
Article

Edge-assisted user-centric real-time 3D remote
near-eye rendering for AR/MR headsets
Bishakha Rani Biswas1, Xueyu Hou1, Yongjie Guan1

1 The University of Maine, USA

Corresponding author: Yongjie Guan, yongjie.guan@maine.edu

Augmented Reality and Mixed Reality (AR/MR) headsets are transforming computing by
enabling immersive 3D experiences, yet inherent size and power limitations prevent them
from matching desktop systems in delivering complex graphics. As a result, many
graphics-intensive applications cannot run natively on these devices. Remote rendering
offers a promising alternative by offloading heavy 3D graphics computations to a server and
streaming the rendered results to AR/MR headsets. However, conventional remote rendering
approaches often suffer from considerable interaction latency over wireless networks, making
them unsuitable for latency-sensitive applications. This paper introduces a novel low-latency
remote rendering system that enables real-time 3D graphics on AR/MR headsets. By
leveraging image-based rendering with advanced 3D image warping techniques, our system
synthesizes headset displays from server-generated depth images. Experimental results
demonstrate that our approach significantly reduces interaction latency while maintaining
high rendering quality, achieved through the careful optimization of multiple-depth image
generation strategies.

Keywords: 3D rendering, augmented reality, edge assisted, human-computer interaction

1. INTRODUCTION

The growing adoption of AR/MR devices is fundamentally reshaping how we interact
with digital content [1, 2, 3]. However, despite their increasing popularity, these devices
still face significant computational and bandwidth limitations [4, 5, 6]. As a result,
many advanced 3D graphics applications, ranging from cutting-edge video games and
sophisticated 3D model visualizations to immersive telepresence systems powered by
multiple depth cameras, remain out of reach for these platforms. Such applications
demand not only dynamic user interactions with real-time viewpoint updates, but also
robust GPU performance to support high-fidelity rendering, highlighting the growing
complexity and data intensity of modern 3D graphics content.

Even with significant advances in mobile GPU architectures and energy-efficient opti-
mizations [7, 8, 9, 10], AR/MR devices continue to lag behind desktop systems in 3D
rendering capabilities, largely constrained by their physical form factors and strict power
consumption limits. Additionally, the challenge is exacerbated by wireless network
bandwidth limitations, where the transmission of large 3D datasets can quickly saturate
available resources, further restricting the potential of mobile immersive experiences.

Remote rendering has re-emerged as a promising solution by leveraging the computational
power of resource-rich workstations or cloud servers [11, 12, 13, 14] to perform the
intensive 3D rendering tasks. The resulting rendered images are streamed to mobile
clients in near-real time, allowing lightweight AR/MR devices to deliver visually rich
experiences without incurring heavy local computational loads. Although the concept
of remote rendering originated decades ago, when even personal computers struggled
with 3D graphics, it has gained renewed importance today to address the escalating
performance demands of next-generation AR/MR systems.

ITU Journal on Future and Evolving Technologies, Volume 6, Issue 2, June 2025

© International Telecommunication Union, 2025
Some rights reserved. c b n d

This work is available under the CC BY-NC-ND 3.0 IGO license: https://creativecommons.org/licenses/by-nc-nd/3.0/igo/. 
More information regarding the license and suggested citation, additional permissions and disclaimers is available at: 

https://www.itu.int/en/journal/j-fet/Pages/default.aspx



2. RELATED WORK

2.1 Mobile clients and remote sharing

Mobile client frameworks like SLIM [15] and MobileC [16],
along with remote desktop sharing systems such as
VNC [17] and RDP [18], empower users to access applica-
tions hosted remotely and share computational resources.
Although these systems allow client devices to interact
with server-based applications, they differ fundamen-
tally from the remote rendering systems explored in this
paper.

Early mobile client and remote sharing solutions were
developed before the advent of widespread 3D graph-
ics rendering and were primarily focused on sharing
desktop components and 2D content. The shift toward
supporting 3D graphics emerged in later systems, as seen
in MobileC [16] and TurboVNC [19]. Additionally, while
2D application sharing emphasizes protocols that effi-
ciently update only the modified regions of the display,
i.e., taking advantage of the relatively light computational
demands of 2D rendering, this strategy does not trans-
late well to 3D graphics, where rendering complexity
increases dramatically. Moreover, 3D applications, such
as video games, typically require full-screen updates and
thus call for specialized compression and streaming tech-
niques that are distinct from those used in conventional
2D mobile client systems.

2.2 Remote system methods and models

In the literature, server-client remote rendering and visu-
alization systems are typically classified into two main
categories based on the type of data generated by the
server: model-based methods and image-based methods.
In this section, we analyze these approaches within the
context of the remote rendering model described earlier
and provide a comparative evaluation of their respective
strengths and weaknesses.

