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Modern high-performance computing systems have undergone a significant transformation
with the adoption of chiplet-based multi-die integration. This approach enables scalable
improvements in computational and communication performance while reducing energy
consumption and manufacturing costs. However, existing chiplet-based interconnection
network designs face challenges in meeting the stringent latency and energy efficiency
requirements of edge computing systems, particularly for multicast and broadcast
communication. Silicon interposers impose high costs in inter-chiplet communication,
primarily due to their restricted throughput capacity. Similarly, wired interconnection
designs are ill-suited for managing multicast and broadcast traffic, as their design limitations,
such as high hop counts, inadequate bandwidth, and resource constraints, contribute to
significant power consumption and latency. Chiplet-based hybrid interconnection designs
overcome these challenges by integrating both wired and wireless interconnects that can
adapt to diverse communication patterns and requirements. This paper introduces a
data-driven, machine learning-based dynamic routing framework that intelligently adapts to
communication needs and directs traffic to wired, interposer, or hybrid communication links
by analyzing workload patterns. Several machine learning models are trained on hybrid
interconnection network attributes under different communication types (unicast, multicast,
and broadcast), and the best performing classifier is selected to dynamically determine the
optimal communication link at runtime. The simulation results show that the proposed
machine learning-based dynamic routing framework achieves a maximum 64% end-to-end
latency reduction, a 2.28 × throughput improvement, and 3.14 × improved energy efficiency
compared to the baseline wired Network-on-Chip (NoC). These findings underscore the
potential of data-driven routing in advancing energy-efficient and high-performance
interconnection network designs for future edge computing platforms.
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learning, wireless

1. INTRODUCTION

The accelerated evolution of semiconductor technology has brought about more com-
plex System-on-Chip (SoC) architectures, with modern computing shifting to multicore
and multi-chiplet designs [1]. This is motivated by the demand for increased process-
ing capacity, energy efficiency, and low-latency data communication of contemporary
Artificial Intelligence (AI) applications and big data analysis. Conventional intercon-
nect methods are faced with scalability issues in these emerging designs, especially in
managing increased traffic density and congestion. To address such concerns, Wire-
less Network-on-Chip (WiNoC) architectures have emerged, which provide wired and
wireless communication for better flexibility [2, 3]. Despite such advantages, hybrid
interconnect routing remains an issue when it comes to dynamic traffic patterns, conges-
tion control, and power limitations, where static routing models cannot keep up with
real-time optimization [4].
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In traditional Network-on-Chip (NoC) designs, static 
routing methods are based on precomputed static routes 
that do not change at runtime [5]. Although efficient 
for deterministic workloads, they are poorly suited for 
contemporary heterogeneous workloads with variable 
packet injection rates and latency-sensitive traffic. The 
rigidity of static routing typically results in energy wastage 
and performance degradation, particularly under sud-
den traffic sp ikes. Therefore, adaptive routing methods 
have become an essential requirement for effective and 
scalable NoC operation under dynamic workloads [6].

A Machine Learning (ML) classification model is a model 
that predicts data in known classes, predicting the cate-
gory of new data points based on patterns from historical 
data [7]. Common classifiers include Perceptron, Sup-
port Vector Machine (SVM), naive Bayes, decision trees, 
logistic regression, and K-Nearest Neighbors (KNNs). 
Predictive modeling is also a classifier that predicts the 
best behavior by analyzing historical and current data 
trends, applying data mining and machine learning tech-
niques to guide decision-making. ML algorithms, such 
as linear regression, Support Vector Machine (SVM), and 
Artificial Neural Networks (ANNs) are optimizers that 
maximize future outcomes. These models have been 
widely applied for classification and predictive purposes, 
for example, prediction of stock market trends, prediction 
of natural disasters, weather prediction, prediction of 
viral outbreaks, disease prediction, fraud detection, opti-
mization of crop yields, detection of anomalous behavior, 
detection of cyber threats, prediction of carbon emissions, 
and monitoring of air quality [8, 9].

Machine Learning (ML) has emerged as a viable solu-
tion to address routing decision optimization problems 
in hybrid WiNoC architectures [10, 11]. In contrast to 
static rule-based solutions, ML-based approaches learn 
and adapt dynamically to network dynamics based on 
real-time information to optimize routes, reduce latency, 
and improve energy efficiency. Through the analysis of 
network parameters such as channel availability, buffer 
level, and traffic patterns, ML-based algorithms make 
smart decisions about whether a packet must be trans-
mitted over wired or wireless links and route packets 
dynamically based on existing conditions.

ML has been successfully applied in interconnection 
networks for fault-tolerant routing, traffic management, 
and dynamic voltage scaling[12]. For example, rein-
forcement learning has been shown to optimize NoC 
routing policies quite well, while supervised learning 
has been used for proactive path adaptation and traffic 
classification. Most of the ML-based work has mainly 
targeted wired NoCs with minimal or no work on hybrid 
interconnect designs that incorporate both wireless and 
wired communication.

work for hybrid WiNoC architectures to combat the
drawback of static routing with data-dependent adaptive
decision-making. We aim to perform a comprehensive
and comparative analysis of various machine learning
models for dynamic routing applications, including deci-
sion tree, random forest, Support Vector Machine (SVM),
logistic regression, and artificial neural networks. Our
ML-model-based solution dynamically selects routing
paths based on network conditions, optimally trading
off performance and energy efficiency. In contrast to con-
ventional static approaches, which adhere to pre-decided
fixed paths, our solution continuously adapts with run-
time network conditions, minimizing latency, as well as
energy consumption. Hence, the key contributions of
this research are as follows:

• Comprehensive and comparative analysis of ML mod-
els: This study performs a comprehensive and compar-
ative analysis of various ML models to be applied in
hybrid interconnection networks for dynamic routing
decisions.

