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The advent of advanced satellite observations and the rapid evolution of Artificial Intelligence (AI) 

technologies have led to a fundamental shift in disaster management. These technologies enhance 

precise prediction, closer monitoring, and more efficient and effective responses to natural disasters. 

This study introduces AI-based satellite image analysis solutions throughout the disaster 

management cycle: prevention, preparedness, response, and recovery. Satellite imagery, captured 

through various channels, resolutions, and orbits, plays a crucial role throughout the entire disaster 

management cycle. This is because satellites have the advantage of capturing broad areas and can 

also image disaster regions that are inaccessible to humans due to secondary risks. We utilize high-

resolution geostationary satellite imagery for real-time hazard monitoring and forecasting and 

synthetic Electro-Optical (EO) satellite imagery derived from Synthetic Aperture Radar (SAR) 

observations for monitoring flooded areas under cloudy conditions. EO satellite imagery is 

photographic-like images of Earth’s surface using visible and infrared sensors, enabling detailed 

observation and analysis for applications such as mapping, surveillance, and disaster monitoring. 

And SAR gives high-resolution images using radar signals, capable of operating in all weather 

conditions and through cloud cover or darkness, making it ideal for monitoring and mapping. 

Additionally, AI-based damage assessment solutions facilitate the rapid detection and classification 

of building damage, enabling a quick response and reconstruction. Considering these technologies 

by government agencies, NGOs, and other stakeholders is essential, particularly in developing 

countries with limited surface observation capabilities and specialists. With these advanced 

technologies, AI-based disaster management solutions are expected to contribute significantly to the 

Early Warning for All initiative. 

Keywords – Damage detection, deep learning, disaster response, satellite imagery, weather 

forecasting 

1. INTRODUCTION  

The field of disaster management has experienced a major transformation due to the latest 

advancements in satellite observation and artificial intelligence technologies. These 

technological advancements improve each phase of the disaster management cycle, prevention, 

preparedness, response, and recovery, by creating opportunities for more precise prediction, 

more detailed monitoring, and more efficient and effective responses to natural disasters.   

Recent studies [1, 2, 3] have introduced the application of AI techniques in analyzing data related 

to disasters to enhance disaster management throughout its cycle. These AI techniques enable 

rapid analysis of big data, effectively speeding up the decision-making process. For example, 

real-time monitoring using AI helps make data-driven decisions about resource allocation and 

operational strategies. In addition, AI’s capability to quickly assess disaster damage accelerates 

the onset of recovery [8, 9, 10].  Furthermore, it also leads to the development of AI-driven 

models [4, 5, 6, 7] that can predict disasters using various observational data.  

The effectiveness and precision of AI approaches in disaster management rely significantly on 

the type and quality of data. Satellites, with their unique ability to capture extensive areas in a 

single image and access regions that are otherwise inaccessible to humans, particularly during 

disasters, are indispensable for effectively monitoring and forecasting catastrophic events. 

Moreover, observations across diverse spectral ranges yield scientifically meaningful insights 

relevant to conditions before and after disasters. 

https://creativecommons.org/licenses/by-nc-nd/3.0/igo/
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In recent years, the development in the field of satellites and 

image-analysis techniques has significantly enhanced the 

capability to manage major disasters and humanitarian crises. 

The International Charter Space and Major Disasters [11] 

and Copernicus Emergency Management Service [12] have 

crucial roles in providing timely and effective satellite-based 

disaster response. However, despite worldwide collaboration, 

there is still room for improvement in delivering ready-to-

use information products, speeding up data delivery, and 

enhancing coordination among stakeholders due to the 

increasing number of satellite images and the specialized 

expertise required to analyze data from various sensors.  

In this context, utilizing AI techniques to analyze satellite 

imagery becomes crucial. AI can effectively process and 

analyze these vast datasets, making it easier for users to gain 

rapid and accurate insights from satellite imagery. This 

ensures faster and more efficient disaster preparedness and 

response, making critical information accessible to all, 

regardless of their technical expertise. 

This study will explore how satellites can be utilized at 

different stages of the disaster management cycle and 

identify which satellites are most suitable for these purposes. 

Additionally, we will examine which deep learning 

techniques (a subset of AI) can be employed at each stage, 

with a particular focus on reducing the impact of heavy 

rainfall-related floods and tropical cyclones. By integrating 

satellite technology with advanced AI methods, this study 

aims to develop a comprehensive framework, present case 

studies, and offer practical recommendations for future 

applications. This approach enhances disaster management 

efficiency, responsiveness, and resilience, contributing to 

ongoing global efforts in this field. 

