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This research presents an innovative approach and methodology to conflict susceptibility mapping 

by integrating machine learning technologies with geospatial data analysis. Utilizing public datasets 

from Somalia, the study experiments with applying machine learning models such as random forest 

classifier, support vector machine classifier, and gradient boosting classifier models to predict areas 

susceptible to conflict. The methodology includes data preprocessing, model training, execution, and 

validation, employing various software and machine learning techniques. The random forest 

classifier emerged as the most accurate model through experiments with the machine learning 

models, demonstrating the potential of using machine learning to enhance our understanding of 

conflict dynamics. The study highlights the critical role of selecting appropriate conditioning factors 

and the need to continuously refine methodologies to improve prediction accuracy. By providing a 

practical method for conflict susceptibility mapping, this research contributes to the broader field of 

peace and security research, which directly contributes to Sustainable Development Goal 16 and 

explores the potential of using machine learning to support peace, justice, and strong institutions, 

and contribute to global peace and security. 
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1. INTRODUCTION  

In 2015, the United Nations General Assembly set a global agenda by adopting the 17 

Sustainable Development Goals (SDGs) to ensure prosperity, environmental sustainability, and 

social equity by 2030. These goals address today's most pressing challenges, including poverty, 

inequality, climate change, environmental issues, peace, and justice. The SDGs build upon the 

success and lessons learned from the Millennium Development Goals (MDGs), aiming to 

address the root causes of these challenges and foster an inclusive approach involving all 

stakeholders: governments, the private sector, civil society, and individuals worldwide [1, 2]. 

The SDGs envision a future where no one is left behind, highlighting the interdependencies of 

social, economic, and environmental sustainability and the collective effort required to achieve 

these ambitious objectives. 

Sustainable Development Goal 16 (SDG 16) focuses on promoting peaceful and inclusive 

societies for sustainable development, providing access to justice for all, and building effective, 

accountable, and inclusive institutions at all levels. This goal underscores the importance of 

peace, security, justice, and strong institutions for sustainable development. It acknowledges that 

without a peaceful environment and a justice system that serves all members of society equally, 

achieving the other SDGs would be challenging. The SDG 16 targets are to significantly reduce 

all forms of violence, protect children from abuse, exploitation, trafficking, and violence, 

promote the rule of law and ensure equal access to justice, develop effective, accountable, and 

transparent institutions, provide responsive, inclusive, and representative decision-making, and 

strengthen the participation of developing countries in the institutions of global governance. The 

realization of SDG 16 is crucial for creating and maintaining the social and political stability 

necessary to implement initiatives across all other SDGs [3, 4].  
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Applying machine learning technology to SDG 16 offers 

innovative pathways to enhance peace, security, and justice. 

Machine learning models can analyze vast datasets to 

recognize patterns, predict the onset of conflicts, monitor 

elections for fairness, and identify patterns of corruption and 

human rights abuses, thus providing actionable insights for 

policymakers and law enforcement [5, 6]. However, based 

on comprehensive research on the identification of conflict 

susceptibility, the application of machine learning 

technologies to predict the likelihood of conflict onset [7] 

and, in general, SDG 16 is limited. The research has revealed 

that machine learning technology is promising in predicting 

conflicts; machine learning models can process vast datasets, 

recognize complex patterns, and generate reliable 

predictions, making them instrumental in conflict analysis 

and prevention [7].  

Machine learning technologies offer nuanced insights into 

conflict dynamics by integrating socio-economic, 

governance, environmental, and political factors into 

predictive models. This approach not only enhances the 

understanding of conflict triggers but also aids in developing 

targeted strategies for conflict mitigation and prevention. As 

the accuracy of these predictive models relies on the quality 

of data and the selection of conditioning factors, the study 

advocates for continuing improvement of methodologies to 

improve prediction accuracy. In essence, leveraging machine 

learning in the context of conflict analysis represents a 

forward-thinking method to identify conflict-prone areas and 

contribute to global peace and security. This research 

identified a set of conflict susceptibility factors that can be 

instrumental in accurately predicting conflict locations. 

However, there are no universal condition factors that can 

apply to conflicts. Given the diverse factors influencing 

conflict susceptibility, the study argues for a tailored 

approach to developing machine learning models. The 

unique aspects and drivers of conflicts in various regions 

should be considered for more precise and relevant 

predictions [7]. 