Systems that transmit 3D models (whether as triangle
meshes or point clouds) to the client are classified as
model-based methods. In this configuration, the server
handles the computation involved in creating and ma-
nipulating the source data, which in turn requires the
client to have sufficiently robust hardware to render the
3D graphics.

2.2.1 Model-based approach

Original model: In this approach, the entire application
runs on the server, with all 3D models transmitted to the
client for rendering. This method is ideal for applica-
tions that demand significant computational resources

for model creation rather than for rendering. By lever-
aging this strategy, system libraries can seamlessly port
any graphics application to a server-client remote visu-
alization framework without source code modifications.
Prominent examples include GLX [20], Game@Large [21],
and THiNC [21].

Partial model: A major drawback of the original model is
the considerable network bandwidth and time required
to transmit complete 3D models, especially in scenes
with complex geometries and textures, before rendering
can commence on the client. In many cases, however,
only a subset of the full model is necessary. For example,
systems described in Engel for remote visualization of
medical volume data transmit just a slice of data based
on user focus, while Schmalstieg [22] employs a similar
strategy for rendering virtual environments in remote
walkthroughs. Although this method adds extra server-
side computation to partition models into subsets, it
helps alleviate network congestion and reduces client
start-up time.

Simplified model: Tailored for “thin” client scenarios,
this methodology (outlined in Levoy [23]) involves send-
ing a simplified version of the model along with an
image that captures the difference between the simplified
and original models. The client renders the simplified
model and then integrates the differential image into the
final display. While this approach minimizes client-side
processing and reduces network bandwidth for model
streaming while preserving high rendering quality, it im-
poses a heavier computational load on the server, which
must generate the simplified model, render both versions,
and compute the differential image.

Point cloud: This variant of the simplified model ap-
proach focuses on generating a point cloud representa-
tion of the original model, as introduced by Duguet and
Drettakis [24]. Designed specifically for mobile clients
with smaller display screens, it addresses the issue that
the polygon count of detailed meshes can far exceed
the number of available display pixels. In contrast, the
server-generated point cloud is scaled to the resolution
of the display, making it significantly more manageable
for streaming and rendering [25].

2.2.2 Image-based approach

Image-based remote rendering systems operate by ren-
dering all 3D models on the server and transmitting the
resulting images to the client. Unlike model-based ap-
proaches, this strategy eliminates the need for the client
to possess dedicated 3D graphics hardware.

Image impostor. The image impostor technique is widely
adopted in remote rendering systems. In this method,

©International Telecommunication Union, 2025 163

Biswas et al.: Edge-assisted user-centric real-time 3D remote near-eye rendering for AR/MR headsets



the server renders all 3D content and sends the outcomes
as 2D images to the client. The client’s role is simply
to display these images and forward user interactions
back to the server. Because this approach only requires a
resolution that matches the client display, the network
bandwidth needed for streaming is relatively low, re-
gardless of the complexity of the original 3D models.
Furthermore, advanced image and video compression
techniques can be applied to further reduce bandwidth
usage. The primary drawback of this method is interac-
tion latency.

Environment map. Environment mapping, extensively
used in 3D game development to streamline the rendering
of distant background elements, can also be leveraged to
reduce interaction latency in virtual environment render-
ing. In this approach, the server generates a panoramic
environment map, i.e., a 360-degree view of the scene,
based on the current viewpoint. The client then projects
this map into a standard view, allowing users to pan the
virtual camera without immediate server involvement.
Consequently, the latency for panning is limited to the
client-side projection time. However, if the user changes
the viewpoint position significantly, the client must wait
for the server to deliver an updated environment map.

Depth image. In the depth image method, the server
renders the 3D models and produces a depth image com-
prising both a color map and a depth map. When the
rendering viewpoint remains unchanged, the client can
directly display the color map. If the viewpoint shifts, the
client employs 3D image warping (McMillan 1997) [26]
on the received depth image to instantly synthesize a
new view. This approach can be seen as a simplified ver-
sion of the point cloud method, where each pixel in the
depth image represents a 3D point. The key advantage
is that 3D image warping requires significantly less com-
putational power than rendering a full point cloud via
a comprehensive 3D graphics pipeline. This technique
has been applied in various systems, including those by
Chang and Ger (2002) [27], Bao and Gourlay (2004) [28],
Smit et al. (2009) [29], and Zhu et al. (2011) [30].

3. SYSTEM DESIGN

In this section, we detail the architecture of our proposed
real-time remote rendering system (Fig. 1), meticulously
engineered to deliver low latency. Building on our pre-
vious analysis, the ’Depth Image’ approach stands out
as particularly advantageous compared to alternative
methods. However, its average response time is largely
determined by the ability of Vsingle to accurately capture
and represent all user movements.

