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Vision Transformers (ViTs) have evolved in the field of computer vision by transitioning
traditional Convolutional Neural Networks (CNNs) into attention-based architectures. This
architecture processes input images as sequences of patches. ViTs achieve enhanced
performance in many tasks such as image classification and object detection due to their
ability to capture global dependencies within input data. While their software
implementations are widely adopted, deploying ViTs on hardware introduces several
challenges. These include fault tolerance in the presence of hardware failures, real-time
reliability, and high computational requirements. Permanent faults that are in processing
elements, interconnections, or memory subsystems lead to incorrect computations and
degrading system performance. This paper proposes a fault-tolerant hardware
implementation of ViTs to overcome these challenges. This hardware implementation
integrates real-time fault detection and recovery mechanisms. The architecture includes four
primary units: patch embedding, encoder, decoder, and Multi Layer Perceptron (MLP) which
are supported by fault-tolerant components such as lightweight recompute units, a
centralized Built-In Self-Test (BIST), and a learning-based decision-making system using
machine learning model ’decision tree’. These units are interconnected through a centralized
global buffer for efficient data transfer, ensuring seamless operation even under fault
conditions.
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1. INTRODUCTION

Vision Transformers (ViTs) have been widely adopted for different computer vision jobs by
virtue of the explosive developments in deep learning [1, 2, 3, 4, 5]. Unlike Convolutional
Neural Networks (CNNs) [6], which extract local characteristics from spatially limited
convolutional filters, ViTs split an image into non-overlapping patches and treat them as
independent tokens. These patches are then run via an embedding layer and handled
by a sequence of Multi-Head Self-Attention (MHSA) [7] and Feedforward Network
(FFN) [8] layers. This architectural change lets ViTs record local and global dependencies
inside an image, thereby improving classification, object identification, and segmentation
tasks’ performance. Nevertheless, in spite of their benefits, ViTs need a great processing
capability, while considering the complexity of self-attention processes, which performs
significant matrix multiplications over several layers. Therefore, hardware accelerators
are used to promote parallelism, optimize memory access, and raise execution efficiency
[9, 10].

A typical ViT hardware accelerator [11, 12, 13, 14] is featured with processing elements and
memory systems to manipulate the complex matrix operations in attention mechanisms.
These designs concentrate on parallelism, fast data access, and efficient control, which
meets real-time performance requirements. Using specialized Processing Elements (PEs)
optimized for tensor computations, ViT hardware accelerators assure fast processing for
real-time uses [2]. These accelerators include parallelized architectures which improve
throughput, also lowering latency in large-scale vision applications which is dissimilar
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from general-purpose CPUs. By reducing duplicate mem-
ory access and hence enhancing energy efficiency and
computational performance, hardware-aware attention
techniques maximize self-attention computations. How-
ever, deploying ViTs on hardware accelerators raises
serious concerns about reliability, as most designs priori-
tize speed and efficiency while often overlooking fault
tolerance and system stability [15, 16]. As a result, even
minor hardware faults in processing elements, mem-
ory, or interconnections can lead to misclassifications or
system failures, especially in real-time or safety-critical
applications. ViTs depend on great parallelism hence
any breakdown in memory units, interconnections, or
processing elements would cause execution faults, mis-
classifications, and general system instability [17, 18,
19].

In ViT accelerators, both permanent and transient flaws
become main issues as technology scales. Hardware
aging, or manufacturing flaws cause permanent errors
in memory subsystems, interconnection links, and PEs,
hence rendering irrevocable failures [17, 18, 19]. In
contrast to transient faults, which are caused due to
voltage fluctuations or timing problems and can be fixed
with simple retries, permanent faults require vigorous
hardware-level detection and correction or mitigation
mechanisms to prevent permanent system failures [20,
19]. ViTs rely on complex matrix multiplications and
token embedding transformations, so even small faults
can propagate across layers which leads to cascading
computational faults [15, 16]. These errors affect token
embeddings, change attention weight computations, and
finally provide erroneous feature representation. Real-
time dependability is a major difficulty since ViTs analyze
high-dimensional data in a massively parallel way and
such faults can cause significant accuracy losses [18, 9].

Sustaining the model performance in practical imple-
mentations depends on progressing the effective fault
mitigating techniques for ViT hardware accelerators. Er-
ror Correction Codes (ECC) [21], Triple Modular Re-
dundancy (TMR) [22], Built-In Self-Test (BIST) [23], and
rollback systems have been investigated among several
fault-tolerance approaches [22, 23, 9, 10]. Although,
ECC-based techniques manage computational errors in
PEs and interconnections, the memory-related issues still
persist [16, 9]. Although, TMR assures reliability by per-
forming re-computations over several hardware units,
its high area overhead and power consumption for edge-
based ViT accelerators make it unsuitable for real-time
applications [22]. Re-executing calculations from a past
state helps rollback approaches reduce errors but they
still create high latency, hence they are not suitable for
real-time inference [9]. While BIST detect faults inside
compute units, traditional systems depend on predefined
failure conditions instead of dynamically changing to
match real-time fault circumstances [23, 24].

Existing fault-tolerance techniques for ViTs often rely on
static redundancy, fixed error thresholds, or retraining-
based robustness, which fail to adapt dynamically vary-
ing hardware faults in real time. These methods either
experience high power and area overhead [22], lack run-
time adaptability [21, 23], or are unsuitable for edge de-
ployments due to computational complexity. To address
these limitations, this paper proposes a lightweight, inter-
pretable, and computationally-efficient dynamic learning
algorithm for vision transformers, offering real-time fault
classification and adaptive mitigation [25]. To dynam-
ically allocate fault-mitigating techniques, this design
combines PEs, a centralized BIST [23], a lightweight re-
compute unit, and a learning-based decision logic unit.
Fault reports generated by the centralized BIST are for-
warded to the decision-making unit, which continuously
monitors runtime behavior and dynamically chooses the
appropriate mitigation strategy based on observed fault
severity.

The permanent faults are addressed in the PE array of ViT
through a dynamic, runtime fault classification and miti-
gation mechanism.For fault classification and dynamic
mitigation, a framework is proposed that integrates a
learning-based decision logic trained on runtime features.
Among these runtime features, relative error emerged
as a strong discriminator for severity classification. To
support effective classification, two boundary thresholds
were selected through hyperparameter tuning, applied
specifically to the relative error feature, to distinguish
low, medium, and critical faults. These boundaries were
used to generate supervision labels for the decision tree,
which then learned to classify severity across layers and
varying runtime conditions. This dynamic strategy al-
lows the system to selectively trigger recomputation or
reallocation only when required, enabling robust and
efficient inference even under severe permanent fault
conditions, without the need of retraining or extensive
computational resources.

