain
the desired answer.

Also in the second scenario, key handling is a challenge.
The key size of, for example, the evaluation keys can be
more than several GB in size. Uploading them, even in
an offline preparation stage, requires adequate storage
location and it can be a non-trivial task when dealing
with edge or low-end devices.

Listing all of the challenges that are needed to be over-
come in order for an enterprise to host an FHE solution
end to end for a generative Al task is out of the scope of
this paper. For example, there are already many papers
that deal with latency and accuracy issues of running an
encrypted Deep Learning (DL) model e.g., [8, 9, 10]. In
contrast, we identify that the challenge of handling the
FHE keys and setup of the infrastructure to work at scale
was left out from most modern papers, which usually
assume that such a solution exists. For example, [11]
defines the schemes and the keys but not how to use them,
and a recent paper [12] defines the recommended param-
eters for these schemes but again without discussing the
challenges of handling the keys. We claim that the above
assumption is not the case and raise several issues that
need to be addressed. To demonstrate these challenges
we describe a simple machine learning solution using
IBM’s He4Cloud and the obstacles we encountered when
we designed and set up the relevant infrastructure.

The paper is organized as follows. Section 2 reviews the
current National Institute of Standards and Technology
(NIST)’s Key Management System (KMS) standard Fed-
eral Information Processing Standards (FIPS) 800-57 and
identify the gaps that need to be filled for it to capture
HE-based KMS solutions. A description of a hierarchical
KMS that can be implemented today using standard KMS
services is provided in Section 3. We report on a concrete
instantiation of HKMS in IBM’s HPVS in Section 4. Fi-
nally, Section 5 discusses the issues that we encountered
while designing and maintaining a basic FHE solution.

For brevity, Table 1 lists all the keys mentioned in this
paper:

©lnternational Telecommunication Union, 2025 287



ITU Journal on Future and Evolving Technologies, Volume 6, Issue 3, September 2025

Table 1 - Legend of key names used in the paper

Key Name Description

HE secret key (sk) Private key used for HE decryption

HE public key (pk) Public key used for HE encryption

HE evaluation key (ek) Key enabling HE computations on ciphertexts, in

HE bootstrapping key (bk)
HE rotation key (rk)
HE key switching key (ksk)

AES key encryption key (kek)
Envelope key (ek)

some papers it is part of the public key

Key used to refresh ciphertexts in HE, in some papers
it is part of the evaluation keys

Key used to perform ciphertext rotations in HE, in
some papers it is part of the evaluation keys

Key enabling switching ciphertexts encryption be-
tween keys

Key used to encrypt other AES keys

Key used to securely wrap (encrypt) other keys,

similar to kek

AES key (kes)
KMS master key (k)

Symmetric key for AES encryption/decryption
Root key managing KMS operations

KMS data encryption key (dk) Key used to encrypt data within the KMS

Envelope key (ek)

Root key managing KMS operations

2. FIPS 800-57 STANDARDIZATION GAPS

Cryptographic keys play an important role in crypto-
graphic algorithms. Having unique and well-formatted
keys is a prerequisite for the security guarantees provided
by these cryptosystems. However, once an adversary
puts its hands on these keys, the associated cryptographic
scheme can no longer guarantee the confidentiality or
the integrity of the key owner’s data. Similar to many
other solutions and libraries that provide cryptographic
capabilities, the security guarantee that an FHE-based
solution provides, depends on the security guarantees
that the user’s system can ensure for the generated cryp-
tographic keys.

To ensure proper handling of keys throughout their lifecy-
cle, standards organizations such as NIST provided KMS
recommendations [13] and further recommend using
them as part of their security requirements for crypto-
graphic modules [14]. While these guidelines provide
general recommendations, they do not necessarily cap-
ture issues and concerns that are specific to FHE. Note
that there may be other KMS standards and we chose
FIPS 800-57 as a representative case to show the gaps and
the challenges, which we believe are not just semantic
challenges.

NIST’s FIPS 800-57 [13][Section 4] refers to three types
of approved cryptographic algorithms: hash functions,
symmetric-key algorithms, and asymmetric-key algo-
rithms. Nevertheless, it does not explicitly mention FHE
or refer toit. One possible reason is that until a decade ago,
FHE was considered impractical, and only a small num-
ber of organizations have experimented with it. In fact,
until recently, standard organizations such as NIST were

asking the cryptographic community to focus on other
types of cryptographic algorithms, such as lightweight
cryptography [15], or post-quantum cryptography [16].

Recently, this situation has changed, and we see a prolif-
eration of FHE solutions, e.g., [8, 9, 10]. Large companies
such as IBM [17], Microsoft [18], Google [19], and Intel
[20] see the potential of FHE solutions for the cloud and
dedicate an increasing amount of resources to it. In ad-
dition, this change led standards organizations to put
more focus on FHE, where some examples include NIST
[21, 22], The Open Industry / Government / Academic
Consortium to Advance Secure Computation [11], and
ISO/IEC [23, 24]*. While it may take time until we see a
final standard, we can already prepare for that moment
and examine the current KMS standards [29, 13] and
identify the gaps that need to be complete.