2. DATA AND METHODS 

Disaster management aims to reduce potential losses from 

hazards and prepare for rapid recovery after a disaster (Fig.1). 

It is divided into a total of four stages: pre-disaster stages, 

prevention and preparedness, and post-disaster stages, 

response and recovery [13]. Prevention aims to minimize the 

impact of disasters through measures such as vulnerability 

analyses and public education. Preparedness involves the 

government’s planning, implementing warning systems, and 

conducting emergency training. Response efforts focus on 

reducing the hazards a disaster creates with activities like 

search and rescue operations. Finally, recovery seeks to 

return the community to normalcy, utilizing grants and 

medical care to aid the process. All stages are repeated for 

each disaster, ensuring that preparation helps respond 

appropriately to the next disaster.   

Each stage requires different satellite imagery specifications 

and applications for effective disaster management. In the 

prevention stage, disaster risk maps can be achieved using 

satellite imagery across various spectral bands. For instance, 

multispectral and hyperspectral images, using non-visible 

wavelengths, can be used to assess flood risks, identify 

landslide-prone areas, and map hazard zones. During the 

preparedness stage, satellite imagery is essential for 

optimizing evacuation solutions. High-resolution images can 

be used to map out evacuation routes, identify suitable 

locations for shelters, and assess the structural integrity of 

buildings and other critical infrastructure. In the response 

stage, real-time monitoring and rapid damage assessment are 

crucial. High-resolution satellite imagery provides detailed 

information on the extent of damage, helping to organize 

response efforts and allocate resources efficiently. In the 

recovery stage, satellite imagery is used to monitor and 

assess the progress of recovery efforts. It helps evaluate the 

effectiveness of reconstruction activities and ensure that 

rebuilding efforts are on track. 

 

Figure 1– Disaster management cycle (source: UNOCHA) 

2.1 Types of satellites 

2.1.1 GEO and LEO  

Among the satellites that observe the Earth, meteorological 

satellites can be divided into Geostationary Orbits (GEOs) 

and Low Earth Orbits (LEOs), including polar orbits.  

Geostationary orbit satellites are located at relatively high 

altitudes of approximately 36 000 km. Therefore, they can 

observe almost half of the Earth's surface at any given time. 

This extensive coverage allows these satellites to provide 

continuous monitoring and valuable data for applications 

such as weather forecasting, environmental monitoring, and 

disaster management. Currently, operating meteorological 

satellites include GK2A (South Korea), GOES-17, 18 (USA), 

Himawari-9 (Japan), Meteosat-11 (EU), and FY-2H (China). 

They have a spatial resolution of 0.5 to 2 km and mainly use 

visible and infrared wavelength bands. Various bands allow 

for the observation of water vapor, clouds, atmospheric 

motion, extreme weather, etc. 

LEO satellites typically orbit at altitudes between 160 to 

1 000 km, according to the definition by the European Space 

Agency (ESA). These satellites are capable of capturing very 

high-resolution (1 km – 3 m) images due to their lower 

altitudes, which allow for more detailed observation of the 

Earth's surface. This capability makes them valuable in 
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various fields, particularly in disaster detection and 

management. Sentinel-1, operated by the ESA, uses radar 

sensors to monitor changes on the Earth's surface regardless 

of weather conditions, making it useful for tracking the trail 

of floods, earthquakes, and landslides. The Landsat series, 

managed jointly by the US Geological Survey (USGS) and 

NASA, provides multispectral images to detect and analyze 

disasters such as wildfires, floods, and droughts. Terra and 

Aqua, part of NASA's Earth Observing System (EOS), 

utilize the MODIS sensor for global disaster monitoring, 

covering events like fires, floods, and hurricanes. 

PlanetScope, operated by Planet Labs, is a constellation of 

small satellites providing frequent and detailed imagery for 

disaster assessment and response. 

Polar-orbiting satellites, a particular type of LEO satellite, 

cross over the South and North Poles and rotate around the 

Earth. This movement allows them to scan the entire surface 

of the planet as the Earth rotates beneath them. An example 

of such a satellite is NOAA-20 (JPSS-1), operated by the 

National Oceanic and Atmospheric Administration (NOAA) 

as part of the Joint Polar Satellite System (JPSS). NOAA-20 

offers global coverage twice daily, which is essential for 

monitoring weather patterns, environmental changes, and 

natural disasters. Sentinel-3, operated by the ESA as part of 

the Copernicus Programme, is another example of a polar-

orbiting satellite. Sentinel-3 focuses on ocean and land 

monitoring, providing data on sea surface topography, sea 

and land surface temperature, and ocean and land color. 