The research "Identifying Conditioning Factors and 

Predictors of Conflict Likelihood for Machine Learning 

Models: A Literature Review" [7] served as a foundational 

reference for this study. We further explored the 

methodology of developing machine learning models to 

create a susceptibility map of Somalia to identify areas 

susceptible to conflict. 

2. PUBLIC SOMALIA DATASETS 

This research uses a case study methodology, focusing on 

public Somalia datasets. Somalia was selected due to its 

geopolitical significance and the complexity of its ongoing 

conflict. The case study provides insights into various 

conflict dynamics, the involvement of numerous parties and 

actors, the significant humanitarian needs, and the security 

implications for the Somali people.  

We conducted in-depth research on primary historical 

conflict datasets, which are also used to train and validate the 

models in this document. These datasets include the Armed 

Conflict Location & Event Data Project (ACLED) [42] and 

the Uppsala Conflict Data Program (UCDP) [43]. Both 

datasets provide detailed information on conflict events, 

actors, and their interactions across various geographical 

regions and timelines.  

The ACLED data is a widely used dataset that tracks and 

reports conflict events and provides data on each event's 

location, timing, type, and severity. The ACLED also 

includes information on the actors involved and their 

affiliations and interactions. This dataset covers state and 

non-state actors, allowing for a thorough examination of the 

complexities of conflicts. Various scholars and academic 

institutions, international organizations such as the United 

Nations and its Agencies, Funds and Programmes (UNAFP), 

International Committee of the Red Cross (ICRC), European 

Union agencies, and other government and inter-government 

institutions, think tanks, as well as media news agencies use 

the ACLED database [8] for their research and analysis of 

historic and ongoing events in different parts of the world.  

The UCDP is another prominent dataset that systematically 

collects and categorizes data on violence, armed conflicts, 

and related events worldwide. The UCDP includes 

information on conflict events, actors, fatalities, and conflict 

dynamics. The UCDP data is combined with the ACLED 

data to provide a more comprehensive understanding of 

global conflict patterns. 

These two data sources are used for training and validating 

machine learning models to understand, predict, and map 

conflict susceptibility in different areas in Somalia. The data 

provided by the ACLED is event-based, and the UCDP 

provides data that focuses on significant wars or conflicts 

and the number of victims associated with a conflict. Both 

the ACLED and UCDP datasets are used for conflict analysis. 

While they share the same aim of documenting violent 

conflicts, they use different methodologies and levels of 

granularity. The ACLED covers political violence and 

protest events and the UCDP covers individual incidents of 

violence, both fatal and non-fatal. In terms of timeline and 

update aspects, the ACLED is near-real time, and the UCDP 

datasets are updated yearly. Overall, the ACLED and UCDP 

provide invaluable insight into conflict dynamics, and they 

are used complementarily to gain a comprehensive 

understanding of violent conflicts [7]. 

Leveraging the information provided by the ACLED and 

UCDP, researchers develop models that take into account a 

wide range of conflict-related factors from the local to the 

global level. These datasets enable the development of 

training and evaluation of our machine learning models.  

Furthermore, we explored a set of conditioning factors that 

play a crucial role in providing context for conflict events. 

Different factors may lead to armed conflicts in different 

countries. Some conditions that increase the likelihood of 

conflicts include the inability of governments to provide 

essential governance and the protection of their populations 

[9]. Various publications refer to such factors that could 

potentially lead to conflicts. Armed conflicts are still among 

the biggest threats to human societies, and identifying the 

underlying pro-cases and potential drivers is an area of 

intense scientific research [10]. The possible factors that 
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enhance the conflict have been identified in the scientific 

research literature, including poverty [11], income inequality 

[12], economic struggle [13], weak governance [14], or pre-

existing history of conflicts [15], financial assets from 

natural resource exploitation [25], ethnic fractionalization 

[16, 17], vulnerability to natural disasters [18] and climate 

change [19]. However, after years of research, there has been 

no agreement among scholars regarding whether and how 

climate change influences the risk of conflict [19]. By 

incorporating these datasets into our analysis, we want to 

identify the factors that influence conflict dynamics and 

enhance the interpretability of our machine learning models.  