FHE schemes are commonly built on top of some symmet-
ric or asymmetric schemes. Therefore, we may see them
partially supported by FIPS 800-57 [13]. Nevertheless,
their keys do not fall under any of the keys defined in
Section 5.1.1 of [13]. In FHE there are different sets of keys
that can be created. To keep the discussion simple, multi-

% The old ISO standard draft [23] from 2021 was replaced by a new
draft in 2024/5, which is divided into five parts. Specifically, these
parts address: [24], general FHE concepts and principles, includ-
ing foundational definitions, formats, and security models; [25],
the BGV and BFV schemes, along with parameter selection for dif-
ferent security levels; [26], the CKKS scheme, with corresponding
parameter guidance; [27], table-based FHE arithmetic mechanisms
using look-up evaluation techniques and security-level param-
eters; and [28], scheme-switching mechanisms across BFV/BGYV,
CKKS, and CGGI. To the best of our knowledge, these drafts focus
solely on describing keys as polynomials or other mathematical
representations and do not address key management issues within
KMSs.
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party or multi-key FHE solutions are not discussed®.
In its most basic form (assuming the workload needs
the ability to multiply data), there are three keys that
are used, a public key commonly used for encryption,
an evaluation key for potential data processing, and a
private key for decryption.

The first three sections of [13] include a general introduc-
tion to the glossary and terms that are used throughout
the document and explanations about the different se-
curity services (e.g., confidentiality, data integrity, and
authentication) a solution designer can use. The situation
gets more complex in Section 4 that deals with crypto-
graphic algorithms. At its beginning, we observe the first
major gap:

“FIPS-approved or NIST-recommended cryp-
tographic algorithms shall be used whenever
cryptographic services are required”.

However, currently, no FHE algorithm is NIST approved.
Subsequently, the standard specifies the three basic classes
of approved algorithms: hash functions, symmetric-key
algorithms, and asymmetric-key algorithms, which are
defined according to the number of keys associated with
each one of them. Unfortunately, FHE does not fall under
these categories and as we saw it involves more keys
than defined for the specified algorithms.

The main gap lies in Section 5, which classifies the dif-
ferent types of keys and provides recommendations for
using them. It starts by referring to FIPS 800-133 [30] for
the generation process of these keys, which also needs
to be modified in a similar way to [13]. The only ap-
proved algorithms by [30][Section 3] are asymmetric-key
algorithms and symmetric-key algorithms. In addition,
[30][Section 5.3] discusses how an asymmetric cryptogra-
phy key generation procedure should distribute its keys.
In there, it emphasizes that the receiver of a static public
key should verify it before using it e.g., an ITU-T X.509
certificate generated by the key owner. The situation
is similar for the public and evaluation keys of an FHE
scheme. An interesting question is whether ITU-T X.509
certificates can support the large size of these keys, or
whether a new mechanism is required.

Furthermore, three types of keys are defined in [13][Sec-
tion 5.1.1]: public, private, and (secret) symmetric keys.

5 In the context of multi-party FHE, several approaches exist. In

multi-key FHE (MK-FHE), each user possesses their own key, and
decryption requires cooperation among parties. While encryption
in MK-FHE resembles the single-key case, evaluation and decryp-
tion demand additional policy mechanisms that are beyond the
scope of this work. Alternatively, threshold FHE involves all
parties jointly generating a shared key, which is then used for en-
cryption and requires an interactive protocol for decryption. Both
MK-FHE and threshold FHE introduce distinct challenges that,
for brevity, we leave outside the scope of this paper. Although
we believe that solving these challenges is also critical to have
collaboration-based solutions.
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With FHE a new set of keys should be defined, specifi-
cally, we refer to evaluation, bootstrapping, and rotation
keys, which we may group together under the wide defi-
nition of evaluation keys (see also Table 2). One unique
property of such keys is that in many cases they endorse
the associated FHE scheme with the property of circular
security. The reason is that they encrypt a variant of the
secret key. If in the future we will see an attack that
shows how to extract the secret key from an evaluation
key it can be devastating for the encrypted data. Thus,
it is important to consider who has access to these keys
even today. To this end, the list of key-types defined on
[13][Section 5.1.1] should at least be extended to include:

e Private data-encryption keys: These keys can be used
with (a)symmetric-key FHE algorithms to apply con-
fidentiality protection to data (i.e., encrypt plaintext
data). The same key is also used to remove the confi-
dentiality protection (i.e., decrypt the ciphertext data).
This key is not used for authentication primitives.

e Public data-evaluation keys: These keys are used with
asymmetric-key FHE algorithms to evaluate a function
on an untrusted platform over encrypted data.

e Public data-encryption keys: These keys are used with
asymmetric-key FHE algorithms to allow untrusted
parties to encrypt data that can only be decrypted
using a matching secret key.

Cryptoperiod. [13][Section 5.3] defines and gives motiva-
tion for the term cryptoperiod, which is the lifetime of a
specific key or the number of invocations of it within the
context of a given algorithm. As mentioned in [13][Sec-
tion 5.3.2], “short cryptoperiods enhance security”. How-
ever, due to the latency of FHE operations which is often
higher than other cryptosystems such as hash functions,
symmetric, and asymmetric encryption, having a short
cryptoperiod, which translates to frequent re-encryption
of masses of data, can lead to high overheads on the KMS
systems.

FIPS 800-57 [13][Section 5.3.3] lists several factors that
affect cryptoperiods and states that keys that protect the
confidentiality of communications are often shorter than
keys that protect the confidentiality of stored data. FHE
presents a new type of trade-off. The encrypted data
is usually transmitted under a secure channel such as
Transport Layer Security (TLS) 1.3 [31] and thus it cannot
be treated as encryption in transit (unless a protocol such
as MezzoTLS [32] is used). On the other hand, it is often
the case that data should be used only once (e.g., a query)
and deleted immediately after that. Thus, it cannot be
considered an encryption at rest mechanism.

