
Article

ITU Journal on Future and Evolving Technologies, Volume 6, Issue 3, September 2025

© International Telecommunication Union, 2025
Some rights reserved. c b n d

This work is available under the CC BY-NC-ND 3.0 IGO license: https://creativecommons.org/licenses/by-nc-nd/3.0/igo/.
More information regarding the license and suggested citation, additional permissions and disclaimers is available at:

https://www.itu.int/en/journal/j-fet/Pages/default.aspx

Exploring the benefits of differentially private
pre-training and fine-tuning for table
transformers
Xilong Wang1, Pin-Yu Chen2

1 Duke University, USA, 2 IBM Research, USA

Corresponding author: Xilong Wang, xilong.wang@duke.edu

For machine learning with tabular data, a table transformer (TabTransformer) is a
state-of-the-art neural network model, while Differential Privacy (DP) is an essential
component to ensure data privacy. In this paper, we explore the benefits of combining these
two aspects together in the scenario of transfer learning, differentially private pretraining and
fine-tuning of TabTransformers with a variety of Parameter-Efficient Fine-Tuning (PEFT)
methods, including adapter, LoRA, and prompt tuning. Our extensive experiments on four
ACS datasets with different configurations show that these PEFT methods outperform
traditional approaches in terms of the accuracy of the downstream task and the number of
trainable parameters, thus achieving an improved trade-off among parameter efficiency,
privacy, and accuracy.

Keywords: Differential privacy, table transformer, transfer learning

1. INTRODUCTION

Table transformer (TabTransformer) [1] is novel deep tabular data modeling for various
scenarios, such as supervised and semi-supervised learning. Its main contribution is to
transform regular categorical embeddings into contextual ones, thus achieving higher
accuracy compared to previous state-of-the-art methods. On the other hand, Differential
Privacy (DP) [2] is a frequently used technique to ensure privacy for individual data
points in a training dataset. DP-SGD [3], which combines DP with Stochastic Gradient
Descent (SGD), is one of the most frequently used optimization techniques in Machine
Learning (ML) to train models on sensitive data while safeguarding individual privacy.

In the literature, DP-SGD techniques either fine-tune a pre-trained model or train a
model from scratch. However, almost none of them have focused on TabTransformer.
In this paper, we implement various recent parameter-efficient fine-tuning techniques,
such as LoRA [4], adapter [5], and prompt tuning [6] (both shallow tuning and deep
tuning), so as to explore the benefits of differentially private pretraining and fine-tuning
for TabTransformers. To summarize, our key contributions are as follows: 1) We study an
unexplored scenario for transfer learning in TabTransformers with DP, i.e., implementing
various kinds of parameter-efficient techniques in the fine-tuning stage instead of full
tuning. 2) Different from previous tabular learning methods which mainly exploited DP
at the fine-tuning stage, we study the use of DP-SGD for both pretraining and fine-tuning,
thus ensuring end-to-end privacy. 3) Our experiments on four ACS datasets showed
that the accuracy outperforms the baselines in most cases, while the parameter efficiency
improves by more than 97.86%. In addition, we report the best advantageous PEFT
setting to inform and inspire the future design of DP-aware pretraining and fine-tuning
for TabTransformers.

https://creativecommons.org/licenses/by-nc-nd/3.0/igo/
https://www.itu.int/en/journal/j-fet/Pages/default.aspx

2. BACKGROUND AND RELATED WORK

2.1 Differential Privacy (DP) and DP-SGD

ML is widely known for its ability to analyze large
datasets, identify patterns, and make predictions or deci-
sions based on that data. However, this also introduces
the risk of disclosing sensitive information from the train-
ing dataset. DP [2] and DP-SGD [3] are introduced to
address this issue. A randomized algorithmA satisfies
(ϵ, δ) −DP if it holds that:

P[A(D) ∈ S] ≤ exp(ϵ)P[A(D′) ∈ S] + δ, (1)

where P[A(D) ∈ S] is the probability that the output of
A on datasetD falls within a set S, and P[A(D′) ∈ S] is
the probability that the output of theA on a neighboring
datasetD′ (which differs fromD by one data point) falls
within S. The smaller ϵ is, the stronger privacy guarantee
A has.

Inspired by DP, Differential Privacy Stochastic Gradient
Descent (DP-SGD) [3] is one of the most widely used
privacy-preserving optimization techniques in ML [7,
8, 9, 10]. It is a two-stage procedure. Formally, given
the SGD gradient estimator g evaluated on the training
dataset, and define its sensitivity Sg as the maximum of∥∥∥g(D) − g(D′)

∥∥∥
2
. In the first stage, DP-SGD adds a zero-

mean Gaussian noise with a given covariance matrix,
i.e., N(0, S2

gσ
2I) to the computed gradient estimator as

follows:
g(D) +N(0, S2

gσ
2I).

In the second stage, DP-SGD passes the gradient estima-
tor through the Clip operator:

Clip(x) =
x

max{1, ∥x∥2 /C}
,

so as to fix the sensitivity of the gradient estimator at a
hyperparameter C. However, regrettably, almost none
of DP-SGD techniques have been applied to the study of
TabTransformer.

2.2 Parameter-Efficient Fine-Tuning (PEFT)

PEFT [11, 12, 13, 5, 4, 6] is an emerging technique in the
field of transfer learning that aims to adapt large pre-
trained models to specific tasks with a smaller number
of task-specific parameters. It fine-tunes the pretrained
model on a target task while keeping the majority of
the original model’s parameters frozen. Compared to
full-tuning which fine-tunes the entire model, this ap-
proach reduces the computational resources and memory
requirements needed for task-specific adaptation. PEFT
is particularly valuable in scenarios with limited com-
puting resources or when deploying models to resource-
constrained environments, without sacrificing task per-
formance. The most popular PEFT techniques include

LoRA [4], adapter [5], and (deep/shallow) prompt tuning
[6]. Nevertheless, similar to standard ML, PEFT also faces
the risk of disclosing sensitive data throughout the fine-
tuning procedure and thus needs a privacy guarantee [14].

