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Spectrum sensing plays a major role in Cognitive Radio-based Internet of Things (CR-IoT) for
identifying spectrum holes. However, a cooperative CR-IoT approach does not obtain
sufficient sensing gain and sum-rate when using the conventional Energy Detection (ED) in
an Noise Uncertainty (NU) environment, which may be aggravated under deep fading. To
mitigate this problem, we propose an enhanced spectrum sensing technique and sum-rate
calculation for Artificial Intelligence (AI)-enabled CR-IoT using the enhanced
Kullback–Leibler Divergence (KLD). After a sensing phase, each CR-IoT user performs an
enhanced KLD technique using local statistics, which allows us to reduce the required
number of samples for reliable sensing. Then, each CR-IoT user sends its local decision to an
AI-enabled Coordination Centre (AI-CC) that obtains a decision managing the channel fading
state of the CR-IoT users. Finally, this decision is sent to an Fusion Centre (FC) that makes a
global decision. The results obtained through simulations show that the proposed enhanced
KLD technique achieves detection performance (86%) in comparison with conventional ED
technique (69%) and KLD technique (97%) for an NU factor (ρ = 1.03), number samples
(Ns = 30) and channel fading conditions.
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1. INTRODUCTION

Internet of Things (IoT), based on continuous data sharing between sensor nodes that
automatically enter and leave a network, is considered to be one of the most revolutionary
communication technologies [1]. In this sense, the IoT concept has two fundamental
characteristics, self-adaptation and self-organization. However, future IoT networks
face challenges such as spectrum shortage, high deployment cost, and high energy
consumption, which involve a large number of devices and a more flexible management
of the available bandwidth [2].

Cognitive Radio (CR) is a promising wireless communication technology that improves
spectrum efficiency by flexibly managing spectrum slots [3]. In a Cognitive Radio IoT
(CR-IoT) network, each CR-IoT user occupies the spectrum only when it is empty. CR-IoT
users adopt a spectrum sensing approach, i.e. a channel discovery mechanism is carried
out to select the channels that are most suitable for secondary access. Following this
approach, each CR-IoT user accesses licensed spectrum opportunistically without causing
any harmful interference with the Primary User (PU). When the PU returns, the secondary
user vacates the spectrum immediately. Therefore, the CR technology allows secondary
IoT systems to exploit the available underused spectrum opportunistically by adjusting
their transmission modes, while guaranteeing there is no interference with primary IoT
systems [4].

© International Telecommunication Union, 2025 

Some rights reserved. 
This work is available under the CC BY-NC-ND 3.0 IGO license: https://creativecommons.org/licenses/by-nc-nd/3.0/igo/. 

More information regarding the license and suggested citation, additional permissions and disclaimers is available at: 
https://www.itu.int/en/journal/j-fet/Pages/default.aspx 



Spectrum sensing techniques can be classified into sev-
eral categories, such as non-coherent detection, coherent
detection, non-cooperative detection, and cooperative
detection [5]. In a non-coherent detection, spectrum
sensing is performed without any requirement for prior
knowledge of the PU’s signal. In contrast, for coherent
detection, prior knowledge of the PU’s signal is required.
Another criterion of classification is the cooperation level
among CR-IoT users. In non-cooperative detection, the
detection of the PU’s signal is based on local observations
of a single CR-IoT user. In this case, the spectrum sensing
performance is compromised because of multipath fad-
ing and shadowing effects [6]. In cooperative detection,
each individual CR-IoT user performs local sensing in-
dependently, and then forwards the sensing result to the
Fusion Centre (FC) through a reporting channel. With
these reported local results the FC makes a global deci-
sion based on a fusion rule [7]. It is worth noticing that
this cooperative approach can solve the problem of local
sensing [8].

Based on classification, several spectrum sensing tech-
niques, such as Energy Detection (ED), matched filter
detection, and cyclostationary feature detection, have
been proposed subject to a variety of fading channels [9,
10, 11, 12]. Among the aforementioned spectrum sensing
techniques, the ED technique has the advantages of low
complexity and cost effectiveness. Thus, it is especially
suitable for performing spectrum sensing without any
prior information about the PU’s signal pattern. More-
over, the ED technique is a full blind process that does
not require information about wireless channel gains
or other parameters about the PU’s signal. However,
the exact information of the noise power at the receiver
side, i.e. the sensing side of the CR-IoT user is essen-
tial for an accurate detection. In an Noise Uncertainty
(NU) environment [13], the performance degradation
of the ED technique is inevitable. Even for cooperative
detection, the performance gain obtained is limited [14].
For the low-power operation of the CR-IoT users, the
sensing time should be minimized as much as possible.
As a consequence, subject to short sensing intervals, the
conventional ED technique is not suitable for detection
of the PU’s signal.

During the last few years, several pieces research works
have been focused on solving the aforementioned is-
sues assuming cooperative spectrum sensing in CR-IoT
networks. In [15], the CR-IoT users perform their local
sensing, report soft decisions to the FC, and store this
information in a local database. The FC determines the
Kullback-Leibler Divergence (KLD) score against each
CR-IoT user, and sends this information to all CR-IoT
users. In general, every user attempts to send the mean
of the previous energy reports to the FC based on its
current observation. In [16], the authors propose the use
of KLD to evaluate the dissimilarity in the probability
distribution functions under the hypotheses presence

and the absence of the PU’s signal. In [17], each CR-IoT
user provides information about their local spectrum ob-
servations of the licensed spectrum to an FC that collects
the local sensing results and makes its global decision.
Before doing this, the FC assigns weights, which are pro-
portional to the reliability of the local spectrum sensing
information, for local sensing of the CR-IoT users. The
approach of [17] is analyzed considering the presence of
fading channels without considering an NU environment.
However, the spectrum sensing performance based on
the conventional ED or KLD techniques does not exclude
the deep fading CR-IoT users at the FC subject to an NU
environment. To the authors’ best knowledge, the sens-
ing performance (sum-rate, energy consumption, longer
network lifetime, global error probability and coopera-
tive overheads), taking into account the effects of the NU
while managing the deep fading CR-IoT users, automat-
ically based on the concept of the artificial intelligence
coordinator centre, have not been previously evaluated
for a CR-IoT network.

1.1 Contributions

The main contributions of this paper can be summarized
as follows:

• We proposed an enhanced spectrum sensing for an
Artificial Intelligence (AI)-enabled CR-IoT in NU en-
vironments. Each CR-IoT user achieves an enhanced
sensing performance, even with a small number of
samples, using the KLD technique. Moreover, we pro-
vide an analytical estimation of the enhanced sensing
performance of the AI-enabled Coordinator Centres
(AI-CCs) and an FC using the soft fusion rule. For
this approach, the AI-CC computes the measurement
of the dissimilarity between two Gaussian distribu-
tions under two hypotheses, which excludes the deep
fading CR-IoT users; here each CR-IoT user receives
fluctuation of SNR values.