The situation might get even more complicated when
considering, for example, the first scenario from the
introduction. The model owner uses the secret/public
key to encrypt its model and asks the users to encrypt
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Table 2 - Comparison of standard and FHE-specific key types

Key Category Description

Standard Keys (FIPS 800-57, Section 5.1.1)

Public Key
Private Key
Symmetric Key

Used for asymmetric encryption; publicly shared.
Used for decryption/signing; must be kept secret.
Shared secret for symmetric encryption/decryption.

FHE-Specific Keys (not yet standardized)

Evaluation Key
Bootstrapping Key
Rotation Key

Key Switching Key

Enables homomorphic operations on ciphertexts.
Used to refresh ciphertexts by reducing noise.
Enables rotation of encrypted vectors.
Transforming ciphertexts from one key to another.

their samples. In most cases, the users’ samples contain
more sensitive data than the AI model. The reason is
that it reveals information that can directly be associated
with a single person, whereas the model contains ag-
gregated data about the training dataset. This suggests
that the cryptoperiod should be determined based on the
sensitivity level of the samples.

On the other hand, the model is stored on the leasing
server for a long time, while the users’ samples are only
used during the inference period and are supposed to be
erased immediately after the computation ends. Thus,
according to [13][Section 5.3.3], the cryptoperiod should
be determined based on the sensitivity of the model.
Given the new key types, and the unique usage model of
FHE-based systems, [13][Section 5.3.6] should be updated
with new cryptoperiod recommendations for these keys,
and [13][Section 6.1.1, Table 5] should also be updated
accordingly.

FIPS 800-57 [13][sections 5.3.4 and 5.3.5] defines the cryp-
toperiod required for asymmetric and symmetric encryp-
tion, respectively. A subsection that defines the relations
between the different cryptoperiods of FHE keys is there-
fore missing. To understand this relation, we consider
Section 5.3.4, which states that a different cryptoperiod
is defined for the secret and public keys of asymmetric
encryption. Their lifetime starts at the same time, but
the public key is allowed to be used, e.g., for verifying
digital signatures much after the last time that the secret
key is allowed to sign data.

In FHE, we have at least three types of keys, secret public
and evaluation keys, where the latter can be broken into
subcategories such as key-switching, rotation, and boot-
strapping keys. The secret key is needed for decryption;
without it, there is no purpose in using FHE. In contrast,
the public key is required only for the encryption phase,
and the evaluation keys are required only during the
computations. Once the computations are over, the re-
sults can: a) be sent to the users for decryption using the
secret key; b) stored and be decrypted at a later time; c)
re-encrypted under a Hardware Secure Module (HSM),

using a reversed hybrid re-encryption and stored under
a symmetric encryption scheme.

Another challenge with FHE is its malleability. Assume
that a standard defines that a public key cannot be used
after a certain date. This does not mean that users cannot
generate new ciphertexts (without the secret key). All a
user should do is to capture a valid ciphertext ¢, reduce
it from itself in a homomorphic way to get an encryption
of 0: ¢/ = ¢—c¢ = Enc(m —m) = Enc(0). Subsequently,
the users can take any value v and add it to ¢’ to get
¢’ + v = Enc(0) + v = Enc(v) as desired. Consequently, it
is only meaningful to define a cryptoperiod for a public
key if the users have no access to prior ciphertexts or are
trusted to avoid encrypting new data when it is forbidden.
The latter also means that the cryptoperiod depends on
the refreshment rate of ciphertexts. Note that the above
does not mean that an FHE scheme can be used without
a public key, as the above mechanism is deterministic,
which makes an FHE scheme not semantic secure.

Validity. FIPS 800-57 [13][Section 5.4.2] defines that
before using any key the recipient of the key should
assure the validity of the domain parameters; this can
be done manually, by checking the key metadata, or if
a cryptographic certificate is attached to the key it may
include such an assurance. The exact process of how
to ensure these parameters for FHE keys needs to be
defined. For example, it should provide assurance that
the scheme parameters provide the expected level of
security, which is not trivial due to a large number of
FHE configurations available today. It should also ensure
that a key is not a weak key.

Key compromising implications. FIPS 800-57 [13][Sec-
tion 5.5.1] describes the implications of compromising a
key. While it clearly explains what can go wrong when a
secret data encryption key is compromised, the implica-
tions of a compromised evaluation key are not defined.
FHE schemes are malleable, which means that if an adver-
sary gets access to the evaluation key, it can manipulate
FHE ciphertexts and thus break their integrity. In that
case, users should be alerted that they can no longer trust

the validity of the computation.

290 ©lnternational Telecommunication Union, 2025



Confidentiality of keys in transit. FIPS 800-57 [13][Sec-
tion 6.2.1] defines the p rotection m echanisms f or key
information in transit. Specifically, Section 6.2.1.2 defines
that confidentiality is required for symmetric keys and
private keys in transit. Due to the malleability property
of FHE schemes, we suggest also including the public
and evaluation keys under this list.

The list above of challenges for the current KMS standard
is just partial, and there are probably many more aspects
that need to be addressed. Some examples, include the
time to rotate keys and ciphertexts, how to handle key
switching keys that encrypt other keys, how to handle
transciphering keys etc. All of these challenges need
to be addressed and an updated standard is required
before we will see a broad use of the FHE technology for
securing generative Al applications.

3. HIERARCHICAL KMS

Traditionally, to protect the keys that are used for encryp-
tion/decryption, an HSM is used. In an FHE workload
environment, this should be no different. HSMs are typ-
ically known to manage all keys, keep them safe, and
usually contain a special processor to make this process
secure. A common pattern for an HSM is to store the
key that is needed for encryption/decryption on the pro-
cessor, or a key encrypting key, and the data is required
to be moved to the HSM itself via an Application Inter-
face (API) and payload. Most HSMs therefore are not
expecting the massive amounts of data that would be
required to be sent during an FHE workload session
and therefore would not be able to be used with FHE
keys due to the message size limitations. Another issue
is that the key sizes for most FHE generated keys are
larger than the limits of what the majority of current
HSMs allow. Due to these issues not being resolved with
the current HSM hardware (future generations will be
different), a traditional HSM cannot be used off-the-shelf
in the infrastructure.