The inference performance of the proposed reliable ViT
framework using key metrics such as accuracy, loss, ex-
ecution time, throughput, and energy consumption are
evaluated. The accuracy of fault-free ViT simulator is
80.8%. Then, during inference, after the introduction
of faults and the application of dynamic fault mitiga-
tion strategies, the proposed framework achieved an
execution time of 18.03 seconds, and a throughput of 555
images/second. When the model is injected with a high
fault injection rate (0.9), the inference accuracy dropped
noticeably to 2.15%, the proposed mitigation mechanism
restored it to 77.68%. Similarly, the inference accuracy
loss increased sharply under fault conditions but the pro-
posed mitigation mechanism reduced it significantly was
significantly. Though execution time increased to 25.85
seconds due to recomputation, throughput persisted sta-
ble, and energy consumption remained within acceptable
bounds. These inference-time results confirm that the
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framework ensures robust real-time performance with
minimal degradation, even under severe fault conditions.

2. BACKGROUND AND MOTIVATION

Modern deep learning models have demonstrated ex-
ceptional capabilities in computer vision tasks, but their
deployment on hardware platforms is increasingly con-
strained by limitations in performance reliability. As
models grow deeper and more data-intensive, their exe-
cution becomes tightly bound to hardware efficiency and
stability. This is especially evident in transformer-based
architectures, which rely on parallel computation, mem-
ory access coordination, and token interdependencies any
disruption in this execution pipeline can cause cascading
errors. Ensuring robustness under such conditions is
no longer a peripheral requirement but a core design
consideration, particularly in environments where fault
occurrences, aging effects, and real-time demands coexist.
This section discusses the working of vision transform-
ers, their associated hardware design, and the increasing
concern around permanent faults. It also highlights the
drawbacks of existing solutions and concludes with the
justification behind this work’s proposed decision-tree
based fault mitigation strategy.

2.1 ViT background

Vision transformers, as shown in Fig.1, extract important
feature representations from raw pixel data and convert
images into patch embeddings through a multi-stage
pipeline. Initially, the process splits the input image into
non-overlapping fixed-size patches [1]. Each patch is
linearly projected into a one-dimensional vector which
preserves spatial context efficiently. These embeddings
are then mapped into a higher dimensional space, fol-
lowed by the addition of positional encoding to retain
the relative ordering of tokens.

This sequence is then processed by transformer encoder
blocks, each comprising Multi-Head Self-Attention (MHSA)
[7] and Feedforward Network (FFN) modules [8]. At-
tention layers [7] assess the relevant features across all
token pairs using scaled dot product attention; this al-
lows ViTs to capture global context from the first layer
ahead. Feedforward layers further refine the features
through non-linear transformations, at the same time
the residual connections and normalization layers as-
sure numerical stability and enable smoother gradient
propagation [2]. These processed embeddings are stored
in buffer units, making them available for downstream
decoding or task-specific outputs.

2.2 ViT hardware

Considering the resource-constraint in ViTs, dedicated
hardware accelerators [11, 12, 13, 14, 2] are designed to
execute their operations effectively. These accelerators
are optimized to handle the core operations of trans-
former design such as complex matrix multiplications,
self-attention [7] computations, and token-wise feedfor-
ward layers. A standard ViT accelerator includes units
such as a patch embedding unit, Processing Element (PE)
array [18, 26], global/local memory buffers, control unit,
non-linear activation units, and output classifiers.

Patch embedding units [1] convert spatial patches into
embedded tokens. These tokens are stored in the buffer
and forwarded to a PE array which has been configured
to perform matrix multiplications, accumulation, activa-
tion functions, and normalization operations. Buffers
lower off-chip memory access and simplify the reuse of
intermediate embeddings. Non-linear units [1, 27, 28]
which apply activation functions like ReLU or GELU
improve feature transformation. For target tasks, the out-
put units manage the embeddings. A Network-On-Chip
(NoC) [29] or custom interconnected fabric facilitates
the rapid and synchronized communication among PEs,
memory units, and the control logic. The control unit
manages memory access, computational scheduling, and
token routing across several transformer layers. These
accelerators are highly optimized for performance, at the
same time they are also susceptible to hardware faults
due to the density of computation, synchronization de-
pendencies, and memory bandwidth constraints [12].
These vulnerabilities raise serious inquires about sys-
tem dependability and fault tolerance, especially under
permanent fault scenarios [15, 16].

2.3 Permanent hardware faults in ViTs accel-
erators

In ViT hardware accelerators, permanent faults are major
obstruction affecting memory subsystems, computational
units, and interconnections [18, 17, 30]. In contrast to
transient faults [10], which occurred due to brief voltage
fluctuations or environmental causes and which can usu-
ally be fixed, permanent faults are caused by physical
degradation, aging, manufacturing flaws, or continuous
device stress and as a result they are irreversible [19,
20]. PEs of hardware-accelerated ViTs run parallel matrix
multiplications necessary for self-attention computations.
A defect in one PE affects computations across several
layers, causing cascading errors that reduce model accu-
racy [15, 16]. Matrix multiplications and self-attention
operations are linked such that mistakes spread and influ-
ence token embeddings and attention weights. Faults in
interconnections restrict data flow causing computational
delays, and the faults in memory subsystems change the
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Figure 1 – Vision transformer[1], P1-P9 indicates image patches, E1-E9 indicates positional embeddings

stored representations [9]. ViTs run on high-dimensional
data in a massively parallel fashion, hence even a minor
fraction of permanently defective PEs can greatly lower
model accuracy and general system dependability[18,
15].

2.4 Motivation

Reducing persistent defects in ViT accelerators calls for
adaptive techniques able to dynamically find and fix
mistakes in real time. Deep learning accelerators have
made extensive use of current fault-tolerance methods
such as Algorithm-Based Fault Tolerance (ABFT) [15],
BIST [23], and Triple Modular Redundancy (TMR) [22],
but they have major restrictions. ABFT struggles in
non-linear layers, therefore restricting its usefulness in
deep systems even if it offers linear error correction [15].
BIST finds flaws but lacks adaptive recovery systems,
therefore neglecting the effects of long-term hardware

degradation [23]. TMR reduces mistakes by spreading
calculations over redundant components; however this
method generates substantial power and area overhead
and is not appropriate for ViT installations with limited
resources [22]. Although they need retraining and can-
not adjust to real-time fault circumstances, fault-aware
training techniques seek to increase model robustness by
exposing the network to simulated failure scenarios [20,
19]. Although pruning and quantization methods lower
bit precision sensitivity, hence improving resilience, they
do not solve the basic problem of persistent hardware
failures [25, 18].

