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This paper presents AIEnergy, the first energy benchmark suite and benchmarking
methodology to allow accurate energy measurement and performance evaluation of
AI-empowered mobile and IoT devices with diverse AI chipsets and software stacks. We first
discuss the design principles and the key challenges for developing an accurate, interpretable,
and adoptable energy benchmark. We address these design challenges by developing an
energy measurement methodology that incorporates three strategies and an end-user
understandable scoring system. AIEnergy collects over 8.8 GB measurement data from 264
configuration combinations of eight commercial AI-empowered mobile and IoT devices with
diverse chipsets, six deep learning applications with unique end-to-end processing pipelines
and 12 deep neural network models under CPU, GPU, and Neural Networks API (NNAPI)
delegates. AIEnergy will evolve and serve as a ready-to-adopt benchmark that is accessible
by both mobile and IoT end users with non-technical backgrounds and researchers with
varying levels of expertise.
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1. INTRODUCTION

The Internet of Things (IoT) is increasingly penetrating into sectors, such as healthcare,
agriculture, and smart cities, leading to an exponential growth in machine-generated
data. This surge in data naturally necessitates the integration of Artificial Intelligence
(AI) and Machine Learning (ML) with IoT, which enables the real-time processing and
analysis of data from mobile and IoT platforms to optimize systems, predict needs, and
automate complex tasks across these vital sectors. AI-empowered IoT and mobile devices
are driving a shift from traditional centralized cloud-based computing to a decentralized,
pervasive, and scalable computing paradigm. Such a shift significantly enhances data
privacy by reducing the need to upload sensitive information to cloud platforms. It also
seamlessly incorporates computational capabilities into everyday objects and delivers the
ultra-low latency required for a range of emerging AI applications, including those based
on vision [1, 2, 3], voice [4, 5], and language [6, 7, 8]. Despite significant improvements
in hardware device capabilities, including computational power, functionality, and
connectivity, the limited energy capacity remains a major bottleneck in advancing AI
applications on diverse mobile and IoT devices.
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First, mobile and IoT devices typically rely solely on
embedded batteries for power, making their energy ca-
pacity heavily dependent on factors such as form factor
constraints, safety requirements, production costs, and
the environmental implications of the battery technol-
ogy employed. Second, AI/ML algorithms are often
computation-intensive and consume substantial energy,
as seen in mobile Augmented Reality (AR) applications
[9, 10, 11]. Third, a device’s energy efficiency or the bat-
tery usage of its applications frequently dictates end-user
satisfaction and the practical usability of the technology
in daily operations. For instance, a survey [12] revealed
that over 55% of respondents would leave a negative
review for an application that significantly drains the
device’s battery, underscoring that energy efficiency is
an essential aspect of user experience and cannot be over-
looked. Consequently, it is imperative to prioritize the
energy efficiency of AI-powered mobile and IoT devices
to enhance overall performance and secure user approval.
To this end, the very first step is to systematically identify
the energy bottlenecks in these devices and AI applications
to enable further optimization.

Unfortunately, this is non-trivial because of the lack of
comprehensive understanding of how AI impacts energy
use on diverse physical mobile and IoT devices. On one
hand, we cannot improve energy efficiency without con-
ducting on-device measurements. The energy efficiency
of an AI-powered mobile or IoT device involves more
than just its hardware capabilities. It is intrinsically linked
with the AI software stack, yet the overall performance
of this integration is obscured by the complexity of Deep
Neural Network (DNN) models and the comprehensive
processing pipeline in AI applications. Although efforts
have been made to develop software-based energy pro-
filers for general applications on mobile and IoT devices
[13], adapting these tools to AI applications is complex.
This complexity arises from the challenge of discerning
the unique energy consumption patterns within the AI
software stack. On the other hand, we cannot optimize
AI’s energy efficiency on mobile and IoT devices with-
out acknowledging and addressing its role during the
design phase. Current research primarily focuses on
enhancing the performance of AI techniques to increase
accuracy or reduce latency, often overlooking their im-
pact on system overheads, such as energy cost. Hence,
there is a pressing need to prioritize energy efficiency
alongside performance improvements in AI, particularly
for resource-constrained mobile and IoT devices. Conse-
quently, the current lack of a holistic understanding of
energy consumption motivates the urgent necessity for
an energy benchmark for AI-empowered mobile and IoT
devices that is accurate, interpretable, and adoptable.

To this end, in this paper, we present AIEnergy, the first
energy benchmark suite and benchmarking methodology
for mobile and IoT with AI applications, to accurately
measure and fairly compare the energy efficiency of

various hardware devices. To ensure the accuracy, inter-
pretability, and adoptability of the AIEnergy benchmark,
its design is informed by the following five principles:

P1. The benchmark should accurately measure the
energy consumption of AI applications running
on mobile and IoT devices in real scenarios, to pro-
vide a trustworthy foundation for energy-aware
optimization and fair device comparison.

P2. The benchmark should offer insights that are easy
to interpret for identifying energy bottlenecks, so
developers and researchers can pinpoint inefficien-
cies and improve energy-performance trade-offs.

P3. The benchmark should identify a range of rep-
resentative hardware and software stacks for
AI-empowered mobile and IoT devices, ensuring
coverage of real-world deployment diversity and
enabling meaningful evaluation.

P4. The benchmark should be extensible to new mo-
bile and IoT hardware and software stacks and
continuously updated to reflect technology ad-
vances and AI evolution, ensuring it stays relevant
and usable over time.

P5. The benchmark results should be easily under-
standable by device end users and readily adopt-
able by our research community, bridging the
gap between practical deployment and academic
innovation to promote widespread impact.

The comparison of the benchmark results collected from
264 configuration combinations of eight commercial mo-
bile and IoT devices with diverse AI chipsets, six AI appli-
cations with unique end-to-end processing pipelines and
12 DNN models under Central Processing Unit (CPU),
Graphics Processing Unit (GPU), and Neural Networks
API (NNAPI) delegates, reveals the following key take-
aways:

• Scoring metrics matter for benchmarking. Developing
holistic scoring systems is crucial to foster fair evalua-
tion of AI performance on mobile and IoT devices.

• The energy efficiency of AI frameworks is overlooked. NNAPI
consumes more energy than other delegates in approx-
imately 50% of testing configurations, or worse.

• Software-hardware co-design play a crucial role. Improving
the AI energy efficiency on mobile and IoT devices
requires synergistic co-designs between software and
hardware.