The idea of conceptualizing conflict conditioning factors was 

derived from applying conditioning factors in determining 

landslide susceptibility mapping [21]. This approach uses 

conditioning factors, such as topographical, geological, and 

environmental variables, to identify areas prone to landslides. 

Similarly, in the context of conflict susceptibility, 

conditioning factors such as socio-political dynamics, 

economic disparities, and environmental factors can be 

applied to locate areas susceptible to conflicts. Many 

complex factors contribute to the occurrence of armed 

conflicts. Conditions that enhance the probability of conflicts 

include governments' inability to provide effective 

governance and safeguard their populations [9]. This study 

used available public datasets from various public sources, 

including several international organizations, UNAFPs, and 

government agencies. 

2.1 Challenges of using Somalia datasets  

The exploration of publicly available data for this research 

presented its challenges. First, there is limited availability of 

reliable data [20]. This is a common challenge in conflict 

zones like Somalia, where data collection can be dangerous. 

Moreover, available data often contains inconsistencies, 

particularly in the completeness of geographical coordinates 

for data points, such as in datasets for health facilities and 

school locations. Further, the data collection projects or 

processes are not collected in Somalia due to a lack of 

statistical capacity and financial or security constraints [20]. 

These challenges collectively complicated the process of 

data collection and validation. Despite these challenges, the 

data gathered from public sources for Somalia provided 

valuable insights into the conflict dynamics in the country, 

and it is necessary to keep these limitations in mind when 

interpreting the findings.  

The temporal period selected for the Somalia data in this 

research is from 2000 to 2023. This time frame was chosen 

to ensure temporal data consistency across all datasets used 

in our study. Aligning the temporal boundaries of the 

different datasets can minimize potential discrepancies in the 

entire collection of datasets. This selection balances 

capturing an adequate amount of data and ensuring that the 

data is as recent and relevant as possible. Thus, the chosen 

period significantly enhances the integrity and robustness of 

our analysis and findings. 

 

 

If this methodology and process can be developed and 

successfully applied in an exceptionally data-challenging 

situation like Somalia, these processes could be even more 

efficient in other regions, where data is more available, 

reliable, and consistent. Applying these processes and 

methods would provide more precise and accurate results. 

Therefore, this research contributes to our understanding of 

conflict dynamics in Somalia and provides a methodological 

framework that can be adapted to other geographical areas. 

This adaptability contributes to the broader field of conflict 

analysis and geospatial data science. 

3. CONFLICT SUSCEPTIBILITY 
METHODOLOGY 

Conflict susceptibility mapping is a methodology that 

leverages machine learning technology to predict areas at 

risk of conflict by analyzing diverse conditioning factors, 

including socio-economic, political, environmental, and 

other relevant variables. The conflict susceptibility mapping 

methodology concept is presented in Fig. 1; the concept 

includes four main components: data preprocessing, 

deployment and execution of machine learning models, 

development of conflict susceptibility maps, and validation 

of machine learning models.   

Data preprocessing is one of the important steps for machine 

learning applications [22] to conflict susceptibility mapping. 

Conflict susceptibility mapping relies on a broad spectrum 

of public unstructured data sources, providing data in various 

data models and formats, using different spatial and temporal 

resolutions and scales, often containing inconsistencies, 

missing values, and noise. Data preprocessing aims to 

transform this raw data into a clean, standardized format that 

machine learning models can easily process and provide 

accurate prediction results. By transforming the datasets to a 

consistent data format structure such as GeoTIFF and 

bringing the data grids to a uniform resolution and WGS84 

coordinate reference system, we ensure the compatibility of 

data from different data sources across various spatial and 

temporal data resolutions. Furthermore, preprocessing also 

involves dealing with missing data, a critical aspect of 

improving the quality of the input data [23]. Without such 

preprocessing steps, the machine learning algorithms may 

produce misleading results, leading to unreliable conflict 

susceptibility mapping results.   
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Figure 1 – Concept of conflict susceptibility mapping 

methodology. 

To split conflict data between training and validation, we 

selected the standard principle 80/20 [24, 25]. Data division 

into 80% for training and 20% for validation. This concept is 

used for model development and is called the 80/20 rule. 