• ML-based routing framework: We proposed an ML-
based routing framework for hybrid interconnection
networks applying the efficient ML model, where a
dynamic routing mechanism selects wired or wireless
channels based on real-time network parameters.

• Improved adaptability: The proposed ML-based rout-
ing framework dynamically adjusts routing strategies
to handle varying traffic loads and congestion. This en-
sures better adaptability compared to hybrid designs
with static routing strategies.
• Scalability and flexibility: The proposed ML-based

routing framework is extremely scalable with various
hybrid designs and adaptable to different computing
environments.

• Energy efficiency optimization: ML-based routing
decisions of the proposed framework reduce packet
retransmission and congestion, leading to significant
energy savings.

• Comprehensive performance evaluation: We con-
ducted a detailed comparative analysis against hybrid
designs with static routing techniques to demonstrate
the effectiveness of our proposed dynamic routing
approach in terms of latency, throughput, and energy
efficiency.

This paper highlights the revolutionary nature of ML-
based interconnection networks, bridging the gap be-
tween static rule-based routing and adaptive data-driven
routing, and paving the way for efficient and scalable
NoC architectures. The simulation results show that
the proposed machine learning-based dynamic routing
framework achieves a maximum 64% end-to-end latency
reduction, a 2.28 × throughput improvement, and 3.14
× improved energy efficiency compared to the base-
line wired NoC. Moreover, the proposed framework
achieves a significant performance improvement com-
pared to basic hybrid interconnection design with human-
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engineered routing (33% end-to-end latency reduction,
1.44 × throughput improvement, and 1.56 × improved
energy efficiency).

The rest of the paper is organized as follows. Section 2
describes the previous interconnection topologies and
justifies the use of machine learning application in adap-
tive routing. Section 3 presents the chiplet-based hybrid
interconnection architecture and the proposed hybrid
router architecture. Section 4 explains the process of
generating data based on BookSim2 [13] and proposes
the feature selection approach. In addition, it outlines
the supervised models used, including the training and
testing procedures. Section 5 describes the experimental
results and compares the classifiers with a number of
performance measures. Section 6 summarizes the key
results and proposes future potential extensions to in-
crease the flexibility and real-world application of the
framework.

2. BACKGROUND AND MOTIVATION

In order to link high-performance and low-power com-
puter systems, new interconnection networks that oper-
ate with multicore and multi-chiplet designs have been
developed. Due to their ability to overcome the limita-
tions of wireline networks, WiNoC designs have been
recognized as the leading ones among them. Through
wireless networks, WiNoC design helps boost bandwidth,
reduce latency, and eliminate hop counts, but it can scale
up to the amount of traffic. However, in routing and
resource allocation, this hybrid feature creates additional
issues where the more static designs are often inadequate.

Static models that use preplanned routing paths and
pinned policies are the fundamental aspects of traditional
NoC [14]. These models are typical for scenarios with
stable and constant throughput load because of their
conceptual and computational efficiency. However, in
conditions where connected systems operate in dynamic
and heterogeneous networks, it is hard to apply the
principles of static models when the intensity of traffic,
channel utilization, or workload varies [15]. For example,
high traffic loads may time out on the static models,
making effective rerouting of packets a challenge; hence
congestion and increase in latency time.

The major drawback of static models is, therefore, exag-
gerated in hybrid interconnection systems through which
both wired and wireless links must be synchronized [2].
The use of wireless links increases the number of factors
that affect the links, including interference, path loss,
and energy limitations, which cause static models to lack
the flexibility to accommodate. This gap has prompted
researchers to look for other solutions that can adapt to
changes within the hybrid network environment.

The application of machine learning to address these
issues with interconnection networks, especially the ca-
pacity for data-driven decision-making, holds promise
[16, 17]. Through processes such as data mining, traffic
data can be analyzed using the diverse ability of ML algo-
rithms to locate areas of congestion and make estimates
on which path is most suitable for adoption. This capa-
bility can be most useful in WiNoC architectures where
real-time adaptability is a key enabler to realize high
deterministic performance and low power consumption.
If implemented with ML, routing decisions can be made
effective based on packet priority, buffer state, and chan-
nel quality, making the best use of the available network
resources [18].

A recent research proposed a hybrid interconnection
network design that considered threshold-based routing
[2]. However, the application of ML can solve many
issues in such static routing-based hybrid interconnection
network design. For example, reinforcement learning
has been applied to routing algorithms to self-adapt
throughput and latency in different traffic conditions
[19, 20]. Supervised learning methods have been used
in traffic pattern analysis to qualify traffic and set up
appropriate routing policies [21]. However, most of the
previous work operates in a wired NoC environment
and there is not enough work done to introduce wireless
links into the hybrid architecture [22].