2.3 DP data synthesis

Recent Diffusion Models (DMs) [15, 16, 17, 18, 19] excel
at synthesizing high quality images and performing ro-
bustly across diverse tasks. Applying Differential Privacy
(DP) to diffusion models is an emerging area focused
on creating high-fidelity synthetic data while safeguard-
ing individual privacy [20]. Early work on privacy-
preserving generative modeling primarily applied DP-
SGD [3] to generative adversarial networks (GANs) [21,
22, 23] and variational autoencoders (VAEs) [24]. With
the advent of diffusion models [16], researchers began
exploring DP-SGD in this setting. Dockhorn, Cao, Vah-
dat, and Kreis [20] first investigated DP for diffusion,
and Ghalebikesabi, Berrada, Gowal, Ktena, Stanforth,
Hayes, De, Smith, Wiles, and Balle [25] showed that
pre-training on public data before fine-tuning on private
data yields state-of-the-art results. Liu, Lyu, Vinaroz,
and Park [26] introduced DP-LDM, a latent diffusion
model that requires far fewer parameters to fine-tune
than pixel-space diffusion. Meanwhile, several custom
privacy-focused architectures have emerged, such as
DP-MEPF [27] (privatizing feature-embedding means),
DPGEN [28] (energy-based modeling with random re-
sponses), PrivImage [29] (semantic query functions using
public data), and DP-Promise [30] (adding DP noise in
early forward steps). Nevertheless, the large size of
modern diffusion models still makes fine-tuning compu-
tationally expensive, limiting their practical applicability.

Despite extensive research on DP image data synthe-
sis, work on DP tabular data remains limited [31, 32].
PrivSyn [33] was among the first methods to automati-
cally handle general tabular datasets. DP-LLMTGen [34]
and SafeSynthDP [35] leverage pretrained Large Lan-
guage Models (LLMs) for privacy-preserving tabular
data generation. Specifically, DP-LLMTGen uses a two-
stage fine-tuning process with a novel tabular-focused
loss function, then synthesizes data by sampling from
the fine-tuned LLM. Meanwhile, the private evolution
algorithm, initially designed for image and text data, has
been adapted for DP-enabled tabular data generation.

3. METHODOLOGY

3.1 TabTransformer

TabTransformer [1] is a deep learning architecture for
tabular data modeling. It uses contextual embeddings

ITU Journal on Future and Evolving Technologies, Volume 6, Issue 3, September 2025

©International Telecommunication Union, 2025238

to achieve higher prediction accuracy and better inter-
pretability. It outperforms state-of-the-art deep learning
methods for tabular data and is highly robust against
missing or noisy data features. The brief structure of
TabTransformer is displayed in Fig. 1 (a). The TabTrans-
former architecture consists of a column embedding
layer, a stack of N transformer blocks, and a Multi-Layer
Perceptron (MLP). Each transformer layer comprises a
multi-head self-attention layer followed by a position-
wise feed-forward layer. As shown in Fig. 1 (a), the areas
highlighted in red are where we can perform PEFT. To
be specific, we implemented LoRA [4] and adapter [5]
in transformer blocks, while deep tuning and shallow
tuning [6] were exploited in MLP.

3.2 Deep tuning and shallow tuning

Visual Prompt Tuning (VPT) [6] is an efficient alternative
compared to full fine-tuning for large-scale transformer
models. It offers two tuning strategies: VPT-Deep and
VPT-Shallow. VPT-Deep prepends a set of learnable
parameters to each transformer encoder layer’s input,
while VPT-Shallow only inserts the prompt parameters to
the first layer’s input. Inspired by VPT, we proposed deep
tuning and shallow tuning, which aims at fine-tuning
the MLP of TabTransformer.

3.3 Adapter

Adapter [5], as shown in Fig. 2 (b), is a transfer learning
approach that allows for efficient parameter sharing and
extensibility in large pretrained models. It uses small
and task-specific modules that are inserted between the
pretrained layers of the base model. These modules
have a near-identity initialization and a small number
of parameters, which allow for stable training and slow
growth of the total model size when more tasks are
added.

3.4 LoRA

LoRA [4], as shown in Fig. 2 (c), is a low-rank adaptation
technique that reduces the number of trainable parame-
ters for downstream tasks while maintaining high model
quality. It works by injecting a low-rank adaptation ma-
trix into the pretrained model, which can be shared and
used to build many small LoRA modules for different
tasks. LoRA makes training more efficient and allows
for quick task-switching.

3.5 Joint PEFT with DP-SGD

We incorporate DP-SGD into PEFT by initially pretrain-
ing a TabTransformer model with DP on a pretraining
dataset. Subsequently, we freeze the backbone of the
pretrained model and apply the aforementioned PEFT
techniques to fine-tune the model in conjunction with DP-
SGD on the downstream dataset. This approach serves
to safeguard the privacy of both the pretraining dataset
and the downstream dataset, thus ensuring end-to-end
privacy. To be more detailed, as shown in Fig. 2 (a) and
Fig. 2 (c), we combine LoRA with feed forward layer in
each transformer block of TabTransformers. Moreover,
we inject an adapter between the feed forward layer and
the Add & Norm Layer in each transformer block of
TabTransformers. For deep tuning and shallow tuning,
as shown in Fig. 1 (b), deep tuning tunes certain neurons
in every layer of MLP, i.e., the red-marked part in Fig. 1
(b). Meanwhile, shallow tuning only tunes a few neurons
in MLP’s input layer, i.e., the green-marked part in the
figure.

4. PERFORMANCE EVALUATION

In this section, we test the performance of all mentioned
PEFT approaches and identify the most effective one
to benefit future research. For comparison, we exploit
two baselines, i.e., full tuning and training from scratch.
Furthermore, to illustrate the impact of PEFT, we also eval-
uate the pretrained model directly on the downstream
data without PEFT (i.e., zero-shot Inference). Experimen-
tal results clearly show that PEFT methods ensure high
parameter efficiency without the loss of accuracy, thus
outperforming basic approaches in terms of accuracy,
parameter efficiency, and privacy.

4.1 Experiment setup

Datasets: The ACS dataset [36] is derived from the Amer-
ican Community Survey (ACS) Public Use Microdata
Sample (PUMS) data. It gathers detailed demographic,
social, economic, and housing data from a representative
sample of the U.S. population every year. The ACS covers
a wide range of topics, including income, employment,
education, housing conditions, and health insurance. By
selecting a specific feature from the dataset and convert-
ing it into a binary outcome, the ACS dataset provides
the following predefined binary prediction tasks:

• ACS income: Predict whether an individual’s income
is above $50,000, after filtering the ACS PUMS data
sample to only include individuals above the age of
16, who reported usual working hours of at least 1
hour per week in the past year, and an income of at
least $100. In our case, the threshold of $50,000 was

Wang et al.: Exploring the benefits of differentially private pre-training and fine-tuning for table transformers

©International Telecommunication Union, 2025 239

Column Embedding LayerNorm

Transformer
Blocks × N

Concatenation

Multi-Layer Perception

Loss

Categorical Features Numerical Features

(a) Architecture of TabTransformer.