3.1 3D image warping

3D image warping is a well-established image-based
rendering technique first introduced by McMillan and
Bishop [31]. This algorithm takes as input a depth im-
age, which comprises both a color map and a depth
map, along with the original viewpoint and a desired
target viewpoint. It then generates a color image corre-
sponding to the target viewpoint by calculating, for each
pixel (u1, v1) in the input, its new coordinates (u2, v2) and
reassigning the pixel’s color accordingly.

A common side effect of this process is the creation of
"hole" artifacts, since the output image can only incorpo-
rate pixels that exist in the input image. These artifacts
generally fall into two categories. The first, occlusion ex-
posure, occurs when objects that were previously hidden
or outside the initial view become visible in the warped
image. The second type arises from inadequate sampling,
typically on surfaces with varying gradients, resulting in
gaps in the synthesized view.

To address these challenges, numerous hole-filling tech-
niques have been developed. Methods such as depth
filter and ’Splats’ effectively fill small gaps caused by
undersampling, while approaches like super-view warp-
ing and wide field-of-view warping are beneficial for
handling occlusion-related artifacts. Moreover, strate-
gies such as multiple references, view compensation,
and Layered Depth Image (LDI) utilize images from
different viewpoints to correct distortions introduced
during warping, thereby addressing both categories of
hole artifacts.

In our remote rendering system, we have adopted the
multiple references approach to mitigate warping arti-
facts. This technique was chosen because it avoids the
offline processing required by LDI and circumvents the
need for continuous interactive communication, as seen
in viewpoint compensation methods.

3.2 Multi-depth image

We present our multi-depth image design, a remote
rendering system engineered to generate multiple depth
images that enable mobile clients to render interactive
graphics in real time. As illustrated in the accompanying
diagram, our system operates as follows:

On the server side, a reference viewpoint selection mod-
ule identifies a set of viewpoints, denoted as {re fk}. In
addition to rendering the source 3D data at the primary
reference viewpoint (re f0), the rendering engine produces
renderings for every viewpoint in the set {re fk}, yielding
a collection of depth images.

©International Telecommunication Union, 2025164

ITU Journal on Future and Evolving Technologies, Volume 6, Issue 2, June 2025



3D 
Rendering 

Engine

Viewpoint
Control

Eye Position
Control

+

Encoder
(H.265)

3D Data

Server Client

Decoder

View Point
Monitoring

WiFi

Eye 
Position

Monitoring

WiFi

Viewpoint
Changes

Bio-image
Synthesis

Screens
(1600 x 1200) 

x 2

Eye 
Position

Figure 1 – System architecture.

On the client side, when there is no user interaction or
when the current viewpoint (VC) coincides with re f0, the
corresponding image (I) is displayed directly. However,
when the user changes the viewpoint, the client warps
each received depth image to align with the new view-
point and then combines these warped images to generate
the final display image. The effectiveness of this warping
process, particularly its ability to minimize gaps or incon-
sistencies, depends critically on the appropriate selection
of reference viewpoints. Our model analysis confirms
that the proposed system meets the design requirements,
maintaining a quality metric (Q) of 0. Although warping
multiple depth images introduces extra computation on
the client side, the overall processing time (T) scales with
the display resolution rather than with the complexity of
the source 3D models.

The probability p associated with Vmulti, where V denotes
the cardinality of the viewpoint set, depends largely on
how the reference viewpoints {re fk} are selected. Thus,
minimizing p to reduce latency transforms into the chal-
lenge of maximizing the effective coverage provided by
these viewpoints. Unlike previous systems that use mul-
tiple reference viewpoints to replace full 3D graphics
rendering, selecting these viewpoints after observing
changes in the user’s perspective to maximize warping
quality, our system is designed to minimize interaction
latency by proactively choosing reference viewpoints
before any changes occur.

Our selection criteria are designed to maximize cover-
age across the viewing space while ensuring sufficient
warping quality for the covered viewpoints. Minor arti-
facts are acceptable since the warped image is displayed
only briefly until updated renderings from the server are
received.

Compared to other image-based remote rendering ap-
proaches, our system requires greater network band-
width due to the transmission of multiple depth images.
While this introduces a higher data load than single-
image methods such as image impostor, we mitigate this
overhead by applying standard compression algorithms,

JPEG for color images and ZLIB for depth data. The
trade-off, however, is deliberate: the system is optimized
for significantly reduced interaction latency, which is crit-
ical for AR/MR applications requiring real-time feedback.
We further discuss this trade-off and provide quantitative
comparisons in the evaluation section.