Abstracting up a level an enterprise might use a KMS.
This is a much broader implementation of a system for
securing sensitive keys. It encompasses the generation,
storage, usage, and replacement of keys, but it still needs
to consider security. Many KMSs have HSMs underneath
as the cryptographic processor of the information. While
some KMS solutions can handle larger key sizes, there
still remains the challenge of coding to the lowest com-
mon denominator, and systems without a cryptographic
processor are inherently a less safe solution. Until stan-
dards are introduced detailing how these keys should be
created, and stored, we will have this disconnect.

Bitar et al.: Challenges with handling keys for secure Al

In this section, we present a KMS design that we call a
Hierarchical Key Management System (HKMS). HKMS
leverages current standard KMS/HSM solutions that
provide symmetric encryption/decryption capabilities to
a KMS, which in turn provides FHE capabilities.

HE Encrypted data .

Figure 1 - An HKMS illustration showing two flows. First, the user
registers with the HKMS, which generates the relevant HE keys. Sub-
sequently, the user can upload secret data to the KMS and request
encryption or decryption. The user can also ask the HE-KMS to transfer
homomorphically encrypted data directly to an untrusted location.

HE KMS

. Register

—_——

- Secret Data
—_——

Decrypted Response
—_—

Fig. 1 shows a high level illustration of the HKMS design.
It provides at least the following three APIs: register,
encryption, and decryption. A user uses the registration
APl to let the KMS know that a new set of keys is required.
The KMS is responsible for associating the user creden-
tials with the newly generated keys. We provide the exact
details of how HKMS uses the trusted symmetrical KMS
below. After successful registration, the user can use
its credentials to identify itself to the KMS and perform
encryption and decryption operations on its data using
the generated key set. We stress that the HKMS does not
need to be implemented at one location, i.e., at the cloud
servers or the end-user side and that there are different
ways to implement it. In Section 5 we will consider a
HKMS that is implemented on the client premises.

Although HKMS provides encryption/decryption capa-
bilities, it does not aim to provide a full Homomorphic
Encryption as a Service (HEaaS) solution. As mentioned
above, it is even better to separate those capabilities to
reduce the size and scope of the KMS implementation
and thereby reduce the potential attack surface.

Fig. 2 presents a possible HEaa$ solution that uses HKMS.
This solution can be implemented over several locations,
e.g., some components can be implemented on the end-
user side while others are implemented on the untrusted
cloud site.

A user always starts by submitting a registration com-
mand that transparently goes to the HKMS. The HKMS
generates the keys, which it can store locally in plaintext
or encrypted at an external storage location. The user can
then upload secret data or code, encode it using some
FHE compiler, e.g., HElayers [17], and encrypt it using
the KMS. After encryption, the data can be stored at a
storage location or delivered directly to the FHE evalua-
tion unit. In addition, the user can provide public input
directly to the FHE evaluation unit, such as the desired
model parameters or architecture. Finally, the results
are either stored or moved to the KMS for decryption.
The FHE decoding unit performs the final modifications
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————————— @ D P = =
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Storage
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HE evaluation

HE decoding
Decrypted @é
Response | g N

Figure 2 — An example design of an HEaaS solution. Red arrows
indicate channels carrying unencrypted data. This “cleartext” data
must first be encoded before encryption by an HE compiler such as
HElayers to achieve optimized bandwidth usage. Since this data is
unencrypted, it should be handled only by trusted components. Purple
dashed arrows represent command signals, such as a command to
register a new user in the HKMS system. When these commands
include secret data they should be mounted under a secure channel.
Finally, blue dotted arrows denote encrypted or public data, such as
an encrypted ML model used for HE evaluation. It is assumed that all
data in the storage area is either encrypted or not a secret.

required before providing the results to the user. Because
the FHE encoding/decoding units handle unencrypted
data they should use a secure transfer protocol such as
TLS 1.3 [31] to transfer data from and to them, and in
most cases, should be implemented on the end-user side.

3.1 Using a trusted KMS

We now further elaborate on the HKMS flows and explain
how they leverage the internal traditional symmetric en-
cryption KMS. We consider two main flows: registration
and usage. The purpose of the registration flow is to ask
HKMS to generate a new key and associate it with the
user credentials. The flow assumes that it is possible to
generate the FHE secret key in a deterministic way from
a pseudo-random 256-bit seed [17]. The usage flow is
a combination of the encryption and decryption flows,
which for brevity we consider together. This allows
us to easily demonstrate how an HKMS can fit into an
HEaaS service. Fig. 3 presents the flows using an HKMS
with three components: the trusted (standard) KMS, the
untrusted storage location, and the HKMS main flow
component. Panels a,b and panels c,d present the flows
with and without envelope encryption, respectively. The
input to the usage flows is the secret data and the outputis
1yes. Using the terms of Fig. 2 the input data arrives from
the FHE encoding component while 11, is delivered to
the FHE decoding unit.

Before we continue, we remark on the threat-model
required by HKMS.