Recent research has explored various ways to reduce
faults in deep learning accelerators. Dynamic error miti-
gation in NoCs indicates a predictive way for error detec-
tion, deploying machine learning models to detect and fix
faults ahead of execution issues occurring [31]. The severe
performance reduction caused by PE failures in systolic
designs is highlighted by analyzing and mitigating the
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impact of permanent faults on a systolic array-based neu-
ral network accelerator and identifies redundancy-aware
fault tolerance techniques [18]. Although the higher
computational overhead is an bottleneck, algorithmic
strategies for sustainable reuse of neural network acceler-
ators provides ways to reuse partially defective hardware
by adjusting computational workloads [16]. Fault-aware
neural architecture, which examines networks flexible
to hardware faults for robust edge accelerators, looks
at fault-tolerant architecture that is optimal for edge AI
systems [15]. Real-time self-monitoring systems, like Self-
healing deep learning accelerators via online monitoring
and reconfiguration, dynamically reconfigure process-
ing resources to bypass faulty units [24]. Mitigating the
impact of faults in the weight memory of DNN accelera-
tors addresses quantization methods that minimize error
propagation in uncertain hardware environments, hence
enhancing general model dependability [25]. As vision
transformers become extensive in hardware-accelerated
environments, it is significant to ensure resilience un-
der permanent hardware faults. Traditional approaches
fall short in adaptability, overhead, and real-time exe-
cution. This paper directly addresses these gaps. A
learning-based fault mitigation framework is proposed,
specifically designed for ViT accelerators. Unlike exist-
ing work, this is the first approach to handle permanent
faults in the PE array using a dynamic, runtime severity
classification system. Faults are categorized into critical,
medium, and low levels not through static thresholds,
but through a learning model trained on fault scenario
data and applied live inside the control unit. Based
on the predicted severity, the system makes real-time
decisions: critical faults trigger the lightweight recom-
pute unit, medium faults are reallocated to healthy PEs,
and low-severity faults are tolerated to keep the system
efficient. This design eliminates the need for full-scale
redundancy or retraining and instead enables fast, inter-
pretable, and fine-grained correction directly in the ViT
pipeline. The ability to classify and mitigate permanent
PE faults dynamically using the proposed integration of
learning-based decision logic is the core novelty of this
work, setting it apart from all prior fault-tolerant ViT
designs.

3. THE PROPOSED RELIABLE VIT ARCHI-
TECTURE

3.1 The proposed hardware design overview

Our proposed reliable ViT architecture, as shown in
Fig. 2, is designed to deliver high performance while
dynamically managing hardware faults during inference.
We built upon the foundational hardware architecture of
existing ViT accelerators such as ViA [11], and Morph-
GCNX [14], which prioritize throughput, parallelism,
and energy efficiency. These designs provide the basic

compute infrastructure with Processing Elements (PEs),
patch embedding units, and interconnections optimized
for matrix operations. However, they lack fault resilience
mechanisms that are essential for real-time deployment
under permanent hardware degradation.

To address this, the proposed reliable ViT architecture is
modified using these baseline architectures by integrating
three key fault-tolerant components: a centralized BIST
module for real-time fault detection, a learning-based
decision logic unit that classifies fault severity using
runtime features, and a lightweight recompute unit to
selectively correct critical PE-level errors. These enhance-
ments transform a performance-centric accelerator into
a reliability-aware system that maintains ViT inference
even in the presence of permanent hardware faults. As
illustrated in the architectural diagram, the integration
is seamlessly embedded into the ViT pipeline, ensur-
ing minimal performance overhead while significantly
improving fault tolerance.

The compute unit includes several PEs in an array at the
center of this system performs the crucial operations such
as matrix multiplications for self-attention, and feedfor-
ward transformations. Given that the permanent faults
can affect PEs, the erroneous computations are handled
by the integrated lightweight unit in the computation
unit. This unit recomputes only the incorrect computa-
tions. The initial level of processing takes place in the
patch embedding unit. Then, the non-linear unit adds
positional encodings to patches to guarantee preserva-
tion of spatial links. Acting as a shared memory resource,
the global buffer stores processed outputs, intermediate
embeddings, picture patches, and temporary storage of
hardware components which provides seamless commu-
nication between several hardware components. BIST
mechanisms in the control unit constantly check the PE
array to detects the hardware faults. Instead of relying
on a real-time adaptive learning mechanism, the archi-
tecture uses a pre-trained learning algorithm model that
detects flaws and implements fault mitigation depending
on pre-analyzed fault patterns. The learning algorithm
is pre-trained to make decisions which will be discussed
later in Section 4, follows a organized decision-making
procedure derived from pre-computed fault analysis. De-
pending on the degree of the error, once faults are found
the system can either reassign calculations to functional
PEs or a lightweight recompute unit. This ordered fault
recovery system guarantees accuracy of the ViT model
without adding too much latency.

This architecture is particularly designed to provide a
hardware-level fault resilience accelerator, as well as
preserving the computational performance. The ViT
model assures that faults do not spread by combining
a structured fault detection with a pre-determined fault
categorization method and an adaptive fault mitigation
mechanism, therefore enabling deep learning inference
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Figure 2 – Proposed reliable ViT architecture

to proceed unconstrained, even under faulty conditions.

3.2 Computation unit

The compute unit forms the main processing engine of the
fault-tolerant ViT paradigm. Here, all important transfor-
mations, including self-attention, feedforward systems,
and feature extraction, occur. Vision transformers largely
depend on matrix multiplications and sequential compu-
tations, hence the architecture of this unit is designed to
efficiently manage high computational loadings.

Inside the computation unit, a PE array [26] executes
matrix operations, and other crucial computations which
allows the transformer to concurrently process many im-
age patches. Since the hardware faults are making these
PEs defective, this causes the PE to output erroneous
computations. This causes a greater negative impact in
accuracy, so the incorrect computations from faulty PEs
have to be controlled. To manage this, the lightweight
recompute unit is thereby connected with the PE array.
This unit selectively recalculates only the affected opera-
tions due to erroneous computations, therefore lowering
performance overhead, as well as preserving accuracy.

Then the non-linear unit is used for the activation func-
tions. Transformers rely on activation functions such
as GELU or ReLU to increase learning capacity, hence
this unit is absolutely essential in enhancing feature rep-
resentations. These components, PE array, lightweight
recompute unit, and non-linear unit, together ensure

that the computation unit works consistently even in the
presence of hardware faults which are permanent faults
at the PE array. Thus, this makes the ViT model exhibit
higher fault tolerance than traditional models.