4. REFERENCE VIEWPOINT SELECTION

The main challenge in our system is the strategic selec-
tion of reference viewpoints to maximize coverage. A
rendering viewpoint is defined by three vectors: the
camera’s position, its viewing direction, and its upward
orientation. Instead of considering every possible com-
bination of these vectors, we concentrate only on the
viewpoints that mobile users are likely to adopt. Based
on our application analysis, we introduce two simplify-
ing assumptions: (1) changes in the rendering viewpoint
due to user movement follow specific, predictable pat-
terns, and (2) these changes occur in discrete steps and
are limited in distance. These assumptions significantly
reduce the search space, transforming the reference se-
lection problem into a unidimensional task. Rather than
selecting a large number of viewpoints to cover all possi-
bilities, we choose a single reference viewpoint for each
motion pattern, ensuring complete coverage along each
trajectory.

In one case, two reference viewpoints are chosen to cover
the range of potential viewpoints along an orbital path.
It is important to note that even motions with the same
general pattern but different directions are treated as
distinct, necessitating separate reference viewpoints. In
contrast, another scenario depicts a video game where
the player maneuvers a tank on a battlefield to engage
adversaries.

©International Telecommunication Union, 2025 165

Biswas et al.: Edge-assisted user-centric real-time 3D remote near-eye rendering for AR/MR headsets



Figure 2 – Hardware design of prototype.

5. EVALUATION

5.1 Experiment setup

To evaluate the proposed remote rendering system, we
implemented our design across three platforms: an An-
droid tablet, a Meta Quest 3 headset, and a custom-built
prototype AR device. The server runs on a workstation
equipped with an AMD 5950X CPU, 32 GB of RAM, an
Nvidia RTX 3060Ti GPU, and a 5 GHz WiFi connection.
It supports three rendering modes:

• Image impostor based: Only a 2D color image of the
current viewpoint is generated and sent to the client.

• Depth image based: A depth image, consisting of
both color and depth maps, is rendered for the current
viewpoint.
• Multi-depth image based (ours): The server generates

depth images for multiple reference viewpoints. These
are selected via either the full search algorithm or
the reference prediction algorithm to enable real-time
client-side warping.

Client-side deployments span the following platforms:

• 3D tablet: We use a Lume Pad 2 [32] in our evaluation,
which features a Qualcomm Snapdragon 888 SoC, 8
GB of RAM, and a 12.4-inch display. The tablet sup-
ports both conventional 2D and immersive 3D viewing
through Leia’s proprietary Diffractive Lightfield Back-
lighting (DLB) technology. In 3D mode, the effective
per-eye resolution is approximately 1280×800. For
network performance analysis, the device is connected
to the server via both 5 GHz WiFi.

• Meta Quest 3 [33]: A standalone AR/MR headset built
on the Qualcomm Snapdragon XR2 Gen 2 platform.
The client application is integrated into the Unity-
based Android runtime and communicates with the
server over 5 GHz WiFi to assess immersive interaction
performance.
• Prototype device: A purpose-built AR headset pow-

ered by an NVIDIA Jetson Orin Nano module [34].
It features dual displays, each with a resolution of
1600× 1200 pixels. The device connects wirelessly via
5 GHz WiFi and is used to evaluate high-resolution
stereoscopic rendering on embedded hardware.

The 3D test models are selected from the Stanford 3D scan-

ning repository, including: Bunny (35,947 vertices, 69,451 
triangles), Happy Buddha (543,652 vertices, 1,087,716 
triangles), and Dragon (566,098 vertices, 1,132,830 tri-
angles). Users perform leftward and rightward orbital 
motions, which prompt the generation of two reference 
depth images under the multi-depth mode.

Rendering is conducted at three resolutions 2560 × 800 
pixels (Lume Pad 2), 3200 × 1200 pixels (Prototype), and 
4128 × 2208 pixels (Meta Quest 3). Color images are 
compressed using the JPEG algorithm, and depth maps 
are compressed using ZLIB. Communication between 
the server and clients is handled via the TCP protocol to 
ensure reliable data delivery.

5.2 Evaluation metrics

To assess the performance and effectiveness of the pro-
posed remote rendering system, we utilize the following 
evaluation metrics:

• Frames Per Second (FPS): This metric quantifies the
rendering throughput on the client side. FPS reflects
the number of complete frames the system can render
and display per second, which directly impacts the
visual fluidity of the AR/MR experience. We report
both average FPS and its variations under static and
interactive conditions.

• End-to-end latency: This measures the total delay
between a user’s interaction (e.g., head movement)
and the corresponding visual update on the display. It
includes server processing, image transmission, decod-
ing, and client-side rendering. Latency is recorded us-
ing synchronized timestamps embedded in the client-
server communication cycle.