Input Layer ∈ ℝ⁶

Hidden Layer ∈ ℝ⁶

Hidden Layer ∈ ℝ⁶

Output Layer ∈ ℝ¹

(b) Overview of Deep Tuning and Shallow
Tuning.

Figure 1 – Genreral framework of parameter-efficient tuning on TabTransformer.

chosen so that this dataset can serve as a comparable
replacement to the UCI Adult dataset [37], but the
income threshold can be changed easily to define new
prediction tasks.
• ACS public coverage: Predict whether an individual

is covered by public health insurance, after filtering the
ACS PUMS data sample to only include individuals
under the age of 65, and those with an income of less
than $30,000. This filtering focuses the prediction prob-
lem on low-income individuals who are not eligible
for Medicare.

• ACS employment: Predict whether an individual is
employed, after filtering the ACS PUMS data sample
to only include individuals between the ages of 16 and
90.

• ACS travel time: Predict whether an individual’s
one-way commute time to work exceeds 30 minutes,
after filtering the ACS PUMS data sample to only
include individuals between the ages of 16 and 90 who
reported commuting to work. This task focuses on
understanding factors associated with longer commute
durations.

Distribution shifts: The original paper of the ACS
dataset [36] addresses the issue of distribution shifts
between different states in the U.S., evaluating the perfor-
mance of models, notably Gradient Boosting Machines
(GBMs), when trained on data from one state and tested
on data from others. The results have demonstrated that
distribution shifts can significantly affect model perfor-

Table 1 – Detailed information about the ACS dataset.

Datasets States Features Samples

ACS Income CA 10 195,665
IN 10 35,022

ACS Public Coverage CA 19 138,554
IN 19 24,330

ACS Employment CA 17 378,817
IN 17 67,680

ACS Travel Time CA 16 172,508
IN 16 30,932

mance, therefore highlighting the importance of adopting
transfer learning for applications spanning diverse U.S.
states. Inspired by this finding, we explore the use of
differentially private pretraining and fine-tuning across
different states. Specifically, for each dataset, we chose
two states, California (CA) and Indiana (IN), which are
geographically distant and have significant differences
in population size and economic disparities, exhibiting
obvious training set distribution shifts. Thus, we utilized
them for the study of pretraining and fine-tuning with
TabTransformer. In our setup, all CA samples are used
exclusively for pretraining to simulate a transfer learning
scenario where the source domain differs from the target
domain. The IN samples are then randomly split, with
80% used for fine-tuning and the remaining 20% reserved
as the test set to evaluate target domain performance.
We do not include CA samples in the test set to ensure
that the evaluation strictly measures generalization to

ITU Journal on Future and Evolving Technologies, Volume 6, Issue 3, September 2025

©International Telecommunication Union, 2025240

Multi-Head Attention

Add & Norm

Feed Forward

Add & Norm

Down Project

Nonlinearity

Up Project

Add

Feed
Forward

r

(a) Transforer block (b) Adapter (c) LoRA

Figure 2 – PEFT techniques applied on transformer block.

the target distribution (IN). Table 1 provides detailed
statistics of the ACS dataset.

Baselines: We included the following baselines for eval-
uation:

• Full tuning: In this scenario, after pretraining, full
tuning tunes all parameters of the pretrained TabTrans-
former model.

• Train from scratch: This baseline simply trains the entire
model on the downstream dataset from scratch without
pretraining.
• Zero-shot inference: To emphasize the effect of PEFT, af-

ter obtaining a pretrained model, this baseline directly
evaluates the performance of the same model on the
downstream dataset.

Parameter setups: Here we specify our parameter set-
tings.

• Let ϵp denote the privacy budget ϵ used for pretraining
and ϵ f denote ϵ used for fine-tuning. The values for ϵp
and ϵ f are selected from {0.5, 1, 2, 4, 8, 16, 32} to cover
a wide spectrum of privacy-utility trade-offs, ranging
from strong privacy (low ϵ) to weak privacy (high ϵ),
consistent with prior work on differentially private
machine learning.

• Clipping norm C = 2.
• DP parameter δ = 10−5.
• For TabTransformer, we set the hidden (embedding)

dimension, the number of transformer blocks, and the
number of attention heads to be 32, 4, and 8, respec-
tively. The size of MLP is 5 layers with 72 units for
each layer.

• Batch size B = 64 for both pretraining and fine-tuning.
• Full tuning tunes 8 units (tokens) in every MLP layer,

and shallow tuning tunes 8 units just in the first layer
of MLP.

4.2 Experimental results

Number of trainable parameters. The degree of parame-
ter efficiency in a PEFT technique hinges on the number
of parameters that remain trainable during fine-tuning.
Let N represent the number of trainable parameters, and
then the N of all the techniques are shown in Table 2.

Table 2 – Number of trainable parameters of various methods

Methods Deep Tuning Full Tuning Shallow Tuning
N 4,408 206,193 2,072

Methods Adapter LoRA Train from Scratch
N 1,424 1,424 206,193

Based on Table 2, we can arrive at the following conclu-
sion. When we make a comparison between the PEFT
methods listed in the table and the baseline methods (full
tuning and train from scratch), it becomes evident that
all the PEFT approaches have substantially decreased
the value of N by at least 206,193−4,408

206,193 = 97.86%. To
delve into the specifics, it’s worth highlighting that LoRA
and adapter emerge as the most parameter-efficient al-
ternatives, exhibiting a remarkable reduction in N by
206,193−1,424

206,193 = 99.3%.

Testing accuracy. In our endeavor to evaluate the per-
formance of all PEFT methods against the baseline, the
TabTransformer model underwent a two-step procedure.
Initially, for each dataset, the TabTransformer was sub-
jected to pre-training on the data sourced from California,
followed by fine-tuning on the data from Indiana. The en-
tire process of pre-training and fine-tuning is performed
using DP-SGD. For evaluation, for each dataset, we ran-
domly split 20% of the data from Indiana as the test set.
Furthermore, we opted for the utilization of the accu-
racy metric, denoted as Accuracy (Acc), as the primary
evaluation criterion for assessing the TabTransformer’s
ability to predict specific tasks across these d atasets. The
detailed results are shown in tables 3 to 6.

Wang et al.: Exploring the benefits of differentially private pre-training and fine-tuning for table transformers

©International Telecommunication Union, 2025 241

Table 3 – Testing accuracy comparison on ACS income dataset.