3.2.1 Processing element

The PE array (Fig. 3) forms the core of the compute
unit which is responsible for doing necessary matrix
multiplications and attention operations. Every PE runs
vector multiplications, accumulations, and weight up-
dates acting as a small independent processing core.
Vision transformers need large parallel computations,
hence these PEs coordinate the processing of several
patches in parallel to optimize the model’s efficiency.
The control unit first ensures that operations follow the
correct sequence and directs the flow of data. Each PE
consists of several crucial components such has MAC,
input and weight buffers, and lightweight BIST. The
input buffer stores input data before it is processed at
the same time the weight buffer stores learned weights
for matrix multiplications. The core computations such
as the matrix multiplication of input vectors and stored
weights, addition of output of multiplier and partial sums
take place in the vector multiply-accumulate (MAC) unit,
which aggregates results before forwarding the results
to further stages. Since then the hardware defects can
occur anywhere, the PE design has a lightweight BIST
[23] mechanism. This BIST tracks the computations of
the individual PE constantly, identifying the errors when
differences are found. The lightweight recompute unit
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Figure 3 – Processing element architecture

arbitrates to manage recalculations if an incorrect com-
putation is found; therefore, it prevents the circulation of
faults throughout the system. The accumulation collector
collects the results before they are transferred to the next
processing stage and the softmax calculations in the PE
ensure that probability distributions are computed for
attention mechanisms accurately. The effective and error-
free computations are achieved by this well-organized
PE design, which guarantees the ViT model to operate as
expected, even in the presence of defects.

3.2.2 Lightweight recompute unit

Error correction is mostly dependent on the lightweight
recompute unit to preserve computational integrity while
minimizing extra computational and area overhead. This
unit selectively recalculates just the processes impacted
by malfunctioning PEs instead of using broad redun-
dancy approaches, which would slow down the sys-
tem. Control logic unit in the control unit controls the
lightweight recompute unit. It sends the control signals
when learning-based decision logic decides to do recom-
putation in the lightweight recomputation unit. The
recompute unit gets the matching inputs and weights
from the global buffer, runs the required recalculations
using its vector MAC unit, and subsequently updates the
output to the global buffer with updated values when a
PE reports incorrect values through the lightweight BIST.
The recompute unit also performs softmax calculations
and has an accumulation collector combining corrected
outputs with current data. In contrast to individual PEs,

this unit only performs MAC operations, softmax compu-
tations, and partial sum computations, thereby reducing
the computational and area overhead. Thus, this made
the recomputation unit lightweight. Also, it runs parallel
with other PEs, thus also reducing execution time. Using
fault tolerance in a selected and effective way when using
this unit preserves accuracy and performance in the ViT
model under critical permanent fault conditions.

3.2.3 Non-linear unit

Though most of the calculations in ViTs are driven by
matrix multiplications and attention processes, the non-
linear unit [28], [27] guarantees proper application of
activation functions. This unit adds non-linearity to in-
crease the expressiveness and decision-making capability
of deep learning models since linear transformations by
themselves are not adequate for them. This unit is re-
sponsible for applying the activation functions, including
Gaussian Error Linear Unit (GELU) or Rectified Linear
Unit (ReLU), to the converted embeddings. It then passes
the inputs from the PE array through the activation func-
tions prior to transferring the output to the next stage in
the pipeline; it passes inputs from the PE array through
the activation function. Furthermore, the non-linear unit
guarantees that throughout the patch embedding phase
positional encodings are applied appropriately. This unit
preserves spatial information by including learned po-
sitional encodings into the embeddings as transformers
lack a built-in concept of spatial structure like CNNs. As
this unit mainly handles only the element-wise opera-
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Figure 4 – Lightweight recompute unit architecture

tions, the impact of faults occurring here mostly is lower
on the final output compared to faults in the processing
element array.

3.3 Patch embedding unit

Initially, the ViT model forwards the input images stored
in the global buffer to the patch embedding unit which
processes the input image [23]. The patch embedding
unit serves as an intermediary between conventional
transformers, which run on sequences instead of raw
picture data, therefore transforming spatial image char-
acteristics into a format the transformer can effectively
handle. This unit guarantees that, while maximizing the
input representation for the next calculations, the model
preserves important spatial information. The patch di-
vider divides the input image into fixed-size patches,
therefore handling the first stage in the patch embedding
process. This unit in the ViT model divides the whole
image into smaller patches in place of processing them
altogether at a time, which makes the model treat every
patch as an individual token. This is essential since it
lets the transformer examine local characteristics while
preserving a global relationship of the whole image.

The patches are first divided and then processed through
the linear projection unit where 1D vectors are generated.
In the beginning, to generate a relative feature repre-
sentation, a lesser matrix multiplication is performed
by every patch. The transformer architecture does not
include built-in techniques to identify spatial correlations
in raw image data by itself. This drawback is addressed
by the patch embedding unit, which explicitly encodes
spatial relations into the patch representations by adding
the positional encoding. Each patch is mapped to a
higher-dimensional space, which makes the model have
a structured numerical representation. The features are
extracted from this representation and learn self-attention

in further stages. The image patches and their positional
embeddings are forwarded to the global buffer which
ensures proper data flow throughout the system where
it is stored permanently and from there the patches are
forwarded to the next stage. Thus, the patch embedding
unit makes the ViT be able to manage image tasks by
organizing the input data in a way that is suitable for
processing them further in the transformer.

3.4 Control unit

The control unit constitutes the backbone of fault detec-
tion and mitigation in the fault tolerant ViT architecture,
therefore ensuring that all computational activities run
without any problems even when the more permanent
faults occur. It continuously tracks the compute unit,
particularly the Processing Element (PE) errors and ar-
ranging appropriate mitigating strategies. By means of
interactions with multiple components to perform reme-
dial action upon errors, the control unit regulates data
flow as well.

This unit processes numerous inputs to maintain oper-
ating stability. Although control instructions from the
control unit enable synchronizing of execution, fault
reports from the BIST mechanisms in the PEs provide
real-time error detection signals. The decision unit de-
termines whether incorrect results should be sent for
workload redistribution or recomputation. Thus, the
control unit also collects performance logs and fault
classification reports. After fault diagnosis and classifica-
tion, the control unit provides outputs to ensure system
functionality. These consist of fault mitigation signals
sent to the lightweight recompute unit for recalculating
erroneous computations or reallocation instructions by
offloading work from defective PEs to functional ones,
and execution control signals to maintain the overall
processing stability. Through coordinated operation, the
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control unit minimizes the influence of errors, which
helps in optimizing computational efficiency.