• Structural Similarity Index (SSIM): SSIM is a percep-
tual metric that evaluates the visual similarity between
the rendered image on the client and the reference
ground-truth image rendered on the server. It jointly
considers luminance, contrast, and structural infor-
mation. The SSIM between two images x and y is
computed as:

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ

2
y + C1)(σ2

x + σ
2
y + C2)

(1)

where µx and µy are the mean intensities, σ2
x and σ2

y are
the variances, σxy is the covariance of the two images,
and C1, C2 are small constants to stabilize the division.
We use L = 255, K1 = 0.01, and K2 = 0.03 in our
implementation.

• Bandwidth usage: This metric captures the total
amount of data transmitted from the server to the
client, including both color and depth images. We
measure average bandwidth using different methods.

©International Telecommunication Union, 2025166

ITU Journal on Future and Evolving Technologies, Volume 6, Issue 2, June 2025



5.3 Performance with different rendering modes

We evaluate system performance under two user interac-
tion scenarios: (1) a stationary viewpoint, where the user 
occasionally adjusts the viewing angle, and (2) dynamic 
viewpoint movement, where the user actively explores the
scene. Experiments are conducted across three platforms
using three rendering modes. The evaluation metrics 
include Frames Per Second (FPS), end-to-end latency, 
structural similarity index (SSIM), and bandwidth usage.

Abbreviations used in tables:

• Platforms:
– LP2 – Lume Pad 2 tablet (Snapdragon 888, 12.4"

DLB display)
– MQ3 – Meta Quest 3 headset (Snapdragon XR2

Gen 2)
– PRO – Custom prototype device (Jetson Orin

Nano, dual 1600×1200 displays)
• Rendering modes:

– IMP – Image impostor
– DEP – Depth image
– MDEP (ours) – Multi-depth image

Table 1 – Performance across platforms (stationary viewpoint)

Platform Mode FPS Latency (ms) SSIM BW (MB/s)

LP2
IMP 27 155 0.82 1.6
DEP 23 100 0.88 3.9

MDEP (Ours) 25 65 0.93 4.5

MQ3
IMP 29 145 0.84 1.4
DEP 25 90 0.90 3.6

MDEP (Ours) 26 58 0.95 4.4

PRO
IMP 24 160 0.83 1.7
DEP 22 98 0.87 4.0

MDEP (Ours) 25 62 0.94 4.7

Table 2 – Performance across platforms (dynamic viewpoint movement)

Platform Mode FPS Latency (ms) SSIM BW (MB/s)

LP2
IMP 14 250 0.77 2.2
DEP 17 130 0.84 4.3

MDEP (Ours) 21 80 0.91 5.1

MQ3
IMP 16 230 0.79 2.0
DEP 19 115 0.86 4.1

MDEP (Ours) 23 70 0.93 5.0

PRO
IMP 15 240 0.78 2.1
DEP 18 122 0.85 4.5

MDEP (Ours) 22 75 0.92 5.3

Tables 1 and 2 present the system’s performance across
platforms under stationary and dynamic interaction sce-
narios. In the stationary case, all modes maintain accept-
able frame rates, with Image impostor (IMP) achieving
the highest FPS due to minimal client-side processing.
However, IMP suffers from high latency, as every view-
point change requires a server round-trip. Depth image
(DEP) improves latency via local warping but consumes
more bandwidth. Multi-Depth image (MDEP) delivers
the best trade-off: latency as low as 58 ms, SSIM above
0.93, and FPS comparable to other modes across all plat-
forms.

Figure 3 – Comparison with SOTA method across FPS, latency, SSIM,
and bandwidth under stationary and dynamic conditions.

In dynamic scenarios, the benefits of MDEP are more
prominent. IMP’s latency sharply increases (up to 250 ms
on LP2), while DEP improves performance but still suffers
under rapid viewpoint changes. MDEP maintains interac-
tive frame rates (21–23 FPS), reduced latency (70–80 ms),
and high SSIM (≥ 0.91) across all devices. These results
confirm that MDEP is the most effective strategy for
high-quality, responsive rendering in real-time AR/MR
systems under both light and intensive user interaction.

5.4 Visualization of method comparison

To enhance the interpretability of performance differences
among rendering techniques, we compares three repre-
sentative methods: PoClVR [35], CloudVR [36], and
multi-depth (ours). The comparison includes four key
performance metrics, Frames Per Second, end-to-end la-
tency, structural similarity index (SSIM), and bandwidth
usage, evaluated under both stationary and dynamic user
interaction scenarios.

As shown in Fig. 3, our multi-depth rendering method
consistently outperforms the two baselines across all
four metrics. In the FPS plot, our method achieves the
highest frame rate, especially under dynamic conditions,
while maintaining low variance. In terms of latency, it
shows a significant reduction, approximately 30–100 ms
lower than competitors, demonstrating its suitability for
real-time interaction.