By incorporating significant advances from earlier re-
search and using a machine learning technique to hybrid
WiNoC systems, this study expands our knowledge. We
suggest a more sophisticated approach that uses online
analysis. Here, ML provides clear advantages over static
models when it comes to scalability. However, static
models are shown to be less efficient as the size and
complexity of interconnection networks increase, and
new structures need to be modeled and optimized by
hand. On the other hand, with ML-based models, you
can forecast the scenarios across different topologies and
do not need constant configuration assistance; thus, new
systems can be deployed much faster, with supervised
learning to dynamically control packet delivery via wired
and wireless channels in place of traditional techniques.
By reducing the detrimental impacts of frequent transmis-
sions and uneven traffic loads on network performance,
this method also increases power efficiency.

Here, ML provides clear advantages over static models
when it comes to scalability. However, static models are
shown to be less efficient as the size and complexity of
interconnection networks increase, and new structures
need to be modeled and optimized by hand. On the
other hand, with ML-based models, you can forecast the
scenarios across different topologies and do not need
constant configuration assistance, thus new systems can
be deployed much faster.
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Figure 1 – Architectures: (a) A chiplet-based hybrid interconnection network [2], (b) Proposed hybrid router [2]

Table 1 – Comparison of machine learning classifiers exploited in this research

Model Ensemble Regularization Non-Linearity Depth / Complexity

Decision Tree × × ✓ Shallow model with a single interpretable tree

Random Forest ✓ × ✓ Moderate depth via 100+ averaged trees

SVM (RBF Kernel) × × ✓ (via kernel) Implicitly deep through kernel-based transformation

Logistic Regression (L1/L2) × ✓ (Lasso/Ridge) × Shallow linear model with regularization

Neural Network (MLP) × ✓ (Dropout / L2) ✓ (ReLU, Softmax) Deep architecture with multiple hidden layers

Our work is different from previous research on the ba-
sis of its focus on hybrid WiNoC architectures, the next
generation of integrated networks. Although previous
research had focused primarily on static and hardwired
NoC networks, we leveraged the power of machine learn-
ing to address the difficulties of hybrid communication
and forge new directions for interconnection networks.

3. PROPOSED HYBRID INTERCONNECTION
NETWORK

An active interposer combines wired and wireless com-
munication in a chiplet-based hybrid interconnection
network. To facilitate inter-chiplet communication, the
basic design implements a mesh topology on the inter-
poser. Depending on performance requirements, the
wired network can handle both intra-chiplet and inter-
chiplet communication, while wireless communication
is only used for data transfer between chips [2].

With 16 Processing Elements (PEs) per chiplet and 16
chiplets joined by an interposer, this hybrid design has

256 PEs in total. However, Fig. 1(a) only shows four
chiplets for simplicity. Each chiplet contains 16 PEs
organized in a 2D mesh, with one PE interacting with
a Hybrid Router (HR) to enable hybrid communication,
and 15 PEs connecting to separate Baseline Routers (BRs).

As demonstrated in Fig. 1(b), the components of the
wireless interface, a MAC table, and a Baseline Router
(BR) make up a Hybrid Router (HR) [2]. Every HR is
outfitted with a single radio transmitter that communi-
cates in half-duplex mode. In order to accommodate both
directional and omnidirectional transmission modes, this
study uses a wireless connection with a reconfigurable
four-element planar array antenna.

4.   PROPOSED MACHINE LEARNING-BASED
DYNAMIC ROUTING FRAMEWORK

In this research, we implemented five different models
to predict the optimal routes for hybrid interconnection
designs based on the parameters of the hybrid intercon-
nection network. The classification task was structured

Mahmud et al.: Energy-efficient data-driven routing for hybrid interconnection networks: A machine learning approach
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Table 2 – Feature descriptions and quantification

Feature Description Quantification
Packet injection rate Frequency of packet generation at source

(typically ranged between 0.0 and 1.0 pack-
ets/node/cycle)

Used three 2-bit thresholds:
0.0 to 0.3 = Low (00)
0.31 to 0.6 =Moderate (01)
0.61 to 1.0 = High (10)

Packet type Categorical variable indicating the type of
packet

Used three 2-bit values:
Unicast (00)
Multicast (01)
Broadcast (10)

Hop distance for hybrid link Number of intermediate nodes between the
source and destination of the hybrid route
(ranged from 1 to 9 hops)

Used three 2-bit thresholds:
1–3 nodes: Low (00)
4–6 nodes: Moderate (01)
7–9 nodes: High (10)

Hop distance for wired link Number of intermediate nodes be-
tween the source and destination of
the wired/interposer route (ranged from 1 to
14 hops)

Used three 2-bit thresholds:
1–5 nodes: Low (00)
6–10 nodes: Moderate (01)
11–14 nodes: High (10)

Bandwidth utilization Percentage of channel capacity being utilized
(values ranged from 0% to 100%)

Used three 2-bit thresholds:
0%–30%: Low (00)
31%–60%: Moderate (01)
61%–100%: High (10)

Router buffer occupancy Percentage of the router input buffer cur-
rently occupied (values ranged from 0% to
100%)

Used three 2-bit thresholds:
0%–30%: Low (00)
31%–60%: Moderate (01)
61%–100%: High (10)

Link type (Label) Optimal route chosen: wired, interposer, or
hybrid

Used three 2-bit values:
Wired (00)
Interposer (01)
Hybrid (10)

4.2 Machine learning model implementation

The classification task was structured as a supervised 
learning problem of three classes. Decision tree classi-
fier, random forest classifier, support vector classifier, 
logistic regression (Lasso and Ridge) classifier, neural 
network classifier (multilayer perceptron) are selected 
due to their complementing capabilities in regularization, 
non-linearity, interpretability, and managing structured 
data. These models were implemented and evaluated.