Remark 1 The HKMS is an abstract design that admits mul-
tiple possible instantiations, each of which must account for its
own specific threat landscape. This is analogous to standard
KMS deployments, where different adversarial considerations

arise depending on the deployment context. For example, an on-
premise KMS may face insider threats, physical tampering, or
key leakage due to misconfigured access controls. In contrast, a
cloud-based KMS may be exposed to risks such as side-channel
attacks in multi-tenant environments, unauthorized access by
cloud administrators, or vulnerabilities in the virtualization
layer. Accordingly, we strongly recommend that practitioners
clearly define their threat model and system requirements before
selecting or deploying an HKMS instantiation.

3.1.1 Registration flow

The registration flow contains two subflows: 1) generat-
ing an encrypted initialization seed; 2) using the seed to
generate FHE keys. The user triggers the flow by calling
the HKMS registration APL

Generating an encrypted initialization seed.

1. HKMS generates a 256-bit seed s using an approved
Cryptographic Random Number Generator (CRNG);
see [33, 34].

2. HKMS opens a secure communication channel (e.g.,

TLS 1.3 [31]) with the trusted KMS system KMS.

HKMS sends s and the user’s credentials cred to KMS.

4. KMS generates a new symmetric encryption (e.g., AES-
256) key (kus) and associates it with cred. If such a key
already exists KMS can reuse it.

5. KMS uses ks to encrypt s and returns the encryption
blob Es = AES-GCM-ENC;__(s) to the user.

aes

@

Note that in Step 3, it is possible to send sk instead of s
and ask the KMS to encrypt sk. This may require extra
bandwidth but will spare the need to regenerate sk from
s in the next subflow.

Using the seed to generate the FHE keys.

1. HKMS generates the secret sk, public pk, and evalua-
tion keys ek from s.

2. HKMS uploads and stores (Es, pk, ek) possibly in an un-
trusted storage location. Access to these keys should
be granted based on the threat model and cred.

3. HKMS wipes (s, Es, sk, pk, ek).

In solutions where there are many end users and all of
them should have access to the secret key, it is possible,
to send in Step 2 only (Es, ek) and prevent the need to
store pk, which in many FHE schemes can be generated
directly from sk.

3.1.2 Usage flow

The usage flow combines two subflows: encryption and
decryption.
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Figure 3 — Hierarchical-KMS registration and usage flows with and
without envelope encryption. Red, green, yellow keys are the secret,
public, and evaluation keys respectively. The brown key is the KMS
AES master key, and the purple key is the envelope key. s is the seed,
and Es stands for encrypted seed, Ek stands for envelope key. See text
for more details.
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Encryption.

1. HKMS asks the storage for pk for a given cred.
2. HKMS uses pk to encrypt some data Ed = Encp(data).
3. HKMS stores Ed in the storage location.

Subsequently, the HEaaS service performs some compu-
tations on the encrypted data, e.g., a classification model,
and stores the encrypted output ¢, in the storage loca-
tion. Upon request (or immediately), it asks the HKMS
to decrypt it using the following flow.

Decryption.

1. HKMS asks the storage for Es for a given cred.
2. HKMS opens a secure communication channel (e.g.,
TLS 1.3 [31]) with KMS.

. HKMS sends Es to KMS.

4. KMS identifies the user’s credentials and uses k.
to decrypt Es, and returns the original seed s =
AES-GCM-DEC (Es) to HKMS.

5. HKMS regenerate sk from s.

6. HKMS uses sk to decrypt the results 11,,s = Decsi(Cres)

7. HKMS wipes (Es, s, sk, pk).

[68]

When a set of FHE keys is expected to be used only
once (i.e., as an ephemeral key set), it is possible to unify
the registration and usage flow by avoiding uploading
Es to the cloud, i.e., using sk and deleting it after use.
Using this approach avoids the benefit of caching the pre-
generated keys, which introduces a new trade-off that
depends on the key generation time and uploading time
and bandwidth. When caching is still required, it is still
possible to spare the first sk retrieval flow by deferring
deleting it from the registration flow to the usage flow.

3.2 Using envelope encryption

The above registration and usage flows assume the
trusted KMS can be trusted to see the key seed or the
key itself. However, in many cases a solution designer
would prefer to avoid this. To this end, we present the
flows for an HKMS that uses envelope encryption (Fig. 3
panels c,d).

3.2.1 Registration flow

Generating an encrypted initialization seed.

1. HKMS generates a 256-bit seed s using an approved
CRNG; see [33, 34].

2. HKMS asks KMS for a data key dk for a given cred.

3. KMS generates a new symmetric encryption (e.g.,
AES256) key (k,.s) and associates it with cred. If such a
key already exists, KMS can reuse it.
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4. KMS generates a new data key dk and sends (dk, Ek =
AES-GCM-ENCy_ (dk)) to HKMS over a secure com-
munication channel (e.g., TLS 1.3 [31]).

5. HKMS encrypts s by Es = AES-GCM-ENC4(s).

6. HKMS wipes dk.
Using the seed to generate the FHE keys.

1. HKMS generates the secret sk, public pk and evaluation
keys ek from s.

2. HKMS uploads and stores (Es, Ek, pk, k), possibly in
an untrusted storage location. Access to these keys
should be granted based on the threat model and cred.

3. HKMS wipes (s, Es, sk, pk, ek).

3.2.2 Usage flow
The encryption flow stays the same as above.
Decryption.

1. HKMS asks the storage for Es, Ek for a given cred.

2. HKMS opens a secure communication channel (e.g.,
TLS 1.3 [31]) with KMS.

HKMS sends Ek to KMS.

KMS identifies the user’s credentials and uses k. to
decrypt Ek and returns dk = AES-GCM-DEC,, (Ek) to
HKMS.

HKMS decrypts s by s = SYMDecx(Es).