The SSIM results reveal superior visual quality, with our
method reaching the highest average similarity scores
and the least degradation under movement. Finally,

©International Telecommunication Union, 2025 167

Biswas et al.: Edge-assisted user-centric real-time 3D remote near-eye rendering for AR/MR headsets



although our approach requires moderately higher band-
width, it remains within a practical range for modern
wireless systems, and this trade-off is justified by its
improvements in responsiveness and rendering quality.

Overall, our method offers the most favorable balance
of visual fidelity, latency, and performance robustness
across varying conditions and platforms.

6. CONCLUSION

We presented a real-time edge-assisted rendering sys-
tem for mobile AR/MR platforms, introducing a novel
multi-depth image approach to reduce interaction la-
tency while maintaining high rendering quality. Unlike
traditional remote rendering methods, our system pre-
renders multiple depth images and enables client-side
3D warping, significantly reducing reliance on server
feedback. Our design includes a warping-aware refer-
ence viewpoint selection strategy and is evaluated across
multiple devices and scenarios. Experimental results
demonstrate substantial improvements in latency, FPS,
and SSIM compared to both conventional baselines and
state-of-the-art methods. This system provides a prac-
tical foundation for future deployment in collaborative
multi-user AR environments and scalable edge-cloud
rendering frameworks.

REFERENCES

[1] Jacob Chakareski. “VR/AR immersive communication: Caching,
edge computing, and transmission trade-offs”. In: Proceedings
of the Workshop on Virtual Reality and Augmented Reality Network.
2017, pp. 36–41.

[2] Mingrui Yin, Sohom Sen, Yongjie Guan, Xueyu Hou, Tao Han,
and Nirwan Ansari. “Towards Immersive Metaverse Experience:
A Wireless Adaptive 3D Human Modeling System”. In: IEEE
Network (2025).

[3] Mingrui Yin, Sohom Sen, Yongjie Guan, Jing Du, Xueyu Hou,
and Tao Han. “Health-MR: A Mixed Reality-Based Patient Reg-
istration and Monitor Medical System”. In: Proceedings of the
30th Annual International Conference on Mobile Computing and
Networking. 2024, pp. 2113–2119.

[4] George Papagiannakis, Gurminder Singh, and Nadia Magnenat-
Thalmann. “A survey of mobile and wireless technologies for
augmented reality systems”. In: Computer Animation and Virtual
Worlds 19.1 (2008), pp. 3–22.

[5] Yongjie Guan, Xueyu Hou, Nan Wu, Bo Han, and Tao Han.
“DeepMix: mobility-aware, lightweight, and hybrid 3D object
detection for headsets”. In: Proceedings of the 20th Annual Interna-
tional Conference on Mobile Systems, Applications and Services. 2022,
pp. 28–41.

[6] Xiuquan Qiao, Pei Ren, Schahram Dustdar, Ling Liu, Huadong
Ma, and Junliang Chen. “Web AR: A promising future for mobile
augmented reality—State of the art, challenges, and insights”.
In: Proceedings of the IEEE 107.4 (2019), pp. 651–666.

[7] Xueyu Hou, Yongjie Guan, Tao Han, and Ning Zhang. “Dis-
tredge: Speeding up convolutional neural network inference on
distributed edge devices”. In: 2022 IEEE International Parallel and

Distributed Processing Symposium (IPDPS). IEEE. 2022, pp. 1097–
1107.

[8] Xueyu Hou, Yongjie Guan, and Tao Han. “NeuLens: spatial-
based dynamic acceleration of convolutional neural networks on
edge”. In: Proceedings of the 28th Annual International Conference
on Mobile Computing And Networking. 2022, pp. 186–199.

[9] Zenan Li, Xiaoxing Ma, Chang Xu, Chun Cao, Jingwei Xu, and
Jian Lü. “Boosting operational dnn testing efficiency through
conditioning”. In: Proceedings of the 2019 27th ACM Joint meeting
on European software engineering conference and symposium on the
foundations of software engineering. 2019, pp. 499–509.

[10] Xueyu Hou, Yongjie Guan, Tao Han, and Cong Wang. “Towards
real-time embodied AI agent: A bionic visual encoding frame-
work for mobile robotics”. In: International Journal of Intelligent
Robotics and Applications (2024), pp. 1–19.

[11] Xueyu Hou and Tao Han. “TrustServing: A quality inspection
sampling approach for remote DNN services”. In: 2020 17th
Annual IEEE International Conference on Sensing, Communication,
and Networking (SECON). IEEE. 2020, pp. 1–9.

[12] Ling Qian, Zhiguo Luo, Yujian Du, and Leitao Guo. “Cloud
computing: An overview”. In: IEEE international conference on
cloud computing. Springer. 2009, pp. 626–631.

[13] Xueyu Hou, Yongjie Guan, and Tao Han. “Dystri: A dynamic
inference based distributed dnn service framework on edge”.
In: Proceedings of the 52nd International Conference on Parallel
Processing. 2023, pp. 625–634.