Full tuning

ϵp
ϵ f 0.5 1 2 4 8 16 32

0.5 0.4345 0.6325 0.6985 0.6989 0.7018 0.7168 0.7221
1 0.4468 0.6811 0.7001 0.7028 0.7031 0.7172 0.7243
2 0.4714 0.7024 0.7046 0.7054 0.7141 0.7201 0.7302
4 0.5473 0.7065 0.7075 0.7098 0.7232 0.7313 0.7355
8 0.6397 0.7088 0.7125 0.7228 0.7253 0.7352 0.7445
16 0.6859 0.7136 0.7149 0.7255 0.7263 0.749 0.7507
32 0.6889 0.7189 0.7289 0.7348 0.735 0.7512 0.7543

Deep tuning [6]

ϵp
ϵ f 0.5 1 2 4 8 16 32

0.5 0.6664 0.6865 0.7012 0.7048 0.7091 0.7109 0.7259
1 0.6969 0.7099 0.7142 0.7188 0.7195 0.7261 0.7319
2 0.6999 0.7108 0.7201 0.7212 0.7269 0.7336 0.736
4 0.7001 0.7263 0.7271 0.7285 0.7329 0.7362 0.7385
8 0.7132 0.7275 0.7319 0.735 0.7362 0.7429 0.7432
16 0.7182 0.7332 0.7359 0.7375 0.7399 0.7438 0.7445
32 0.7239 0.7362 0.7378 0.7409 0.743 0.746 0.75

Adapter [5]

ϵp
ϵ f 0.5 1 2 4 8 16 32

0.5 0.6985 0.7086 0.7105 0.7112 0.7131 0.7162 0.7213
1 0.7044 0.7143 0.7172 0.7185 0.7196 0.7252 0.7259
2 0.7158 0.7246 0.7248 0.7261 0.7273 0.7288 0.7335
4 0.7175 0.7261 0.7278 0.7291 0.7298 0.7308 0.7336
8 0.7209 0.7279 0.7292 0.7335 0.7345 0.7345 0.7366
16 0.7288 0.7352 0.7358 0.7359 0.7366 0.7376 0.7436
32 0.7368 0.7386 0.7435 0.7452 0.7453 0.747 0.7475

LoRA [4]

ϵp
ϵ f 0.5 1 2 4 8 16 32

0.5 0.6754 0.6772 0.6996 0.7008 0.7096 0.7108 0.7116
1 0.6791 0.7048 0.7113 0.7116 0.7155 0.7182 0.7202
2 0.6871 0.7155 0.7171 0.7172 0.7181 0.7209 0.7241
4 0.6966 0.7178 0.7181 0.7196 0.7198 0.7256 0.7256
8 0.7203 0.7215 0.7216 0.7232 0.7258 0.7266 0.7318
16 0.7231 0.7253 0.7269 0.7271 0.7292 0.7295 0.7336
32 0.7272 0.7293 0.7348 0.737 0.7373 0.7463 0.7472

Shallow tuning [6]

ϵp
ϵ f 0.5 1 2 4 8 16 32

0.5 0.5019 0.5879 0.588 0.6363 0.6801 0.6922 0.6962
1 0.6348 0.6959 0.7039 0.7094 0.7095 0.7095 0.7143
2 0.6514 0.6984 0.7098 0.7162 0.7173 0.7175 0.7183
4 0.7009 0.7046 0.7173 0.7192 0.7203 0.7248 0.7282
8 0.7142 0.7188 0.7228 0.7275 0.7306 0.7313 0.7333
16 0.7263 0.7269 0.7272 0.7335 0.7342 0.7388 0.7395
32 0.736 0.7382 0.7392 0.7409 0.7445 0.7449 0.7452

Train from scratch
ϵ 0.5 1 2 4 8 16 32

Acc 0.633 0.6889 0.6998 0.7002 0.7008 0.7011 0.7099
Zero-shot inference

ϵ 0.5 1 2 4 8 16 32
Acc 0.6471 0.6604 0.6682 0.6711 0.6814 0.7016 0.7098

Table 4 – Testing accuracy comparison on ACS travel time dataset.

Full tuning

ϵp
ϵ f 0.5 1 2 4 8 16 32

0.5 0.2835 0.3397 0.4043 0.4696 0.4864 0.6404 0.6492
1 0.431 0.5334 0.5999 0.6355 0.6462 0.6798 0.6828
2 0.4478 0.6144 0.6565 0.6622 0.6809 0.6851 0.6901
4 0.6523 0.6828 0.6928 0.6947 0.7039 0.7054 0.7096
8 0.6989 0.7065 0.7073 0.7146 0.7149 0.7161 0.7169
16 0.7084 0.7134 0.7157 0.7176 0.7176 0.7195 0.7195
32 0.7188 0.7191 0.7199 0.7222 0.7233 0.7233 0.7256

Deep tuning [6]

ϵp
ϵ f 0.5 1 2 4 8 16 32

0.5 0.4849 0.6129 0.7031 0.7062 0.7092 0.7104 0.7104
1 0.5609 0.6576 0.7031 0.7126 0.713 0.7165 0.7199
2 0.5969 0.7069 0.7092 0.7153 0.7172 0.7203 0.7203
4 0.679 0.7088 0.7123 0.7195 0.7199 0.7203 0.7226
8 0.6989 0.7115 0.7176 0.7199 0.7211 0.7222 0.7241
16 0.7084 0.7119 0.7203 0.7218 0.723 0.7233 0.7325
32 0.7169 0.7184 0.7233 0.7241 0.7249 0.7314 0.7356

Adapter [5]

ϵp
ϵ f 0.5 1 2 4 8 16 32

0.5 0.6695 0.7069 0.7069 0.7115 0.713 0.7184 0.7188
1 0.7069 0.7115 0.7149 0.7149 0.7157 0.7188 0.7191
2 0.7073 0.7157 0.7188 0.7191 0.7199 0.7199 0.7218
4 0.7123 0.7191 0.7191 0.7199 0.7249 0.7272 0.7276
8 0.713 0.7203 0.7207 0.7207 0.7276 0.7295 0.731
16 0.7157 0.7207 0.7245 0.7264 0.7283 0.7314 0.7337
32 0.726 0.7268 0.7279 0.7314 0.7333 0.7363 0.7382

LoRA [4]

ϵp
ϵ f 0.5 1 2 4 8 16 32

0.5 0.418 0.4765 0.6397 0.6733 0.6893 0.7031 0.7054
1 0.6679 0.6806 0.6893 0.7031 0.7031 0.7092 0.7119
2 0.7027 0.7046 0.7062 0.7149 0.7149 0.718 0.7188
4 0.713 0.7142 0.7149 0.7169 0.718 0.7226 0.7253
8 0.7169 0.7176 0.7184 0.7188 0.7195 0.7245 0.7291
16 0.7188 0.7191 0.7199 0.7211 0.7226 0.7264 0.7298
32 0.7226 0.7253 0.7283 0.7337 0.7352 0.7371 0.7421