HKMS regenerates sk from s.

HKMS uses sk to decrypt the results #1,,s = Decg(Cres)
HKMS wipes (s, sk, dk).

= »

® NG

The big advantage of using HKMS is that it allows using
current FHE with standard KMS systems, without the
need to design a new KMS or HSM mechanisms. How-
ever, this design also has some drawbacks. For example,
when the HKMS uses a “far” storage device, uploading
large keys such as pk and ek can become costly. Never-
theless, this happens only once during the registration
flow and when the entire design performs a relatively
high number of encryption/decryption operations, the
registration cost is less critical. Another possible disad-
vantage happens when the HKMS main flow is executed
on the users’ devices. In that case, the trust model should
consider all the execution layers that have access to the
secret key. It is, therefore, preferred to run the HKMS part
inside a TEE such as IBM’s HPVS [6], Intel’s SGX [35],
AWS’s Nitro Enclave [36], or Azure Confidential Com-
puting [37]. If these are not available, restrict the access
to the HKMS execution code as much as possible, e.g.,
by providing only the minimal set of APIs (registration,
encryption, and decryption).

4. AN INSTANTIATION USING IBM’S HPVS

In this section we consider how to realize an HKMS using
IBM’s infrastructure. We start by recalling that there are
three keys to maintain. The public and evaluation keys
are assumed to be moved around through the different
pieces of infrastructure, the trusted and client leasing
server. They will be generated in the IBM Software De-
velopment Kit (SDK) hosted in the trusted environment
in the setup phase. In theory only the server that hosts
the homomorphic computations will have access to the
evaluation key. The public key will be used in any place
where data needs to be encrypted. That leaves the se-
cret key. The secret key is only needed when data has
to be decrypted. This means that it can be isolated to
one place, and in this case, it is set up within an IBM
confidential computing environment using IBM’s hyper
protect services.

IBM HPVS stands for IBM hyper protect virtual servers.
It provides confidential computing for the protection of
data in use using hardware-based techniques. HPVS
provides a TEE based on IBM Secure Execution for Linux.
It protects data in use by workloads on the HPVS in-
stance, even from privileged access. It is part of several
offerings in the portfolio that can be combined and used
together. One of the other offerings is Hyper Protect
Crypto Services (HPCS). This is an as a Service (aaS) key
management and encryption solution, which allows for
full control over the keys used for data protection [38].
HPCS is a secure key repository for distributing and man-
aging keys across a cloud environment. A main feature is
a secure API to interact with the key management service
to manage keys. The service is built on FIPS 140-2 Level
4 certified hardware and PKCS #11 is supported. Single-
tenant dedicated HSM domains are fully controlled by
the user, and IBM Cloud administrators have no access,
which provides the highest security offered by any cloud
provider in the industry.

When an IBM HPVS is instantiated, it also enables secure
API access to HPCS, provided that service is enabled.
IBM HPCS has many features, but at the heart of it is a
secure cryptographic processor. The secret key is still too
large for it to handle, but instead of the HPCS storing the
key, it can generate the secret key from a pseudo-random
256-bit seed.

The seed is then protected using envelope encryption and
is stored inside the HPCS. The key encrypting key never
leaving the HSM. Using that seed, the IBM SDK can then
generate a secret key when needed. When the SDK is
done using the key;, it gets zeroized, relying on the HSM
to give it access to the seed to re-create the secret key. The
big advantage of this method as shown above is that it
allows for use of a standard KMS, with a traditional HSM,
to be part of the homomorphic encrypted workflow.
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Deployment to HPVSis meant to complement a container-
based solution. It follows the best practices of deploying
to a container platform with some slight additional se-
curity steps. Once an image is created and stored in an
Image Container Repository (ICR), it can be added to the
hyper protect runtime environment. The desired image
must first be encrypted and a contract must be created
as part of the user input. The contract is a definition file
in the YAML format that is specific to the IBM HPVS
instance. A user must create this file as a prerequisite
for creating an instance, and after this file is created,
it must be passed as an input when the IBM HPVS in-
stance is created. A user cannot create an IBM HPVS
instance without a valid contract [39]. The contract is
where connections, settings and environment variables
are defined, and because of that is it also encrypted before
deployment. Once the image and contract are encrypted
they are then uploaded to the hyper protect runtime
environment and the bootloader decrypts the contract.
It looks at each section by checking to make sure each
piece has not been modified since the original signing
upon encryption, and then decrypts and deploys based
upon what was configured. A part of the boot process
is to create an encrypted disk. It creates a unique root
disk encryption key to ensure protection of the root disk.
The boot process validates the root partition. If the hash
of the root partition does not match, the boot process
does not continue because it assumes that the image was
modified before the boot [40].

Using both HPVS and HPCS, itis possible to instantiate an
HKMS, which provides a reduced attack surface solution
for handling secret keys, compared to just storing them
in the application memory, as is commonly reported in
the literature.

There are alternative ways of creating a secure key han-
dling process. Using an HKMS solution is one way to
create components that can help adopt FHE key man-
agement with a HSM or KMS. Another way of doing
this is to rely on the TEE itself and build around its ad-
vantages and limitations. This involves creating several
servers with strict policy rules implemented to assure that
unauthorized users can’t gain access. This method also
requires a developer to implement the seed construction
and envelope encryption that is available through our
solution. The HKMS is designed to run alongside a TEE
or similar technology. It partly acts as a translation layer
for communication with a KMS. Referring to Fig. 4, it can
be seen that the gateway (an HKMS implementation), is
a way to route all commands to/from the different places.
There are options if this was to be implemented on other
cloud offerings. For example, on the Microsoft/Azure
cloud, their equivalent offering is called Azure Key Vault
Managed HSM. This could be used for key management
and a TEE to get similar results. As for performance, that
is undetermined with this hypothetical setup.