2. AIENERGY BENCHMARK DESIGN CHAL-
LENGES

Developing an AI energy benchmark for modern mobile
and IoT devices that can incorporate principles P1-P5 is
challenging. In this section, we describe the challenges
in addressing these principles.
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(a) Power consumption trace recorded by a built-in current sensor
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(b) Power consumption trace recorded by an external power monitor

Figure 1 – Comparison of recorded power traces in terms of time granularity. Measured device: Huawei P40 Lite; application: object detection;
DNN model: MobileNet-V2, FP32; delegate: CPU with 1 thread; input image resolution: 300 × 300 pixels.

P1: Accuracy. DNN models typically form the backbone
of AI applications and consume a significant share of
the device’s computational resources. Hence, accurately
identifying energy bottlenecks within a DNN model
is crucial. However, comprehending energy consump-
tion characteristics within mobile-specific DNN models
through measurement is highly challenging due to their
complex and intricate architectures, as well as the low
time granularity of built-in current sensors on mobile
and IoT devices (e.g., fuel gauge).

Fig. 1 presents a comparison of power consumption
traces recorded by an external power monitor (we use
Monsoon power monitor in this work [14]) and the de-
vice’s built-in current sensor. It is obvious that the built-
in current sensor is not capable of capturing accurate
and fine-grained power measurements within the DNN
model due to its low power sampling frequency. We
observe that the built-in current sensors in many mobile
and IoT devices typically support a sampling period
ranging from a hundred milliseconds to seconds, which
limits the frequency of current measurements to between
1 and 10 readings per second. However, tracing the
power consumption trend within a DNN model on a
specific hardware device, including changes in power
consumption of individual layers or operators, requires
a time granularity of less than 1 millisecond. As a result,
most current energy profiling solutions that depend on
the built-in current sensors fall short in providing precise
energy measurements for AI applications [13, 15, 16, 17].

Fig. 1(b) demonstrates that using an external power
monitor such as the Monsoon power monitor with a sam-
pling frequency of 5000 Hz shows promise in capturing
accurate and fine-grained power measurements for AI
and identifying energy bottlenecks within DNN models.
Nonetheless, interfacing recent commercial mobile and
IoT devices, especially those introduced post-2017, with
an external power monitor proves to be difficult due to the
more complex integration of their electronic components.
Taking modern smartphones as examples, the battery
connector, which links the battery to the circuit board, has
evolved significantly over the years. Previous-generation
smartphones commonly used a "snap-type connector"
with four metal prongs, which simplified the identi-
fication of positive and negative terminals and made
connections to external power monitors straightforward.
In contrast, modern smartphones often utilize a small,

proprietary, and fragile Flexible Printed Circuit (FPC)
battery connector. The diminutive size and fragile nature
of the FPC connector complicate handling, necessitating
specialized tools and expertise for successful connection
to an external power monitor that can deliver enhanced
accuracy [18]. Given these complexities with the FPC
battery connector, recent studies generally depend on the
built-in current sensor to measure power consumption
of modern mobile and IoT devices, although this method
only provides coarse-grained results.

P2: Interpretability. In addition to DNN models, the
software stack for mobile and IoT devices is distinctly
characterized by the end-to-end pipeline for processing
AI applications. The end-to-end energy efficiency is im-
portant as it includes pre and post-processing overheads.
AI applications typically involve complex and distinctive
end-to-end processing pipelines that consist of several
energy-consuming phases. For instance, Fig. 2 compares
two processing pipelines for mobile/IoT-based object de-
tection and speech recognition. Measuring the overall
device’s energy consumption in isolation is insufficient
for obtaining informative insights. Instead, it is crucial to
break down the power and energy consumption based
on either the involved device hardware components or
the processing phases in order to achieve interpretable
insights on the inner workings and energy bottlenecks
of different AI applications. However, due to the high
level of hardware integration in commercial mobile and
IoT devices, it is not feasible to directly measure and
isolate the power and energy consumption of individual
hardware components such as the camera, display, and
System-on-Chip (SoC). Furthermore, the interconnection
and dependencies between different phases in the end-
to-end processing pipeline for AI applications make it
difficult to isolate the power and energy consumption
of individual phases, such as image generation, image
conversion, and inference.

P3: Representativeness. AI energy efficiency is shrouded
behind the diversity of the mobile and IoT ecosystem,
including both hardware and software stack [21]. As
shown in Fig. 3, the possible combinations of AI hardware
accelerators, Operating Systems (OS), frameworks, DNN
models, datasets, and applications are numerous, and
each of these factors can contribute to the variability in
energy efficiency. For example, advanced SoCs typically
consist of various components, such as CPU, GPU, Digital
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(a) Object detection processing pipeline for mobile/IoT devices [19]
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Figure 2 – Comparison between two end-to-end processing pipelines for AI applications. WAV: waveform audio file format; STFT: short-time
Fourier transform; MFCC: Mel frequency cepstral coefficients.
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Figure 3 – The diversity of the mobile and IoT ecosystem presents
challenges in achieving benchmarking representativeness (information
source partially from [22]). TPU: tensor processing unit; NNAPI: neural
networks API; SNPE: Snapdragon neural processing engine.

Signal Processor (DSP), and a Neural Processing Unit
(NPU), among others. These components can be utilized
to support AI inference on mobile and IoT devices, either
individually or in combination. Hence, the diversity
of the mobile and IoT ecosystem provides a rich set
of choices and opportunities for AI deployment, but
it also presents challenges in achieving benchmarking
representativeness.

P4: Extensibility. The mobile and IoT ecosystem, includ-
ing hardware and software stack, are rapidly evolving.
As a result, the benchmark needs to be regularly updated
to accommodate these changes and ensure its relevance
to the latest AI technologies. This requires significant
resources and ongoing effort from benchmarking re-
searchers to stay up-to-date with the latest developments
in AI and adapt the benchmark accordingly. We discuss
and present our plans to extend the AIEnergy benchmark
suite over time in Section 6.

P5: Understandability and adoptability. The effective-
ness of a benchmark hinges on its broad accessibility to
diverse audiences, including AI end users without tech-
nical backgrounds and researchers of varying expertise
levels. As discussed in Section 1, users usually regard the
power/energy efficiency of device and AI application as a
pivotal consideration. Clear and understandable bench-
mark results empower end users make well-informed
decisions. For example, they can compare different de-
vices based on the balance between AI performance and
energy efficiency to select the one that best meets their
requirements. Conversely, an easily adoptable energy
benchmark can significantly propel advancements in AI
research. For instance, the benchmark can provide a stan-

(a) Redmi Note8 (b) One Macro (c) P40 Pro (d) K30 Ultra

Figure 4 – Examples of tested mobile and IoT devices with segregated
BMS chips.

dardized and precise method for evaluating the energy
efficiency of various System on Chips (SoCs) in the de-
velopment of AI accelerators. Additionally, researchers
can utilize the benchmark to test their approaches for
enhancing end-to-end pipelines and refining DNN mod-
els to optimize AI applications. Hence, the benchmark
must strike a balance between accessibility and technical
depth.