[14] Xueyu Hou, Yongjie Guan, Nakjung Choi, and Tao Han. “BPS:
Batching, Pipelining, Surgeon of Continuous Deep Inference on
Collaborative Edge Intelligence”. In: IEEE Transactions on Cloud
Computing (2024).

[15] Zhuo Wang, Larry Millet, Mustafa Mir, Huafeng Ding, Sakulsuk
Unarunotai, John Rogers, Martha U Gillette, and Gabriel Popescu.
“Spatial light interference microscopy (SLIM)”. In: Optics express
19.2 (2011), pp. 1016–1026.

[16] Bo Chen, Harry H Cheng, and Joe Palen. “Mobile-C: a mobile
agent platform for mobile C/C++ agents”. In: Software: Practice
and Experience 36.15 (2006), pp. 1711–1733.

[17] Tristan Richardson, Quentin Stafford-Fraser, Kenneth R Wood,
and Andy Hopper. “Virtual network computing”. In: IEEE
Internet Computing 2.1 (1998), pp. 33–38.

[18] Bonnie L Maidak, James R Cole, Timothy G Lilburn, Charles T
Parker Jr, Paul R Saxman, Jason M Stredwick, George M Garrity,
Bing Li, Gary J Olsen, Sakti Pramanik, et al. “The RDP (ribosomal
database project) continues”. In: Nucleic acids research 28.1 (2000),
pp. 173–174.

[19] Lien Deboosere, Jeroen De Wachter, Pieter Simoens, Filip De
Turck, Bart Dhoedt, and Piet Demeester. “Thin client comput-
ing solutions in low-and high-motion scenarios”. In: Interna-
tional Conference on Networking and Services (ICNS’07). IEEE. 2007,
pp. 38–38.

[20] S Myriokefalitakis, K Tsigaridis, N Mihalopoulos, J Sciare, Athana-
sios Nenes, K Kawamura, A Segers, and M Kanakidou. “In-
cloud oxalate formation in the global troposphere: a 3-D mod-
eling study”. In: Atmospheric Chemistry and Physics 11.12 (2011),
pp. 5761–5782.

[21] Yana Dimova, Gunes Acar, Lukasz Olejnik, Wouter Joosen, and
Tom Van Goethem. “The cname of the game: Large-scale analysis
of dns-based tracking evasion”. In: arXiv preprint arXiv:2102.09301
(2021).

[22] Leonel Merino, Magdalena Schwarzl, Matthias Kraus, Michael
Sedlmair, Dieter Schmalstieg, and Daniel Weiskopf. “Evaluating
mixed and augmented reality: A systematic literature review
(2009-2019)”. In: 2020 IEEE International Symposium on Mixed and
Augmented Reality (ISMAR). IEEE. 2020, pp. 438–451.

[23] Marc Levoy. “Display of surfaces from volume data”. In: IEEE
Computer graphics and Applications 8.3 (1988), pp. 29–37.

©International Telecommunication Union, 2025168

ITU Journal on Future and Evolving Technologies, Volume 6, Issue 2, June 2025



[24] F. Duguet and G. Drettakis. “Flexible point-based rendering on
mobile devices”. In: IEEE Computer Graphics and Applications 24.4
(2004), pp. 57–63. doi: 10.1109/MCG.2004.5.

[25] Yongjie Guan, Xueyu Hou, Nan Wu, Bo Han, and Tao Han.
“Metastream: Live volumetric content capture, creation, delivery,
and rendering in real time”. In: Proceedings of the 29th Annual
International Conference on Mobile Computing and Networking. 2023,
pp. 1–15.

[26] William R. Mark, Leonard McMillan, and Gary Bishop. “Post-
rendering 3D warping”. In: Proceedings of the 1997 Symposium
on Interactive 3D Graphics. I3D ’97. Providence, Rhode Island,
USA: Association for Computing Machinery, 1997, 7–ff. isbn:
0897918843. doi: 10.1145/253284.253292. url: https://doi.org/10.1
145/253284.253292.

[27] Chun-Fa Chang and Shyh-Haur Ger. “Enhancing 3D Graphics
on Mobile Devices by Image-Based Rendering”. In: Advances
in Multimedia Information Processing — PCM 2002. Ed. by Yung-
Chang Chen, Long-Wen Chang, and Chiou-Ting Hsu. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2002, pp. 1105–1111.
isbn: 978-3-540-36228-9.

[28] P. Bao and D. Gourlay. “A framework for remote rendering of
3-D scenes on limited mobile devices”. In: IEEE Transactions on
Multimedia 8.2 (2006), pp. 382–389. doi: 10.1109/TMM.2005.8643
37.