Shallow tuning [6]

ϵp
ϵ f 0.5 1 2 4 8 16 32

0.5 0.5476 0.5984 0.6324 0.6825 0.6901 0.6989 0.7088
1 0.6855 0.6886 0.6977 0.7008 0.7035 0.7042 0.7092
2 0.7023 0.7058 0.7069 0.7104 0.7104 0.7115 0.7142
4 0.7058 0.7081 0.7123 0.713 0.7153 0.7172 0.7199
8 0.7073 0.713 0.7165 0.7195 0.7233 0.726 0.7291
16 0.7241 0.7256 0.7264 0.7268 0.7279 0.7291 0.7306
32 0.7249 0.7256 0.7291 0.7306 0.7321 0.7356 0.7363

Train from scratch
ϵ 0.5 1 2 4 8 16 32

Acc 0.6671 0.6791 0.6909 0.6927 0.7055 0.7067 0.7225
Zero-shot inference

ϵ 0.5 1 2 4 8 16 32
Acc 0.6788 0.7036 0.7071 0.7078 0.7147 0.7162 0.7163

ITU Journal on Future and Evolving Technologies, Volume 6, Issue 3, September 2025

©International Telecommunication Union, 2025242

Table 5 – Testing accuracy comparison on ACS public coverage dataset.

Full tuning

ϵp
ϵ f 0.5 1 2 4 8 16 32

0.5 0.3352 0.6422 0.6513 0.7051 0.7129 0.7193 0.7281
1 0.6652 0.7008 0.7244 0.7252 0.7304 0.7351 0.7419
2 0.733 0.7435 0.7513 0.7612 0.7633 0.7659 0.7741
4 0.7522 0.7616 0.7672 0.7707 0.7717 0.7731 0.7766
8 0.7647 0.7698 0.7709 0.7723 0.7748 0.7754 0.7778
16 0.768 0.7711 0.7717 0.7768 0.7774 0.7783 0.7824
32 0.7791 0.7746 0.7776 0.7809 0.7824 0.7871 0.7916

Deep tuning [6]

ϵp
ϵ f 0.5 1 2 4 8 16 32

0.5 0.7008 0.7125 0.7127 0.7222 0.7236 0.7283 0.7314
1 0.7275 0.7291 0.732 0.7413 0.7427 0.747 0.7513
2 0.7388 0.7433 0.7454 0.7536 0.754 0.7542 0.7585
4 0.7474 0.7513 0.7536 0.7538 0.7546 0.7645 0.7655
8 0.7561 0.761 0.7616 0.7674 0.7678 0.7686 0.775
16 0.7651 0.7653 0.7672 0.7702 0.7711 0.7721 0.7781
32 0.7715 0.7727 0.7729 0.7781 0.7785 0.7793 0.784

Adapter [5]

ϵp
ϵ f 0.5 1 2 4 8 16 32

0.5 0.6626 0.6854 0.7244 0.7351 0.7415 0.753 0.7626
1 0.7213 0.7372 0.7577 0.7616 0.7633 0.7651 0.7674
2 0.7524 0.7645 0.7661 0.7678 0.7678 0.7754 0.7768
4 0.7552 0.7682 0.7711 0.7723 0.7758 0.7774 0.7787
8 0.7635 0.7688 0.7713 0.7725 0.7783 0.7789 0.7797
16 0.767 0.7772 0.7791 0.7793 0.7793 0.7807 0.7815
32 0.7723 0.7787 0.7809 0.7815 0.7828 0.7838 0.7871

LoRA [4]

ϵp
ϵ f 0.5 1 2 4 8 16 32

0.5 0.6815 0.7045 0.7082 0.7154 0.7166 0.7219 0.7464
1 0.7281 0.7351 0.7388 0.7452 0.7507 0.7509 0.7657
2 0.745 0.7513 0.7522 0.7637 0.7637 0.7641 0.7698
4 0.7573 0.7643 0.7657 0.7667 0.7672 0.7717 0.7719
8 0.7649 0.7651 0.7698 0.7707 0.7727 0.7744 0.776
16 0.7682 0.7688 0.7704 0.7739 0.776 0.7768 0.7822
32 0.7719 0.7803 0.7826 0.783 0.784 0.7853 0.79

Shallow tuning [6]

ϵp
ϵ f 0.5 1 2 4 8 16 32

0.5 0.7051 0.7078 0.7125 0.717 0.7269 0.7357 0.7548
1 0.7431 0.745 0.752 0.7548 0.7559 0.7655 0.769
2 0.7563 0.7563 0.7626 0.7633 0.7678 0.7719 0.7725
4 0.7663 0.7667 0.7672 0.7684 0.7696 0.7719 0.7741
8 0.7692 0.7713 0.7713 0.7713 0.7737 0.7746 0.7754
16 0.7735 0.7739 0.7739 0.7754 0.7776 0.7791 0.7795
32 0.7739 0.7752 0.7801 0.7805 0.7818 0.7822 0.7822

Train from scratch
ϵ 0.5 1 2 4 8 16 32

Acc 0.6196 0.7041 0.7197 0.7261 0.7446 0.7554 0.7653
Zero-shot inference

ϵ 0.5 1 2 4 8 16 32
Acc 0.6428 0.6774 0.7028 0.7154 0.7279 0.7501 0.7530

Table 6 – Testing accuracy comparison on ACS employment dataset.

Full tuning

ϵp
ϵ f 0.5 1 2 4 8 16 32

0.5 0.6769 0.6787 0.6804 0.7049 0.7142 0.7145 0.7196
1 0.7182 0.7284 0.7305 0.7353 0.7355 0.7363 0.7363
2 0.7357 0.7365 0.7372 0.7373 0.7374 0.7377 0.738
4 0.7376 0.7406 0.7408 0.741 0.7417 0.7418 0.7459
8 0.7382 0.7445 0.7449 0.745 0.7457 0.7474 0.7516
16 0.7387 0.7466 0.7478 0.7486 0.7503 0.7519 0.753
32 0.7446 0.7493 0.7496 0.7527 0.7547 0.7578 0.7581

Deep tuning [6]

ϵp
ϵ f 0.5 1 2 4 8 16 32

0.5 0.7074 0.715 0.7205 0.7206 0.7274 0.7371 0.7383
1 0.7265 0.7328 0.7357 0.7368 0.7374 0.7392 0.7402
2 0.7341 0.7392 0.7401 0.7405 0.7412 0.7433 0.7453
4 0.7409 0.7417 0.7419 0.7431 0.7443 0.7456 0.7473
8 0.7428 0.7432 0.7451 0.7469 0.747 0.7489 0.7492
16 0.7435 0.7479 0.7487 0.7492 0.7507 0.7541 0.7584
32 0.751 0.7525 0.7552 0.756 0.7581 0.7594 0.7615