3.4.1 Learning-based decision logic unit

Based on fault severity level produced by the central BIST,
the decision unit chooses suitable fault-mitigating mea-
sures. This unit uses a pre-trained decision tree model,
which follows set, predetermined criteria to decide the
optimal corrective response for every detected faults The
central BIST fault report, which has a fault severity level,
supplies the inputs to the decision unit. The decision unit
decides how to handle faults depending on severity level
rather than examining actual fault data. Once a fault is
categorized, the decision unit creates outputs guiding
the control logic unit toward the proper path of action.
If the critical faults are detected, it alerts the lightweight
recompute unit to manage recalculations or guides com-
putation to dual-mode PEs in cases of limited resources.
If the fault severity level is medium, the decision unit
tells the control logic unit to replace defective PEs with
healthy ones, hence preserving processing efficiency free
from extra computational load. Low-severity errors al-
low the decision unit to give bypass commands, therefore
enabling calculations to go forward free from corrections.
This unit guarantees consistent and effective fault mitigat-
ing judgments by depending on a disciplined pre-trained
decision tree model. This methodology reduces process-
ing cost while keeping a disciplined approach to fault
recovery, hence eliminating the demand for real-time
adaptive learning.

3.4.2 Central Built-In Self Test (BIST)

Global fault monitoring inside the ViT model is achieved
by the central BIST unit. In contrast to the local error
detection by individual BIST mechanisms in each PE,
the central BIST offers a system-wide perspective, failure
pattern analysis, and general hardware dependability
assessment [23, 24]. The central BIST receives inputs from
execution logs supplied by the control logic unit, and
fault flags from the individual PEs. The central BIST then
combines the data from several processing units which
helps to identify more general fault trends. Once fault
patterns are found, the central BIST generates outputs
to classify fault severity level. It reports faults to the
decision unit, allowing pre-trained techniques to enable
fault mitigating action based on the fault report. The
central BIST also gives the control logic unit diagnostic
feedback so it may modify processing strategies. If any
PEs show consistent failures, the central BIST can label
them as unreliable and cause the system to assign their
computing responsibilities to functional PEs. The core
BIST guarantees efficient management of faults by con-
stant analysis of fault behavior and support of informed

decision-making, therefore preventing computational
failures from spreading over the system.

3.4.3 Control logic unit

This unit acts as the central processing core which expli-
cates the incoming signals and coordinates the tasks to
execute in a proper and correct order. It tracks system
conditions continuously and coordinates reactions de-
pending on needs for fault identification and mitigation.
The operational integrity is maintained by combining the
inputs from several sources. The BIST unit reports faults
and their locations; the task execution signals from the
computation unit and global buffer to ensure the coor-
dinated data flow; and the decision unit produces fault
mitigation decisions. After processing these inputs, the
control logic unit offers several outputs from control unit
to other units in ViT architecture. Error-handling instruc-
tions set mitigating measures when errors are detected
using BIST and mitigation processes from the decision
logic unit at the same time the task scheduling signals
are generated to drive functional PEs which makes them
perform specified calculations. It guarantees that process-
ing is continuously performed by always adjusting the
execution needs to the fault situations, hence preserving
computational stability.

4. THE PROPOSED LEARNING-BASED
REAL TIME ERROR MITIGATION 
ALGORITHM

The proposed fault-tolerant ViT framework is devel-
oped to identify, analyze, and mitigate hardware-induced
faults in real time while maintaining both model accuracy
and computational efficiency. To achieve this, the frame-
work consists of a set of interconnected modules that
simulate hardware behavior, analyze fault impact, and
adaptively apply mitigation strategies. Key components
include a fault injection module that emulates realistic
hardware failures, a fault analysis engine that evaluates
the impact of those faults, and a decision-making unit
that dynamically adapts the model’s behavior based on
the severity of the faults. The main goal is to ensure the
model remains reliable under fault conditions while min-
imizing the computational burden typically introduced
by mitigation techniques.

To mimic hardware failures in the PEs of the ViT at
runtime, faults are injected into specific layers and atten-
tion heads where computations are typically handled by
hardware PEs. These faults emulate real-world hardware
failure scenarios such as stuck-at-zero/one conditions,
random bit-level corruptions, and distorted matrix oper-
ations. This simulation modifies the underlying weights
or intermediate computations in a controlled and tar-
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Figure 5 – Example of trained decision tree diagram, base_threshold = how much the faults in the particular layer are impacting the output

geted manner to represent how physical hardware faults
would impact the inference pipeline. Following this, a
Built-In Self-Test (BIST) module [23] detects the faults and
generates a detailed fault report, specifying the affected
locations and an initial estimation of severity.

The fault report is then passed to a learning-based deci-
sion logic unit, which classifies each fault as low, medium,
or critical based on runtime indicators such as relative
error, sparsity, and layer index. To support this clas-
sification, threshold boundaries were selected through
hyperparameter tuning specifically for the relative er-
ror input, enabling the system to distinguish different
severity levels effectively. Based on the classification, the
model dynamically decides how to respond triggering
full recomputation only for critical faults, reallocating
computation in medium cases, and bypassing negligible
errors entirely. This adaptive mechanism avoids the inef-
ficiencies of static redundancy by correcting only when
necessary. The system is thus able to mirror real hard-
ware fault behavior while intelligently responding to it
in software, ensuring high fault tolerance with minimal
performance trade-off.

4.1 Machine learning-based fault classifica-
tion using decision trees

A critical element of the proposed fault-tolerant ViT
framework is its integration of a decision tree classifier

for real-time fault severity classification. Decision trees
are a class of supervised learning algorithms used for
classification and regression tasks. They operate by
recursively partitioning the input space according to the
feature thresholds by forming a tree-like structure of
internal decision nodes and terminal leaves. At each
internal node, a feature is selected to split the dataset
in a way that maximizes information gain or reduces
impurity metrics such as Gini index or entropy. The
resulting tree makes predictions by traversing from the
root to a leaf node according to the input features. Their
interpret-ability, low computational footprint, and fast
inference times make decision trees particularly suitable
for embedded systems and hardware-level integration.

In the context of real-time fault classification for ViT ac-
celerators, a machine learning model which is decision
trees offers a compelling trade-off between model com-
plexity and interpretability. In contrast to several other
complex models, such as neural networks or ensemble
methods, decision trees do not require deep computation
for training or inference and can be easily embedded
into the control unit of the accelerator. Additionally, the
decision paths ensure their predictable behavior. This
is a significant property in fault-tolerant systems. Since
ViT faults are sparse and structured, a lightweight model
that can map input fault patterns to severity labels with
minimal overhead is preferable, and henceforth, decision
trees are ideally suitable for this role.

In this research work, this decision tree classifier is trained
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to learn the mapping between observed fault characteris-
tics and severity classes such as low, medium, and critical.
The classifier runs on a set of features which are received
from the fault detection module and these features are
specifically selected to reflect the impact of faults within
the ViT pipeline. Each input sample to the decision tree
consists of three features: relative error, layer index, and
fault count. Relative error is computed by comparing the
activation output of the faulty model against the corre-
sponding output from a fault-free baseline model during
offline simulations. This feature captures how much the
output has deviated due to the presence of faults and
plays the most important role in determining severity.
Layer index provides structural context by indicating the
location of the fault in the ViT pipeline, and fault count
gives insight into how densely faults are occurring in a
particular processing element.