• Based on the enhanced sensing performance, the sum-
rate of the primary and secondary IoT networks, i.e.,
the cognitive network, is analyzed compared to the
conventional ED technique with (and without) an NU
environment, the conventional KLD technique with-
out an NU environment, and the proposed enhanced
KLD technique with an NU environment using the
soft fusion rule subject to different fading channel
conditions.

• In such a way, the energy efficiency, the network life-
time, the global error probability, and the reporting
overheads are also analyzed for the considered sensing
techniques.
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1.2 Organization

The remainder of this paper is organized as follows. In
Section 2, the IoT system model is described. The conven-
tional ED technique in an NU environment is discussed
in Section 3. Section 4 includes the proposed scheme
for future IoT deployments, wherein the analyses of the
spectrum sensing, the sum-rate, energy consumption,
the network lifetime, the global error probability and
the reporting overhead are performed based on the pro-
posed enhanced KLD technique under a variety of fading
channels in an NU environment. The numerical and
simulation results and their discussion are presented in
Section 5. Finally, concluding remarks are provided in
Section 6.

2. SYSTEM MODEL

The proposed IoT system model comprises both a pri-
mary IoT system and secondary IoT system links as
shown in Fig. 1. The secondary IoT network shares the
licensed spectrum band with the primary IoT network by
opportunistically accessing the underutilized spectrum
when the primary IoT user is inactive. In this section, the
primary IoT network, and the secondary IoT network, the
so-called an AI-enabled CR-IoT network, are presented.

2.1 The primary IoT network

The primary IoT network consists of the primary IoT
transmitter and receiver denoted by PUtx and PUrx, re-
spectively. The operation of the primary IoT user (PU)
follows a Time Division Multiple Access (TDMA) scheme.
Since PU activity is closely related to the performance
of CR-IoT networks, the estimation of this activity plays
a major role in spectrum sensing. The PU activity is
modelled by two state Markov chain [18]. Thus, there are
two possible states; off(0) and on(1). In off(0) state, the
licensed channel is free from the PU while in state on(1),
the licensed channel is currently occupied by the PU.
Without loss of generality, we assume that the duration
of the P0 = off(0) and P1 =on(1) states are represented
by the random variables Θ1 and Θ2, which follow an
exponential distribution with mean duration R and S, re-
spectively. Moreover, these distributions are independent
between them. At any time, the probabilities that the PU
is in either the P0 or P1state are given by P0 = R/(R + S),
and P1 = S/(R + S), respectively.

2.2 The AI-enabled CR-IoT network

The AI-enabled CR-IoT network consists of M CR-IoT
users, MAI−CC AI-CCs and an FC. The set of CR-IoT
users belonging to the jth AI-CC, j = 1, 2, · · · ,MAI−CC, is

PU Tx PU Rx
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Figure 1 – The proposed IoT system model with a primary IoT network
and an AI-enabled CR-IoT network including some AI-CCs and an FC.

denoted by MCC. A representation of this network is
shown in Fig. 1, the ith CR-IoT user reports their local
sensing information of the PU channel to the jth AI-CC.
Then, the jth AI-CC collects the local sensing information
from the ith CR-IoT user, which obtains local decision
statistics. After that, the jth AI-CC forwards their local
decision statistics to the FC. Then, the FC collects the local
decision statistics from all AI-CCs and generates a global
decision to show the actual status of the PU spectrum.

For a binary hypothesis testing problem, we define the
two hypotheses Hk, k = {0, 1}, representing the absence
and presence of the PU’s signal as follows:Hk=0; if the PU’s signal is absent,

Hk=1; if the PU’s signal is present,
(1)

Depending on the state of the PU, the received signal
of the ith CR-IoT user in the jth AI-CC at the lth sample,
l = {1, 2, · · · ,Ns}, under the two hypotheses is given by [8]

yi, j (l) =

ni, j (l) ; Hk=0

hi. j (l) x (l) + ni, j (l) ; Hk=1
(2)

where hi, j (l) is the channel gain between the ith CR-IoT
user at the jth AI-CC and the primary transmitter for
i = {1, 2, · · · ,M}, j = {1, 2, · · · ,MCC}, x (l) is a signal trans-
mitted from the PU, which is modulated by a Binary
Phase Shift Keying (BPSK) with a power equal to p2

x, and
ni, j (l) is a circularly symmetric complex Gaussian noise
of the ith CR-IoT user at the jth AI-CC with a variance
of σ2

n,i, j [19]. Moreover, it is assumed that the channel
remains constant during each sensing phase.
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3. CONVENTIONAL ENERGY DETECTION
TECHNIQUE

The ED process performed by the CR-IoT users is de-
scribed in Fig. 2. First, a band-pass filter is applied to
the received signal to select the appropriate signal band-
width, and the output of this filter is then transformed by
an Analogue-to-Digital Converter (ADC). Here, the ana-
logue signal is sampled to obtain a discrete signal, which
is individually averaged and squared for the conven-
tional ED technique to estimate its own received signal
energy [20]. The measured energy of the ith CR-IoT user
at the jth AI-CC is expressed as follows,

ei, j =

Ns−1∑
l=0

∣∣∣yi, j (l)
∣∣∣2 , (3)

where Ns denotes the total number of signal samples
used for the sensing with a sampling frequency of fs.
Therefore, the duration of the sensing time slot is given
by τs =

Ns
fs

.

Band Pass 
Filter

Analog-Digital 
Converter

ei, j =
Ns

∑
l=1

yi, j ( l
fs )

2

Figure 2 – Block diagram of the conventional ED technique [20].

3.1 Sensing performance

Spectrum sensing is the basic and essential mechanism of
CR to find the unused spectrum holes that are allocated
for the licensed PUs. In this paper, we derive a mathe-
matical model that shows the influence of the NU on the
ED technique’s performance [13]. It can be represented
by an NU factor denoted by ρ ≥ 1. For an NU factor
ρ = 1 there is no variation in the intensity of the noise.
Thus, the conventional ED technique can be considered
in this case. On the other hand, if ρ > 1 means that the
ED is subject to an NU, i.e., higher ρ values mean higher
variation in the intensity of the noise [13, 21].