80% of the data is allocated for the training dataset, allowing 

the model to learn from a larger portion of the historical 

dataset. That provides enough information to understand the 

data patterns and relationships between data points. The 

training portion is necessary for the model to develop 

predictive capabilities. The 20% of the data is allocated for 

model validation for the model performance testbed. Using 

the 80/20 rule, we can validate machine learning models and 

ensure they are trained and tested for accuracy, reliability, 

and effectiveness. 

Regarding the application of data splitting processes, we 

considered two options: splitting data during the 

preprocessing stage, as provided in Fig. 1. This approach is 

typically conducted before the execution of the machine 

learning model and involves segmentation of the dataset 

using QGIS software. The second option, which we have 

used in our case, consists of splitting the data dynamically 

while executing the machine learning model using Python 

code. This method offers flexibility and integration with the 

modeling process. This splitting process during model 

execution ensures that our models are trained and tested on 

current conflict historical data.  

We selected a Random Forest Classifier (RFC), a Support 

Vector Machine (SVM) classifier, and a Gradient Boosting 

Classifier (GBC) for the development of our conflict 

susceptibility mapping models. Because each machine 

learning technique has its specific strengths and weaknesses, 

we also aim to identify which algorithm is better suited to the 

particular requirements of conflict susceptibility mapping. 

Throughout the research process, it was noted that the 

selection of machine learning algorithms applied to the 

conflict susceptibility mapping machine learning model 

depends on the data quality, their resolution, the complexity 

of the system, and the required degree of accuracy from the 

outcome of the predictions and, also, to the available 

computing power.  

Model validation is essential in our methodology to ensure 

that the conflict susceptibility mapping models have the 

required accuracy and reliability. We used several metrics 

and validation techniques, each designed to assess different 

aspects of model performance. Among these, the Area Under 

the Receiver Operating Characteristic Curve (AUC-ROC) 

and Precision Recall Curve (PRC) are crucial metrics used 

in binary classification tasks [26]. In addition to AUC-ROC, 

we also employed metrics like accuracy, Precision, Recall, 

and F1 score. Accuracy represents the proportion of total 

predictions the model got correct, while precision (also 

known as the positive predictive value) measures the 

proportion of correct identifications among all predicted 

positives. Recall is the proportion of actual positives that 

were correctly identified. The F1 score, which is the 

harmonic mean of precision (P) and recall (R), balances 

these two metrics, making it particularly useful in cases of 

class imbalance. Equation (1) represents the mathematical 

formula of the F1 score: 

 𝐹1 = 2 ×
𝑃×𝑅

𝑃+𝑅
                 (1) 

The conflict susceptibility mapping methodology provides 

flexibility and adaptability, independent of specific 

algorithms, models, or datasets. This approach allows for the 

customization of the methodology based on conflicts' unique 

context and geographical location. The conflict susceptibility 

mapping concept provides the ability to select from various 

machine learning models. We used RFC, SVM classifier, 

and GBC for our case study. These algorithms can be 

replaced with other algorithms depending on the technical 

requirements and historical conflict and conditioning factors 

data. Each model brings specific strengths and can be 

selected based on factors like data complexity, required 

prediction accuracy, and available computing power. 

4. SOFTWARE AND MACHINE 
LEARNING TECHNIQUES 

In this research, we employed different tools and software to 

execute different tasks for data preprocessing, data research, 

development, execution, and validation of machine learning 

models.  

For data exploration and cleansing tasks, we employed both 

R [28] and RStudio [31] for their statistical computation 

capabilities. R programming language provides statistical 

techniques such as linear and nonlinear modeling, classical 

statistical tests, time-series analysis, classification, clustering, 

graphs, and chart plotting. RStudio is an Integrated 

Development Environment (IDE) for R. It provides a user-

friendly interface for using R and developing R scripts. 

These tools are used to verify public data quality and assist 

in identifying the patterns otherwise invisible during the data 

review. R is free and open-source software for statistical 

computing and the development of graphs. R software is 

provided under the GNU General Public License (GPL) [32]. 
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In conjunction, the RStudio integrated development 

environment (IDE) operates under the GNU Affero General 

Public License version 3 (AGPL v3) [33]. AGPL v3 is an 

open-source license that promotes the sharing of code.  

For geographic data preprocessing and visualization, we 

used QGIS [27], an open-source geographic information 

system software. It is used for managing geospatial data and 

geostatistical analyses. The synergy of QGIS and Python 

allowed the conversion of various data formats to GeoTIFF 

format and the normalization of data grids to uniform 

mapping units. 