2.1.2 EO and SAR  

Electro-Optical (EO) satellites and Synthetic Aperture Radar 

(SAR) satellites are essential for monitoring and studying the 

Earth's surface. EO satellites use optical sensors to capture 

high-resolution images (less than 1 km) in various 

wavelengths of light, including visible and infrared, which 

are similar to photographs and intuitive to interpret. However, 

EO sensors are limited by weather conditions (e.g., cloud 

cover and fog) and daylight. In contrast, SAR satellites are 

active sensors that emit their signals and then measure the 

reflected signals bouncing back from the Earth's surface. 

These satellites use microwaves to penetrate clouds, 

allowing them to capture detailed images regardless of 

weather conditions or the time of day. 

Examples of EO satellites include Sentinel-2 and Landsat-8. 

Sentinel-2, part of the ESA's Copernicus Programme, 

contains multispectral instruments that capture high-

resolution optical images across 13 spectral bands. These 

images are used for land monitoring, vegetation, soil, and 

water cover, as well as urban areas. Landsat-8, a joint 

mission by NASA and the USGS, provides multispectral and 

thermal imagery widely used for environmental monitoring, 

agriculture, forestry, and disaster response. 

Examples of SAR satellites include Sentinel-1 and 

RADARSAT-2. Sentinel-1, also part of ESA's Copernicus 

Programme, carries C-band synthetic aperture radar 

instruments, providing all-weather, day-and-night radar 

 

1 WMO EWS (https://wmo.int/topics/early-warning-system) 

imagery for applications such as land deformation 

monitoring, flood mapping, and maritime surveillance. 

RADARSAT-2, operated by the Canadian Space Agency 

(CSA), carries a C-band SAR instrument used for ice 

monitoring, agriculture, disaster management, and defense. 

Table 1 – Satellite details (source: WMO OSCAR) 

Satellite 

Name 

Orbit/ 

Type 

Resoluti

on 
Cycle 

Providing 

Agency 

Sentinel-1 LEO/SAR 4–80 m 5 days ESA 

Sentinel-2 LEO/EO 10–60 m 10 days ESA 

Sentinel-3 

LEO/ 

multi-

instrument 

0.3–2 km 1-2 days ESA 

Terra/ 

Aqua 
LEO/EO 

0.25–1 

km 

Twice/ 

day 
NASA 

PlanetScope LEO/EO 3–5 m daily Planet Labs 

Landsat-8 LEO/EO 15-30 m 16 days NASA 

RadarSat-2 LEO/SAR 3–100 m 1 week CSA 

GK2A 
GEO/Multi

-spectral 
0.5-2 km 

Every  

10 min 
KMA 

Himawari-9 
GEO/Multi

-spectral 
0.5–2 km 

Every  

10 min 
JMA 

GOES-17,18 
GEO/Multi

-spectral 
0.5–2 km 

Every  

15 min 
NOAA 

Meteosat-11 
GEO/Multi

-spectral 
1-4.8 km 

Every  

15 min 

EUMETSA

T 

FY-2H 
GEO/Multi

-spectral 

1.25–5 

km 

Every  

30 min 
CMA 

2.2 Early warning system and disaster risk 
reduction 

2.2.1 Prevention and preparedness 

2.2.1.1 Necessity of early warning systems 

According to the WMO, about 30% of people in the world 

are still not covered by early warning systems. An ‘Early 

Warning System (EWS)’ is an integrated system of hazard 

monitoring, forecasting, communication, and preparedness 

activities to take timely action to reduce disaster risks [14]. 

EWS is known as the most effective tool to mitigate damage 

from climate change-related disasters. If an early warning is 

issued within 24 hours, damage can be reduced by 30%1 . 

However, most people who are vulnerable to disasters and 

do not receive early warnings live in Small Island 

Developing States (SIDS), Least Developed Countries 

(LDCs), and Africa. In those countries, the coverage of EWS 

is minimal, and the availability of weather observation 

systems is also severely limited. Traditional disaster 

forecasting relies on radio, television, sirens, etc., which are 

likely to not work properly in disaster situations or be 

transmitted immediately after a disaster. These countries 

have few meteorological observation facilities and trained 

personnel, making it difficult to make timely and accurate 

forecasts. Extreme weather events and related disasters, such 

as heat waves, floods, and storms, are increasing around the 

world, exacerbated by climate change [15]. Unmitigated 

https://wmo.int/topics/early-warning-system
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climate change is estimated to reduce global GDP by more 

than 20% by 2100 [16]. Damage can occur more 

immediately and significantly, especially in countries where 

EWS are unavailable.  