Proposition 1: Based on the Central Limit Theorem (CLT),
the distribution of the local decision statistics, ei, j of the
ith CR IoT user at the jth AI-CC under both hypotheses
with an NU environment [22] can be expressed as

ei, j ∼

ℵ
(
µ0,i, j(H0), σ2

0,i, j(H0)
)

ℵ

(
µ1,i, j(H1), σ2

1,i, j(H1)
) (4)

whereµ0,i, j(H0) = ρNsσ2
n,i, j, σ

2
0,i, j(H0) = ρNsσ4

n,i, j,µ1,i, j(H1) =
Ns
ρ

(
1 + |hi, j|

2γi, j

)
σ2

n,i, j, σ
2
1,i, j(H1) = Ns

ρ

(
1 + 2|hi, j|

2γi, j

)
σ4

n,i, j and

γi, j is the SNR that is defined as γi, j =
p2

x

σ2
n,i, j

. Moreover, ρ is

a NU factor.

Proof. Please see Appendix A. □

The probability of a false alarm, p f , j, is the probability
that the AI-CC j incorrectly declares that the PU exists
although the PU is actually absent, while the probability
of detection, pd, j, denotes the probability that the AI-CC j
correctly declares that the PU is present. Based on (4), p f , j
and pd, j can be calculated comparing ei, j with a predefined
threshold, λED

i, j [23]. That is,

p f , j = Pr
[
ei, j ≥ λ

ED
i, j |Hk=0

]
= Q

λED
i, j − µ0,i, j(H0)

σ0,i, j(H0)

 = Q

 λED
i, j√

ρNsσ2
n,i, j

−
√
ρNs

(5)

pd, j = Pr
[
ei, j ≥ λ

ED
i, j |Hk=1

]
= Q

λED
i, j − µ1,i, j(H1)

σ1,i, j(H1)


= Q


λED

i, j

σ2
n,i, j

√
Ns
ρ ∆h

−

√
Ns
ρ (1 + |hi, j|

2γi, j)
√
∆h

 ,
(6)

where Q (x) denotes a Gaussian tail function defined as

Q (x) = 1
√

2π

∫
∞

x e
−

(
ζ2
2

)
dζ and ∆h = (1 + 2|hi, j|

2γi, j)

Therefore, comparing the test statistic, ei, j with a prede-
fined threshold, λED

i, j , we can determine whether there is
a signal or not. That is, if ei, j ≥ λED

i, j |Hk=1, the PU signal is
present; otherwise, the PU signal is not present.

Proposition 2: In a system subject to NU given by a factor,
ρ, the decision threshold, λED

i, j at the ith CR-IoT user of the

jth AI-CC for a determined probability of false alarm and
detection, can be expressed, respectively, as

λED
i, j

(
p f

)
=

√
ρNsσ

2
n,i, j

(
Q−1

(
p f , j

)
+

√
ρNsσ

2
n,i, j

)
(7)

and

λED
i, j

(
pd

)
=

1√
Ns
ρ Kσ2

n,i, j

Q−1
(
pd, j

)
+

√
Ns

ρ
K

 , (8)

where K =
√

(1 + 2|hi, j|
2γi, j), pd, j ∈ pd, and p f , j ∈ p f . No-

tice that pd, and p f are constant for the sake of simplicity.

Proof. Please see Appendix B. □

Proposition 3: In an NU environment based on ED, the
minimal number of samples for a perfect detection of the
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PU signal depends on the target probability of detection,
false alarm and an NU factor. It can be expressed as

Nmin
s =

[√
ρKQ−1

(
p∗d, j

)
− ρ3/2Q−1

(
p∗f , j

)]2

[
ρ2 − K2]2 , (9)

where, Nmin
s denotes the minimal number of samples,

p∗d denotes the target probability of detection, and p∗f
denotes the target probability of false alarm.

Proof. Please see Appendix C. □

At the FC, all the local decision statistics of the AI-CCs
are combined with the local results to obtain a global
decision about the PU occupancy of the spectrum. The
sensing performance of the global decision is given by

pED
f ,FC =

1, if
∑MCC

j=1 p f , j < βED,

0, otherwise,
(10)

and

pED
d,FC =

1, if
∑MCC

j=1 pd, j ≥ βED,

0, otherwise,
(11)

where βED denotes the global decision threshold at the
FC where the value of βED depends on the number of
CR-IoT users participate in sensing.

3.2 Sum-rate analysis

Based on the global sensing performance, the sum-rate,
RED can be evaluated as

RED = P1pED
d,FCRPU + P0

(
1 − pED

f ,FC

)
RCR−IoT,i, j, (12)

where RPU denotes the channel achievable rate of the
PU link, and RCR−IoT,i, j denotes the achievable rate of the
CR-IoT link.

3.3 Energy consumption analysis

The average energy consumption of the conventional ED
technique with an NU environment can be measured [24]
as

EED
avg = Esτs + EtTt

[(
1 − pED

f ,FC

)
P0 +

(
pED

d,FC

)
P1

]
, (13)

where Tt denotes the transmission time, Es denotes the
energy consumed for the sensing time slot, and Et denotes
the energy consumed for the data transmission.

3.4 Network lifetime analysis

In the conventional ED technique with an NU environ-
ment [24], we can calculate the expected network lifetime
i.e., the maximum number of time slots that the CR-IoT
network can be powered by the battery as ηED = Ec

EED
avg

where Ec is the capacity of batteries in J.

3.5 Global error probability

The global error probability, pED
e at the FC can be esti-

mated with an NU factor [25, 24, 26], which is given
as

pED
e = P1

(
1 − pED

d,FC

)
+ P0pED

f ,FC, (14)

where pe is the global error probability.

3.6 Total time analysis

We can calculate the total time required by the conven-
tional ED technique with an NU environment as

τED
t = τdp + τs +

M∑
i=1

τr,i = τdp + τs +Mτr, (15)

where τED
t is the total sensing time in the conventional ED

technique τr is the reporting time of the each CR-IoT user
which is a fixed, and τdp is the decision processing time
which is a constant. Therefore, the total time, τED

t , is only
dependent on the number of CR-IoT users M. Notice
that, as M increases, the cooperative sensing performance
of the conventional ED technique for non-grouping is
enhanced but the overhead for cooperation increases.

4. PROPOSED ENHANCED KLD TECHNIQUE
FOR AN AI-ENABLED CR-IOT NETWORK

In this section, conventional spectrum sensing based on
KLD and the proposed enhancements are described. The
sum-rate, energy consumption, network lifetime, global
error probability, and total time analysis are discussed.

4.1 Spectrum sensing analysis

4.1.1 KLD technique without an NU environ-
ment

The conventional KLD technique is based on measur-
ing the asymmetry of two probability density functions
(pdf) [17, 15]. Specifically, the KLD value for two generic
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Figure 3 – Frame structure of a time slot for reporting sensing informa-
tion and packet transmission.

pdfs g(y) and f (y) is given by

KLD
(
g|| f

)
=

∫
g(y) × log

(
g(y)
f (y)

)
dy, (16)

where g(y) is pdf related with the sensed information
when the PU is present and f (y) is pdf related with the
sensed information when the PU is absent.

