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This work introduces a novel privacy-preserving full training protocol for deep learning
models using external data. It addresses the critical, yet under-explored, challenge of data
privacy, especially under regulations like GDPR. While homomorphic encryption has been
suggested as a breakthrough for utilizing private external datasets in machine learning,
naively applying it to model training from scratch is impractical due to huge computational
costs. The proposed method strategically encrypts only the minimal layers required to
prevent privacy breaches. This approach is carefully designed to minimize the computational
overhead of homomorphic encryption, making it efficient and scalable for larger models.
Comprehensive analysis on benchmark datasets (ResNet-20/110 with CIFAR-10/100) confirms
compliance with GDPR requirements without significant loss of accuracy. Experiments show
a 1000x reduction in training time compared to models encrypted across all layers, which is
the first published benchmark as far as we know.
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1. INTRODUCTION

In the development of artificial intelligence technologies, the acquisition of high-quality
data poses a significant challenge, especially when it involves personal information that
falls under strict privacy regulations such as the General Data Protection Regulation
(GDPR) [1, 2]. Data-rich institutions often lack specialized personnel and cutting-edge
computing infrastructure, including GPUs, which are essential for machine learning
operations [3]. Moreover, machine learning experts frequently encounter barriers in
accessing high-value private datasets. This gap poses a critical challenge: If data providers
and model developers operate independently, how can the machine learning training
process be facilitated to maintain both data privacy and model confidentiality?

The privacy legal frameworks enforce rigorous constraints on the collection and processing
of data, which hinders Al researchers and developers from accessing the vast amounts of
personal data necessary to train sophisticated models. Even when intending to acquire
valuable health or financial data, the decision to transfer data is not solely at the discretion
of the data controllers and must satisfy some conditions. One commonly accepted and
practical approach is obtaining consent from data subjects as specified under GDPR
Article 6.1(a)'. However, the process of acquiring new consent for sharing data with third
parties, not initially agreed upon at the point of data collection, is not only costly but also
tends to result in low participation rates [4, 5]. This low engagement significantly limits
the effectiveness of data sharing initiatives. Another method involves the data provider
anonymizing the input data before sharing it with the modeler; yet, this approach often
compromises the quality of the input data [6].

1 Processing shall be lawful only if, and to the extent that, at least one of the following applies: the data

subject has given consent to the processing of his or her personal data for one or more specific purposes.
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Alternatively, data collected without the consent of the
individuals may be used for purposes other than those
originally intended if these purposes are deemed com-
patible with the initial collection purposes (GDPR Recital
50). The use of personal data for scientific research or
statistical analysis is deemed compatible under these
regulations. This process must naturally be accompanied
by appropriate safeguards to ensure the protection of the
rights of the data subjects.

Most current Privacy-Preserving Machine Learning (PPML)
techniques have focused on addressing privacy issues
that can arise during the inference stage rather than dur-
ing data collection for training [9]. These approaches
include preventing model inversion attacks, which could
deduce training data from a model’s inference results,
ensuring private inference by protecting input queries
while still producing inference results, and thwarting
model extraction attacks aimed at revealing a model’s
structure or parameters through its inference outputs
[10]. Techniques such as federated learning and split
learning have been explored within PPML to address
privacy concerns related to training data [11]. However,
these methods require participants like data providers
and modelers to share the model, ensuring the privacy of
training data but not without its challenges. Specifically,
data providers must engage in some of the computations,
which can be burdensome, and these approaches do not
guarantee the confidentiality of the model. Although
the GDPR permits the receipt of data for the develop-
ment of machine learning models to a limited extent,
it is challenging to find methods that provide data in
compliance with these provisions for the current model
training. The techniques previously mentioned, such as
data anonymization, sharing outcomes from local train-
ing or utilizing public data, have primarily evolved to
avoid the applicability of GDPR. These methods are ef-
fective ways to utilize data while protecting privacy, but
they present several challenging issues that are difficult
to resolve, as detailed below:

e Data quality: When training data is anonymized, infor-
mation loss is inevitable. Particularly when applying
differential privacy [12], perturbing the data signifi-
cantly impacts accuracy, leading most techniques to
synthesize data, creating new datasets. Even in these
cases, a considerable amount of information loss in-
variably occurs, making it challenging to ensure the
quality of data when it is anonymized and shared with
third parties [13].