Bitar et al.: Challenges with handling keys for secure Al

5. AN HE4CLOUD MLAAS DEMONSTRA-
TION

We are now ready to combine all primitives together to
one infrastructure.

Fig. 4 is a schematic view of a basic MLaa$ solution that
involves two parties and uses IBM’s He4Cloud as the un-
derlying FHE engine. The solution follows scenario two
from the introduction. The model owner of a generative
Al model trained a plaintext model and would not like
to share it with company comp. Here, comp has many
employees that want to enjoy the model of the model
owner. The users want to maintain the privacy of their
queries from the model owner and thus decide on using
an FHE-based solution. Another factor in influencing
this decision to outsource is that the users may not have
a robust enough infrastructure to handle the expected
additional computation by themselves. For example,
they may require strong GPUs or even dedicated FHE
hardware if the model would have been shipped to them
in an encrypted format.

The interface of the users can be either through a web
interface or some other application. However, working
with a web browser may pose some limitations. For exam-
ple, client web browsers can use WebAssembly to execute
FHE flows, but this approach suffers from the following
drawbacks: (a) WebAssembly has limited memory space
of 4GB due to using 32-bit address space [41], which
cannot scale for large models; (b) WebAssembly runs in
browsers, which have a weak trust assumption for hold-
ing the secret key in memory; and (c) private FHE keys are
distributed to multiple clients using multiple processes,
making them difficult to manage using WebAssembly
alone. Limitations such as (b) and (c) exist also when
considering other application interfaces. Consequently,
it is preferred to avoid the FHE computations in these
applications and outsource them to another component,
which we call Gateway.

The Gateway implements a HKMS as well as the encod-
ing and decoding capabilities required for the solution.
In fact, the Gat eway deals with all aspects related to FHE
and hides it from the users’ interfaces. It is the Gateway
task to connect and communicate with the model owner
infrastructure and upload and download the encrypted
data using either TLS 1.3 [31] or MezzoTLS [32].

The reasons for using the Gateway are therefore as fol-
lows.

1. Better isolation. Some applications, such as browsers,
are not considered secure enough for holding secret
keys in their memory.

2. Limited attack surface. It’s limiting the attack surface
by handling all the secret keys in one location, in
contrast to having a secret key shared between many
users.
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Figure 4 — A schematic illustration of the He4Cloud solution using a gateway as the HKMS built on top of IBM’s HPVS and HPCS.

3. Pre-fetching. It avoids the expensive task of regenerat-

ing the evaluation keys (limitation (C) above). These,
can be generated once and maybe even in advance to
any query for multiple users. Moreover, the keys can
be sent ahead of time (in an offline step) to the model
owner server who can store them for a later use. Later,
the keys can be identified using some credentials that
were allocated by the Gateway.

Note that both comp’s Gateway and the component
that handles the keys at the model owner infrastruc-
ture reside within IBM’s HPVS, as described in Sec-
tion 4, which guarantees the integrity of the operation
while also providing authentication and authorization
capabilities for using the relevant keys. While the
model-owner only handles “public keys” and thus
only uses the IBM’s HPVS for integrity of the computa-
tion, the Gat eway also needs to handle the secret keys
and thus it also uses IBM’s HPCS. As an alternative,
Fig. 4 also suggests using Vault instead of HPCS as
another solution.

. Scalability. The Gateway can be scaled horizontally
and vertically.

. Bandwidth allocation. The Gateway allows placing
the components in different locations of comp infras-
tructure. For example, we can set the Gateway to have
a much higher bandwidth allocation compared to the
bandwidth permitted per every single user.

. Authorization. The Gateway canserve as a key inven-
tory with policies for different users allowing access
to the FHE keys according to rules in the organization
or groups.

7. Encapsulation. Encapsulates all the FHE knowledge
and implementations in one place. This includes the
configuration parameters which can be hidden from
the user.

Table 3 presents a detailed comparison between the client-
based WebAssembly and gateway-based architectures
in the context of HE4Cloud, highlighting key differ-
ences in memory usage, security, scalability, and opera-
tional efficiency. The comparison demonstrates that the
gateway-based architecture offers significant advantages,
particularly in terms of scalability and security.

Fig. 4 shows that there are many more engineering con-
siderations for designing a secure solution when using
FHE, than just assuming that the user generates the keys
and stores them somehow. Indeed, the above solution
is not perfect, as currently no HSM for FHE is available,
and we do not expect to see one before a standard is
defined. But this is exactly the issue that this paper aims
to address. Designing, developing, and manufacturing
such HSMs can take several years, and investing in a
specific design can turn out to be wrong if a future stan-
dard provides different recommendations. On the other
hand, waiting for the standard to be ready can delay the
generation of such HSMs by several more years. This is
why we recommend starting the standardization process
of KMS solutions as soon as possible to enable secure
GEN Al solutions in the not-too-distant future, while also
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Table 3 — Comparison of client-based WebAssembly and gateway-based architectures in HE4Cloud.

Aspect Client-Based WebAssembly Solution Gateway-Based Solution

Memory Limited to 4 GB by 32-bit addressing. No constraints; server-grade resources.

Keys security Stored in untrusted client memory. Secured in trusted server (HPCS, Vault).

Key management Hard to manage across clients. Centralized, policy-based control.

Eval Key Handling | Regenerated per client; inefficient. Pre-fetched, reused, efficiently shared.