Thus, the KLD( j) value at the jth AI-CC for the con-
ventional KLD technique without considering an NU
environment, i.e., assuming ρ = 1 based on the means(
µ0,i, j(c), µ1,i, j(c)

)
, and variances

(
σ2

0,i, j(c), σ2
1,i, j(c)

)
is

KLD( j) = KLD
(
µ0,i, j(c), µ1,i, j(c), σ2

0,i, j(c), σ2
1,i, j(c)

)
=

1
2

log

σ2
0,i, j(c)

σ2
1,i, j(c)

 − 1 +

σ2
1,i, j(c)

σ2
0,i, j(c)

 +
(
µ1,i, j(c) − µ0,i, j(c)

)2

σ2
0,i, j(c)

where µ0,i, j(c) = Nsσ2
n,i, j, σ

2
0,i, j(c) = Nsσ4

n,i, j, µ1,i, j(c) =

Ns

(
1 + |hi, j|

2γi, j

)
σ2

n,i, j and σ2
1,i, j(c) = Ns

(
1 + 2|hi, j|

2γi, j

)
σ4

n,i, j
Here, c indicates the conventional KLD technique without
considering an NU environment.

4.1.2 The proposed enhanced KLD technique
for NU environments

Under the frame structure presented in Fig. 3, all the CR-
IoT users sense the PU’s channel during a sensing time
slot, τs, using the KLD technique for an NU environment(
ρ , 1

)
and they report to an FC using different report-

ing time slots due to a reduced channel overhead when
the number of CR-IoT users increases in the proposed
scheme. Based on the definition, the KLD technique
computes the difference between two probability distri-
butions in the same event space under two hypotheses
S (H0,H1), where: (i) the larger the KLD value means the
greater dissimilarity between two hypotheses, (H0,H1),
and (ii) if the KLD value is zero it means there is no dis-
similarity between the two hypotheses, (H0,H1). For this
approach, the AI-CC computes the measurement of the
dissimilarity between two Gaussian distributions under

two hypotheses, which excludes the deep fading CR-IoT
users due to the fact that the KLD value of hypothesis
H1 and H0 decreases as the strength value of the deep
fading effect increases. Therefore, the AI-CC makes the
local decision statistics with high robustness, so that the
KLD value between hypothesis H1 and H0 are as large as
possible.

The KLD representation of the two Gaussian distributions
of ei, j(H1), and ei, j(H0) in (4) with H0, and H1, respectively,
is required to be evaluated. Therefore, the means are
calculated under two hypotheses with the updated equa-
tions as

µk,i, j = µ̃k,i, j + ei, j(Hk), (18)

where µk,i, j is the updated mean value for the ith CR-IoT
user at the jth AI-CC for hypothesis k = {0, 1}. These
values are updated with the previous mean values, i.e.,
µ̃0,i, j = ρNsσ2

n,i, j and µ̃1,i, j = ρNsσ4
n,i, j. Moreover, ei, j is

the received energy under the respective hypotheses.
Similarly, the variances are updated based on the received
energy, ei, j,

σ2
k,i, j = σ̃

2
k,i, j + [ei, j(Hk) − µk,i, j]2, (19)

where σ2
k,i, j is the updated variance value for the ith CR-

IoT user at the jth AI-CC for hypothesis k = {0, 1}, which
is updated with the previous variance values, i.e., σ̃2

0,i, j =
Ns
ρ

(
1 + |hi, j|

2γi, j

)
σ2

n,i, j and σ̃2
1,i, j =

Ns
ρ

(
1 + |hi, j|

2γi, j

)
σ4

n,i, j, un-
der the two possible hypotheses.

After updating the mean and variance information on
behalf of all MCC CR-IoT users at the jth AI-CC, the
particular CR-IoT user measures the difference in the
mean and variance of the ith CR-IoT user energy statistics
from those of all other CR-IoT users. The average mean
values are measured on behalf of all the MCC CR-IoT
users based on the new mean and variance values, which
are given by (18) and (19), respectively. Thus, the average
means are

µ̄k,i, j =

∑MCC
i=1 µk,i, j − µk,i, j

(MCC − 1)
, (20)

where µ̄k,i, j is the average mean value of the energy
samples provided by all other users except the ith CR-IoT
user at the jth AI-CC due to exclusions of the deep fading
CR-IoT users under hypotheses k = {0, 1}. Furthermore,
we can calculate the average variances as

σ̄2
k,i, j =

∑MCC
i=1 σ

2
k,i, j − σ

2
k,i, j

(MCC − 1)
, (21)

where σ̄2
k,i, j are values of the energy samples provided

by all other users while ignoring the variance of the ith

CR-IoT user under hypotheses k = {0, 1}. That is, these
variances are obtained by excluding the ith CR-IoT user.
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From (20) and (21), we obtain MCC different statistics for
the channel sensing with different combinations of CR-
IoT users. Considering fading effects, some of the CR-IoT
users could experience significantly deep fading. In this
case, these CR-IoT users may report incorrect sensing
results. To mitigate such a problem, we employ multiple
decision statistics based on the various combinations of
the CR-IoT users which exclude the deep fading CR-IoT
users. Using this approach, we can prevent the occur-
rence of a global channel sensing error caused by a few
users under deep fading channels. Thus, after calculating
the means and variances, the jth AI-CC obtains the local
decision statistics based on the proposed enhanced KLD
technique as

KLD( j) = KLD
(
µ̄0,i, j, µ̄1,i, j, σ̄

2
0,i, σ̄

2
1,i, j

)
=

1
2
×

log

 σ̄2
0,i, j

σ̄2
1,i, j

 − 1 +

 σ̄2
1,i, j

σ̄2
0,i, j

 +
(
µ̄1,i, j − µ̄0,i, j

)2

σ̄2
0,i, j

Theorem 1: In an NU environment, the proposed en-
hanced KLD( j) value at the jth AI-CC is greater than the
conventional KLD( j). Since the harmful deep fading
CR-IoT user does not participate in the sensing as normal
CR-IoT users, the enhanced sensing performance is given
by

KLD( j) =
1
2

log

σ2
0, j

σ2
1, j


 + KLD( j). (23)

Proof. Please see Appendix D. □

Theorem 2: In the proposed enhanced KLD technique,
the KLD( j) value of hypothesis H1 and H0 at the jth AI-
CC is zero, i.e., it cannot distinguish between non-deep
fading and deep fading CR-IoT users, if all CR-IoT users
have the same SNR values

(
γ =

∑
γi, j

)
. Then, the sensing

performance at jth AI-CC is severely degraded due to the
harmful deep fading CR-IoT users participating in the
sensing as normal CR-IoT users so that

KLD( j) = KLD
(
µ̄0,i, j, µ̄1,i, j, σ̄

2
0,i, j, σ̄

2
1,i, j

)
= 0. (24)

Proof. Please see Appendix E. □

All the AI-CCs send their local decision statistics based
on the proposed enhanced KLD technique to the FC.
After that, the FC collects the local decision statistics
information and makes a global decision. The sensing
performance can be evaluated by (pKLD

f ,FC/p
KLD
d,FC ) at the FC

as

pKLD
f ,FC =

1, if
∑MCC

j=1 KLD( j) < βKLD

0, otherwise
(25)

and

pKLD
d,FC =

1, if
∑MCC

j=1 KLD( j) ≥ βKLD

0, otherwise
(26)

where βKLD denotes the global decision threshold at the
FC, here the value of βED depends on the number of
CR-IoT users participate in sensing.