In response to this necessity, the UN announced the Early 

Warning for ALL (EW4ALL) initiative to improve the end-

to-end and Multi-Hazard EWS (MHEWS) across the four 

essential pillars (Fig. 2) at COP27 (2022)2  : disaster risk 

knowledge, observations and forecasting, dissemination and 

communication, and preparedness to respond. The final goal 

of this initiative is to cover everyone everywhere by 2027. 

They also encourage the use of technologies like AI and 5G 

networks to support the attainment of the initiative 

 

Figure 2 – Early Warning for ALL value chain diagram  

(source: WMO) 

2.2.1.2 Real-time monitoring and forecasting of 
hazards 

The primary advantage of using AI-based models in early 

warning tasks is that they significantly reduce computational 

time while maintaining higher accuracy. These models can 

analyze data from various sources, such as satellite imagery, 

weather station data, and social media feeds, providing a 

comprehensive and data-driven approach to early warning 

and disaster prediction. This capability is particularly 

important because disasters can arise from complex and 

interrelated causes. Utilizing diverse data sources allows for 

a more holistic understanding and better prediction of such 

events, enhancing the ability to respond effectively to 

various disaster scenarios. Satellites were traditionally used 

solely to monitor real-time conditions and to improve the 

accuracy of the initial conditions for numerical weather 

prediction models. However, with the advancement of 

artificial intelligence, technologies have been developed that 

enable the prediction of future events using satellite data 

itself. To leverage these advantages, we have developed 

high-resolution AI analytics services for disaster monitoring 

 

2 WMO EW4ALL (https://earlywarningsforall.org/site/early-warnings-all) 

and forecasting: WeatheO_Rain, WeatheO_Cloud, and 

WeatheO_Typhoon. 

WeatheO_Rain uses high-resolution (2 km) geostationary 

satellite imagery3 to generate AI-based radar rain products, 

enabling effective precipitation monitoring in areas lacking 

weather radar coverage. Weather radars are crucial for 

monitoring disasters related to heavy rainfall, but they are 

expensive to install and operate, require experts for data 

processing, and can only be installed on land. Due to these 

limitations, attempts have been made to monitor heavy 

rainfall using geostationary satellites, but their accuracy has 

been low, limiting their utility. However, the deep learning 

approach [17] used for WeatheO_Rain has significantly 

improved the accuracy of satellite-derived rainfall data, 

demonstrating approximately twice the accuracy 

performance compared to the level 2 products currently 

provided by operational geostationary satellites, allowing for 

more effective and continuous monitoring of rainfall-related 

disasters over large areas. Additionally, it is free from the 

geographical constraints of ground-based weather 

observation systems, making it possible to estimate rainfall 

in ocean and mountain regions. 

Fig. 3 shows the comparison of observation and AI-

generated results. Fig. 3(a) shows the rain rate from radar 

observation, (b) from a geostationary satellite product, and 

(c) generated by the WeatheO_Rain model. The figures 

indicate that radar observations are considered ground truth 

but have a limited observation area. In contrast, satellite-

derived products can cover larger areas but tend to 

overestimate rainfall. Our product combines the advantages 

of both radar and satellite data. The results of WeatheO_Rain 

show a high correlation with radar data in terms of rain 

patterns and intensity, even in areas where radar coverage is 

limited. 

 

Figure 3 – Rain rate (mm/hr) at 2022-09-05 00:00 UTC, Typhoon 

Hinnamnor case. (a) is the radar product from a ground-based 

weather radar system, (b) is the satellite- level 2 product from the 

Korean geostationary satellite, GK2A, and (c) is our result from 

WeatheO_Rain. 

3 GK2A/AMI data used in this study is available on 

https://datasvc.nmsc.kma.go.kr/datasvc/html/main/main.do?lang=

en (accessed on 2 January  2025). 

(a) KMA radar (b) GK2A (c) WeatheO-Rain
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Figure 4 – A screenshot of the WeatheO_Rain demo 

Fig. 4 is a screenshot of the WeatheO_Rain interface for the 

Asia-Pacific region. WeatheO_Rain demonstrates the ability 

to provide radar-like information seamlessly, even in areas 

without radar coverage, without any spatial discontinuities. 