e Data reuse: The repurposing or resale of such data,
even if anonymized, can lead to economic issues, in-
cluding potential financial exploitation and unfair mar-
ket practices. Moreover, in the case of pseudonymized
data, the reuse is strictly bound by the requirement
that it be used only for predefined purposes. This con-
straint is critical to ensure compliance with GDPR. If
pseudonymized data is repurposed for uses other than
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those initially intended without appropriate measures,
there is a significant risk of violating privacy laws.

e Model confidentiality: Ensuring model confidential-
ity in collaborative environments involves significant
challenges. Techniques like federated learning can
mitigate the risk by keeping the data localized, but
they expose the model to potential threats, such as
evasion attacks [14]. If the model is shared, there is no
certainty that the receiving institution will use it only
for statistical purposes; they could potentially use it
for re-identification. Therefore, sharing a model must
be accompanied by additional safeguards for model
confidentiality.

e Local resource: In PPML methods like federated learn-
ing, the dependence on substantial local resources is
particularly pronounced. Federated learning mandates
that the training of models be conducted locally on each
participant’s device, leveraging their own data with-
out transferring it to a centralized server. This process
requires significant computational power at each node,
which can introduce inefficiencies and inflate costs,
especially in environments that lack advanced com-
putational infrastructure. Addressing these resource
constraints is critical to enabling broader adoption of
privacy-preserving techniques.

In this paper, we propose a novel privacy-preserving
training protocol that utilizes Homomorphic Encryption
(HE) for pseudonymization to address the challenges
outlined above. This protocol is applicable in the train-
ing phase of deep learning models, which corresponds
to a data-driven statistical modeling approach. HE is
particularly notable because it allows for operations on
encrypted data without necessitating decryption, provid-
ing robust cryptographic security [15]. By encrypting
the training data, HE enables modelers to use it for ma-
chine learning purposes without exposing the raw data.
However, a considerable limitation of using HE is its
substantial computational overhead. Training models
with encrypted data using HE requires significantly more
processing powetr, often hundreds to thousands of times
more than what is needed for training with plaintext [15].
According to the state-of-the-art algorithm [7, 8, 16, 17],
even just performing forward pass, not training, on a
single image requires a significant amount of time. As
shown in Table 1, under optimal conditions, it takes 1.40
seconds to perform a forward pass on a single image
using ResNet-20. Assuming the CIFAR-10 dataset is
used for training, performing a forward pass on 50000
images would take approximately 70000 seconds (about
19.4 hours). Roughly assuming that backpropagation re-
quires twice the time, it would take 39 hours to complete
one epoch. Even conducting only 100 epochs would take
over five months. If training a deeper model like ResNet-
110 is considered, it would take several times longer,
making it highly impractical for training purposes.
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Table 1 - Execution time of HE forward pass

Execution time (s) | Only CPU [7] With GPU [8]
ResNet-20 forward pass (per image) | 15.8 14
ResNet-20 forward pass on the 790,654 70,000
CIFAR-10 Dataset (per epoch) (9.15 days) (19.4 hours)

The core concept of the proposed method to overcome
these problems involves a targeted encryption strategy:
homomorphically encrypt the few targeted layers for the
training process, using the data provider’s secret key.
After processing through the few encrypted layers, the
output is decrypted with the same secret key by the data
provider, allowing the remainder of the training to pro-
ceed with this plaintext data. This targeted encryption
approach, despite the higher computational cost for HE
operations, maintains overall computational time within
manageable bounds by restricting encryption solely to
certain phases of the training. Even if operations on
homomorphically encrypted data take much longer com-
pared to plaintext operations, the overall computational
time remains manageable if only a small portion of the
entire training is conducted this way. Considering the
increasing size of machine learning models, especially
those with numerous layers like Large Language Models
(LLMs) [18, 19, 20] and ResNet [21], the time required
to train encrypted layers could be hundreds of times
longer. Yet, even with this increase, the extended time
for training encrypted layers in such extensive models
results in the total training duration being manageably
more than that of conventional HE methods, making this
approach practically viable.