We used an open-source programming language, Python, to 

prove the methodological concept for machine learning 

models’ development for conflict susceptibility mapping. 

We selected Google Colab's free cloud service to deploy and 

execute machine learning code. Google Colab is based on the 

Jupiter Notebook environment, which allows you to write 

and execute Python code and deploy machine learning 

models. Using libraries, frameworks, and a variety of 

machine learning techniques, we employed various machine 

learning algorithms and models to train, execute, and 

validate conflict susceptibility mapping models. These 

models include, but are not limited to, the random forest 

classifier [34, 35], the support vector machine classifier, and 

the gradient boosting classifier [36].  

 Available Python libraries, such as Scikit-learn [37], 

NumPy [38], SciPy [39], Pandas, and Geopandas, along with 

validation metrics including accuracy, precision, recall, F1 

score, and Area Under the Curve—Receiver Operating 

Characteristic (AUC-ROC) and Precision-Recall Curve 

(PRC), were used in the model deployment process.  

For our tasks, Python is utilized in data preprocessing, 

normalizations, training, and validation of machine learning 

models and generating conflict susceptibility mapping. 

Python is an open-source programming language licensed 

under the Python Software Foundation License [40]. This 

license allows for free distribution, modification, and use of 

the software, even in commercial applications, without the 

requirement to disclose the source code of the proprietary 

part. 

Two processes were researched for using conflict historical 

data in conflict susceptibility mapping models. One is to 

transform the vector dataset into a raster format. We 

employed the Inverse Distance Weighting (IDW) 

interpolation process in QGIS for this process. This 

technique allowed us to interpolate the density of conflict 

locations, using the number of fatalities per event as the 

observed value. In our research, we considered the number 

of deaths per event as an indicator of the severity of each 

conflict event in ACLED and UCDP GED datasets. The 

second process included conflict historical data in the 

original CSV format, which was directly used in the machine 

learning models. Python code was used to process geospatial 

vector data using available libraries.  

The relevance of IDW interpolation lies in its ability to 

convert raw conflict event data into spatially continuous 

patterns by interpolating the density of conflict locations 

using the number of fatalities per event as the observed value. 

This transformation enables machine learning models to 

analyze conflict severity and conflict distribution effectively. 

IDW interpolation generates a continuous surface that 

reflects the severity of conflicts by assigning values based on 

neighboring data points. This method transforms discrete 

conflict events into a spatially smooth distribution of conflict 

data. In this process, each conflict event contributes 

proportionally to the interpolated values based on its severity 

(number of fatalities) and its distance from other points, with 

closer events having a more significant impact.  

The IDW is a deterministic method for multivariate 

interpolation with a known scattered set of points [41]. The 

IDW algorithm is used in QGIS, among other software, for 

spatial interpolation. The interpolated surface is a weighted 

average of the data points, and the weight assigned to each 

point diminishes as the distance from the interpolation point 

to the data point increases. 

Mathematically, the IDW interpolation function (2) can be 

represented as: 

𝑓(𝑢) = {

∑ 𝑤𝑖(𝑢)𝑧𝑖
𝑁
𝑖=1

∑ 𝑤𝑖(𝑢)𝑁
𝑖=1

, 𝑖𝑓 𝑑(𝑢, 𝑢𝑖) ≠ 0𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖,

𝑢𝑖 ,               𝑖𝑓  𝑑(𝑢, 𝑢𝑖) = 0𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑖,
   (2) 

𝑓(𝑢) is the interpolated value at location u, 

𝑧𝑖 are the observed values at location i, 

𝑤𝑖(𝑢)  is the weight based on the distance between the 

interpolated location u and the data point i, and 

N is the total number of points. 

The weight 𝑤𝑖(𝑢) is typically defined as: 

 𝑤𝑖(𝑢) =
1

𝑑(𝑢,𝑢𝑖)𝑝   (3) 

where: 

𝑑(𝑢, 𝑢𝑖) is the distance between the interpolated location u 

and the data point i, and 

p is a power parameter that controls the significance of 

known points on the interpolated values based on their 

distance to u. A larger p decreases the influence of distant 

points. 