In the proposed enhanced KLD sensing technique, the
probabilities of false alarm, and detection cannot be ob-
tained analytically because the distribution of the KLD is
not available. Therefore, numerical results are employed
for the evaluation of the sensing performance.

4.2 Sum-rate analysis

Using the frame structure and sensing performance de-
scribed above, the sum-rate can be determined consid-
ering some assumptions. First, let us consider that the
CR-IoT transmitter follows a round-robin scheduling.
Thus, in a non-false alarm event, the unlicensed CR-IoT
user can access the primary spectrum with the proba-

bility
(
1 − pKLD

f ,FC

)
, while in a detection event, the PU’s

transmission is not interfered with by the CR-IoT users.
Therefore, the sum-rate of both the PU and the CR-IoT
users is given by

RKLD = P1pKLD
d,FC RPU + P0

(
1 − pKLD

f ,FC

)
RCR−IoT, (27)

where RPU is the achievable rate of the PU link, RCR−IoT is
the achievable rate of the CR-IoT link and P0 & P1 are the
primary activity factors, which indicates the probability
of the PU’s transmission in a given frame. RPU and
RCR−IoT are defined as

RPU = log2 (1 + SNRPU) (28)

and

RCR−IoT =
T − τs

T

M∑
i=1

log2

(
1 + SNRCR−IoT,i, j

)
, (29)

where SNRPU and SNRCR−IoT,i denote the SNR of the PU’s
link and the ith CR-IoT link, respectively, and T denotes
the total frame length.

4.3 Energy consumption analysis

The average energy consumption of the proposed en-
hanced KLD technique for an NU environment can be
measured as

EKLD
avg = Esτs + EtTt

((
1 − pKLD

f ,FC

)
P0 +

(
pKLD

d,FC

)
P1

)
, (30)

where Tt is the transmission time, which is defined as
Tt = T − τs − τr − τdp, Es is the energy consumed for the
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sensing time slot, T is duration of the entire time slot, P0
and P1 denotes the probability of absence of the PU and
the probability of presence of the PU, respectively, and
Et is the energy consumed for the data transmission.

4.4 Network lifetime analysis

The expected network lifetime of the proposed enhanced
KLD technique is given by

ηKLD =
Ec

EKLD
avg

, (31)

where Ec is the capacity of battery in Jule.

4.5 Global error probability

The global error probability at the FC, denoted by pe, is
given by

pKLD
e = P1

(
1 − pKLD

d,FC

)
+ P0pKLD

f ,FC . (32)

4.6 Total time analysis

For proposed enhanced KLD technique, the total deci-
sion processing time, sensing time and reporting time,
denoted by τt, which comprises the decision processing
time, τdp, the sensing time, τs, and reporting time, τr,
increases with the number of CR-IoT users.

Proposition 4: The total time required by the proposed
enhanced KLD technique is

τKLD
t = τdp + τs +

M +M2
NCC

MNCC

 τr, (33)

where τr is the reporting time for the CR IoT users. While
the sensing time, τs, is shared by all CR-IoT users, the
reporting time, τr, is not shared. Therefore, the total
time, τt, depends on the number of the CR-IoT users at
each AI-CC, which is denoted by M and the number of
AI-CCs, MNCC.

Proof. Please see Appendix F. □

Notice that as M increases, the cooperative sensing per-
formance is enhanced but the overhead for cooperation
decreases by the grouping in the proposed enhanced KLD
technique. Therefore, we conclude that the overhead of
the proposed enhanced KLD technique is less than the
conventional ED and KLD techniques, i.e., MCC <M.

In Algorithm 1, the entire process for obtaining the global
decision at the FC is described where an AI-enabled

CR-IoT user computes the updated means (µ̄0,i, j, µ̄1,i, j)
based on line 8 and variances (σ̄2

0,i, j, σ̄
2
1,i, j) based on line 9,

respectively. Therefore, we concluded that the proposed
enhanced KLD technique excludes the deep fading CR-
IoT users.

Algorithm 1 The proposed enhanced KLD technique for
an NU factor (ρ > 1) for an AI-enable CR-IoT network.

Input: MAI−CC,MCC,Ns, fs,T, τs, and τr

Output: pKLD
f ,FC and pKLD

d,FC

1: Initialize Ns,MAI−CC,MCC
2: for j from MAI−CC do
3: for i from MCC do
4: for l from Ns do
5: Calculate: ei, j =

∑Ns
l=1 |yi, j

(
l
fs

)
|
2

6: end for

7: Set: ei, j ∼

ℵ
(
µ0,i, j(H0), σ2

0,i, j(H0)
)

ℵ

(
µ1,i, j(H1), σ2

1,i, j(H1)
)

8: Calculate: µ̄0,i, j =

∑MCC
i=1 µ0,i, j−µ0,i, j

(MCC−1) and µ̄1,i, j =

∑MCC
i=1 µ1,i, j−µ1,i

(MCC−1)
with µ0,i, j and µ1,i, j in (20)

9: Calculate: σ̄2
0,i, j =

∑MCC
i=1 σ2

0,i, j−σ
2
0,i, j

(MCC−1) and σ̄2
1,i, j =

∑MCC
i=1 σ2

1,i, j−σ
2
1,i, j

(MCC−1)

with σ2
0,i, j and σ2

1,i, j in (21)

10: Calculate: KLD( j) = 1
2

log
(
σ̄2

0,i, j

σ̄2
1,i, j

)
− 1 +

(
σ̄2

1,i, j

σ̄2
0,i, j

)
+

(
µ̄1,i, j−µ̄0,i, j

)2

σ̄2
0,i, j


11: end for
12: if

∑MNCC
j=1 KLD( j) < βKLD then

13: Set: pKLD
f ,FC = 1

14: else
15: Set: pKLD

f ,FC = 0
16: end if
17: if

∑MNCC
j=1 KLD( j) ≥ βKLD then

18: Set: pKLD
f ,FC = 0

19: else
20: Set: pKLD

d,FC = 1
21: end if
22: end for

The complexity given by the execution time of conven-
tional ED and conventional KLD schemes are the same,
which is defined by