For the severity classification, the relative error is not
interpreted directly as a raw value. Instead, it is evalu-
ated against two threshold boundaries: 0.9 times the base
threshold and 2 times the base threshold, as shown in Fig.
5. These boundaries were chosen through hyperparame-
ter tuning during training. After testing several values,
the (0.9, 2) combination consistently offered meaningful
separation between low, medium, and critical severity
classes, helping the decision tree learn precise decision
boundaries. The base threshold itself is not fixed; it is
determined based on the relative importance of each
layer. The layer importance values were assigned to
capture the varying influence of different layers within
the ViT architecture. Since earlier layers deal with the
basic embedding and feature extraction, while deeper
layers handle higher-level semantic understandings and
final decision-making, the impact of faults can vary de-
pending on where they occur. To reflect this, a linearly
increasing set of importance scores was assigned across
the layers, starting from the initial embedding stages
and increasing toward the important layers which carry
out computations such as attention, and also this reflects
the core computations carried out by PEs in hardware
architecture. The chosen range provided a smooth and
meaningful distinction between less and high critical
layers, helping the model treat the same error differ-
ently depending on its location. This approach allowed
the fault classification to be context-aware and helped
the decision tree apply severity boundaries more intel-
ligently based on where the fault occurred, rather than
treating all layers equally. These classification results
directly characterize mitigation mechanisms, such as for
critical faults; the lightweight recompute unit is used
to regenerate error-free activations; medium-level faults
are partially corrected through weighted reconstruction
techniques; and low-severity faults are bypassed to avoid
unnecessary computational overhead. The hyperparam-
eter tuning using a GridSearchCV method along with
cross-validation is incorporated in the decision tree clas-
sifier, which improved the performance of the classifier

to a greater extent. Decision tree parameters such as
maximum tree depth, minimum samples per split, and
splitting criteria (Ginivs.entropy) were accurately exam-
ined which achieved an ideal balance between accuracy
and efficiency. The model maintains robustness in spite
of various fault scenarios and does not overfit to the
training set which all are proved by the evaluation met-
rics. Evaluation metrics, such as classification accuracy,
precision, recall, and F1-score, also proved high perfor-
mance with very minimal variation between training and
validation results. The confusion matrix analysis proved
that the classifier constantly identified critical faults with
high precision. This analysis ensured minimizing the
risk of miscalculating high-severity errors. The frame-
work accomplished a scalable, low-latency proposal for
runtime fault response by incorporating this decision
tree classifier into the fault classification and mitigation
pipeline. Thus, this framework significantly improved
the resilience of the ViT architecture by validating intelli-
gent, real-time fault severity estimation and mitigation
with minimal computational overhead.

4.2 Training and validation framework

The training and validation framework ensures that the
fault tolerance mechanisms are precisely evaluated under
various hardware fault conditions. Initially, the system
sets up a baseline performance by training the ViT model
without faults to measure its accuracy and computational
efficiency. Once a stable performance benchmark is set,
fault injection is introduced layer-wise in the ViT model
to observe the impact of real-time hardware failures in
PEs on model behavior. The fault-injected model is then
trained across multiple epochs and detected using a fault
detection module which replicated a BIST unit in pro-
posed ViT architecture, and different mitigation strategies
are applied to refine fault mitigation mechanisms using a
learning- based algorithm which replicated the learning-
based decision logic unit in the control unit of proposed
ViT 2.

During training, the system constantly tracks key per-
formance metrics, such as accuracy, loss, execution time,
throughput, energy consumption, and retransmission
rates; in both circumstances with and without mitiga-
tion mechanisms applied. This dynamic adaptation
of the proposed framework is achieved by continuous
learning process during training which improved the
model’s ability to recover from faults while maintaining
efficiency. Validation is performed on separate datasets
where faults are injected, and the system’s fault mitiga-
tion mechanisms are evaluated in both scenarios with
and without mitigation mechanisms applied. The per-
formance of the fault-tolerant ViT model is compared
against the baseline to get a benchmark of the applied
fault mitigation strategies.
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The analysis is concluded in a layer-wise way to explore
in detail the impact of faults at various stages of the
ViT pipeline. This provides a detailed evaluation of
fault propagation and offers insights into which layers
are highly sensitive to hardware-induced errors. The
system refines its fault mitigation mechanisms for future
iterations by recording layer-wise relative errors and the
severity levels classification.

4.3 The working of the proposed framework

The system incorporates a framework, which is designed
to apply real-time fault mitigation mechanisms while
maintaining computational efficiency. The framework
maintains two occurrences of the ViT model: a fault-free
reference model that represents as a benchmark for error-
free activations and a fault-injected model that runs under
various hardware-induced failures. The system detects
variations and classifies the severity of computational
errors at each layer by constantly comparing the outputs
of these two models.

Fault mitigation is adaptively managed according to the
fault severity classification. Low-severity errors are by-
passed as they won’t impact the model’s accuracy, which
reduces the usage of computational resources. Medium-
severity errors go through partial recomputation, where
a weighted combination of faulty and correct value of
activations is used to fix the accuracy. If the faults are
classified as critical-severity faults, the system incorpo-
rates the usage of a lightweight recompute unit, which
particularly recomputes the impacted activations using
stored historical data. This ensures that severe faults are
not further forwarded through the other layers of the
model, as well as avoiding the unnecessary computa-
tional overhead.

Furthermore, the model dynamically incorporates the
fault mitigation mechanism in the specific layers or heads
that exhibit frequent errors, and are dynamically adjusted
based on past learned fault patterns. This allows the sys-
tem to give importance to the high-impact layers in the
fault mitigation process. This ensures the critical compo-
nents of the ViT model to receive the most computational
resources during fault recovery.

4.3.1 Fault injection

To simulate real-world permanent hardware failures, the
simulator incorporated a dedicated fault injection mod-
ule that focuses only on the computations carried out by
PEs within the ViT. These include the core operations like
multiplications, additions, and attention-related calcula-
tions, which are basically computed within each layer’s
arithmetic data path. Faults are not applied to mem-

ory units, control logic, or non-computational modules
which guarantees that the simulation mainly focuses
on the hardware regions that are prone to permanent
failure. Faults are injected during runtime and remain
fixed across the entire inference process, replicating the
behavior of actual hardware defects such as transistor
degradation, wear-out, and stuck-at faults. These faults
are not applied uniformly but are distributed across lay-
ers and attention heads based on a probabilistic model.
This model is designed to reflect the non-uniform degra-
dation observed in real hardware. When a fault is injected
into a PE, its output behavior is modified based on the
selected fault type, and this faulty behavior persists
consistently during model execution, just like a real per-
manent hardware defect. This fault injection module
introduced realistic faults that altered the computational
path, ensuring that the simulation closely reflects the
impact of real permanent hardware failures. The fault is
injected layer-wise to ensure that the fault mitigation is
applied in each layer before the faults are propagated to
other layers and collapse the entire network. Thus, the
framework provides a real-time hardware-aware fault
simulation environment for evaluating the effectiveness
of the proposed classification and mitigation strategies.