Adapter [5]

ϵp
ϵ f 0.5 1 2 4 8 16 32

0.5 0.7288 0.7335 0.7344 0.7354 0.7391 0.7408 0.7408
1 0.7379 0.7383 0.7391 0.7402 0.7422 0.7428 0.7435
2 0.7391 0.7421 0.7421 0.7422 0.7449 0.7455 0.7462
4 0.7439 0.7443 0.7451 0.7457 0.7476 0.7481 0.7487
8 0.7443 0.7449 0.747 0.7479 0.7487 0.7527 0.7533
16 0.7464 0.7466 0.7476 0.7501 0.7543 0.7559 0.7564
32 0.7465 0.7502 0.7522 0.7522 0.7569 0.7572 0.7641

LoRA [4]

ϵp
ϵ f 0.5 1 2 4 8 16 32

0.5 0.6837 0.7072 0.708 0.7181 0.7224 0.7298 0.7312
1 0.7273 0.7355 0.7359 0.7366 0.7369 0.7391 0.742
2 0.7372 0.7414 0.7419 0.742 0.7422 0.7435 0.7452
4 0.7388 0.7418 0.7424 0.7434 0.7444 0.7449 0.7463
8 0.7394 0.7425 0.7434 0.7452 0.7463 0.7475 0.7477
16 0.7443 0.7461 0.7477 0.7484 0.7487 0.7488 0.7501
32 0.7503 0.7504 0.7505 0.7518 0.7529 0.7547 0.7559

Shallow tuning [6]

ϵp
ϵ f 0.5 1 2 4 8 16 32

0.5 0.7004 0.7091 0.7125 0.7183 0.7199 0.721 0.7255
1 0.7211 0.7228 0.7327 0.738 0.7391 0.7392 0.7415
2 0.7369 0.7398 0.7405 0.7431 0.7439 0.7441 0.747
4 0.7421 0.7433 0.7458 0.746 0.746 0.7467 0.7478
8 0.7439 0.7444 0.746 0.7467 0.7469 0.7478 0.7513
16 0.7439 0.7473 0.7477 0.7478 0.7481 0.7513 0.7526
32 0.7457 0.7481 0.7504 0.7542 0.7568 0.7572 0.7624

Train from scratch
ϵ 0.5 1 2 4 8 16 32

Acc 0.7071 0.7191 0.7309 0.7327 0.7401 0.7455 0.7467
Zero-shot inference

ϵ 0.5 1 2 4 8 16 32
Acc 0.7088 0.7336 0.7371 0.7447 0.7462 0.7463 0.7478

Wang et al.: Exploring the benefits of differentially private pre-training and fine-tuning for table transformers

©International Telecommunication Union, 2025 243

infer the following conclusions:

• In all four ACS datasets, all the PEFT methods demon-
strate comparable Acc when compared to the baselines.
For example, in ACS income dataset, when ϵp, ϵ f are
both set to 32, the Acc of deep tuning, adapter, LoRA,
and shallow tuning is 0.75, 0.7475, 0.7472, and 0.7452,
respectively. Meanwhile, when ϵ = 32, the Acc of Train
from Scratch and Zero-shot Inference are 0.7099 and
0.7098, respectively. These values suggest that when
compared to train from scratch and zero-shot inference,
the PEFT techniques increase the Acc by at least 4.7%.

• The Acc of PEFT generally surpasses that of full tuning,
showcasing significant benefits in terms of privacy,
accuracy, and parameter efficiency. To illustrate, in the
ACS travel time dataset shown in Table 4, a comparison
of all 7 × 7 = 49 reported scenarios (representing vari-
ous combinations of differential privacy parameters ϵp
and ϵ f) between adapter [5] and full tuning shows that
adapter consistently outperforms full tuning across the
board. Furthermore, in the cases of the ACS income,
public coverage, and employment datasets, when con-
sidering the same 49 scenarios, adapter surpasses full
tuning in 43, 42, and 45 cases, respectively, demon-
strating its robustness and effectiveness in a variety of
settings.

Hence, to sum up, PEFT techniques achieve excellent
levels of accuracy (Acc) while demonstrating a remark-
ably high degree of parameter efficiency. Secondly, PEFT
methods exhibit a robust tolerance to low values of ϵ
compared to full tuning. which indicates that PEFT can
ensure a higher level of privacy than full tuning. For
example, for the ACS income dataset, when (ϵp, ϵ f) =
(32, 0.5), the Acc of deep tuning, adapter, LoRA, and
shallow tuning are 0.7239, 0.7368, 0.7272, 0.736, respec-
tively, while the Acc of full tuning is 0.6889. Hence, when
(ϵp, ϵ f) = (32, 0.5), the Acc of PEFT is at least 3.5% higher
than full tuning. For the ACS travel time dataset, when
(ϵp, ϵ f) = (0.5, 32), the Acc of deep tuning, adapter, LoRA,
and shallow tuning are 0.7104, 0.7188, 0.7054, 0.7088, re-
spectively, while the Acc of full tuning is 0.6492. Hence,
when (ϵp, ϵ f) = (0.5, 32), the Acc of PEFT is at least 5.62%
higher than full tuning.

Finally, according to tables 3 to 6, it becomes clear that
the adapter method surpasses other methodologies in a
majority of the scenarios in terms of Acc , in 126 out of
196 scenarios adapter performed the best. In addition,
adapter is the most parameter-efficient PEFT technique
as shown in Table 2. Given these observations, we can
confidently conclude that the adapter method offers the
most advantageous balance between privacy, accuracy,
and parameter efficiency. This superior trade-off high-
lights its effectiveness in optimizing resource usage while
maintaining high levels of data privacy and model accu-
racy.

5. CONCLUSION

In this paper, we presented a pilot study exploring the
benefits of combining differentially private pretraining
and Parameter-Efficient Fine-Tuning (PEFT) for TabTrans-
formers with a variety of fine-tuning methods, including
adapter [5], LoRA [4], deep/shallow tuning [6]. We con-
ducted extensive experiments on four ACS datasets with
different configurations. The results in Table 2 indicate
that the number of trainable parameters of PEFT tech-
niques reduces at least 97.86% compared to baselines.
The results in tables 3 to 6 show that the accuracy of PEFT
methods outperforms baselines in most cases. Hence,
compared to three baselines which are either parameter-
consuming or ineffective, PEFT techniques achieve a
significantly improved trade-off among privacy, accu-
racy, and parameter efficiency. We also find that adapter
is the most optimal setting for PEFT in this setting. Our
study uncovers the unexplored benefits and provides
new insights into applying PEPT on differentially pri-
vate pretrained TabTransformer for differentially private
transfer learning.