∑M
i=1 C0 = C0 × M, where C0 is a

constant that denotes the computing cost. Therefore, the
Big O time complexity of the conventional ED and KLD
schemes are O(M). On the other hand, the execution
time of the proposed enhanced KLD scheme is defined as∑M

i=1
∑MAI−CC

j=1 C1 = C1×M×MAI−CC, where C1 is a constant
that denotes the computing cost of instructions from lines
1-22 of the proposed algorithm. Therefore, the Big O time
complexity of the proposed enhanced KLD scheme based
on Algorithm 1 is O(M ×MAI−CC).
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5. SIMULATION RESULTS AND DISCUS-
SION

The performance of the proposed enhanced KLD tech-
nique is evaluated through numerical simulations com-
pared to other conventional techniques using the Monte
Carlo method. The simulations have been executed using
MATLAB, and the results are obtained from the average
of 40 000–80 000 independent simulation runs. Moreover,
the simulation parameters used are listed in Table 1.

Table 1 – Simulation parameters

Parameter Value
Total number of CR-IoT users MCC 4
Number of samples Ns [20, 25, 30]
Total number of AI-CCs MAI−CC 3
NU factor ρ [1.00:.01:1.03]
Total number of CR-IoT users in a network M 15
Primary activity factors, P0 & P1 0.5
Sampling frequency fs 300 KHz
Average SNR γ –6 dB
Sensing time slot τs 300 ms
Probability of the absence of the PU P0 0.5
Reporting time slot for CR-IoT users, and AI-
CCs τr

5 ms

Probability of the presence of the PU P1 0.5
SNR at the PU link SNRPU 10 dB
Energy consumption for the sensing duration
Es

1 J

SNR at the PU and CR-IoT link SNRCR−IoT,i 7 dB
Energy consumption for the data transmission
duration Et

3 J

Global decision threshold β 3
Capacity of the battery Ec 300 J

Figure 4 – The ROC curves for the proposed enhanced KLD technique
and conventional ED and KLD techniques.

The sensing performance of the proposed enhanced KLD
technique in comparison with the conventional ED tech-
nique, with and without NU, and conventional KLD
without NU is plotted in Fig. 4 for γi, j = −4 dB. First, it
can be seen that all the techniques obtain greater sensing
accuracy as the number of samples increases. Focusing on
the proposed enhanced KLD technique with an NU factor
ρ > 1, it can be seen that it achieves greater detection prob-

ability than all other conventional techniques except the
conventional KLD technique assuming ρ = 1, i.e., with-
out an NU factor. That is, the conventional ED technique
suffers a degradation of the detection probability under
NU. Furthermore, the proposed enhanced KLD tech-
nique with an NU factor ρ > 1 achieves lower detection
probability in comparison with the conventional KLD
technique in absence of NU, i.e., ρ = 1. As demonstrated
in Theorem 2, the proposed enhanced KLD technique
cannot distinguish between non-deep fading and deep
fading CR-IoT users because all CR-IoT users have the
same or fixed SNR values, i.e., γ1 = γ2 = · · · = γMCC = −4
dB. Thus, notice that the harmful deep fading CR-IoT
users participate in the CSS as normal CR-IoT users,
which severely degrades the sensing performance.

The conventional KLD technique without an NU factor
and the ED technique, with or without an NU factor,
cannot exclude the deep fading CR-IoT users. As a
consequence, their ROC curves degrade severely subject
to NU. On the other hand, the proposed enhanced KLD
technique with an NU factor is able to identify the deep
fading CR-IoT users, and then, exclude them, which
leads to a better sensing performance with increasing
SNR values as shown in Fig. 5(a). Comparing the sensing
gain at the FC, it can be seen that the proposed enhanced
KLD technique can detect the primary spectrum with a
detection probability of 86% compared to 69.5%, 57% and
97% obtained for the conventional ED technique without
an NU factor, the conventional ED technique with an NU
factor, and the conventional KLD technique without an
NU factor, respectively, as listed in Table 2.

Table 2 – Sensing performance at the FC for an AI-enabled CR-IoT
network for, p f = 0.2 from Fig. 4.

Sensing performance
pd

Ns = 20 Ns = 25 Ns = 30

Conventional ED
technique [ρ = 1]

0.600 0.645 0.695

Conventional
ED technique
[ρ = 1.01, 1.02, 1.03]

0.530 0.550 0.570

Conventional KLD
technique [ρ = 1]

0.900 0.940 0.970

Proposed enhanced
KLD technique [ρ =
1.01, 1.02, 1.03]

0.820 0.840 0.860

The ROC curves at the FC for the probability of detection
and false alarm are shown in Fig. 5 for an SNR of the
PU signal at the CR-IoT users from −13 dB to −3 dB
under Rayleigh fading and shadowing conditions [27].
In Fig. 5(a), it can be seen that the sensing performance,
as probability of detection, of the proposed enhanced
KLD technique with an NU factor ρ = 1.02 considerably
improves the performance of all other considered tech-
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(a) Probability of detection, pd.

(b) Probability of false alarm, p f .

Figure 5 – Probability of detection and probability of false alarm curves 
vs SNR at an FC centre of the proposed enhanced KLD technique in 
comparison with conventional ED and KLD techniques under a variety
of the fading channels, where Ns = 30, ρ = [1, 1.02]) and γi,j = [−13 : −3] dB.

niques. It is worth noticing that the NU factor, which is 
plotted for ρ = 1 and ρ = 1.02, on the ED technique 
drastically degrades the sensing performance. Even 
though an NU factor ρ = 1.02 can be considered large, 
the proposed enhanced KLD technique still achieves a 
better sensing performance. Therefore, we can conclude 
that the proposed enhanced KLD technique achieves a 
better sensing performance in comparison with the 
conventional techniques. Similarly, the false alarm of the 
proposed enhanced KLD technique with and without 
an NU factor ρ = 1.02 is lower when compared to other 
conventional techniques with an NU factor as is shown 
in Fig. 5(b).