3. AIENERGY BENCHMARKS

To address these challenges, we developed AIEnergy,
the first AI energy benchmark suite and benchmarking
methodology for modern mobile and IoT devices. In this
section, we present our proposed approaches for accurate
and interpretable energy measurements, representative
AI hardware and software stack, and an end-user under-
standable scoring system, respectively.

3.1 Accurate and interpretable energy mea-
surements

To tackle the challenges presented in Section 2 and adhere
to principles P1 and P2, we develop an energy measure-
ment methodology that incorporates three strategies.

Proposed strategy 1. As discussed in Section 2 and Fig. 1,
the built-in current sensor in commercial mobile and IoT
devices fails to capture accurate and fine-grained power
measurements because of their low power sampling
frequency. While connecting to power monitors demon-
strates promising accuracy for tracing fine-grained power
fluctuations, it is challenging to connect them to modern
device hardware with FPC battery connectors. To tackle
this issue, we initially utilized off-the-shelf mechanical
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device DC power cables that are compatible with various
devices with FPC connectors. It needs minimal effort
from benchmarking researchers to connect the measured
device to the external power monitor. Unfortunately, the
devices we measured fail to boot because they lack the
proprietary Battery Management System (BMS) chipsets,
which are commonly affixed to the embedded batteries
in modern mobile and IoT platforms.

The BMS is a crucial electronic system that is responsible
for monitoring and managing the safety and performance
of the battery. The operating system requires communica-
tion with the proprietary BMS to verify the battery’s status
and safety before the device can be powered on. Conse-
quently, the device will fail to boot if a non-authorized
battery is installed or if its battery is disconnected. Af-
ter evaluating various solutions, we find that the most
efficient approach involves detaching the BMS chipset
from the device’s battery without complete disassembly,
then using it as the bridge for the connection between
the measured device and the power monitor, as shown
in Fig. 4. Firstly, the device is fully powered off. It is
then carefully disassembled using specialized tools, such
as plastic pry instruments and precision screwdrivers,
to remove the rear panel and any protective hardware.
Once the embedded battery pack is exposed, the BMS
chipset, typically located adjacent to the battery connec-
tor and often concealed beneath insulating or shielding
materials, is identified. Any insulating tape or adhesive
securing the battery contacts is gently removed. Precision
tweezers and a fine-tip soldering iron are then used to
carefully desolder the BMS chipset from the battery cells,
specifically detaching the positive (+) and negative (-)
terminals. Insulated electrical wires are attached to these
desoldered terminals on the detached BMS chipset, with
the opposite ends securely connected to the respective
terminals of an external power monitoring device. This
setup enables the external power monitor to both power
the device and simultaneously measure its power con-
sumption. This approach has been validated on more
than ten different modern devices, all of which success-
fully powered on with full functionality. It provides a
promising reproducibility and can be extended to other
mobile and IoT devices with FPC with minimal effort.

Proposed strategy 2. We establish a strict set of run
rules to enhance the accuracy and reproducibility of
the AIEnergy benchmark. These rules are designed to
minimize any interference from the measurement envi-
ronment and background activities. Each device must
meet the following conditions before any measurement
is taken [18, 23, 24, 25]:

• Disable connectivity features such as cellular, Blue-
tooth, WiFi, and NFC to minimize measurement inac-
curacies caused by these interfaces.

• Terminate and disable any non-essential background
applications and services to further reduce measure-

ment interference. Potential activities and services can
be identified by observing the power curve of the de-
vice when it is idle. For example, a flat curve typically
indicates that no extraneous processes are running.

• Set the screen refresh rate to 60 Hz.
• Adjust the display to its minimum brightness level and

disable adaptive brightness.
• If the benchmarking AI application involves the de-

vice’s camera, adjust its sampling frequency to 15 fps.
• Perform measurements at a controlled room tempera-

ture, maintained between 20 and 25 degrees Celsius.
• Ensure proper ventilation and maintain an air gap

around the device to manage its temperature and
avoid thermal throttling during measurements.

• Ensure a break setting of 0 to 5 minutes between
individual tests to allow the measured device to return
to its cooldown state before starting the next one.

Proposed strategy 3. We develop a ready-to-adopt ap-
proach for breaking down the power and energy con-
sumption of individual phases in an end-to-end process-
ing pipeline. This enables the identification of energy
bottlenecks and facilitates the interpretation of insights.
The main idea is to synchronize the timestamps between
the log files recorded by the tested mobile and IoT device
(e.g., getTimeInMillis()) and the power trace sampled
by the Monsoon power monitor. However, this is non-
trivial, as the tested device and the power monitor do not
share the same global clock. To tackle this challenge, we
develop a method of creating a flag event that can be pre-
cisely and consistently identified in both the timestamps
recorded by the device and the power trace captured
by the Monsoon power monitor. After trying different
events, we choose the "touch event" that activates the AI
application as the flag event for synchronization. Once
the touch event has been identified, it can be marked
in both the device logs and the power monitor data by
recording the timestamp at which it occurs. This allows
for precise synchronization of the two data sources, and
ensures that any changes in power consumption can be
correlated with specific actions or events on the mobile
and IoT device. Fig. 5 illustrates an example of the syn-
chronization between the power trace and the device’s
recorded timestamps.

As an illustration of the touch event identification and
synchronization method, suppose an AI application is
launched and it first displays a User Interface (UI) con-
taining a button to activate the application. Initially, the
power consumption of the mobile and IoT device would
be low and stable because there is no activity within the
application until the button is touched. As soon as the
button is pressed, a sudden increase in power consump-
tion would be registered by the power monitor, and the
device would record the timestamp of the touch event.
This allows for easy and precise synchronization of the
local clocks in the device and the power monitor.
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Figure 5 – An example of the synchronization between the power monitor trace and device recorded timestamps. Tested device: Huawei P40 Lite;
application: object detection; DNN model: MobileNet-V2, FP32; delegate: CPU, 1 thread; image resolution: 300 × 300 pixels.

3.2 Representative hardware and software
stack

We address the principle P3 from the perspectives of both
mobile and IoT hardware and AI software stack.