Naive adoption of this concept without proper safeguards
could be vulnerable, thus we take measures to mitigate
this risk. The risk of raw training data reconstruction
by a modeler is markedly facilitated if the values of
the weights in the encrypted layers are known, as this
could enable reverse-calculation of the input data during
the training process. To prevent this, we ensure that
the weights of the encrypted layers remain unknown
by adding noise prior to decryption. This addition of
noise effectively increases the entropy, making it infeasi-
ble to reverse-calculate the input data. Additionally, by
refraining from decrypting the encrypted layers during
the training process, we prevent potential exposure of
its information. This comprehensive strategy effectively
precludes the modeler from reconstructing the training
data, thereby ensuring the privacy of the data through-
out the training process. HE is considered a form of
pseudonymization under GDPR because the data cannot
be attributed to a specific data subject without the secret
key, which serves as the additional information, and the
machine learning model trained for statistical purposes
such as classification can be used legally without con-

sent from data subjects, thereby making the proposed
protocol compliant with GDPR.

1.1  Contribution

o Flexible and efficient privacy-preserving full training
protocol without sacrificing data quality: We propose
a pioneering privacy-preserving full training protocol
maintaining data quality. The proposed approach ap-
plies HE to only a few targeted layers of the training
model, significantly reducing computational demands
while still safeguarding sensitive training data. Ad-
ditionally, the protocol is adaptable to any machine
learning model. To the best of our knowledge, this
is the first instance of training a model from scratch
using HE.

e Advanced solutions for GDPR compliance through
diverse privacy-enhancing technologies: While HE
alone may not meet stringent privacy regulations such
as GDPR, the proposed protocol introduces an in-
tegration of Privacy-Enhancing Technologies (PETs).
This significantly reduces the risk of input data being
reverse-calculated. This advanced safeguard not only
elevates privacy protection but also ensures compli-
ance with GDPR standards. The protocol expands
the capability of utilizing personal data for machine
learning training to third-party entities without ac-
cess to the original data, a role previously restricted
to data controllers. Furthermore, it can be orthogo-
nally applied with traditional PPML techniques, such
as Differentially Private Stochastic Gradient Descent
(DP-SGD) [22, 23], to create anonymized models as
needed.

e Unveiling the first benchmark of full training with
HE: Through computational analysis and experimental
validation, we demonstrate that the proposed protocol
is not only feasible for use with deep learning models
but also maintains manageable computational times
in real-world settings. We provide empirical evidence
showing that the proposed approach preserves model
performance while boosting computational efficiency,
distinguishing it from traditional techniques and es-
tablishing its practical advantage.
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2. PRELIMINARIES

2.1  Homomorphic encryption

HE is a form of encryption that enables computation on
ciphertexts. The operations performed on ciphertexts
yield an encrypted result that, when decrypted, corre-
sponds to the result of applying the same operations
to the plaintext. This characteristic of HE allows for
the processing of encrypted data while maintaining its
confidentiality.

An essential feature of HE is its use of public key in-
frastructure. In this system, users are provided with a
pair of cryptographic keys: a public key, which is shared
openly, and a private key, which remains confidential.
The public key enables the encryption of data, while the
private key is essential for decryption. This structure
ensures that data encrypted with a user’s public key can
only be decrypted with their corresponding private key,
adding an additional layer of security.

2.2 CKKS HE scheme [24]

The CKKS HE scheme is known for its efficiency in
performing operations on floating-point data. It offers
homomorphic additions, multiplications, and rotation
operations. The rotation operation enables a homomor-
phic cyclic shift of packed messages by a designated step.
Homomorphic multiplications and rotations require key-
switching, which is the most resource-intensive process
in the CKKS scheme.