WeatheO_Rain was initially developed for East Asia but has 

since been extended and validated in Africa and South 

America. Fig. 5 shows the result in Africa with the European 

geostationary satellite, Meteosat Second Generation (MSG). 

In September 2023, when the heaviest flooding in a decade 

occurred in Libya, the region lacked adequate weather radar 

systems to observe the approaching rain systems. However, 

with WeatheO_Rain, we were able to generate reliable 

monitoring maps of rain rate and storm location. 

 

Figure 5 – (a) weather radar coverage (bright area) in Africa4 , 

and (b) rain rate at 2023-09-11 00:29 UTC, Mediterranean Storm 

Daniel case, at Libya region. WetheO-Rain can generate radar-like 

rain products without radar observation systems. 

WeatheO_Cloud predicts the future frames of geostationary 

satellite imagery up to 20 hours in advance. The deep 

learning approach enables predictions of future atmospheric 

states using only past observation data. This product employs 

the Deterministic Guidance Diffusion Model (DGDM) [18], 

which combines AI-based deterministic and probabilistic 

forecasting methods. The model's results effectively 

demonstrate its ability to capture cloud movements, 

formations, and dissipation. Meanwhile, traditional methods, 

such as extrapolation techniques, are useful for short-term 

cloud movement predictions but have limitations in 

forecasting cloud development or dissipation.   

 

 

 

4 Image is cropped from Saltikoff, Elena, et al. (2019) 

 
Figure 6 – Comparison of satellite imagery and WeatheO_Cloud 

results. (a) is infrared 10.5 µm channel images from GK2A, and 

(b) is WeatheO_Cloud predicted results. We input ten satellite 

images (2022-09-06 00-09 UTC) and predict 20 satellite images 

(2022-09-06 10 UTC - 2022-09-07 05 UTC). Bright and gray 

areas mean diverse types of clouds. 

Similarly, physics-based models simulate atmospheric 

processes but cannot resolve clouds at the necessary scale, 

leading to parameterization, which limits detailed cloud 

information. However, with deep learning technology, it is 

Libya

(a) Weather radar coverage (b) WeatheO-Rain with MSG
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possible to observe detailed cloud development and 

movement using high-resolution satellite imagery at 2 km. 

Recently, geostationary satellites with resolutions up to 250 

m have been utilized, raising expectations that learning from 

high-resolution cloud information will enhance our 

understanding of cloud physics. Additionally, because deep 

learning can integrate and learn from diverse datasets, 

incorporating various cloud observations is expected to 

further improve accuracy.  

WeatheO_Cloud can provide timely warnings, enabling 

better preparedness and response strategies to mitigate the 

impacts of severe weather events, including rapidly 

developing convective clouds and intense thunderstorms. 

This improvement ensures more accurate and effective early 

warning systems, enhancing overall disaster response 

capabilities.  

Fig. 6 shows the forecasting results from the 

WeatheO_Cloud model. Compared with (a) GK2A satellite 

imagery, (b) WeatheO_Cloud results show similar cloud 

movements to the ground truth. Previous video prediction 

models [19, 20] could predict future imagery to some extent 

but struggled to capture the generating or dissipating 

processes of cloud cells. Consequently, the total amount of 

cloud predicted by previous models decreased as prediction 

time increased. Our model alleviates this limitation, 

successfully predicting the development process of cloud 

cells in the middle of the Philippine Sea in terms of location, 

size, and intensity. 

 

Figure 7 – Satellite imagery prediction results by 

WeatheO_Cloud (b) compared with GK2A’s infrared images (a). 

The case is Typhoon Hinnamnor. The results show satellite 

images from 2022-09-05, 1200 – 1800 UTC, predicted at 3-hour 

intervals based on GK2A IR 10.5 µm data from 0200 – 

1100 UTC. The red line indicates the typhoon track according to 

IBTrACS . 

We also leveraged WeatheO_Cloud to track the typhoon 

trajectory shown in Fig. 7. In the satellite imagery predicted 

for up to 20 hours, the center of the typhoon appears to be 

correctly aligned with the red line, which represents the best 

typhoon track. In other words, we can determine the 

typhoon's path and development up to 10 hours in advance. 

This capability could provide a basis for decision-makers to 

support quick and informed decisions. The quantitative 

performance results of this prediction model can be found in 

[18]. 