Devices and chipsets. AIEnergy selects eight modern
devices, each featuring a distinct SoC from the world-
leading chip manufacturers, including MediaTek, Qual-
comm, and HiSilicon. Table 1 presents the detailed
specifications. These selected SoCs can represent the
advanced and widely used AI silicon present in modern
mobile and IoT devices.

Qualcomm is one of the first mobile SoC vendors that
launch specialized AI silicon. The first generation Qual-
comm AI engine, Snapdragon 820, was released in 2016.
In 2020, Qualcomm launched its fifth generation AI en-
gine, Snapdragon 865, containing eight Kryo CPU cores,
a Hexagon 698 processor and an Adreno 650 GPU. It
brings the total Qualcomm AI Engine performance up
to 15 Tera Operations Per Second (TOPS). The Hexagon
698 processor consists of a tensor accelerator, vector eX-
tensions, and scalar accelerator, which is optimized for
a deep learning workload. Furthermore, Adreno GPU
is responsible for Floating-Point (FP) models, while the
Hexagon processor is used for quantized inference.

HiSilicon launched its first mobile AI SoC that is named
as Kirin 970 with a dedicated NPU, in 2017. At the
end of 2020, HiSilicon released its mobile AI SoC, Kirin
9000, containing four Cortex-A77 CPUs, four Cortex-A55
CPUs, a Mali-G78 GPU with 24 cores, and a Da Vinci 2.0
NPU with two big cores and one tiny core. The triple-core
NPU can achieve better energy efficiency, where the two
big cores are responsible for heavy AI computations and
the tiny core is for low-power AI computations.

MediaTek launched its first mobile AI SoC with a ded-
icated AI Processing Unit (APU) in early 2018, named
Helio P60. The design of the APU was optimized for
operations intensively used in DNN models. In 2020,
MediaTek released its mobile AI SoC, Dimensity 1000
plus, containing four Cortex-A77 CPUs, four Cortex-A55
CPUs, a Mali-G77 GPU with nine cores, and a hexa-core
MediaTek 3.0 APU that can offer up to 4.5 TOPS perfor-
mance and support popular data precision, including
16-bit floating-point (FP16), 16-bit integer (INT16), and
8-bit integer (INT8).

Software stack. As summarized in Table 2, AIEnergy
includes six of the most widely used AI applications, span-
ning three primary categories: vision-based, language-
based, and voice-based applications. All those applica-
tions are developed based on TensorFlow Lite (TFLite)
[26], a generic AI framework for mobile and IoT plat-
forms. In addition, AIEnergy provides 12 reference DNN
models with various architectures, which are available
in both FP32 and quantized INT8 weight formats. These
reference DNN models can represent the most commonly
used deep learning architectures for mobile and IoT
devices.

Moreover, AIEnergy leverages TFLite Delegates [27],
including the GPU and NNAPI delegates, to enable hard-
ware acceleration of inference on mobile and IoT devices.
By default, TFLite uses CPU kernels that are optimized
for the ARM Neon instruction set. But it is a common
perception that the CPU is not optimized for running
DNN models due to the heavy arithmetic. TFLite Dele-
gates allow TFLite to delegate the execution of certain
operations to specialized hardware accelerators such as
GPUs, DSPs, or custom accelerators. AIEnergy evalu-
ates each reference DNN model’s power consumption,
latency, and energy consumption across four different
processing configurations: CPU with 1 or 4 threads, GPU,
and NNAPI.

3.3 End-user understandable scoring system

We then address the principle P5, understandability and
adoptability, to ensure that both end users without a tech-
nical background and researchers with varying levels
of expertise can effectively utilize AIEnergy. Specifi-
cally, we develop two scoring metrics in addition to
detailed measurement results, which can help to convey
the power/energy efficiency of diverse AI-empowered
mobile and IoT devices in an understandable and clear
manner.

Power Efficiency Rating (PER). The PER measures the
Power Efficiency (PE) of a device when executing all
six applications utilizing 12 DNNs (listed in Table 2) in
AIEnergy. Given an AI application with a reference DNN
model, the PE of the measured device is defined as:

PE =
(
1 −

APC
TDP

)
× 100, (1)
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Table 1 – Specifications of mobile and IoT device hardware and chipsets in AIEnergy

Device Xiaomi OnePlus Huawei Xiaomi Huawei Motorola Huawei Huawei
Redmi K30 Ultra 8 Pro Mate40 Pro Redmi Note8 P40 Pro One Macro P40 Lite P40 Lite E

SoC Dimensity 1000+ Snapdragon 865 Kirin 9000 Snapdragon 665 Kirin 990 5G Helio P70 Kirin 810 Kirin 710F
Manufacturer MediaTek Qualcomm HiSilicon Qualcomm HiSilicon MediaTek HiSilicon HiSilicon

CPU
MA ARM A77+A55 A77+A55 A77+A55 A73+A53 A76+A55 A73+A53 A76+A55 A73+A53
#C 4+4 4+4 4+4 4+4 4+4 2+6 4+4 4+4
HF 2.6 GHz 2.84 GHz 3.13 GHz 2.0 GHz 2.86 GHz 2.1 GHz 2.27 GHz 2.2 GHz

GPU Mali-G77 Adreno 650 Mali-G78 Adreno-610 Mali-G76 Mali-G72 Mali-G52 Mali-G51
Dedicated MediaTek 3.0 Hexagon 698 Ascend Lite+Tiny Hexagon 686 Lite+Tiny MediaTek D100 Lite
AI APU DSP NPU DSP NPU APU NPU None
accelerator Da Vinci 2.0 Da Vinci Da Vinci

RAM 6 GB 8 GB 8 GB 4 GB 8 GB 4 GB 8 GB 4 GB
LPDDR4x LPDDR5 LPDDR5 LPDDR4X LPDDR4X LPDDR4x LPDDR4X LPDDR4

Process 7 nm 7 nm 5 nm 11 nm 7 nm 12 nm 7 nm 12 nm
OS Android 10 Android 10 Android 10 Android 10 Android 10 Android 9 Android 10 Android 10
NNAPI Yes Yes Yes Yes Yes Yes Yes Yessupport

Display S 6.67 inches 6.78 inches 6.76 inches 6.67 inches 6.58 inches 6.2 inches 6.40 inches 6.39 inches
FR 120/60 Hz 120/60 Hz 90/60 Hz 60 Hz 90/60 Hz 60 Hz 90/60 Hz 60 Hz

Battery BC 4500 mAh 4510 mAh 4400 mAh 4500 mAh 4200 mAh 4000 mAh 4200 mAh 4000 mAh
R No No No No No No No No