The efficiency of the CKKS scheme is significantly en-
hanced by incorporating Single Instruction Multiple Data
(SIMD) parallelism since the scheme uses a cyclotomic
polynomial ring with dimension N for encoding and en-
cryption. SIMD enables the concurrent execution of iden-
tical operations across multiple data points, effectively
leveraging the parallelism inherent in modern computa-
tional architectures. In the context of HE, this translates
to performing parallel homomorphic operations on nu-
merous data elements simultaneously, thus improving
throughput and computational efficiency. This parallel
processing capability is crucial for handling large-scale
data operations. By accelerating computational tasks,
SIMD makes CKKS-based HE more practical for real-
world applications, where processing large volumes of
encrypted data efficiently is paramount.

3. THE PROPOSED TRAINING PROTOCOL

3.1 Threat model

In the proposed privacy-preserving training protocol, we
focus on the interactions between two primary groups:
data providers (also known as data controllers in GDPR)
and machine learning modelers, under the assumption
of a semi-honest (or honest-but-curious) setting. This means
that while both parties are expected to adhere to the
protocol, their curiosity might drive them to glean addi-
tional information from the data or model. Due to their
semi-honest nature, we assume that neither party will en-
gage in poisoning attacks [25], which involve intentionally
disturbing the data or model to affect the training process.
This assumption aligns with GDPR, as pseudonymized
data is still considered personal data.

Given this context, the threats to data and models in the
scenario can be identified as follows:

e Reconstruction of raw training data: This threat in-
volves the possibility that machine learning modelers
might be able to reconstruct the original, sensitive
training data from the training process. Such a sce-
nario poses a significant risk to the privacy of the data
subjects and the integrity of the data providers.

o Evasion attacks [14]: Evasion attacks represent a signif-
icant threat in the context of machine learning. In these
scenarios, attackers might manipulate the model’s
input to either evade detection or produce incorrect
outputs, compromising the model’s reliability and
effectiveness.

e Data misuse: The risk of data misuse is especially high
when dealing with sensitive information. Data misuse
encompasses unauthorized repurposing, reselling, or
other forms of exploitation of the shared data, leading
to privacy breaches and potential health and financial
damage.

3.2 Privacy-preserving training strategy

The proposed training strategy employs a targeted layer
encryption method, encrypting only a few layers of the
machine learning model using the data provider’s secret
key. After encrypted computation, the result is decrypted
on the provider side and returned to the modeler for
further training. All layers except the targeted layers
are updated with plaintext. The gradient of the targeted
layers” weights is calculated using encrypted data, and
these results are then used to update the encrypted layer.
However, as HE alone cannot guarantee the privacy of
training data and model confidentiality, noise addition
is also utilized for additional protection. The detailed
process is outlined step by step below as depicted in
Fig. 1.
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Figure 1 - Privacy-preserving training protocol

(1) Encrypt layer: The primary goal during this stage is
to ensure that the modeler cannot determine the weight
values of the encrypted targeted layers. The protocol
permits only specific operations on the training data, and
the results must be decrypted by the provider, making
attacks like chosen-plaintext attacks infeasible. Conse-
quently, even if the outputs processed through the en-
crypted targeted layers are decrypted, their high entropy
makes it difficult to infer the training data. However,
if the modeler were to know the exact weights of the
encrypted targeted layers, they could potentially recon-
struct the training data as learning progresses. Therefore,
the protocol aims to perturb the weights of the encrypted
targeted layers without revealing them to the modeler.
One method to achieve this is by having the provider
initialize the weights of the targeted layer and encrypt
them before passing them to the modeler. If the modeler
intends to utilize their own targeted layers, the modeler
must transfer the relevant information about these layers
to the provider. The provider then calculates the neces-
sary noise, encrypts it, and returns it to the modeler. The
modeler can subsequently apply this encrypted noise to
the targeted layers using homomorphic addition, thereby
integrating it into the training protocol.