4.3.2 Fault detection

As discussed in section 3, the fault detection mechanism
used in this paper is inspired by traditional BIST architec-
tures, such as the design proposed by Wu et al. [[23]]. The
core idea of BIST is adapted and replicated in simulation,
coordinating with the architectural constraints of a simu-
lated ViT accelerator environment. The BIST mechanism
is implemented in the simulation as a lightweight fault
detection module that compares outputs from faulty PEs
to a known correct baseline (the fault-free model) during
inference. Rather than using scan chains or signature
registers like in hardware, the software BIST calculates
relative error between faulty and reference activations
and evaluates activation sparsity, both of which act as
indicators of faulty behavior.

The system uses local BIST and central BIST which is
similar to the one in the proposed hardware ViT architec-
ture. Local BIST operates at the level of individual PEs
and is responsible for immediate, low-overhead detec-
tion of abnormal behavior. It flags a PE as faulty based
on its output characteristics during execution, such as
anomalous error levels or unchanging outputs. Once a
fault is detected by the local BIST, that PE is permanently
marked as faulty for the remainder of the run, which
reduced computational overhead.

In contrast, the central BIST serves as a global collection
and coordination module. It gathered the fault reports
from all local BIST units and generated a structured fault
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report, which includes fault location, relative error mag-
nitude, activation sparsity, and layer-level fault density.
This global report is then passed to the fault analysis
module and then it is used by the decision tree classifier
for fault severity classification. This implementation
preserves the low-latency and localized detection phi-
losophy of hardware BIST, while being fully integrated
into the software simulation framework, providing a
reliable and efficient mechanism for fault diagnosis in
the proposed system.

4.3.3 Fault classification and decision mecha-
nism

The fault classification and mitigation mechanisms are
carried by the decision tree classifier, as discussed in the
earlier section of this section. The framework analyzed
dynamically categorizes faults into low, medium, or criti-
cal severity levels based on these extracted features by the
decision tree classifier. Then the decision tree classifier
decides what action to apply to each severity level. As
discussed earlier, the fault mitigation mechanisms are
applied. Low severity faults have minimal impact on
accuracy and so they are bypassed, as discussed earlier,
while medium severity faults have noticeable impact.
The full recomputation is not done and allowing the
faulty output to propagate only when it stays within
a tolerable relative error range, as detected by the de-
cision tree classifier. No explicit correction is applied
instead, the model treats the medium severity outputs
as passable, allowing inference to continue without addi-
tional recompute logic or triggering a fallback. Critical
faults essentially reduces the model’s outputs and so
addressed using more aggressive mitigation strategies
such as recomputation or offload work to healthy PEs.
This learning-based method makes the system dynami-
cally adapt under various fault conditions and refine its
decision boundaries with continued training.

5. PERFORMANCE AND EVALUATION

The performance of the fault-tolerant ViT architecture is
analyzed under four conditions: fault-free architecture
where no faults are injected, faults injected but the appli-
cation of fault mitigation strategies are not applied and
the proposed dynamic fault mitigation and static fault
mitigation are applied. The evaluation includes classifi-
cation accuracy, loss, and computational efficiency across
different fault injection rates. Each figure highlights a
specific aspect of the model’s behavior under varying
fault conditions.

5.1 Evaluation setup

The proposed fault-tolerant ViT framework is precisely
evaluated by an extensive simulation environment which
was developed using PyTorch and associated libraries.
The implementation integrates fault injection, permanent
faults feature recording and a learning-based mitigation
module within the transformer execution pipeline. The
framework is designed to simulate real-time hardware-
level failures and evaluate their impact on model per-
formance, execution time, energy consumption, and
classification reliability under different error conditions.
The base model used in all experiments is a pretrained
vit_base_patch16_224 obtained through the timm library.
Further, this model is duplicated internally into two in-
stances, one is the ideal "healthy" reference model and
the other as the fault-prone "faulty" model into which
faults are actively injected. The healthy model is frozen
to provide error free and correct values of activations for
providing a benchmark to the proposed work. Faults are
introduced through a custom-built PE fault system that
injects permanent errors into selected Query-Key-Value
(QKV) weights of the attention heads across 12 trans-
former layers. Each head within a layer has a stochastic
fault assignment, with fault types including stuck-at-0,
stuck-at-1, multiplier corruption, adder errors, and logi-
cal distortions. The ImageNet-1K training dataset is used
for training and evaluation which is processed using
standard ViT-compatible transformations such as resiz-
ing, cropping, normalization, and random augmentation
for effective feature extraction and improved model per-
formance. Then, the ImageNet-1K validation dataset
is used for inference. A standard 80:20 train-validation
split is applied. The batch sizes are set to 64 with pinned
memory and multiple worker threads used to maximize
throughput.

For classification under various fault conditions, a light-
weight decision tree classifier is trained offline and inte-
grated into the runtime control logic. It uses three core
features extracted during fault analysis: relative error
magnitude, activation sparsity, and layer index. These
features are collected during execution by comparing
faulty and healthy layer-wise activations and are used
to train the classifier using GridSearchCV for hyperpa-
rameter tuning. The fault severity levels are labeled as
low, medium, and critical. The training and validation
pipeline is managed using a fault tolerance trainer class
which encapsulates epoch-based execution, real-time
severity estimation, dynamic fault mitigation logic, and
metric logging. Performance is evaluated across five er-
ror rates: 0.1, 0.3, 0.5, 0.7, and 0.9. At each error rate, the
following performance parameters are analyzed in detail:
accuracy, loss, throughput (images per second), execu-
tion time, energy consumption, retransmission rate, and
layer-wise relative error trends. In addition, performance
of decision tree classification is evaluated using accuracy,
precision, recall, and F1-score. These metrics collectively
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validate the resilience and efficiency of the proposed
fault-tolerant architecture under high fault stress con-
ditions. The following sections show the outcomes of
the performance metrics of the proposed framework,
including accuracy, loss, throughput, execution time, and
energy consumption during inference of the model and
the performance metrics of the decision tree.

5.2 ViT inference accuracy and loss analysis

The graph below in Fig. 6 illustrates the inference accu-
racy of the fault-tolerant ViT model under different fault
injection rates. The x-axis represents the fault injection
rate, while the y-axis indicates accuracy percentage.