* MA: Micro-architecture; #C: number of cores; HF: Highest CPU frequency; S: Size of display; FR: Display fresh rate; BC: Battery capacity; and R: Removable battery.

where APC denotes the average power consumption
during inference, and TDP refers to the thermal design
power, the maximum sustained power the device can
dissipate under typical operating conditions without
overheating. TDP is used as the denominator because
it represents a standardized, hardware-defined upper
bound of sustainable power drawn across mobile and
IoT platforms. In contrast to peak power, which captures
short-term power spikes and can vary significantly due
to dynamic workload fluctuations or DVFS policies, TDP
reflects the long-term thermal and power budget of the
device. This makes it more appropriate for characteriz-
ing energy efficiency under real deployment conditions.
Additionally, TDP is widely documented across com-
mercial hardware, enhancing benchmarking consistency
and cross-platform reproducibility. The ratio APC

TDP reflects
how effectively a device utilizes its power budget, with a
lower value indicating better efficiency. The overall PER
is computed by averaging the PE across all models and
configurations, including CPU (1-thread and 4-thread),
GPU, and NNAPI:

PER =
∑n

i=1 PEi

n
, (2)

where n is the number of DNNs in the benchmark. A
higher PER suggests the device can support longer battery
life under AI workloads.

However, PER does not account for inference perfor-
mance metrics such as latency. Devices may achieve high
PER scores by underclocking or using low-performance
configurations, which can degrade real-time responsive-
ness. Therefore, an additional metric is needed to capture
the trade-off between power efficiency and AI perfor-
mance.

Inference Energy Performance Rating (IEPR). The IEPR
is developed to capture the energy efficiency of a mobile
and IoT device when running AI applications. We first

design a new metric named Inference Efficiency Rate
(IER), which is the number of inferences a device can
perform while consuming one unit of energy. The IER is
calculated as

IER =
NI
EC
, (3)

where NI and EC denotes the number of inferences
and the device’s energy consumption within a certain
time period (e.g., 1 second), respectively. The IEPR of a
mobile and IoT device is the overall IER when running
all applications and reference DNNs designed in the
benchmark across different processing configurations,
including CPU with 1 or 4 threads, GPU, and NNAPI. It
is defined as:

IEPR =
n∑

i=1

IERi. (4)

An AI-empowered mobile and IoT device is considered
more energy-efficient when it acquires a higher IEPR.

4. AIENERGY BENCHMARK RESULTS

In this section, we present quantitative benchmark results
obtained from 264 configuration combinations of eight
commercial mobile and IoT devices with diverse AI
chipsets (summarized in Table 1) and six AI applications
with 12 DNN models (summarized in Table 2) under
CPU, GPU, and NNAPI delegates. In addition, existing
work [28] found that a single energy measurement can be
misleading due to the variability in energy consumption.
Hence, each benchmark result presented in tables 3 and 4
is the average of at least 200 inferences1. The total amount
of measurement data in AIEnergy is over 8.8 GB. The data
will be made publicly available.

1 We observed that the variance in the average measured power
and energy consumption becomes negligible after at least 200
inferences.
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Table 2 – Summary of software stacks implemented in AIEnergy

Reference DNN model DelegateCategory Application Model Data Precision Input (pixels) CPU1 CPU4 GPU NNAPI ID

Object detection

MobileNet-V2 FP32 300 × 300 ▼ ▼ ▼ DNN#1
MobileNet-V2 INT8 300 × 300 ▼ ▼ ▼ DNN#2
MobileNet-V2-FPN-Lite FP32 640 × 640 ▼ ▼ ▼ DNN#3
MobileNet-V2-FPN-Lite INT8 640 × 640 ▼ ▼ ▼ DNN#4

Image classification

EfficientNet FP32 224 × 224 ▼ ▼ ▼ ▼ DNN#5
EfficientNet INT8 224 × 224 ▼ ▼ ▼ DNN#6
MobileNet-V1 FP32 224 × 224 ▼ ▼ ▼ ▼ DNN#7
MobileNet-V1 INT8 224 × 224 ▼ ▼ ▼ DNN#8

Super resolution ESRGAN FP32 50 × 50 ▼ ▼ DNN#9

Vision-based

Image segmentation DeepLab-V3 FP32 257 × 257 ▼ DNN#10
Language-based Natural language processing Mobile Bert FP32 - ▼ ▼ ▼ DNN#11
Voice-based Speech recognition Conv-Actions-Frozen FP32 - ▼ ▼ ▼ DNN#12

PER and IEPR results. Table 3 and Table 4 summarize
the benchmark results in terms of power and energy
efficiency. The entries in these two tables are color-
coded to rank the devices running with each reference
DNN model according to their APC and Average Energy
consumption per Inference (AEI). AEI is defined as the
amount of energy consumed to perform a single inference.
In the last row, each device is provided with a final PER
and IEPR.
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(a) DNN#3: MobileNet-V2-FPN-Lite, FP32, 640 × 640 pixels
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(b) DNN#4: MobileNet-V2-FPN-Lite, INT8, 640 × 640 pixels

Figure 6 – Examples of energy bottleneck identification within DNN
models (CPU with 1 thread).

DNN results. Figures 6 and 7 show the power consump-
tion fluctuations of devices while running different DNN
models, which demonstrates that AIEnergy is capable of
identifying energy bottlenecks within a DNN model by
coordinating with the start and end timestamps of indi-
vidual operators. In Fig. 6, a comparison is made between
the power consumption characteristics of MobileNet-V2-
FPN-Lite and its quantized version, where the quantized
MobileNet-V2-FPN-Lite achieves significant power and
energy reductions. Fig. 7 demonstrates that AIEnergy
can identify energy bottlenecks within a DNN model
across various mobile and IoT hardware devices and
delegates.

End-to-end processing pipeline results. Fig. 8 presents
the breakdown of energy consumption across different
phases in the processing pipeline of object detection.

This demonstrates that AIEnergy can offer clear and
interpretable insights into identifying the primary energy
drivers within an end-to-end processing pipeline for an
AI application.