 

WeatheO_Typhoon provides future typhoon track forecasts 

for up to 72 hours. This service uses the LT3P model [7], 

which introduces a novel approach by utilizing real-time 

Unified Model (UM) data instead of relying on reanalysis 

data (ERA5), which is not available in real time. It features 

a physics-conditioned encoder to accurately capture 

atmospheric dynamics and a bias correction mechanism to 

improve the accuracy of UM data. This model uses 

prediction results from numerical weather prediction models 

as 2D map-type image inputs while simultaneously 

integrating 1D best track information (longitude and latitude) 

of typhoons. This approach demonstrates the advantage of 

deep learning in effectively combining and leveraging two 

distinct types of data, a capability that was not feasible with 

previous physics-based models.  

Fig. 8 shows the prediction results of the LT3P model for 

four typhoon cases (Kalmaegi, Lingling, Danas, and Faxai) 

occurring in the Asia-Pacific region. Our model’s prediction 

(pink line) shows a similar direction and speed to the best 

track data (green line) over a 72-hour typhoon trajectory. As 

seen in Fig. 8, the LT3P model does not follow the errors 

commonly observed in most data-driven methodologies and 

produces results similar to numerical weather prediction 

model outcomes by constraining physical characteristics 

based on meteorological background fields. Moreover, in the 

stochastic figures, the spread of the predictions is narrow, 

which means that the results are consistent and reliable. 

 

Figure 8 – Typhoon trajectory prediction results by the LT3P 

model. The ensemble figure shows each model’s trajectory 

prediction and the difference in final distance with ground truth 

(green).  The stochastic figure maps the prediction probabilities 

generated by the LT3P model [7]. 

The WeatheO series is based on deep learning methods and 

requires minimal computational capacity and time, making it 

highly efficient and accessible. Each model in the series can 

be used independently, but when combined, they 

significantly enhance their usability and effectiveness. These 

models can predict precipitation by utilizing future satellite 

imagery, enabling precise forecasting of rainfall patterns. 

Furthermore, they can identify areas prone to typhoon 

damage, providing crucial information for disaster 

preparedness and response. Since geostationary satellites 

offer continuous and wide-reaching coverage, this capability 

is particularly valuable for monitoring dynamic weather 

systems and providing real-time data essential for accurate 

prediction. In addition, geostationary satellites are expected 

to ensure comprehensive Earth observation, effectively 

eliminating spatial constraints in weather forecasting and 

bolstering the EW4ALL initiative. 
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2.2.2 Response and recovery  

Through the WeatheO series and weather satellite data, we 

can predict various disasters in advance and mitigate their 

impact. For instance, WeatheO_Rain and 

WeatheO_Typhoon play vital roles in forecasting and 

preparing for disasters. Additionally, high-resolution 

satellite imagery is crucial for effective disaster response and 

recovery, providing detailed insights that are essential for 

assessing post-disaster conditions. 

While optical EO satellites are highly valuable, their use can 

be limited under certain conditions, such as cloudy weather 

or at night time. In these scenarios, SAR satellites are 

indispensable due to their ability to penetrate clouds and 

function even without sunlight. However, analyzing SAR 

data can be complex, and AI-based methodologies like 

SAR2EO offer significant advantages by simplifying data 

interpretation and extracting actionable insights. 

To enhance disaster management at all stages, we are 

integrating high-resolution satellite imagery from SAR and 

EO sensors with AI capabilities into the WeatheO platform. 

This comprehensive approach enables rapid and effective 

responses during and after disasters, minimizing damage and 

improving recovery efforts. 

2.2.2.1 Enhancing satellite imagery utilization for 
timely damage detection 

Following a disaster, swift responses are crucial to minimize 

damage. The response process aims to promptly and 

effectively deploy resources such as medical aid, equipment, 

and shelters. A critical initial step involves the timely 

detection of disaster-affected areas. Satellites are highly 

useful for this purpose, assessing damage over large areas at 

a national or city scale, but not all satellites provide high-

resolution images down to tens of centimeters, which is 

typically provided by companies such as MAXAR or Planet 

(in the private sector). This level of detail is essential for 

thorough assessments but can be costly to acquire. 

 

Figure 9 –  SuperX result.: On the left is the original satellite 

image, the middle shows the result after applying SuperX, and the 

two images on the far right depict extracted roads and buildings; 

the upper image is based on the original image, while the lower 

one is derived from the SuperX-enhanced image. 