4.3 Decision tree classifier

Decision trees operate by learning decision rules inferred 
from data features to classify input samples into output 
classes. The fundamental structure consists of a root node, 
internal decision nodes, and leaf nodes. At each node, 
the feature that best splits the data is chosen (based on a 
criterion such as the Gini impurity). Recursive partition-
ing continues until a stopping condition is met. Decision
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as a three-class supervised learning problem. Table 1 
represents a comparative summary of the machine learn-
ing models used for the design and development of the 
proposed dynamic routing framework.

4.1 Dataset generation

The dataset that was used contains around 100 000 sam-
ples that represent the traffic of interconnection networks 
in chiplet systems. Data was generated using BookSim2 
[13], a cycle-accurate Network-on-Chip (NoC) simulator 
that models on-chip communication architectures. Book-
Sim was governed by values that accurately represented 
realistic chiplet interconnection scenarios, comprised of 
multicore processing elements, mesh-based topologies, 
and their routing paths: wired, interposer (wired with 
interposer), and hybrid (wired with wireless). Each fea-
ture included is carefully chosen to reflect t h e  critical 
parameters that influence routing d e c isions. Each data 
sample was encoded with the features demonestratied 
in Table 2.

The dataset was stored in CSV format, resulting in a 
clean structure of 100 000 rows and 7 columns. 
Table 2 represents the description and quantification of 
each feature.
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Figure 2 – Decision tree for multiclass classification of link types (wired/interposer/hybrid)

trees are widely appreciated for their interpretability,
with the foundational algorithms introduced by Quinlan
(ID3, C4.5) and Breiman (CART) [23, 24].

The proposed model used a maximum tree depth of 6 and
used the Gini index as the splitting criterion. Experiments
included using all the features of the dataset to build
a full tree, restricting the depth to 3 for a shallow tree,
removing the Packet Type feature to test its significance,
and selecting only the top three important features. These
variations allowed for an in-depth understanding of the
feature contributions and trade-offs between depth and
interpretability. Fig. 2 shows decision three with a
maximum depth set to 5 to control the complexity of the
model and prevent overfitting.

A comprehensive decision tree represents the raw learn-
ing process from all features. Every node divides ac-
cording to a traffic attribute, such as the type of packet
or the buffer level. The branching illustrates the me-
thodical selection of routing paths. In contrast, a tree
(shallow tree) was trained with a restricted depth of three
to simplify the structure. This shows interpretability and
captures essential logic with minimal complexity. An-
other version of the tree evaluates the impact of excluding
the packet type. Although accuracy is slightly affected,
it supports lightweight inference and feature pruning
decisions. A further tree demonstrates classification per-
formance when limited to the most important features,
such as buffer occupancy and bandwidth utilization.

The tree algorithm partitions the feature space by mini-
mizing impurity at each node. The Gini index for a node
t is calculated as:

Figure 3 – Heatmap representing decision tree feature contributions

Gini(t) = 1 −
C∑

i=1

p2
i (1)

where pi is the fraction of samples of class i at node t.
When a node is split:

Ginisplit =
Nle f t

N
· Gini(le f t) +

Nright

N
· Gini(right) (2)

The algorithm selects the feature and threshold that mini-
mize Ginisplit. This selection process continues recursively 
until the predefined depth or leaf purity criteria are met.
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Figure 4 – Random forest for multiclass classification of link types 
(wired/interposer/hybrid)

of each input variable of the routing class decisions, 
highlighting real-time network dynamics.

4.4 Random forest classifier

Random forest is an ensemble learning method that 
builds multiple decision trees and merges their outputs to 
improve classification accuracy and control overfitting. It 
relies on bagging, where each tree is trained on a random 
subset of the data and features. The final classification is 
determined by majority vote from all trees. This method 
was introduced by Breiman (2001) and has been widely 
adopted for its robustness and interpretability [25]. Fig. 
4 shows the operational diagram of a random forest 
classifier.

For the routing dataset, random forest was configured 
with 100 estimators and a maximum depth of 4. The clas-
sifier leverages multiple decision pathways, increasing 
the overall reliability of routing class prediction under 
variable network traffic patterns.