REFERENCES

[1] Xin Huang, Ashish Khetan, Milan Cvitkovic, and Zohar Karnin.
“Tabtransformer: Tabular data modeling using contextual em-
beddings”. In: arXiv preprint arXiv:2012.06678 (2020).

[2] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam
Smith. “Calibrating noise to sensitivity in private data analysis”.
In: Theory of Cryptography: Third Theory of Cryptography Conference,
TCC 2006, New York, NY, USA, March 4-7, 2006. Proceedings 3.
Springer. 2006, pp. 265–284.

[3] Martín Abadi, Andy Chu, Ian J. Goodfellow, H. B. McMahan,
Ilya Mironov, Kunal Talwar, and Li Zhang. “Deep Learning with
Differential Privacy”. In: Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (2016).

[4] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu,
Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen. “Lora:
Low-rank adaptation of large language models”. In: arXiv preprint
arXiv:2106.09685 (2021).

[5] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna
Morrone, Quentin De Laroussilhe, Andrea Gesmundo, Mona At-
tariyan, and Sylvain Gelly. “Parameter-efficient transfer learning
for NLP”. In: International Conference on Machine Learning. PMLR.
2019, pp. 2790–2799.

[6] Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge
Belongie, Bharath Hariharan, and Ser-Nam Lim. “Visual prompt
tuning”. In: European Conference on Computer Vision. Springer.
2022, pp. 709–727.

[7] Muah Kim, Onur Günlü, and Rafael F Schaefer. “Federated
learning with local differential privacy: Trade-offs between pri-
vacy, utility, and communication”. In: ICASSP 2021-2021 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE. 2021, pp. 2650–2654.

[8] Christophe Dupuy, Radhika Arava, Rahul Gupta, and Anna
Rumshisky. “An efficient dp-sgd mechanism for large scale nlu
models”. In: ICASSP 2022-2022 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). IEEE. 2022,
pp. 4118–4122.

Based on the findings presented in tables 2 to 6, we can

ITU Journal on Future and Evolving Technologies, Volume 6, Issue 3, September 2025

©International Telecommunication Union, 2025244

[9] Huzaifa Arif, Alex Gittens, and Pin-Yu Chen. “Reprogrammable-
FL: Improving Utility-Privacy Tradeoff in Federated Learning via
Model Reprogramming”. In: 2023 IEEE Conference on Secure and
Trustworthy Machine Learning (SaTML). IEEE. 2023, pp. 197–209.

[10] Yizhe Li, Yu-Lin Tsai, Xuebin Ren, Chia-Mu Yu, and Pin-Yu
Chen. “Exploring the Benefits of Visual Prompting in Differential
Privacy”. In: arXiv preprint arXiv:2303.12247 (2023).

[11] Jonas Pfeiffer, Ivan Vulić, Iryna Gurevych, and Sebastian Ruder.
“MAD-X: An Adapter-Based Framework for Multi-Task Cross-
Lingual Transfer”. In: Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing (EMNLP). 2020,
pp. 7654–7673.

[12] Yuning Mao, Lambert Mathias, Rui Hou, Amjad Almahairi, Hao
Ma, Jiawei Han, Scott Yih, and Madian Khabsa. “UniPELT: A
Unified Framework for Parameter-Efficient Language Model
Tuning”. In: Proceedings of the 60th Annual Meeting of the Associ-
ation for Computational Linguistics (Volume 1: Long Papers). 2022,
pp. 6253–6264.

[13] Xiang Lisa Li and Percy Liang. “Prefix-Tuning: Optimizing
Continuous Prompts for Generation”. In: Proceedings of the 59th
Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers). 2021, pp. 4582–4597.

[14] Da Yu, Saurabh Naik, Arturs Backurs, Sivakanth Gopi, Huseyin A
Inan, Gautam Kamath, Janardhan Kulkarni, Yin Tat Lee, Andre
Manoel, Lukas Wutschitz, et al. “Differentially private fine-
tuning of language models”. In: arXiv preprint arXiv:2110.06500
(2021).

[15] Prafulla Dhariwal and Alex Nichol. “Diffusion Models Beat
GANs on Image Synthesis”. In: NeurIPS abs/2105.05233 (2021).

[16] Robin Rombach, A. Blattmann, Dominik Lorenz, Patrick Esser,
and Björn Ommer. “High-Resolution Image Synthesis with
Latent Diffusion Models”. In: CVPR (2021), pp. 10674–10685.

[17] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and
Mark Chen. “Hierarchical Text-Conditional Image Generation
with CLIP Latents”. In: ArXiv abs/2204.06125 (2022).

[18] Yogesh Balaji, Seungjun Nah, Xun Huang, Arash Vahdat, Jiaming
Song, Qinsheng Zhang, Karsten Kreis, Miika Aittala, Timo Aila,
Samuli Laine, Bryan Catanzaro, Tero Karras, and Ming-Yu Liu.
“eDiff-I: Text-to-Image Diffusion Models with an Ensemble of
Expert Denoisers”. In: ArXiv abs/2211.01324 (2022).

[19] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay
Whang, Emily L. Denton, Seyed Kamyar Seyed Ghasemipour,
Burcu Karagol Ayan, Seyedeh Sara Mahdavi, Raphael Gon-
tijo Lopes, Tim Salimans, Jonathan Ho, David J. Fleet, and
Mohammad Norouzi. “Photorealistic Text-to-Image Diffusion
Models with Deep Language Understanding”. In: NeurIPS
abs/2205.11487 (2022).

[20] Tim Dockhorn, Tianshi Cao, Arash Vahdat, and Karsten Kreis.
“Differentially Private Diffusion Models”. In: TMLR abs/2210.09929
(2022).

[21] Liyang Xie, Kaixiang Lin, Shu Wang, Fei Wang, and Jiayu Zhou.
“Differentially Private Generative Adversarial Network”. In:
ArXiv abs/1802.06739 (2018).

[22] Reihaneh Torkzadehmahani, Peter Kairouz, and Benedict Paten.
“DP-CGAN: Differentially Private Synthetic Data and Label
Generation”. In: CVPR Workshop (2019), pp. 98–104.

[23] Dingfan Chen, Tribhuvanesh Orekondy, and Mario Fritz. “GS-
WGAN: A Gradient-Sanitized Approach for Learning Differen-
tially Private Generators”. In: NeurIPS abs/2006.08265 (2020).