(2) Encrypt data: The training data is encrypted using
the provider’s public key. The encryption method em-
ployed for the training data is pivotal in determining
the efficiency of encrypted computations in this proto-
col. To exploit the efficiency of SIMD parallelism, the

protocol encrypts multiple data points simultaneously.
We primarily utilizes large mini-batch gradient descent
[26]. In contrast, stochastic gradient descent [27], which
updates weights using one data point at a time, neces-
sitates weight updates for each input, complicating the
effective use of SIMD operations. Consequently, to op-
timize computational efficiency, encryption tailored for
SIMD operations is performed in accordance with the
batch size of the training data.

(3) Transfer data: The encrypted training data is trans-
ferred to the modeler. Since the training data does not
change, steps (2) and (3) of the process need only be
performed once in the training protocol.

(4) Evaluate: The evaluation, referred to as homomor-
phically encrypted computation, is performed using en-
crypted training data and the encrypted weights of the
targeted layers. The evaluation produces the result,
which has passed through the targeted layer, as cipher-
text.

(5) Transfer encrypted result: This phase involves the
transmission of the evaluation results to the data provider.
A critical consideration here is the risk of the provider
gaining continuous knowledge about the gradient, which
could lead to information that facilitates evasion attacks
on the model. To mitigate this risk, the protocol requires
that noise, known only to the modeler, be added to the
encrypted results before they are sent to the provider. The
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scale of this noise is crucial; it must be large enough to
adequately conceal the original computation values. The
modeler then transfers the noise-augmented evaluation
results to the provider.

(6) Decrypt result and (7) transfer decrypted result: The
data provider decrypts the evaluation results using their
own secret key. After decrypting, the data provider sends
the results to the modeler.

(8) Training: After receiving the computation results
involving the targeted layers” weights and the training
data, the modeler first removes the noise added in step
(5) to recover the original output values. Subsequently,
the modeler proceeds with training the machine learning
model in plaintext. This process involves updating the
weights in a manner typical of standard machine learning
models, with the exception of the weights in the targeted
layers.

(9) Weight update: The weights of the targeted layers
remain encrypted until the end of the training process. To
update these weights, the gradients are calculated using
the encrypted input data and the gradients from the previ-
ous (plaintext) layer through homomorphic evaluations.
This gradient information is not shared with the data
provider, allowing the modeler to update the targeted
layers’ weights directly. Consequently, the weights of the
targeted layers are updated while remaining unknown
to both the modeler and the provider.

Training proceeds by iterating through steps (4) to (9).
Once training is complete, the modeler needs to acquire
the trained model, which requires the data provider to de-
crypt the encrypted targeted layers and transfer them to
the modeler. As the machine learning model converges,
the variations in the weights of the targeted layers de-
crease. During this convergence phase, if the modeler
gains access to the original values of the weights of the
targeted layers, there is a risk of reverse-calculating the
input data. To address this risk, the proposed protocol
adds random noise to the decrypted weights of the tar-
geted layers. After decrypting these weights, the data
provider perturbs them with noise before transferring
them to the modeler. Consequently, even if the modeler
uses the decrypted weights and the evaluation results
from the previous phase, it becomes significantly more
challenging to deduce the training data values.

4. IMPLEMENTATION

This section elaborates on the method for training a
machine learning model using ResNet [21] by applying
the proposed protocol. In this implementation, the first
layer is vulnerable as it directly interacts with the training
data. Therefore, the targeted layer is the first layer, which

operates as a convolutional layer with its weights serving
as filters.

4.1 Optimizing HE parameters for ResNet

When performing multiplications between ciphertexts,
additional steps such as relinearization (key-switching)
and rescaling become necessary for multiple multiplica-
tions. However, in cases where only a single multipli-
cation is required for convolution computation, these
additional evaluations are unnecessary. Typically, in
the conventional method, the data provider encrypts
messages for a one-depth multiplication, specifying two
modulus spaces for a single multiplication. In a more
straightforward approach, where only one multiplication
is needed, it suffices to define only a base modulus for
computation. Consequently, this approach reduces both
the ciphertext size and the time required for evaluations,
as shown in Table 2.