Fig. 5 highlights which traffic metrics had the greatest 
influence on routing predictions, validating the patterns

Figure 5 – Feature importance ranking from random forest classifier

Figure 6 – Support vectors for two principal components of the routing 
dataset

Random forest improves generalization by aggregating 
predictions from multiple decision trees, reducing over-
fitting. According to Equation (3), each node in a decision 
tree divides the dataset to maximize information gain. 
Random forest builds multiple such trees and aggregates 
their predictions:

ŷ = mode
({

hj(X)
}M

j=1

)
(3)

4.5 Support Vector Classifier (SVC)

Support Vector Machines (SVMs) are supervised learn-
ing models that find an optimal hyperplane to separate
classes in a high-dimensional space. SVMs attempt to
maximize the margin between the closest data points
of each class, known as support vectors. This margin-
based approach allows for robust classification, even in
non-linearly separable data when extended with kernel
tricks. The method is grounded in the work of Cortes
and Vapnik (1995) [26].

The SVM classifier was trained using the Scikit-learn
implementation with an RBF kernel, after scaling the
features using StandardScaler. The key parameters used
were: (i) Kernel: Radial Basis Function (RBF), (ii) C:
1.0 (regularization parameter), and (iii) Gamma: scale
(inverse of the number of features).

Given training vectors xi ∈ Rn, and labels yi ∈ {−1, 1}, the
SVM classifier solves:

min
w,b,ξ

1
2
‖w‖2 + C

n∑
i=1

ξi (4)
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The feature heat map in Fig. 3 visualizes the contribution

observed in decision trees.
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Figure 7 – Heatmap of lasso coefficients across classes and features

subject to:

yi(wTϕ(xi) + b) ≥ 1 − ξi, ξi ≥ 0 (5)

Here, ϕ(xi) is a kernel function mapping the input space
to a higher-dimensional space, and ξi are slack variables
allowing misclassification with penalty.

The use of SVM for routing classification offers strong
decision boundaries in cases where class separation is
subtle. For example, support vectors effectively dis-
tinguish hybrid and wired routes despite their feature
overlap. The RBF kernel facilitates non-linear separa-
tion in a high-dimensional space, simulating real routing
dynamics influenced by traffic burstiness and queuing
behaviors.

The count and distribution of the support vector also
provide interpretability, where fewer support vectors
indicate clearer separation and higher confidence in clas-
sification. These insights make SVM an excellent choice
for understanding marginal traffic behavior in chiplet
networks. Fig. 6 contains SVM visualization showing
support vectors for two principal components of the
routing dataset. The larger dots represent support vec-
tors that lie on or near the margins of the separating
hyperplanes and determine the final decision boundary.

4.6 Logistic regression

Logistic regression is a statistical model that employs a lo-
gistic function to model a binary or multiclass dependent
variable. It is particularly well-suited for classification
problems where the outcome is discrete. For multiclass
classification, the model is extended using the one-vs-rest
scheme. In this research, regularized logistic regression
models L1 (Lasso) and L2 (Ridge) were used to classify
the routes. These models offer advantages in terms of
feature interpretability and sparsity [27].

Logistic regression models were implemented using
Scikit-learn with the following settings: (i) Solver: (sup-

Figure 8 – Heatmap of ridge coefficients across classes and features

ports both L1 and L2 penalties), (ii) regularization strength
(C): 1.0 and (iii) multiclass: one-vs-rest.

Logistic regression models the probability P(y = k | x) of
a class k given input vector x as:

P(y = k | x) =
exp(wT

k x)∑K
j=1 exp(wT

j x)
(6)

For binary classification:

P(y = 1 | x) = σ(wTx + b) =
1

1 + exp (−wTx − b)
(7)

The loss function with regularization is given as:

min
w

−1
n

n∑
i=1

log P(yi | xi) + λ∥w∥p

 (8)

where ∥w∥p is either L1 norm (Lasso) or L2 norm (Ridge).

Lasso regression eliminated some less important fea-
tures, offering insight into the most influential routing

Figure 9 – Comparison of predictions from lasso and ridge logistic
regression for a subset of test samples
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Figure 10 – Architecture of a neural network classifier with two hidden layers

characteristics. Fig. 7 shows the heatmap of lasso coeffi-
cients across classes and features. It emphasizes sparsity
by pushing insignificant feature weights to zero. This
visualization highlights which features were the most
influential for each routing type under the L1 penalty.

In contrast, Ridge regression preserved all features, of-
fering a more stable but less sparse solution. The com-
parative heatmap clarified that Ridge captured general
patterns while Lasso emphasized discriminative features,
especially in distinguishing hybrid routing. The heatmap
of the Ridge coefficients across classes and features is
shown in Fig. 8. This shows how each feature contributes
to class separation without enforcing sparsity, resulting
in more distributed weight magnitudes. These models
are lightweight and interpretable, making them suitable
for systems with limited computational resources where
model transparency is essential. The heatmap in Fig.
9 reveals where the models agree or diverge in their
predictions, offering insight into robustness and feature
sensitivity.

4.7 Neural network classifier (multilayer per-
ceptron)

Neural Networks (NNs) are computational models in-
spired by the interconnected neuron structures of the
human brain. Each neuron receives input, processes
them using weights and activation functions, and passes
the output to the next layer. Feedforward Neural Net-
works (FNNs), the most common type, consist of an input

layer, one or more hidden layers, and an output layer.
They are effective in learning non-linear relationships
between features and target labels [28].

In this research, we implemented a neural network (NN)
with two hidden layers. The input layer has six neurons
followed by two hidden layers of 64 and 32 neurons,
respectively (as shown in Fig. 10). This structure was
selected to enhance the model’s ability to capture com-
plex interactions across features in chiplet-based hybrid
interconnection network data.