[24] Bjarne Pfitzner and Bert Arnrich. “DPD-fVAE: Synthetic Data
Generation Using Federated Variational Autoencoders With
Differentially-Private Decoder”. In: ArXiv abs/2211.11591 (2022).

[25] Sahra Ghalebikesabi, Leonard Berrada, Sven Gowal, Ira Ktena,
Robert Stanforth, Jamie Hayes, Soham De, Samuel L. Smith,
Olivia Wiles, and Borja Balle. “Differentially Private Diffusion
Models Generate Useful Synthetic Images”. In: ArXiv abs/2302.13861
(2023).

[26] Michael F Liu, Saiyue Lyu, Margarita Vinaroz, and Mijung Park.
“Differentially Private Latent Diffusion Models”. In: Transactions
on Machine Learning Research (2024). issn: 2835-8856. url: https:
//openreview.net/forum?id=AkdQ266kHj.

[27] Fredrik Harder, Milad Jalali Asadabadi, Danica J Sutherland,
and Mijung Park. “Pre-trained perceptual features improve
differentially private image generation”. In: TMLR (2022).

[28] Jia-Wei Chen, Chia-Mu Yu, Ching-Chia Kao, Tzai-Wei Pang,
and Chun-Shien Lu. “Dpgen: Differentially private generative
energy-guided network for natural image synthesis”. In: CVPR.
2022.

[29] Kecen Li, Chen Gong, Zhixiang Li, Yuzhong Zhao, Xinwen Hou,
and Tianhao Wang. PrivImage: Differentially Private Synthetic Image
Generation using Diffusion Models with Semantic-Aware Pretraining.
2024. arXiv: 2311.12850 [cs.CV].

[30] Haichen Wang, Shuchao Pang, Zhigang Lu, Yihang Rao, Yong-
bin Zhou, and Minhui Xue. “dp-promise: Differentially Private
Diffusion Probabilistic Models for Image Synthesis”. In: USENIX
(2024).

[31] Mengmeng Yang, Chi-Hung Chi, Kwok-Yan Lam, Jie Feng, Taolin
Guo, and Wei Ni. Tabular Data Synthesis with Differential Privacy:
A Survey. 2024. arXiv: 2411.03351 [cs.CR]. url: https://arxiv.org
/abs/2411.03351.

[32] Yuzheng Hu, Fan Wu, Qinbin Li, Yunhui Long, Gonzalo Munilla
Garrido, Chang Ge, Bolin Ding, David Forsyth, Bo Li, and Dawn
Song. “SoK: Privacy-Preserving Data Synthesis”. In: 2024 IEEE
Symposium on Security and Privacy (SP). 2024, pp. 4696–4713. doi:
10.1109/SP54263.2024.00002.

[33] Zhikun Zhang, Tianhao Wang, Ninghui Li, Jean Honorio, Michael
Backes, Shibo He, Jiming Chen, and Yang Zhang. “PrivSyn:
Differentially Private Data Synthesis”. In: 30th USENIX Security
Symposium (USENIX Security 21). USENIX Association, Aug.
2021, pp. 929–946. isbn: 978-1-939133-24-3. url: https://www.use
nix.org/conference/usenixsecurity21/presentation/zhang-zhiku
n.

[34] Toan V. Tran and Li Xiong. Differentially Private Tabular Data
Synthesis using Large Language Models. 2024. arXiv: 2406.01457
[cs.LG]. url: https://arxiv.org/abs/2406.01457.

[35] Md Mahadi Hasan Nahid and Sadid Bin Hasan. SafeSynthDP:
Leveraging Large Language Models for Privacy-Preserving Synthetic
Data Generation Using Differential Privacy. 2024. arXiv: 2412.20641
[cs.LG]. url: https://arxiv.org/abs/2412.20641.

[36] Frances Ding, Moritz Hardt, John Miller, and Ludwig Schmidt.
“Retiring adult: New datasets for fair machine learning”. In: Ad-
vances in neural information processing systems 34 (2021), pp. 6478–
6490.

[37] Barry Becker and Ronny Kohavi. Adult. UCI Machine Learning
Repository. DOI: https://doi.org/10.24432/C5XW20. 1996.

Wang et al.: Exploring the benefits of differentially private pre-training and fine-tuning for table transformers

©International Telecommunication Union, 2025 245

https://openreview.net/forum?id=AkdQ266kHj
https://openreview.net/forum?id=AkdQ266kHj
https://arxiv.org/abs/2311.12850
https://arxiv.org/abs/2411.03351
https://arxiv.org/abs/2411.03351
https://arxiv.org/abs/2411.03351
https://doi.org/10.1109/SP54263.2024.00002
https://www.usenix.org/conference/usenixsecurity21/presentation/zhang-zhikun
https://www.usenix.org/conference/usenixsecurity21/presentation/zhang-zhikun
https://www.usenix.org/conference/usenixsecurity21/presentation/zhang-zhikun
https://arxiv.org/abs/2406.01457
https://arxiv.org/abs/2406.01457
https://arxiv.org/abs/2406.01457
https://arxiv.org/abs/2412.20641
https://arxiv.org/abs/2412.20641
https://arxiv.org/abs/2412.20641

AUTHORS

Xilong Wang is a Ph.D. student
in the Department of Electrical
and Computer Engineering at
Duke University. Prior to that,
he earned his bachelor’s degree
from the University of Science
and Technology of China in 2024.

and computer science from the
University of Michigan, Ann
Arbor, USA, in 2016.

Pin-Yu Chen is a principal re-
search scientist at IBM Thomas
J. Watson Research Center, York-
town Heights, NY, USA. He is
also the chief scientist of RPI-IBM
AI Research Collaboration and PI
of ongoing MIT-IBM Watson AI
Lab projects. Dr. Chen received
his Ph.D. in electrical engineering

ITU Journal on Future and Evolving Technologies, Volume 6, Issue 3, September 2025

©International Telecommunication Union, 2025246

	Exploring the benefits of differentially privatepre-training and fine-tuning for tabletransformers
	1. INTRODUCTION
	2. BACKGROUND AND RELATED WORK
	2.1 Differential Privacy (DP) and DP-SGD
	2.2 Parameter-Efficient Fine-Tuning (PEFT)
	2.3 DP data synthesis

	3. METHODOLOGY
	3.1 TabTransformer
	3.2 Deep tuning and shallow tuning
	3.3 Adapter
	3.4 LoRA
	3.5 Joint PEFT with DP-SGD

	4. PERFORMANCE EVALUATION
	4.1 Experiment setup
	4.2 Experimental results

	5. CONCLUSION
	REFERENCES
	AUTHORS