Since the rotation operation involves time-intensive key-
switching procedures, minimizing these operations is
advantageous. To achieve this, we ensure that the num-
ber of slots in a single ciphertext aligns with the batch
size. Each ciphertext stores pixels from identical locations
across all images within a single batch. Fig. 2 provides a
representation of the process of packing a batch of images
into ciphertexts. When encrypting a batch of 4096 images
with 3232 size and 3 channels, 3 ciphertexts are gener-
ated per pixel, resulting in a total of 3072 ciphertexts for
all pixels. This alignment effectively eliminates the need
for rotation evaluations during convolution operations.

Each weight in the filter is packed into a single ciphertext
by replicating the same value to all slots. Throughout
the training process, the filters remain encrypted and
must be updated without being decrypted. Therefore,
the weight updates (Aw) are also packed into a single
ciphertext by replicating the same value to all slots to
update the filters with homomorphic evaluation. For
example, to calculate Aw;, the process follows the steps
shown in Fig. 3. Calculating Aw,; requires performing
homomorphic evaluation with the input data and the
gradient of the previous layer, and then summing all
the results. After performing the homomorphic evalua-
tion, the resulting ciphertext contains the intermediate
gradient values in each slot. These values must then
be summed across all slots to obtain Aw;, and the re-
sult needs to be replicated across all slots. To efficiently
perform this operation, the Rotate-and-Sum (RotSum)
technique [7] is adopted to aggregate the values within a
single ciphertext, subsequently replicating Aw; to every
single slot in the vectors.

©lnternational Telecommunication Union, 2025 269



ITU Journal on Future and Evolving Technologies, Volume 6, Issue 3, September 2025

Table 2 - Comparison with previous approach (Ring dimension N = 21%)

ciphertext size multiplication time

Multiplication, rescaling and relinearization (previous) 194KB 1870us

Multiplication only (proposed)

131KB 154y

4096

i

Batch (4096 images) (0,0)

(31,31)

4096 pixels
per ciphertext

ol

3072 (3 x 32 x 32) ciphertexts
I .
per 4096 images

(0,0) (0,1) (31,31)

Figure 2 — Packing images for forward pass into vectors (32x32 pixels, 3 channels, 4096 images per batch, 3x3 filter)

4.2 Privacy analysis

We analyze privacy in terms of the information leakage
about input data, based on output generated during each
training epoch. The analysis includes an evaluation of
the incremental information exposure about the images,
observed through the outcomes of weight updates during
each epoch. The degree of potential information leakage
is quantified using the following approach:

B-1 _ (k+1)M-1 IL

1

X Xo (1)

Xi

Here, hog represents the initial output for xy using the
initial weights wo, while 11, v denotes the output of the
first data point x( after the completion of one epoch,
considering all the weight updates. The learning rate,
denoted by 7, controls the step size in the weight update
during the training process.

The summation term calculates the average effect of
the gradients from each batch on the weight updates.
Specifically, 3—5} represents the gradient of the loss function
with respect to the weights, evaluated at each data point
x;. Equation (1) collectively illustrates how the output
for a specific data point changes over an entire epoch of
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Figure 3 — Packing images for backpropagation into vectors (32x32 pixels, 3 channels, 4096 images per batch, 3x3 filter)

training, reflecting the cumulative impact of the learning
process on the data point, thus providing insights into
the privacy loss associated with the training.

5. EXPERIMENTS

5.1 Experimental setup

The experimental setup utilized an identical computing
environment comprising both data provider and mod-
eler, each configured with an AMD EPYC 7502 32-Core
Processor and an NVIDIA RTX A6000 GPU, operating
on Linux Ubuntu 18.04.6 LTS. These machines were inter-
connected via a 1Gbps network. For the cryptographic
computations, we employed Microsoft SEAL [28], a HE
library utilizing the RNS version of the CKKS scheme
[29]. The GPU was used only for plaintext learning,
while homomorphic evaluations were performed solely
on the CPU. We selected a cyclotomic ring dimension of
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213, resulting in each ciphertext having 2!? (4096) slots.
For the machine learning tasks, we used the CIFAR-10
and CIFAR-100 datasets [30], along with the ResNet-20
and ResNet-110 architectures [21]. The first layer of the
ResNet architecture, designated as the targeted layer,
employs a convolutional layer with a filter size of 3 X 3
and a stride of 1. The batch size was set to 4096, which
generates feature maps that retain the spatial dimensions
of 32 X 32. In our experiments, we compare our proposed
method with the state-of-the-art approach optimized for
large batch forward pass [7].