Figure 6 – Impact of fault injection and mitigation on inference accuracy

In the baseline model, the system constantly achieves
high accuracy across all fault injection rates, maintaining
80.8%. This ensures that the model performs as expected
without any computational faults. However, when faults
are injected, accuracy declines sharply. As the fault in-
jection rate increases, the drop is higher, with accuracy
decreasing to 2.15%. This highlights the essential im-
pact of permanent faults in Processing Elements (PEs),
severely decreasing the classification performance. After
applying fault mitigation strategies, performance of the
model is improved. Static mitigation restored accuracy
but exhibited high overhead, which will be discussed
in the further upcoming sections. In contrast, dynamic
mitigation restored accuracy restored efficiently with
77.68% at a 0.9 fault injection rate. The baseline levels
are not fully recovered but the mitigation successfully
prevents major failure and maintains a robust level of
classification performance, even in the presence of high
fault injection rates.

The graph below in Fig. 7 presents inference loss under
different fault conditions. The x-axis represents the fault
injection rate, while the y-axis shows the loss value. The
loss is analyzed under four conditions: baseline (no
faults), faulty (with faults), static mitigation which is the
model after the static mitigation mechanism has been
applied to the model, and dynamic mitigation which is

the model after dynamic mitigation mechanisms have
been applied to the model.

Figure 7 – Impact of fault injection and mitigation on inference accuracy
loss

Loss is computed using the cross-entropy loss function
between the model’s predicted output logits and the
ground-truth class labels for each batch. In the baseline
condition, loss remains low across all fault injection rates,
ensuring the stability of model performance. However,
when faults are introduced, loss increases sharply under
faulty conditions, particularly at higher fault injection
rates (0.9), where the loss exceeds 6%. This suggests
that the model struggles to conclude properly when
faults impact the computations. After applying fault
mitigation mechanisms, static mitigation and dynamic
mitigation behave differently. Static mitigation exhibited
a spike in loss as the fault rate increases. Here, due to
computational overhead and inefficiencies due to un-
wanted corrections, the loss peaked at high fault rates. In
comparison, dynamic mitigation demonstrates stability,
maintaining a relatively low and consistent loss across
all fault injection rates. This indicates its effectiveness
in selectively correcting only critical errors, preserving
computational efficiency and model reliability.

Overall, dynamic mitigation outperforms static mitiga-
tion in terms of maintaining lower loss under high fault
conditions, while the faulty system where no mitigation
mechanisms are applied performs worst.

5.3 ViT inference throughput analysis

The graph below in Fig. 8 presents the inference through-
put (images processed per second). The x-axis represents
the fault-injection rate, while the y-axis indicates normal-
ized throughput.

In the baseline condition, inference throughput is around
555 img/s which shows efficient execution of the model.
When faults are introduced, throughput experiences a
moderate drop of around 93.7% to 94.9% in comparison
with the baseline, which indicates faults alone won’t re-
duce processing speed; the trade-off is known only when
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Figure 8 – Impact of fault injection and mitigation on inference through-
put

Figure 9 – impact of fault injection and mitigation on inference execution
time

Figure 10 – Impact of fault injection and mitigation on energy consump-
tion during inference

mitigation strategies applied. Static mitigation results in
a continuous decline in throughput as fault injection rate
increases which indicates that the constant recalculation
for all fault severity levels reduces the processing speed.
But dynamic mitigation maintained a stable throughput
by dynamic application of fault mitigation strategies,
confirming that it balances the reliability and efficiency
of the model.

5.4 Inference execution time analysis

The graph below in Fig. 9 presents the inference execution
time. The x-axis represents the fault injection rate, while

the y-axis indicates x times speedup of execution time.

The baseline model executes in 18.03 seconds, demon-
strating efficient execution of the model under normal
conditions. Once the faults are injected, the model’s exe-
cution time slightly increases as the fault rate increases
due to the minor stalls in processing caused by faults.
Static mitigation that applied the mitigation strategy in-
efficiently exhibited heavy overhead and slows down
execution, especially at higher fault rates. In contrast,
dynamic mitigation strategies maintain higher execution
values, ranging from 0.85× to 0.61× times in compar-
ison with the baseline model across all fault injection
rates. This stability emphasizes the efficiency of dy-
namic mitigation strategies, where only critical faults are
addressed, mainly reducing unnecessary recalculations.
This enables the model to maintain faster execution in
comparison with the static mitigation strategy.

5.5 Inference energy consumption analysis

The graph Fig. 10 presents the inference energy consump-
tion. The x-axis represents the fault injection rate, while
the y-axis measures normalized energy consumption.

In both the baseline and faulty conditions, energy con-
sumption remains low and stable. This indicates that a
faulty model alone does not essentially impact power us-
age. Still, when mitigation strategies are applied, energy
consumption increases significantly due to additional
operations required for fault detection and mitigation.

Static mitigation shows that the energy consumption
increases more as fault rate increases. This reflects the
need for extra computational overhead from consistently
applying a fault mitigation strategy for every potential
fault. Regardless of the fault severity level, each fault is re-
calculated to improve the model’s performance in terms
of accuracy and loss. In contrast, dynamic mitigation
achieves a more energy-efficient method by selectively
applying fault mitigation strategies. Energy consump-
tion under dynamic mitigation scales more moderately,
increasing from 3.05× to 7.22×, demonstrating a better
balance between performance recovery and usage of
system resources.

Overall, dynamic mitigation significantly outperforms
static correction in maintaining energy efficiency under
increasing fault severity, validating its deployment in
real-time ViT hardware accelerators.

6. CONCLUSION

This paper offers a fault-tolerant Vision Transformer
(ViT) architecture designed to improve resilience against
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permanent hardware faults while preserving computa-
tional efficiency. Using a centralized BIST unit and a
learning-based decision algorithm, the proposed archi-
tecture combines real-time fault detection and adaptive
mitigation strategies based on fault severity classification.
The system dynamically decides whether calculations
should be recomputed using a lightweight recompute
unit or assigned to healthy PEs, or bypassed by means of
methodical monitoring and classification.

Experimental results validate the effectiveness of this
method. The fault-tolerant ViT model achieves 77.68%
accuracy at 0.9 fault injection rate, while baseline ac-
curacy is 80.8% which demonstrates the robustness of
the proposed system. The fault injection causes a sharp
increase in loss, which is similar to trends observed in
accuracy analysis that is further reduced through mitiga-
tion mechanisms. The other performance metrics of the
system such as throughput, execution time, and energy
consumption metrics similarly reflect the trade-offs, indi-
cating modest throughput degradation, slight increases
in execution time, and marginal energy overhead under
various fault conditions, which are altogether effectively
managed by the mitigation framework. These findings
show that the proposed decision-driven fault-tolerant
ViT architecture effectively mitigates hardware-induced
errors while preserving accuracy and performance with
minimal computational overhead.
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