The output layer used a softmax activation function for
multiclass classification, while the hidden layers used
ReLU activation. The Adam optimizer was used to opti-
mize the model after it was trained using the categorical
cross-entropy loss function. A batch size of 128 was used
for training in 50 epochs. Input features were standard-
ized prior to training to ensure uniformity and stability
of convergence.

Given input vector x, weights W, biases b, and activation
function f , the output of a layer is:

h(l) = f (W(l)h(l−1) + b(l)) (9)

The final output probabilities for classes are computed
using the softmax function:

Softmax(zi) =
ezi∑K

j=1 ez j
(10)
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Loss is calculated using the categorical cross-entropy
function:

L = −

N∑
i=1

K∑
k=1

yik log(ŷik) (11)

where ŷik is the predicted probability and yik is the true
label indicator.

The neural network (NN) model ensures superior per-
formance among all classifiers. The layered architecture
allowed for capturing non-linear patterns and intricate
feature interactions within chiplet network routing data.
The additional hidden layers enabled the model to learn
hierarchical representations, resulting in improved over-
all accuracy and macro-F1-score.

Moreover, the visual representation of the network struc-
ture helps in model transparency. For example, node
sizing and weight annotations illustrate relative feature
influence, which improves interpretability. The strong
classification metrics and high adaptability to unseen
patterns make this neural network especially well-suited
for dynamic routing classification tasks in chiplet-based
hybrid interconnection networks.

4.8 Training setup and preprocessing

The target variable link type is a categorical variable
that indicates the optimal route for each packet. To eval-
uate the generalization performance of the model, the
dataset was divided into training sets (80%) and testing
sets (20%). Stratified sampling was used to maintain
the proportional representation of all routing classes in
both training and test sets, preventing potential bias
due to class imbalance. All input features with contin-
uous values are normalized using the StandardScaler
transformation prior to training. This scaling process
ensured that the features contributed equally to distance-
based model computations and stabilized gradient-based
learning for neural networks.
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Figure 11 – Statistics of class distribution of dataset

4.9 Class distribution statistics

Here, the dataset has 100 000 samples to represent dif-
ferent routing decisions within a hybrid interconnection
network. Fig. 11 graphically illustrates the comparison
of how many samples have been associated with three
types of routing path: wired (Class 0), interposer (Class
1), and hybrid (Class 2). The class distribution statistics
are as follows:

• Wired routing (Class 0): 12,673 samples (12.67%).
• Interposer routing (Class 1): 42,271 samples (42.27%).
• Hybrid routing (Class 2): 45,056 samples (45.06%).

4.10 Model training

All machine learning classifier models are trained of-
fline. Through this process, all of the training data is
pre-dispatched before the learning takes place and is
trained in batches or epochs with no real-time updates.
It is a standard procedure in cases where computational
resources may be scheduled in advance and the data
partitioning is constant. After training, the performance
of the classifier is tested on a separate test set, and upon
verification it is applied to inference for novel, unseen
data. Applications where real-time data is not required
or retraining can be performed intermittently instead of
constantly are appropriate for offline training.

5. SIMULATION AND PERFORMANCE EVAL-
UATION

5.1 Simulation environment

The evaluation of the proposed ML-based routing frame-
work is carried out using a customized version of the 
cycle-accurate network simulator BookSim2 [13]. The 
framework combines flow c ontrol, a  M AC p olicy, an 
intelligent machine learning–driven routing approach, 
and a modified hybrid router architecture that integrates 
pretrained ML models. These models are trained offline

Table 3 – Simulation parameters

Simulation Parameters Values
Network Topology and Size 2D Mesh, 16×16
Chiplet Size, Number 4×4 PEs, 16
Number of Hybrid Router 16
Buffer Size of Router 4 flits/VC
Virtual Channels (VCs) 16 (4VCs/port)
Tx/Rx Buffer Size of Antenna 16
Flit Size 128 bits
Packet Size 4 flits
Maximum Wireless Data Rate 7 Gbps/Ch
Number of Wireless Channel 2
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Table 4 – Performance metrics of all classifiers (macro-averaged)

Model Accuracy Precision Recall F1-Score
Decision Tree 81.7% 79.4% 80.2% 80.1%
Random Forest 86.2% 85.4% 85.8% 85.7%
SVM 84.9% 83.5% 84.4% 84.1%
Logistic Regression 82.3% 81.0% 81.6% 81.8%
Neural Network 88.6% 87.9% 88.1% 88.2%

and are deployed sequentially across routers during test-
ing. Furthermore, real-world application traces from
the PARSEC [29] benchmark suite are incorporated into
the simulation using Netrace [30]. Table 3 contains the
parameters of our simulation designs.

We compare the performance of the proposed ML-based
routing designs (Hybrid+DTC, Hybrid+RFC, Hybrid+SVC,
Hybrid+LRC and Hybrid+NNC) with the traditional
wired baseline NoC design and the chiplet-based hybrid
design [2]. The performance metrics considered are end-
to-end latency, throughput, and energy efficiency. All
performance metrics here are presented in a normalized
form with respect to the baseline wired NoC.