Attack Surface High exposure: keys are distributed across many clients, | Minimized exposure: centralized key handling reduces
increasing risk of compromise. potential attack vectors.

Encapsulation FHE logic exposed to clients. FHE logic hidden and centralized.

Scalability Limited by client capabilities. Scales horizontally and vertically.

Bandwidth Limited per user; hard to optimize across sessions. Centralized control enables higher throughput and opti-

mized allocation.
Authorization Hard to enforce fine-grained access. Centralized access control and auditing.
HPVS Integration Not applicable or limited. Full integration with HPVS and optionally HPCS.

describing, designing, and testing KMS solutions, as in
this paper, even before a standard arrives, to further learn
the limitation and capabilities of the FHE technology.

Fig. 5illustrates an optional deployment of the HE4Cloud
system within IBM Cloud, leveraging the following man-
aged services:

1. IBM HPCS (KMS): used to securely manage and
protect FHE secret and evaluation keys.

2. IBM Cloud Internet services (WAF): provides application-

layer protection against threats such as SQL injection,
cross-Site Scripting (XSS), and DDoS attacks.

3. IBM App ID: enables user authentication, identity
management, and secure access control without re-
quiring custom authentication infrastructure.

4. IBM Red Hat OpenShift: used to deploy, orchestrate,
and manage containerized services, ensuring scalable
and secure integration of HE4Cloud backends within
IBM Cloud.

5. IBM Cloud load balancer: used to route and balance
traffic across service instances, enhancing availability,
reliability, and performance.

6. IBM Cloud object storage: used to persist FHE public
keys and deployed model artifacts in a durable and
scalable manner.

7. IBM Cloudant: used to store metadata and usage
information related to HE4Cloud operations.

The HE4Cloud framework supports multi-user deploy-
ment of machine learning models. Given the high com-
putational overhead associated with FHE operations, it
is essential for the system to be scalable. To address
this challenge in a multi-user environment, HE4Cloud
supports both horizontal and vertical scaling strategies.
As illustrated in Fig. 5, the system can scale horizontally
by adding additional machines or instances behind a
load balancer to distribute the workload. Alternatively,
it can scale vertically by increasing the computational re-
sources, such as CPU and memory, of existing machines.
These scaling mechanisms ensure that the system can
efficiently accommodate growing demand while main-
taining secure and efficient model execution.

6. PERFORMANCE EVALUATION

To give a sense of the runtime and network communica-
tion required by HKMS, Table 4 presents a summary of
two deployed neural network models (Fraud Detection
[42] and Heart Disease [43]) in the HE4Cloud framework,
which integrates the HashiCorp Vault Transit Secrets
Engine for secure key handling. In this setup, the transit
engine is used to encrypt and decrypt the seed value
that generates the FHE secret key. The table includes
the total prediction time, key generation, seed vault op-
erations, model encryption, and sample processing. It
also reports the sizes of cryptographic artifacts and the
input data shape, providing a clear view of the runtime
and cryptographic overhead involved in secure model
execution. Note that the time spent on seed encryption
and decryption is very small and has minimal impact
on the overall runtime. The system features 48 physical
CPU cores (Intel® Xeon® Platinum 8260) and 188 GiB
of RAM.

Table 4 — Runtime and cryptographic metrics for encrypted neural
network inference in HE4Cloud

Metric Fraud [42] | Heart [43]
Detection | Disease

Samples Encryption (s) 0.07 0.03
Prediction Duration (s) 0.44 0.17
Key Creation (s) 0.52 0.11
Predictions Dec. (ms) 3.00 1.00
Seed Vault Enc. (ms) 9.00 4.00
Seed Vault Dec. (ms) 5.00 4.00
Public Key Size (MB) 2.00 0.63
Secret Key Size (MB) 0.92 0.25
Seed Size (Bytes) 91 91

7. CONCLUSION

Keys are the core of every cryptographic function, and
thus protecting them is crucial. Indeed, in recent years,
we have observed major improvements in the character-
istics of secure inference solutions for both classification
and generation tasks. However, the focus has been on
improving latency and accuracy, while leaving key han-
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dling to the implementers. We believe we have reached
a point where the challenge of key handling should be
further investigated in order to enable the broad adoption
of FHE technologies.

In this paper, we highlighted these gaps to start the
discussion. Furthermore, we explore solutions such as
HKMS that can be deployed today, even though KMS
standards (or even FHE standards) do not yet exist. Fi-
nally, we demonstrate how to instantiate HKMS within
an IBM He4cloud solution using technologies such as
IBM’s HPVS and HPCS. We hope that the challenges
discussed will be addressed by the community, alongside
closing the latency and accuracy gaps, to achieve secure
generative Al solutions.

A. A PSEUDO-CODE EXAMPLE

The following is a pseudo-code example for running a
HKMS.

INITIALIZE encryption requirements (he_run_req)
CONFig. encryption context

INITIALIZE model hyperparameters

LOAD plain model from MODEL_JSON and MODEL_H5

COMPILE model to get encryption profile

CREATE encryption context from profile

298

INITIALIZE public functions with encryption enabled
SAVE public key to buffer
SAVE secret key and seed

ENCRYPT seed using KMS

CREATE empty encrypted model using context
ENCODE and ENCRYPT model

SAVE encrypted model to buffer

LOAD input samples and labels

INITIALIZE model input/output encoder

LOAD server-side encryption context using public key
DECRYPT seed using KMS

LOAD secret key into server context
INITIALIZE encrypted data container for samples
ENCODE and ENCRYPT input samples

INITIALIZE encrypted data container for predictions
RUN encrypted prediction
DECRYPT and DECODE predictions
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