The sum-rate for the conventional and proposed en-
hanced techniques depending on the probability of false 
alarm of a CR-IoT user is shown in Fig. 6. The sum-rate

Figure 6 – Sum-rate vs probability of false alarm of CR-IoT user in the
proposed enhanced KLD technique, and the conventional ED and KLD
techniques when the number of samples Ns = [20, 25, 30], an NU factor
ρ = [1, 1.01, 1.02, 1.03], and a primary activity factor α = 0.7.

of the proposed enhanced technique outperforms all
other conventional techniques in the entire range of the
probability of false alarm. Furthermore, notice that the
sum-rate curve is a quasi-concave function for the proba-
bility of false alarm. For Ns = 30 samples and ρ = 1.03
the sum-rate of the proposed enhanced KLD technique
is equal to 2.49 bps/Hz, outperforming the conventional
ED technique without an NU factor, the conventional ED
technique with an NU factor and the conventional KLD
technique without an NU factor that achieve 2.24 bps/Hz,
2.08 bps/Hz and 2.7 bps/Hz, respectively. It can be also
seen that the conventional ED technique cannot realize an
acceptable sensing performance with a small number of
samples. To achieve a high probability of detection, firstly,
the conventional ED technique requires a larger num-
ber of samples, i.e., a longer sensing period. Therefore,
the proposed enhanced KLD technique realizes a higher
probability of detection because the KLD technique per-
forms well even with a small number of samples. It is
worth noticing that short sensing intervals are essential
in AI-enabled CR-IoT networks wherein a power saving
operation is the most significant issue for a longer lifetime
of the CR-IoT devices.

Until now, it has been shown that the proposed enhanced
KLD technique achieves a greater sum-rate compared to
the conventional ED techniques except the conventional
KLD. This issue has been already discussed in the pre-
vious section in Theorem 1. Thus, in order to validate
Theorem 1 through simulations, in Fig. 7(a). We plot the
sum-rate for non-fixed SNR values for each CR-IoT in
the following range γi, j = [−13 : 1 : −3] dB. It can be
seen that, under this assumption, the proposed enhanced
KLD technique achieves a better sensing performance
over the conventional KLD technique without an NU
factor.

Fig. 7(b) shows the energy consumption for the proposed
enhanced KLD technique with an NU factor ρ = 1.02 in
comparison with the other considered techniques under
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(a) Sum-rate of the CR-IoT users.

X -6

Y 1.9357

(b) Energy consumption of the CR-IoT users. Es = 1, Et = 3 P0 = P1 = 0.5

Figure 7 – Sum-rate curves and energy consumption vs SNR. Number 
of sample Ns = 30, γi,j = [−13 : 1 : −3] dB and ρ = [1, 1.02]. Channel 
subject to the shadowing fading.

shadow fading. Recall that the average energy consump-
tion is a function of both the probability of detection 
and false alarm. It can be seen that the proposed KLD 
technique reduces considerably the energy consumption. 
Focusing on the SNR value γ = −6 dB, the proposed 
enhanced KLD technique consumes 1 J, while the con-
ventional KLD technique without an NU factor, the con-
ventional ED technique without a NU factor and the 
conventional ED technique with an NU factor consume 
1.2 J, 1.85 J and 4.2 J, respectively.

The expected network lifetime of the proposed enhanced 
KLD technique with an NU factor ρ = 1.02 is shown in 
Fig. 8(a) compared to all the considered techniques. It 
can be seen that the proposed enhanced KLD technique 
outperforms the expected network lifetime for all other 
techniques. For an SNR equal to γ = −6 dB, it achieves 
an expected network lifetimes of about 200 rounds, while 
this value is below 165 for the KLD technique without an 
NU factor. Moreover, both conventional ED techniques,

(a) Expected network lifetime. Es = 1, Ec = 300, Et = 3 P0 = P1 = 0.5

(b) Global error probability. P0 = P1 = 0.5

Figure 8 – Expected network lifetime and global error probability
vs SNR. Number of sample Ns = 30, γi, j = [−13 : 1 : −3] dB and
ρ = [1, 1.02]. Channel subject to the shadowing fading.

with and without an NU factor, are below 100 rounds.
Therefore, the proposed enhanced KLD technique allows
us to prolong the expected network lifetime compared
with the other conventional techniques.

The global error probability of the proposed enhanced
KLD technique and other conventional techniques with
and without an NU factor is shown in Fig. 8(b). It can be
seen that the proposed KLD technique with NU obtains
the lowest global error probability. Moreover, note that
the conventional ED technique with a NU factor obtains
greater global error probability than the conventional
ED technique without an NU factor. We can conclude
that the proposed enhanced KLD technique with an NU
factor allows us to reduce the global error probability.

© International Telecommunication Union, 2025

ITU Journal on Future and Evolving Technologies, Volume 6, Issue 1, March 2025 

86



6. CONCLUSION AND FUTURE WORK

In this work, we propose an enhanced KLD technique 
that makes use of an NU factor. The probability of de-
tection, i.e., the sensing performance, of the proposed 
enhanced KLD technique outperforms the conventional 
techniques under no fading, fading and shadow fading 
channel conditions. Moreover, it provides an enhanced 
sum-rate compared to the conventional techniques. From 
an energy efficiency perspective, the proposed enhanced 
KLD technique with an NU factor obtains a lower energy 
consumption compared to conventional techniques. The 
network lifetime and the global error probability also 
improve for the proposed enhanced KLD technique. Fur-
ther work will look at analyzing the sensing performance 
and sum-rate using the reporting framework while con-
sidering the interference to the PU link. In addition, 
a dynamic threshold of the proposed enhanced KLD 
technique will also be considered.

7. PROOF OF PROPOSITION 1

In an NU environment, the mean of the ith CR-IoT user 
at the jth AI-CC, µ1,i, j under the hypothesis H1 is given as

µ1,i, j =
Ns

ρ

(
|hi, j|

2p2
x + σ

2
n,i, j

)
=

Ns

ρ


1 +

|hi, j|
2p2

x

σ2
n,i, j

 σ2
n,i, j


=

Ns

ρ

(
1 + |hi, j|

2γi, j

)
σ2

n,i, j.
(34)

Similarly, the variance of the ith CR-IoT user at the jth AI-
CC, σ2

1,i, j under the hypothesis H1 in an NU environment
[28] is given as

σ2
1,i, j =

Ns

ρ

(
E|x(l)|4 + E|ni, j(l)|4 − (|hi, j|

2p2
x − σ

2
n,i, j)

2
)
. (35)

If the PU signal is a complex M̄-ary Pulse Amplitude Mod-
ulation (M-PAM) signal [29], E|x(l)|4 =

(
3 − 6

5
M̄2+1
M̄2−1

)
|hi, j|

4p4
x.