5. INSIGHTS FROM BENCHMARK RESULTS

5.1 Insight 1: scoring metrics matter for bench-
marking

The scoring metric can significantly affect the evaluation
of AI performance and efficiency, as well as the results of
a benchmarking study on mobile and IoT devices. Fig.
9 visualizes the quantitative benchmarking results with
four different metrics for individual devices, including
the AI inference score developed in AI Benchmark [29,
30], PER, IEPR, and the reciprocal of selling price. We
choose the radar charts due to their exceptional ability
to display multivariate data in a comprehensible format.
Each axis on a radar chart represents one of the trade-offs,
which easily visualizes how multiple variables compare
and contrast for each item being analyzed. It is straight-
forward to identify strengths, weaknesses, and balance
across various factors in a single, cohesive visual repre-
sentation. In Fig. 9, a larger area within the radar chart
generally suggests better overall performance across the
included benchmarking metrics. Additionally, the shape
of the area is equally crucial. A device may not exhibit
the largest coverage but could extend significantly in key
metrics like PER or AI score, which may hold greater
importance for specific applications or user preferences.
For instance, the Mate40 Pro secures the highest AI perfor-
mance score, yet it ranks second lowest in terms of PER.
In contrast, the Redmi Note8, while leading in PER, finds
itself at the lower end with the second lowest AI perfor-
mance score. This disparity highlights that the AI score
does not account for power or energy efficiency, under-
scoring the need for a balanced metric. The introduction
of the IEPR in AIEnergy addresses this by considering
the balance between PE and AI inference performance,
enabling a more comprehensive and fair evaluation of
mobile and IoT devices. The P40 Pro, for instance, exem-
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Table 3 – AIEnergy benchmark result I - PER

Hardware Devices Xiaomi Huawei OnePlus Huawei Huawei Xiaomi Huawei Motorola
Redmi Note8 P40 Pro 8 Pro P40 Lite P40 Lite E Redmi K30 Ultra Mate40 Pro One Macro

SoCs Snapdragon665 Kirin990-5G Snapdragon865 Kirin810 Kirin710F Dimensity1000+ Kirin9000 Helio-P70
TDP (watt) 6 15 10 12 8 10 15 8

DNN#1
CPU1 APC 4.1483 4.4851 4.7495 2.6663 5.4068 3.7958 4.3433 3.7454
CPU4 APC 3.5806 4.3876 4.8083 2.5310 4.2025 3.2196 3.7868 3.3152
NNAPI APC 3.6269 4.3285 4.8055 2.5199 3.9966 3.0397 3.8100 3.3499

DNN#2
CPU1 APC 3.4319 3.2151 3.9760 2.0250 2.7139 2.4900 2.5743 3.0976
CPU4 APC / 2.9271 3.7985 2.0250 2.8956 2.6120 2.7118 2.9373
NNAPI APC 2.9326 2.8651 3.7337 1.9390 2.7319 2.6699 2.5841 2.9116

DNN#3
CPU1 APC 4.4445 6.4258 6.5488 3.1547 5.0260 6.5780 5.6446 4.2065
CPU4 APC 4.3751 6.0799 6.4656 3.1507 4.3356 6.3693 5.0218 3.9965
NNAPI APC 4.4895 6.4144 6.5409 2.9834 3.9964 6.8599 4.9898 3.8940

DNN#4
CPU1 APC 3.8352 4.1216 4.8723 2.7973 4.6100 5.2172 3.5964 3.8147
CPU4 APC 3.7075 4.2976 4.8153 2.6839 4.2709 4.3025 3.7172 3.6432
NNAPI APC 3.7466 4.3168 5.0417 2.5156 4.1743 4.2974 3.7576 3.4983

DNN#5

CPU1 APC 2.5334 3.1219 3.5176 1.9588 3.4052 2.4806 2.4226 2.7977
CPU4 APC 2.3515 3.1186 3.9474 2.4127 3.0808 2.2546 2.4624 2.6370
GPU APC 2.0625 2.7089 3.1602 1.6984 1.7393 2.3600 2.2066 2.0687
NNAPI APC 2.1710 3.0256 3.3014 2.2599 3.1470 5.2780 2.2543 2.3403

DNN#6

CPU1 APC 1.9324 2.7704 3.3375 1.8010 2.6868 2.3745 2.3723 2.1569
CPU4 APC 2.0795 2.8345 3.2977 1.9455 2.4146 2.3747 3.1146 2.2178
NNAPI APC 2.5139 3.5347 3.4051 2.1766 2.6293 4.5144 3.2671 2.2252

DNN#7

CPU1 APC 2.7262 3.8398 4.0808 2.3526 2.9596 2.4317 2.6128 2.8080
CPU4 APC 2.2724 3.3248 3.6885 2.1872 2.9300 2.3699 2.5668 3.0107
GPU APC 2.0794 2.5343 3.2397 1.6904 1.6904 2.1920 1.9101 2.1333
NNAPI APC 2.1638 2.6743 3.2527 1.7317 3.2639 5.2395 2.2492 2.1315

DNN#8

CPU1 APC 2.3942 2.8653 2.8792 1.8143 2.0548 2.3008 2.2488 2.4511
CPU4 APC 2.1764 2.6944 3.1023 1.8362 2.6199 2.3291 2.2371 2.4170
NNAPI APC 1.8802 2.8766 3.3555 1.6034 1.9420 4.6366 2.7255 1.8699

DNN#9
CPU1 APC 2.3405 3.1425 4.0743 2.6565 3.7004 3.2577 4.3030 2.7834
GPU APC 0.4792 0.4492 0.5375 0.4847 0.3985 0.6442 2.8579 0.3609

DNN#10 CPU4 APC 1.4373 4.0929 2.8932 2.6162 3.2849 4.2790 3.4070 2.6808

DNN#11

CPU1 APC 1.7440 3.0304 3.1120 2.3063 2.2359 3.2577 3.1010 2.7834
CPU4 APC 2.5173 4.1072 4.4738 1.2681 3.4850 3.3303 4.3165 2.5897
NNAPI APC / 0.6434 1.6490 0.5901 1.0675 2.4449 2.3391 1.4254

DNN#12

CPU1 APC 1.1727 1.1058 1.6463 1.4339 2.5533 1.4339 1.1154 1.2112
CPU4 APC 1.0677 1.3548 1.5411 1.1863 1.5975 1.3714 1.2546 1.1878
NNAPI APC 1.1054 1.3478 1.5671 1.1937 1.6169 1.4394 1.1449 1.1907

PER 78 78 75 74 70 67 62 56

* APC (watt): average power consumption; TDP (watt): thermal design power.