It is important to note that the selection of the power 

parameter p can influence the results of the IDW 

interpolation, and it should be chosen carefully based on the 

specifics of the dataset and the intended use of the 

interpolated surface. To convert the ACLED and UCDP 

GED vector point data into a raster format, we employed the 

IDW interpolation method in QGIS. The weighting factor in 

this process was determined by both the number of fatalities 

and the density of conflict incidents, allowing us to capture 

the severity and the spatial concentration of conflicts in our 

study area. 
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5. EXPERIMENTS WITH RANDOM 
FOREST CLASSIFIER MODEL 

The choice of the Random Forest Classifier (RFC) for 

developing the conflict susceptibility mapping model was 

based on the algorithm’s capability to handle complex 

datasets, which is crucial when working with public conflict 

and socio-economic conditioning factor datasets. These 

datasets often exist in various formats and with differing 

levels of accuracy. The RFC-based model is particularly 

useful at capturing the complex and non-linear relationships 

between socio-economic, political, and geographical factors 

that contribute to conflict. 

A key aspect of RFC is its ability to aggregate decisions from 

multiple decision trees, using an ensemble learning method 

known as bootstrapping. This process ensures that 

predictions are more accurate than those of individual 

models by averaging outputs from trees trained on different 

subsets of the data. By exposing each tree to only a portion 

of the dataset, the RFC minimizes the risk of overfitting 

while maintaining robustness. This is important in conflict 

datasets, which often contain irregular patterns, noise, and 

other anomalies. Averaging decisions helps the RFC focus 

on broader trends, ensuring the model remains reliable even 

when faced with data inconsistencies. Additionally, the 

RFC’s ability to handle missing data is a significant 

advantage in scenarios where field data collection processes 

may lack reliability or completeness, as is common in 

conflict zones. 

Tree height is a significant hyperparameter in the RFC that 

impacts both performance and interpretability. In the context 

of conflict susceptibility mapping, higher trees enable the 

model to capture interactions between variables such as 

population density, road networks, and conflict events. 

However, overly high trees can lead to overfitting, where the 

model learns noise or anomalies rather than meaningful 

patterns. Conversely, shallow trees may underfit the data, 

oversimplifying the relationships and missing critical 

patterns.  

Despite the obvious RFC advantage, developing models for 

conflict susceptibility mapping using the RFC presents 

numerous challenges. The RFC models lack straightforward 

interpretability, which can be critical for understanding the 

influence of specific conditioning factors on conflicts. The 

computation requirements for the models with numerous 

trees or large datasets lead to extended training and 

processing times. The model’s performance can present a 

challenge with the imbalanced datasets often observed in 

conflict-related public datasets. Additionally, the 

performance of an RFC heavily relies on the correct tuning 

of hyperparameters, like the number of trees and their depth, 

adding complexity to model development. Lastly, the “black 

box” nature of an RFC limits the understanding of the 

internal decision-making processes for peacemaking and 

mediation-related activities.  

However, despite the challenges presented by using an RFC, 

the model provides the required accuracy, interpretability, 

and robustness, which makes it a good choice for developing 

models for predicting conflict susceptibility and mapping. 

The model's technical capabilities help predict conflicts and 

understand key conditioning factors, supporting the 

formulation of more effective preventive strategies and 

policies.  

5.1 Training and executing the random 
forest classifier model 

The Python code was deployed in Google Colab to train and 

execute the model based on the RFC. In this paragraph, we 

describe the process of developing the RFC-based conflict 

susceptibility mapping model using a combination of RFC 

machine learning techniques and geospatial data analysis.  

After mounting Google Drive and providing access to the 

datasets, we set up the Python environment by installing 

essential packages. The loading phase involves importing 

conflict data from a CSV file using panda. This dataset 

contains geospatial coordinates and other conflict-related 

attributes and undergoes a process of marking for “presence” 

(indicative of conflict) and “pseudo-absence” (indicative of 

non-conflict scenarios). The geospatial features are extracted 

from various conditioning factors raster files, such as 

population densities and road networks. This step is crucial 

to understanding the geographic nuances of conflict areas 

and conditioning factors potentially influencing the conflict. 

The data is then subjected to preprocessing, where non-

numeric and missing values are addressed, and the dataset is 

split into training and testing sets. This ensures the model is 

evaluated on any missing values presented in the datasets, a 

key aspect of the model assessment. 