Thus, considering a BPSK modulated PU signal, we set
M̄ = 2, and therefore, E|x(l)|4 = |hi, j|

4p4
x. Also, we con-

sider the CSCG noise so that E|ni, j(l)|4 = 2σ4
n,i, j. Finally,

considering this definitions, we can rewrite (35) as

σ2
1,i, j =

Ns

ρ
|hi, j|

4p4
x + 2σ4

n,i, j −
Ns

ρ

(
|hi, j|

4p4
x − 2|hi, j|

2p2
xσ

2
n,i, j + σ

4
n,i, j

)
=

Ns

ρ

(
σ4

n,i, j + 2|hi, j|
2p2

xσ
2
n,i, j

)
=

Ns

ρ

1 + 2|hi, j|
2 p2

x

σ2
n,i, j

 σ4
n,i, j

=
Ns

ρ

(
1 + 2|hi, j|

2γi

)
σ4

n,i, j.
(36)

Now, substituting the value of the PU signal, p2
x = 0

in (34), we can calculate the mean of the ith CR-IoT user in

jth AI-CC,µ0,i, j under hypothesis H0 in a NU environment
as µ0,i, j = ρNsσ2

n,i, j. Also, substituting the value of the
PU signal, p2

x = 0 in (35), we can calculate the variance
of the ith CR-IoT user at the jth AI-CC, σ2

0,i, j under the
hypothesis H0 in a NU environment as

σ2
0,i, j = ρNs

(
E|ni, j(l)|4 − (σ2

n,i, j)
2
)

= ρNs

(
2σ4

n,i, j − σ
4
n,i, j

)
= ρNsσ

4
n,i, j.

(37)

8. PROOF OF PROPOSITION 2

Equation (5) can be rewritten as

λED
i, j√

ρNsσ2
n,i, j

= Q−1
(
p f , j

)
+

√
ρNs. (38)

Thus, we can calculate the decision threshold, λED
i, j at the

ith CR-IoT user of the jth AI-CC using (38),

λED
i, j =

√
ρNsσ

2
n,i, jQ

−1
(
p f , j

)
+ ρNsσ

2
n,i, j. (39)

Similarly, we can rewrite (6)) as

λED
i, j√

Ns
ρ Kσ2

n,i, j

= Q−1
(
pd, j

)
+

√
Ns
ρ K2

K
. (40)

Thus, we can calculate the decision threshold, λED
i, j at the

ith CR-IoT user of the jth AI-CC using the (40) as

λED
i, j√

Ns
ρ Kσ2

n,i, j

=

Q−1
(
pd, j

)
+

√
Ns
ρ K2

K

λED
i, j

=

√
Ns

ρ
Kσ2

n,i, j

Q−1
(
pd, j

)
+

√
Ns

ρ
K

 ,
(41)

where K =
√

(1 + 2|hi, j|
2γi, j).

9. PROOF OF PROPOSITION 3

Putting the decision threshold, λED
i, j value from (39) in

(41)), and after some mathematical rearrangement, Ns =[
√
ρKQ−1(pd, j)−ρ

3
2 Q−1(p f , j)

]2

[ρ2−K2]2 . Thus, the minimum number of

samples can be expressed as in (9).
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KLD( j) =
1
2
×

log


(∑MCC

i=1 σ2
0,i, j−σ

2
0,i, j

)
(MCC−1)(∑MCC

i=1 σ2
1,i, j−σ

2
1,i, j

)
(MCC−1)

 − 1 +


(∑MCC

i=1 σ2
1,i, j−σ

2
1,i, j

)
(MCC−1)(∑MCC

i=1 σ2
0,i, j−σ

2
0,i, j

)
(MCC−1)

 +
(∑MCC

i=1 µ1,i−µ1,i

MCC−1 −

∑MCC
i=1 µ0,i−µ0,i

MCC−1

)2

∑MCC
i=1 σ2

0,i, j−σ
2
0,i, j

(MCC−1)

 (42)

KLD( j) =
1
2

log
σ2

0, j

σ1, j

 + 1
2

log


1 −

σ2
0,i, j

MCCσ2
0, j

1 −
σ2

1,i, j

MCCσ2
1, j

 − 1 +
1
2


MCCσ2

1, j

(
1 −

σ2
1, j,i

MCCσ2
1, j

)
σ2

0, j

(
1 −

σ2
0, j,i

σ2
0, j

)



+
1
2


(
MCCµ1, j

(
1 − µ1,i, j

MCCµ1, j

)
−MCCµ0, j

(
1 − µ0,i, j

MCCµ0, j

))2

(MCC − 1) ×MCCσ2
0, j

(
1 −

σ2
0,i, j

MCCσ2
0, j

)


=
1
2

log

σ2
0, j

σ1, j


 + KLD( j) (43)

10. PROOF OF THEOREM 1

From (22), the following equation can be derived

KLD( j) =
1
2

log

 σ̄2
0,i, j

σ̄2
1,i, j

 − 1 +

 σ̄2
1,i, j

σ̄2
0,i, j

 +
(
µ̄1,i, j − µ̄0,i, j

)2

σ̄2
0,i, j

 .
Based on the updated means and variance in (20) and
(21), we can rewrite (44) as shown in (42). After some
mathematical rearrangement, the expression (43) is ob-
tained.

11. PROOF OF THEOREM 2

In a system subject to NU, the AI-CC cannot distinguish
between the normal, i.e., non deep fading, CR-IoT users
and users that suffer deep fading CR-IoT since the deep
fading strength (Xµ,Xσ) is approximately the KLD value
under the hypothesis H1 and H0. As a result, the pro-
posed enhanced KLD technique with an NU factor as not
enhanced the sensing performance by the jth AI-CC for
deep fading CR-IoT users in an NU environment with
an NU factor.

From (22), we can rewrite it again as

KLD( j) =
1
2

log

 σ̄2
0,i, j

σ̄2
1,i, j

 − 1 +

 σ̄2
1,i, j

σ̄2
0,i, j

 +
(
µ̄1,i, j − µ̄0,i, j

)2

σ̄2
0,i, j

 .
We can rewrite (45) based on the deep fading effect

strength (Xµ,Xσ) as

KLD( j) =
KLD( j)
(Xµ,Xσ)

=
KLD( j)[

Xµ
(H0,H1)
−−−−−→

(
µ̄0 = µ̄1

)
,Xσ

(H0,H1)
−−−−−→

(
σ̄2

0 = σ̄
2
1

)]
=

1
2

log

 σ̄2
0

σ̄2
0

 − 1 +

 σ̄2
0

σ̄2
0

 + (
µ̄0 − µ̄0

)2

σ̄2
0

 = 0,
(46)

where the i, j indexes have been omitted for the sake of
clarity.

12. PROOF OF PROPOSITION 4

In an NU environment with an NU factor, we can calculate
the total time required of the proposed enhanced KLD
technique as

τKLD
t = τdp + τs +

M
MNCC∑
i=1

τr,i +

MNCC∑
j=1

τr, j

= τdp + τs +
( M

MNCC

)
τr +MNCCτr

= τdp + τs +
( M

MNCC
+MNCC

)
τr

= τdp + τs +

M +M2
NCC

MNCC

 τr.

(47)
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