Ranking: ■ 1 ■ 2 ■ 3 ■ 4 ■ 5 ■ 6 ■ 7 ■ 8
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Table 4 – AIEnergy benchmark result II - IEPR

Hardware Devices Huawei Huawei Huawei OnePlus Xiaomi Xiaomi Huawei Motorola
P40 Pro Mate40 Pro P40 Lite 8 Pro Redmi K30 Ultra Redmi Note8 P40 Lite E One Macro

SoCs Kirin990-5G Kirin9000 Kirin810 Snapdragon865 Dimensity1000+ Snapdragon665 Kirin710F Helio-P70

DNN#1

CPU1 AEI 0.1715 0.2421 0.2649 0.3209 0.4640 0.4421 0.5132 0.4481
CPU4 AEI 0.1854 0.2439 0.2790 0.2858 0.4735 0.4656 0.5418 0.4441
NNAPI AEI 0.2030 0.2221 0.2419 0.3130 0.4421 0.4844 0.4148 0.4237

DNN#2

CPU1 AEI 0.1069 0.1228 0.1469 0.2228 0.2158 0.2592 0.2452 0.2270
CPU4 AEI 0.1021 0.1186 0.1497 0.2034 0.1880 / 0.2375 0.2334
NNAPI AEI 0.0933 0.1128 0.1361 0.2149 0.3032 0.0265 0.1623 0.2443

DNN#3

CPU1 AEI 1.2684 1.2222 1.3527 1.3727 1.6245 2.3948 3.0454 2.4968
CPU4 AEI 1.3390 1.1794 1.3869 1.3868 1.6299 2.4183 3.1238 2.4786
NNAPI AEI 1.2899 1.1156 1.3407 1.3905 1.7859 2.4250 2.7439 2.4988

DNN#4

CPU1 AEI 0.5117 0.5194 0.6088 0.6314 0.6435 1.2265 1.4706 1.2757
CPU4 AEI 0.5424 0.5437 0.5692 0.6150 0.7760 1.2402 1.5131 1.2519
NNAPI AEI 0.5082 0.5174 0.5942 0.6120 0.7759 1.2311 1.3755 1.3334

DNN#5

CPU1 AEI 0.1103 0.1055 0.1301 0.1792 0.2261 0.2009 0.2058 0.2123
CPU4 AEI 0.1154 0.1249 0.1419 0.1778 0.2252 0.2041 0.1875 0.2144
GPU AEI 0.0964 0.0954 0.0979 0.1118 0.1615 0.1432 0.1714 0.1504
NNAPI AEI 0.1916 0.1238 0.2295 0.2350 0.4128 0.3672 0.3287 0.2351

DNN#6

CPU1 AEI 0.0797 0.1015 0.1079 0.1923 0.1928 0.1678 0.1675 0.1657
CPU4 AEI 0.0806 0.1191 0.1061 0.1870 0.1962 0.1619 0.1403 0.1457
NNAPI AEI 1.6405 1.3280 1.3641 0.9329 0.0819 0.2756 0.1267 2.9408

DNN#7

CPU1 AEI 0.1261 0.1475 0.1449 0.3309 0.2803 0.2139 0.2247 0.2302
CPU4 AEI 0.1228 0.1448 0.1414 0.1854 0.2572 0.2348 0.2429 0.2348
GPU AEI 0.0816 0.1461 0.0943 0.0803 0.1586 0.1326 0.1536 0.1650
NNAPI AEI 0.1652 0.2247 0.1758 0.1277 0.1631 0.2623 0.2246 0.2644

DNN#8

CPU1 AEI 0.0814 0.0956 0.0887 0.1633 0.1796 0.1635 0.1248 0.1943
CPU4 AEI 0.0764 0.0884 0.0887 0.1555 0.1743 0.1811 0.1250 0.1614
NNAPI AEI 0.0466 0.0457 0.0772 0.0711 0.0758 0.0678 0.0996 0.0789

DNN#9 CPU1 AEI 1.5211 1.4124 1.5064 1.6846 2.0102 3.0001 3.9297 3.1099
GPU AEI 0.1502 0.9453 0.3426 0.1369 0.2993 0.5716 0.4584 0.4053

DNN#10 CPU4 AEI 0.3819 0.3943 0.3451 0.3411 0.6042 0.3481 0.7609 0.7436

DNN#11

CPU1 AEI 1.8226 1.9101 1.8624 1.5330 2.2376 3.1282 3.7850 3.2543
CPU4 AEI 1.8889 1.8117 0.3534 2.1198 2.0826 2.8539 3.9754 2.9359
NNAPI AEI 0.4334 2.0306 0.4605 4.5117 2.4897 / 2.0196 7.0580

DNN#12

CPU1 AEI 0.1681 0.1094 0.1209 0.3367 0.6353 0.3038 0.3491 0.4105
CPU4 AEI 0.1530 0.2489 0.1220 0.3029 0.4117 0.2610 0.3222 0.3606
NNAPI AEI 0.1695 0.2264 0.0861 0.3241 0.3785 0.2798 0.2988 0.3535

IEPR 260 224 202 173 158 140 138 129

* AEI (Joule): represents the average energy cost per inference, evaluating the amount of energy needed to perform a single inference on a mobile and IoT device.

Ranking: ■ 1 ■ 2 ■ 3 ■ 4 ■ 5 ■ 6 ■ 7 ■ 8
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(b) DNN#11: Mobile Bert, FP32

Figure 7 – Energy bottleneck identification across various mobile and
IoT devices and delegates.
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Figure 8 – Energy consumption breakdown for end-to-end processing
pipelines. Measured device: Huawei Mate40 Pro; delegate: CPU, 1
thread.

plifies an optimal balance between AI performance and
power efficiency, as reflected in its IEPR and positioning
in the chart. This approach illuminates the trade-offs be-
tween efficiency and AI capabilities, essential for making
informed decisions in technology deployment.

5.2 Insight 2: energy efficiency of AI frame-
work is overlooked

The Android NNAPI is designed to provide a base layer
of functionality for higher-level AI frameworks such as
TFLite. In TFLite, the NNAPI delegate supports the
acceleration of DNN models on mobile devices by dis-
tributing the workload across CPUs, GPUs, DSPs, and
NPUs. However, we observe that the energy efficiency of
NNAPI is overlooked. For object detection, Natural Lan-
guage Processing (NLP), and speech recognition, NNAPI
consumes more energy than other delegates in about 50%
of the cases, as demonstrated by the AIEnergy bench-
mark results in Table 4. Its energy efficiency exacerbates
further in image classification. This is because many
TFLite operations are not supported by the NNAPI dele-
gate. To address this issue, TFLite initially checks which
operations in the input DNN model can be performed
using the delegate. It then divides the original graph into
several subgraphs and substitutes each subgraph that
can be handled by the delegate with a delegate node. The
delegate is then responsible for carrying out subgraphs
in the corresponding nodes. Unsupported operations
are by default computed by the CPU, which could result
in a significant increase in power and energy consump-
tion due to the overhead of transferring results from the
subgraph to the main graph.