5.2 Experimental results

Table 3 presents the execution times. “Baseline” refers
to experiments conducted with plaintext data, while the
“Proposed” experiments were conducted with the pro-
tocol we introduced. The results from [7] are excerpted
from their published work for comparison, and it should
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Table 3 — Execution time (per epoch except initialization and after training, [7] performs forward only)

| ResNet-20 | ResNet-110
Part
Baseline [7] (Only Proposed Baseline [7] (Only Proposed
forward) forward)

Initialization & After training | - - 108.58 | - - 108.58
Network transfer \ - - 400.14 | - - 400.14
Plaintext learning | - - 247 | - - 35.1
Homomorphic evaluation ‘ - 790,654 4,556 ‘ - 4,935,323 4,556
Execution time (per epoch) | 24.7 790,654 4,981 | 35.1 4,935,323 4,991
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Figure 4 — CIFAR-10/100 classification accuracy with ResNet-20/110 varying noise

be noted that their method does not include backpropaga-
tion. The training time per epoch for the regular learning
process is approximately 24.7 seconds for ResNet-20 and
35.1 seconds for ResNet-110. In contrast, the training
time for the proposed protocol amounts to 4981 seconds
for ResNet-20 and 4991 seconds for ResNet-110. As de-
picted in Table 3, a detailed examination reveals that
the majority of the total time is consumed by network
transfer and the homomorphic evaluation of the targeted
layer. The initialization time includes the encryption and
transfer time of the training data, and the homomorphic
evaluation time encompasses all HE evaluations in both
the forward pass and backpropagation. Homomorphic
evaluation significantly increases execution time. Ac-
cording to [7], performing only a forward pass on 512
images took 8067.90 seconds, meaning a forward pass
on 50000 images would require 790654 seconds. Includ-
ing backpropagation, which necessitates changing HE
parameters, would likely more than double the time

required. In contrast, our proposed method completes
training in about 4981 seconds per epoch for ResNet-20.
Additionally, [7] reported that a forward pass on 512
images with ResNet-110 took 44850.24 seconds, and a
forward pass for a single epoch took 4395323 seconds.
The proposed technique completes a single epoch in just
4991 seconds, demonstrating a significant improvement
in computational efficiency.

The accuracy results are presented in Fig. 4. These re-
sults were obtained by measuring accuracy after adding
noise to each weight in ratios ranging from 0 to x. In
a pseudonymization environment where shared data
and the background knowledge of attackers can be suf-
ficiently predicted and restricted, adding a certain ratio
of noise alone can achieve an adequate level of privacy
protection [31]. Increasing the noise reduces the possi-
bility of reconstructing the original weights or training
images, thereby enhancing privacy protection but also
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decreasing accuracy. Adding noise at about 30% does not
significantly degrade the experimental results. Therefore,
setting the noise level by considering the privacy leakage,
equation (1) in Section 4.2, can minimize information
loss.

6. CONCLUSIONS

In this paper, we proposed a novel privacy-preserving
training protocol. We introduced an algorithm that ef-
ficiently integrates HE and PETs to safeguard sensitive
training data and ensure model confidentiality. By en-
crypting only few layers of the model, we significantly
reduce computational demands while ensuring privacy
protection. We believe our research represents an initial
step towards utilizing HE for machine learning train-
ing, enabling modelers without direct access to data
to securely utilize and train on sensitive datasets. The
experimental results confirm that the protocol can be im-
plemented in real-world settings with minimal impact on
computational efficiency and model accuracy, providing
a practical solution to the challenges of data privacy in
Al Furthermore, the protocol’s compliance with GDPR
and its applicability in sensitive sectors like healthcare
and finance highlight its potential to facilitate secure and
private data utilization across various industries.
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