An economical alternative involves leveraging publicly-

available satellite data, such as from Sentinel satellites. The 

main limitation of Sentinel data is its 10-meter resolution, 

which lacks detail. In such cases, AI-based super-resolution 

techniques can be invaluable. We started our SuperX service 

to provide enhanced satellite images with high quality. 

Enhanced resolution allows for finer details to distinguish 

the level of damage and for better edge detection to 

accurately assess the extent of the damage. As shown in 

Fig. 9, we can detect more roads and buildings through the 

image processed by SuperX. This is well-suited for 

comparing conditions before and after a disaster. 

Furthermore, a significant portion of the Earth’s surface is 

obscured by thick clouds, which can make it difficult to 

detect damage such as floods and landslides that occur in 

such conditions. In this situation, SAR imagery, which is 

available in all weather and time conditions, is utilized. 

However, SAR imagery often contains impediments to 

interpretation, like speckle noise, which significantly 

extends the time required to interpret the data without 

additional EO imagery. To solve this problem, we propose a 

SAR2EO model based on generative AI, which can 

effectively convert SAR into EO imagery [21]. This method, 

which is intended to easily and quickly detect inundated 

areas during flood events, generates photographic-like EO 

images (Synthetic EO) from SAR noise using a diffusion 

model. The results can then be passed on to governments or 

NGOs, which can be used to prioritize and make decisions. 

SAR2EO technology can be similarly utilized to identify 

damages such as landslides and typhoons as well as floods 

caused by thick cloud cover accompanying heavy rain. 

Fig. 10 shows the input pair of EO and SAR imagery, as well 

as the synthetic EO imagery generated by our SAR2EO 

model. The water system area is clearly visible in the SAR 

imagery (b), but it is obscured by clouds in the EO imagery 

(a). Using EO imagery alone makes it difficult to identify a 

flooded area until the clouds clear. Therefore, the synthetic 

EO (SynEO) image generated with the SAR2EO model (c) 

can help decision-makers understand disaster situations 

more rapidly and accurately. 

 

Figure 10 – SAR2EO result. (a) EO satellite imagery, (b) SAR 

satellite imagery, and (c) SynEO (Synthetic EO) image generated 

from the SAR image in (b). The SAR image in (b) has been 

preprocessed to denoise from the original SAR imagery [21]. 

While SAR2EO facilitates large-scale detection of disaster 

impacts, a more detailed assessment is often required to 

understand the specific damage to individual structures. This 

is where the Building Damage Assessment (BDA) model 

plays a critical role. SAR2EO identifies regions impacted by 

disasters, such as floods or landslides, while BDA provides 

granular insights into the structural damage of buildings 

within those regions. Together, these technologies offer a 

comprehensive disaster response framework, enabling 

governments and NGOs to allocate resources efficiently and 

prioritize recovery efforts. By integrating outputs from 

SAR2EO and BDA, decision-makers can achieve a more 

holistic understanding of both the broader disaster impacts 

(a) Original satellite imagery (b) Results of applying SuperX (c) Road/Building segmentation results

Original

SuperX
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and localized damage, ensuring a more effective and timely 

disaster response. 

2.2.2.2 Rapid damage detection methods using AI  

Landslides, tropical cyclones, and earthquakes can lead to 

the collapse of buildings and roads, including major 

infrastructure such as schools, hospitals, government offices, 

and major roads like highways. In disaster situations, 

accessing affected areas can be challenging due to additional 

risks and the destruction or inaccessibility of major roads. In 

these cases, satellites can effectively capture images of the 

disaster regions. Moreover, satellites are highly effective in 

covering wide areas impacted by disasters in a single shot, 

offering various resolutions ranging from 30 cm to several 

meters. This capability makes them an invaluable tool for 

comprehensive disaster assessment and response.  

For the analysis and assessment of the impact of disasters 

with satellite imagery, AI can be utilized to rapidly process 

and analyze the data, significantly speeding up the evaluation 

process. Until now, damage assessment results typically took 

several days to weeks to obtain, mainly relying on surveys, 

reports from residents in the affected areas, and manual 

assessments by insurance companies. These traditional 

methods involve on-site investigations of damage and 

casualties, which can lead to secondary risks and they are 

time-consuming. Devoid of associated risk after a disaster, 

using satellite imagery and AI for rapid damage assessments 

will enable quick reconstruction and mitigation in disaster-

affected areas. From disaster alerts to satellite image capture, 

AI-based analysis, and result dissemination, the entire 

process can be automated without human intervention, 

thereby enhancing the efficiency and effectiveness of the 

response. 