5.2 Machine learning model performance com-
parison

The supervised machine learning models trained for
routing categorization in hybrid chiplet-based intercon-
nection networks are thoroughly evaluated. The per-
formance of these models were evaluated in the unseen
testing set using the following metrics, where TP, FP,
TN, and FN denote true positives, false positives, true
negatives, and false negatives, respectively.

• Accuracy: Total accuracy of forecasts for every class.

Accuracy =
TP + TN

TP + TN + FP + FN
(12)

• Precision: Prediction quality is indicated by the per-
centage of genuine positive predictions of all expected
positives.

Precision =
TP

TP + FP
(13)

• Recall: The sensitivity of the model is its capacity to
detect all pertinent events.

Recall =
TP

TP + FN
(14)

• F1-score: Precision and recall are balanced into a sin-
gle number by taking the harmonic mean of the two
measures.

F1-score = 2 ×
Precision × Recall
Precision + Recall

(15)

• Macro-averaging: Used to assign each class the same
weight, notwithstanding sample imbalance.

Macro-Averaged Score =
1
C

C∑
i=1

Scorei (16)

where C is the number of classes and Scorei refers to
the Precision, Recall, or F1-score for class i.

The macro-averaged metrics derived from each of the
five models in the test dataset are compiled in Table 4.
Among all the models evaluated, the neural network
achieved the highest accuracy and F1-score.

5.2.1 Justification on model selection

On evaluating several machine learning models, includ-
ing decision tree, random forest, Support Vector Machine
(SVM), logistic regression (L1 and L2 regularized) and
neural networks, it was found that the neural network
consistently outperformed all other models in key met-
rics such as accuracy (88.6%), F1-score (88.2%), precision
(87.9%) and recall (88.1%) (as shown in Table 4). Accord-
ing to these criteria, the neural network outperformed
conventional models in its ability to identify intricate
nonlinear patterns in the dataset.

On the other hand, despite being interpretable and com-
putationally fast, models such as decision tree and logistic
regression showed somewhat poorer generalization per-
formance. As an ensemble approach, random forest
trailed the neural network by a small margin but pro-
duced competitive results with strong feature importance
analysis.

The neural network was chosen as the final model for de-
ployment and additional testing based on this evaluation.
Particularly in multiclass classification settings, when
other models tend to oversimplify the decision bound-
aries, its higher performance demonstrates its capacity
to learn intricate feature interactions.

5.3 Deployment feasibility for edge devices

The proposed framework is highly promising for deploy-
ment in edge devices, especially if lightweight models
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such as decision tree or logistic regression are considered
that are memory-frugal and computationally inexpensive
at inference time. The runtime overhead is minimal as
the training is offline. Although neural networks are
more precise, their use in edge devices might involve the
use of other optimizations like pruning or quantization,
or the use of dedicated hardware accelerators. With ap-
propriate model selection and deployment mechanisms,
the approach is perfectly compatible with real-time edge
deployments.

5.4 Performance evaluation

The performance of the proposed dynamic routing frame-
work is assessed through simulation results, based on
the following metrics:

• End-to-end latency: The total time it takes for a packet
to travel from the source node (injection point) to the
destination node (ejection point) within the simulated
network (measured in cycle).

• Throughput: The average number of flits success-
fully delivered across the network per cycle per node
(measured in flits/cycle/node).
• Energy efficiency: The total power consumption con-

sists of static and dynamic power usage. The total
energy consumption of a benchmark application is
calculated by multiplying its final execution time by
the total power used during that application’s execu-
tion. The following formula is used to estimate energy
efficiency [2]:

Ee f f iciency =
1

Texecutin ×
(
Pstatic + Pdynamic

) (17)

5.4.1 End-to-end latency

Fig. 12 shows the normalized end-to-end packet latency
comparison for a range of application benchmarks and
three designs: a traditional wired baseline NoC, a basic
hybrid interconnection design with human-engineered
routing, and the basic hybrid design enhanced with ma-
chine learning classifiers for optimized routing. The
baseline wired design consistently shows the highest
latency in most workloads. The basic hybrid chiplet-
based design with human-engineered adaptive routing
achieves 46% reduced end-to-end latency than the wired
baseline NoC. Since models with a small computation
overhead like decision trees (Hybrid+DTC) and logis-
tic regression (Hybrid+LRC) have minimal computing
overhead and inference speed, they achieve the lowest
end-to-end latency (reduced 60% and 64%, respectively,
than the baseline wired design). More complex models,
like neural networks (Hybrid+NNC) and ensemble meth-
ods like random forests (Hybrid+RFC), allow for more
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Figure 12 – Comparison of average end-to-end latency (normalized)

accurate predictions but suffer from increased end-to-end
latency due to larger parameter spaces, non-linear func-
tions, and multipath execution. Even Hybrid+RFC and
Hybrid+NNC achieved 53% and 50% reduced end-to-end
latency compared to the baseline wired design. The hy-
brid design with neural network classifier-based routing
(Hybrid+NNC) induces almost the same end-to-end la-
tency (50%) as the hybrid design with human-engineered
routing due to higher inference time for more computa-
tions, especially with non-linear activations and more
parameters. For smaller datasets with fewer support vec-
tors, the support vector classifier (Hybrid+SVC) works
well, but as the number of support vectors increases, the
latency increases noticeably.