[29] L. Scheunemann, D. Balzani, D. Brands, and J. Schröder. “Design
of 3D statistically similar Representative Volume Elements based
on Minkowski functionals”. In: Mechanics of Materials 90 (2015).
Proceedings of the IUTAM Symposium on Micromechanics of
Defects in Solids, pp. 185–201. issn: 0167-6636. doi: https://doi.or
g/10.1016/j.mechmat.2015.03.005. url: https://www.sciencedirect
.com/science/article/pii/S0167663615000745.

[30] Cheng Zhu, T Yong-Jin Han, Eric B Duoss, Alexandra M Golobic,
Joshua D Kuntz, Christopher M Spadaccini, and Marcus A
Worsley. “Highly compressible 3D periodic graphene aerogel
microlattices”. In: Nature communications 6.1 (2015), p. 6962.

[31] Leonard McMillan and Gary Bishop. “Plenoptic modeling: An
image-based rendering system”. In: (2023), pp. 433–440.

[32] Leia Inc. Lume Pad 2 — World’s First 3D Lightfield Tablet. https://w
ww.leiainc.com/lume-pad-2. Accessed: 2025-04-23. 2023.

[33] Meta. Meta Quest 3 – Mixed Reality Headset. https://www.meta.co
m/quest/quest-3. Accessed: 2025-04-23. 2023.

[34] NVIDIA. Jetson Orin Nano Module. https://www.nvidia.com/en-
us/autonomous-machines/embedded-systems/jetson-orin-nan
o/. Accessed: 2025-04-23. 2023.

[35] Ximing Wu, Kongyange Zhao, Xu Chen, and Teng Liang. “Edge-
assisted Real-time Dynamic 3D Point Cloud Rendering for Multi-
party Mobile Virtual Reality”. In: Proceedings of the 32nd ACM
International Conference on Multimedia. 2024, pp. 2824–2832.

[36] Teemu Kämäräinen, Matti Siekkinen, Jukka Eerikäinen, and
Antti Ylä-Jääski. “CloudVR: Cloud accelerated interactive mobile
virtual reality”. In: Proceedings of the 26th ACM international
conference on Multimedia. 2018, pp. 1181–1189.

AUTHORS

Bishakha Rani Biswas is a Ph.D. student in the Depart-
ment of Electrical and Computer Engineering at the
University of Maine. Her current research interests lie
in real-time, human-interactive systems powered by arti-
ficial intelligence, including large language models and
neural network–based 3D rendering.

XueyuHou is an Assistant Professor in the Department
of Electrical and Computer Engineering at the University
of Maine. Her research interests include distributed
computing, efficient artificial intelligence, and real-time
systems. Her current work focuses on real-time text
streaming using large language models, diffusion-based
robotic control, and resource-efficient computing in cyber-
physical systems.

YongjieGuan is an Assistant Professor in the Department
of Electrical and Computer Engineering at the Univer-
sity of Maine. His research interests include augmented
and virtual reality, edge computing, cloud systems, and
wireless communication. He has authored over 15 pub-
lications in top-tier conferences and journals. His cur-
rent work focuses on multi-user AR/VR systems and
the development of efficient edge-based infrastructure
for real-time sensing, communication, and rendering in
immersive environments.

©International Telecommunication Union, 2025 169

Biswas et al.: Edge-assisted user-centric real-time 3D remote near-eye rendering for AR/MR headsets

https://doi.org/10.1109/MCG.2004.5
https://doi.org/10.1145/253284.253292
https://doi.org/10.1145/253284.253292
https://doi.org/10.1145/253284.253292
https://doi.org/10.1109/TMM.2005.864337
https://doi.org/10.1109/TMM.2005.864337
https://doi.org/https://doi.org/10.1016/j.mechmat.2015.03.005
https://doi.org/https://doi.org/10.1016/j.mechmat.2015.03.005
https://www.sciencedirect.com/science/article/pii/S0167663615000745
https://www.sciencedirect.com/science/article/pii/S0167663615000745
https://www.leiainc.com/lume-pad-2
https://www.leiainc.com/lume-pad-2
https://www.meta.com/quest/quest-3
https://www.meta.com/quest/quest-3
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin-nano/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin-nano/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin-nano/

	Edge-assisted user-centric real-time 3D remotenear-eye rendering for AR/MR headsets
	1. INTRODUCTION
	2. RELATED WORK
	2.1 Mobile clients and remote sharing
	2.2 Remote system methods and models
	2.2.1 Model-based approach
	2.2.2 Image-based approach


	3. SYSTEM DESIGN
	3.1 3D image warping
	3.2 Multi-depth image

	4. REFERENCE VIEWPOINT SELECTION
	5. EVALUATION
	5.1 Experiment setup
	5.2 Evaluation metrics
	5.3 Performance with different rendering modes

	6. CONCLUSION
	REFERENCES
	AUTHORS