In these contexts, recent studies suggest AI-based Building 

Damage Assessment (BDA) methods for detecting buildings 

damaged by disasters and classifying them according to the 

degree of damage [22, 23, 24]. Fig. 11 shows the result of 

our BDA model [22], applied to the aftermath of a tornado 

in the USA using high-resolution optical imagery. In [22], 

we exploit transfer learning with a simple bagging method to 

solve the data imbalance problem. Using this model, we can 

detect the most damaged places in near-real time and, in 

combination with a road segmentation and change detection 

algorithm [22, 23], obtain information on the most effective 

evacuation routes. We have also tested this model for 

wildfires and earthquakes and confirmed that as long as 

imagery of the damaged buildings is available, the analysis 

results can be obtained within minutes. This information can 

be used by local governments, NGOs, and relief teams for 

rapid decision-making. 

 

Figure 11 – Detection results of the BDA model. Each color mark 

shows the degree of building damage: blue – no damage, cyan – 

minor damage, green – major damage, and pink – destroyed. The 

image in the upper section results from applying the BDA model 

after the hurricane. The left column below shows satellite images 

before the hurricane, and the right column shows post-disaster 

images. 

3. FUTURE RESEARCH AND 
CONCLUSIONS 

We have introduced solutions that leverage satellite data and 

AI methods across the entire disaster management cycle: 

prevention, preparedness, response, and recovery. Each 

stage utilizes different satellite types with various channels, 

resolutions, and orbits. With the abundance of satellite 

imagery, AI-based models significantly enhance disaster 

management by reducing computational time and improving 

accuracy. Our AI analytics services, including 

WeatheO_Rain, WeatheO_Cloud, and WeatheO_Typhoon, 

utilize high-resolution geostationary satellite imagery for 

real-time monitoring and forecasting of hazards, ensuring 

timely and accurate early warning systems. Additionally, our 

SAR2EO model converts SAR imagery into synthetic EO 

images, providing clear views of flooded areas even under 

cloud cover. AI-based Building Damage Assessment (BDA) 

models can detect and classify building damage in near-real 

time, facilitating quick reconstruction and mitigation. We 

have validated these services for various disasters, 

confirming that analysis results can be obtained within 

minutes. These solutions have the potential to significantly 

enhance the efficiency of disaster responses by reducing 

information gaps and saving critical time. 

For even faster analysis, there is a need to develop processes 

that enable the rapid analysis of satellite imagery directly on 

board the satellite, with results promptly transmitted to 

ground stations. This would significantly reduce the time lag 

between image capture and data utilization, further 

enhancing the efficiency of disaster response. Subsequently, 

it is imperative to verify the explainability and reliability of 

AI-based model predictions. Given that disaster prediction is 

directly related to the potential for loss of life and property, 

these models should not be used in isolation but should be 

developed to support the decision-making process of skilled 

experts such as weather forecasters and rescue teams. To this 

end, we employ generative AI models to evaluate various 

scenarios, thereby providing probability maps that enable 

experts to focus solely on reliable prediction outcomes 
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[7, 18]. This approach ensures that AI-generated insights are 

integrated with expert knowledge, leading to more robust 

and trustworthy disaster management strategies. 

Traditionally, disaster alerts to remote areas have been 

achieved using community radio stations. However, with the 

recent increase in mobile device penetration, warnings can 

now be transmitted rapidly through mobile applications. 

Integrating AI-based disaster management solutions with 

app-based alerting systems can significantly enhance the 

effectiveness of disaster response. This app-based approach 

not only facilitates timely disaster notifications but also 

provides critical information on response procedures, 

evacuation routes, first aid stations, and other essential 

services. Also, by incorporating features that allow users to 

share and report their situations, mobile applications can 

become interactive platforms for collecting user information. 

This user-generated data can be invaluable for verifying and 

improving the accuracy of satellite analysis.  

Finally, while technological advancements are crucial, these 

solutions must be actively adopted by government agencies, 

local governments, NGOs, and other stakeholders involved 

in disaster prevention. AI and satellite-based solutions can 

address the gaps in human resources and observational 

equipment that are particularly prevalent in developing 

countries. By cooperating with various international funds 

(e.g., Green Climate Fund and World Bank), international 

organizations (World Meteorological Organization and 

International Telecommunication Union), and advanced 

solutions, the Early Warning System for All initiative can be 

successfully achieved.  
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