5.4.2 Throughput

The graph in Fig. 13 uses a variety of routing schemes, in-
cluding a traditional wired baseline NoC, a basic hybrid
interconnection design with human-engineered routing,
and the basic hybrid design enhanced with machine
learning classifiers for optimized routing, to evaluate
network throughput in various application benchmarks.
These results demonstrate the superior performance of
advanced models such as neural networks and ensem-
ble methods in optimizing throughput for NoC systems.
Among these, Hybrid+NNC (with a neural network clas-
sifier) consistently has the highest average throughput
(2.28× improved throughput compared to wired baseline
NoC), leveraging its ability to learn advanced, non-linear
traffic patterns to provide adaptive and efficient routing.
Hybrid+RFC with a random forest classifier also ranks
well, with 2.10 × improved throughput and robustness
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against traffic variation compared to the wired base-
line NoC. Hybrid+SVC (SVM-based) achieves moderate
gains (2.00 × improved throughput compared to baseline
wired NoC), limited by scalability and adaptability. Deci-
sion trees are sensitive to noise and overfitting, which is
reflected in the unstable and inconsistent performance of
the Hybrid+DTC technique (with a decision tree classi-
fier). Finally, Hybrid+LRC (logistic regression classifier)
is effective with linearly separable data, but does not
generalize to a complex, non-linear NoC traffic land-
scape, offering minimal (2.00 × improved) throughput
improvement compared to a baseline wired NoC. These
results indicate the high performance of sophisticated
models such as neural networks and ensemble methods
to maximize throughput for such interconnection design.
In addition, the basic hybrid design achieves a substantial
improvement in throughput (1.58× improved) compared
to the wired baseline design. However, the basic hybrid
design achieves lower throughput than when enhanced
with machine learning classifiers for optimized routing.

5.4.3 Energy efficiency

Fig. 14 shows a comparison of energy efficiency for dif-
ferent application benchmarks using multiple routing
strategies: a traditional wired baseline NoC, a basic
hybrid interconnection design with human-engineered
routing, and the basic hybrid design enhanced with ma-
chine learning classifiers for optimized routing. The
energy efficiency of the proposed interconnection de-
signs is closely tied to the trade-off between computa-
tional complexity and performance gains in latency and
throughput. Lightweight models such as decision trees
(Hybrid+DTC) and logistic regression (Hybrid+LRC)
are the most energy efficient (achieve an improvement
of 2.91 × and 3.14 × in energy efficiency compared to
baseline wired NoC) because they significantly reduce
end-to-end latency with a minimal inference overhead.
These models are ideal for resource-constrained environ-
ments where low power consumption is critical. On the
other hand, more complex models like neural networks
(Hybrid+NNC) and ensemble methods (Hybrid+RFC)
are higher in throughput in terms of non-linear traffic
pattern capture, but at increased computational expense

in terms of increased energy consumption (achieve an
improvement of 2.14 × and 2.39 × in energy efficiency
compared to baseline wired NoC). The support vector
classifier (Hybrid+SVC) is a moderately energy-efficient
model with adequate performance for small workloads
but reduces efficiency with increasing support vectors.
In general, hybrid models with simpler classifiers strike
the best balance between performance and energy con-
sumption, whereas models with higher throughput often
incur higher energy costs. The basic hybrid design is
more energy efficient than the traditional wired baseline
due to its lightweight routing design and achieves an
improvement of 2.01 × in energy efficiency. However,
the lack of adaptive routing decisions for heterogeneous
workload introduces packet drop or iterative retransmis-
sion. Thus, the basic hybrid design can cause dynamic
power consumption and be less energy efficient than the
hybrid designs based on ML (Hybrid+LRC achieves a
maximum 56% and Hybrid+NNC achieves a minimum
6% improvement in energy efficiency compared to the
basic hybrid design). The traditional wired baseline is
simpler and potentially lower in power per operation.
However, the wired baseline NoC design is less energy
efficient than hybrid designs because more time and cy-
cles are needed to complete the same tasks, resulting in a
higher energy cost.

6. CONCLUSION

This work presents a custom machine learning-based
dynamic routing framework for chiplet-based hybrid
interconnect networks that addresses the limitations of
traditional static routing schemes. This research shows
that neural networks offer higher classification perfor-
mance, particularly for interposer and hybrid routes,
by using real-time traffic data and evaluating multiple
classifiers within a cycle-accurate simulation environ-
ment. In addition to increasing routing adaptability,
the proposed framework significantly improves system
performance: the simulation results show a maximum
reduction of 64% in end-to-end latency, a 2.28 × improve-
ment in throughput and a 3.14 × gain in energy efficiency
compared to the baseline wired NoC. In addition, it
outperforms basic hybrid interconnection designs with
human-engineered routing, achieving 33% latency reduc-
tion, 1.44 × throughput improvement and 1.56 × energy
efficiency enhancement. Furthermore, the lightweight
and scalable nature of the framework positions it well for
practical integration into next-generation chiplet-based
architectures. This research establishes the foundation
for future exploration in adaptive interconnect strategies,
including reinforcement learning, fault-tolerant routing,
and hardware-aware co-design.
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