5.3 Insight 3: software-hardware co-design
plays a crucial role

The benchmark results demonstrate that the hierarchy
of mobile and IoT ecosystems, including both hardware
and AI software stack, complicates the energy efficiency
optimization for devices. No mobile AI chipset dom-
inates all the reference DNN models in the AIEnergy
benchmark. In Table 4, each SoC obtains a disparate
AEI when running the same DNN model. HiSilicon’s
Kirin 990 5G consumed the least AEIs when running
most reference DNN models with CPU and GPU, while
Qualcomm’s Snapdragon 865 and MediaTek’s Dimen-
sity 1000+ are competitive when running DNN#6 and
DNN#7 for image classification with NNAPI. Therefore,
improving the AI energy efficiency on modern mobile
and IoT devices requires synergistic co-designs between
software and hardware (e.g., co-design for DNN archi-
tecture and AI hardware acceleration). A low-power
Convolutional Neural Network (CNN) processor for face
recognition was designed for mobile devices in [31, 32],
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(a) DNN#7: MobileNet-V1, FP32, 224 × 224 pixels
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Figure 9 – Visualization of benchmarking results across four distinct metrics: AI performance score [29, 30], IEPR, PER, and the reciprocal of selling
price between devices. and the reciprocal of selling price. Each radar chart illustrates the trade-offs between AI performance, power efficiency,
energy efficiency, and the cost-effectiveness of the devices.

an example of application-specific software-hardware co-
design. However, as modern mobile and IoT devices are
multi-model and support a variety of AI applications, it
is essential to consider co-designs that can accommodate
both specialized and general AI applications. AIEnergy
offers software-hardware co-design researchers a reproducible
approach to evaluate and detect energy bottlenecks in real
devices running various AI applications.

6. DISCUSSION AND ONGOING WORK

We are currently involved in multiple efforts to improve
the extensibility (principle P4) of our AIEnergy bench-
mark.

Expanding the benchmark suite. We are working to
expand our AIEnergy benchmark beyond three dimen-
sions: regular device updating, on-device training, and AI
frameworks from a variety of vendors. First, AIEnergy can
be easily extended to support new modern devices, and
we are committed to regularly updating our benchmark
suite to include the latest devices as they become avail-
able. In particular, Apple’s iOS is widely recognized as a
major player in mobile AI and has a strong reputation for
energy efficiency. Therefore, we plan to include the re-
sults from iOS devices to further diversify our benchmark
suite in the near future. Second, on-device training is
energy-intensive, but becoming increasingly prevalent on
modern mobile and IoT devices. As AIEnergy currently
only focuses on AI inference, we are expanding it to in-
clude on-device training as a new dimension. Third, SoC

vendors often provide proprietary AI frameworks that
are optimized to run on their specific hardware. Some ex-
amples of these frameworks include Qualcomm’s SNPE
[33], HiSilicon’s HiAI [34], MediaTek’s NeuroPilot [35],
and Samsung’s ENN [36]. These frameworks are de-
signed to accelerate the execution of DNNs on the SoC’s
specialized processing units. AIEnergy can be readily ex-
tended to measure the energy efficiency of these vendor
proprietary AI frameworks.

Developing online energy estimation techniques for
AI-empowered mobile and IoT platforms. AIEnergy
currently requires physical access to external power mon-
itors for accurate measurements. Although we have
developed a ready-to-adopt benchmark methodology
and detailed documentation with step-by-step instruc-
tions for implementing this methodology, it may still
be difficult for AI end users or software developers to
perform AIEnergy measurements on their own devices
or applications due to the lack of access to external power
monitors. In our ongoing work, we are investigating on-
line energy estimation techniques that do not require the
external power monitor and support automated energy
consumption assessment. Although the online energy
estimation techniques may be more accessible, AIEnergy
with physical measurements is indispensable for achiev-
ing accurate online energy estimation, as it will serve as
the ground truth against which the online techniques can
be validated and calibrated.
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7. RELATED WORK

AI benchmark for mobile and IoT devices. Recent stud-
ies have developed mobile AI benchmarks to measure the
on-device learning performance. For instance, MLPerf
Mobile [22, 21] is the first industry-standard, open-source
benchmark for evaluating the performance and accu-
racy of mobile devices. AI Benchmark [29, 30] is one of
the first benchmark suites primarily targeting Android
smartphones and measuring only latency. Additionally,
AIoTBench [37] includes a broader range of DNN archi-
tectures and AI frameworks, focusing on assessing the
inference capabilities of embedded and mobile devices.
However, none of these AI benchmarks prioritize energy
efficiency or aim to create an energy benchmark that
accounts for the diverse hardware and software stacks in
the mobile and IoT ecosystem.

Energy measurement for mobile and IoT devices. A
few research efforts have developed various methodolo-
gies and frameworks to measure energy consumption of
mobile, embedded, and IoT hardware. The Green Miner
[38] is capable of physically measuring the device’s en-
ergy consumption and automating application testing.
The study in [39] examines the energy consumption of
GUI colors on OLED displays. GfxDoctor, developed
in [40], systematically diagnoses energy inefficiencies in
app graphics at the source-code level. However, none of
these pieces of work have focused on on-device energy
evaluation for mobile and IoT devices with AI applica-
tions. Moreover, extending these methods to create an
energy benchmark for modern mobile and IoT devices is
challenging due to the need to address principles P1-P5
and the challenges discussed in Section 2.

8. CONCLUSION

This paper outlines the principles, challenges, strategies,
and opportunities for developing the first AI energy
benchmark, AIEnergy, for modern mobile and IoT de-
vices. We collected over 8.8 GB measurement data from
264 configuration combinations of eight commercial de-
vices with diverse AI chipsets, six AI applications with
unique end-to-end processing pipelines, and 12 DNN
models under CPU, GPU, and NNAPI delegates. Overall,
the benchmark results with the developed scoring sys-
tem can provide interpretable insights and guidelines for
mobile AI optimization in terms of energy efficiency. Ad-
ditionally, several ongoing pieces of work were presented
to improve the extensibility of the AIEnergy benchmark,
such as expanding the benchmark suite and developing
online energy estimation techniques. We believe the
benchmark results and insights provided by AIEnergy
will help researchers and developers to optimize energy
efficiency for AI-empowered mobile and IoT platforms,
enable end users to make informed decisions which leads

to better consumer awareness and responsible consump-
tion habits, and encourage mobile SoC vendors to invest
in more greener technologies.
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