The fundamental aspect of this process is model training and 

hyperparameter tuning. The model is fine-tuned with the grid 

search cross-validation process, determining optimal 

configurations of parameters such as tree numbers and depth. 

The accuracy test has returned high accuracy values for the 

predictions for the RFC of the conflict susceptibility 

mapping model. Below, the “0” value indicates “non-conflict” 

predictions, and “1” means “conflict” predictions. 
 

Accuracy on Test Set (RF): 0.9352992957746479 

Classification Report (RF): 

          Precision recall  f1-score   support 

 

       0       0.93      0.94      0.94      1136 

       1       0.94      0.93      0.93      1136 

 

    accuracy                       0.94      2272 

   macro avg   0.94      0.94      0.94      2272 

weighted avg   0.94      0.94      0.94      2272 
 

The model's effectiveness is assessed using key performance 

metrics like accuracy, precision, recall, and F1-score, 

calculated against the validation dataset. This evaluation 

phase is crucial in understanding the model's predictive 

capabilities in real-world scenarios. 

The final stage of the model conducts the visualization of the 

model's predictions on a map. A geodata frame is created and 

plotted over a map with a base map from OpenStreetMap by 

merging these predictions with the validation set of 

geospatial data.  The geodata frame defines the geographical 
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locations and boundaries of the data points.  

Through this process, combining machine learning with 

geospatial analysis, we provide a tool capable of predicting 

and visualizing areas susceptible to conflict. The RFC 

delivers a robust, reliable model, while geographic 

visualization represents the results. 

5.2 Visualization of random forest classifier 
model predictions 

Fig. 2 presents a map of predicted conflict and non-conflict 

locations derived from the RFC machine learning model. 

This visual representation provides a spatial understanding 

of potential hotspots and areas requiring further investigation. 

The symbology is designed to display the locations of 

“conflict” and “non-conflict” areas by a point. The prediction 

dataset's latitude and longitude indicate each point's position 

on the map.  

The color coding of the points is presented in two colors used 

to differentiate between “conflict” and “non-conflict” 

predictions. “Conflict” areas (positive prediction) points are 

given in red color, and “non-conflict” (negative prediction) 

points are colored in green color. In the resulting dataset of 

RFC model conflict predictions, the value of predicted 

conflicts is “1,” and the value of non-conflict is “0”.  This 

symbology allows researchers and stakeholders to visually 

identify the areas that might require attention or prevention 

for potential conflicts.   It also helps to understand the 

geographical distribution of conflict risk across the mapped 

region and identify visual patterns in relation to various 

geographical objects such as roads, rivers, international or 

administrative borders, etc. 

 

Figure 2 – RFC Conflict Susceptibility Map  

OpenStreetMap layers are selected as the baseline data for 

this map. These layers provide the geographical context 

necessary to understand the locations of predictions. They 

include geographical features like roads, water bodies, and 

urban areas, allowing for a better understanding of the terrain 

and landscape where these predictions are located. 

This visual representation is crucial for stakeholders, such as 

policymakers, researchers, and humanitarian organizations, 

as it helps them identify areas that might require attention, 

intervention, or further study. 

5.3 Random forest classifier model 
validation  

Fig. 3 presents a graph of the Area Under Curve—Receiver 

Operating Characteristic (AUC-ROC) of a binary classifier's 

performance as its discrimination threshold varies. The curve 

is generated by plotting the True Positive Rate (TPR) against 

the False Positive Rate (FPR) at various threshold settings. 

The true Positive Rate (Sensitivity) presented in Equation 4 

is the percentage of positive instances (actual "1"s) that are 

correctly identified by the classifier.  

𝑇𝑅𝑃 (𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦) =
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 (4) 

False Positive Rate (1-Specificity) presented in Equation 5 is 

the percentage of negative instances (actual "0"s) that are 

incorrectly identified as positive by the classifier. 

𝑇𝑅𝑃 (𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦) =
𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 (5) 

The Python code evaluates the AUC-ROC and PRC scores 

for the RFC model and plots the graphs for both performance 

indicators. Initially, the code imports necessary libraries for 

plotting and calculating evaluation metrics. It then computes 

the False Positive Rate and True Positive Rate at various 

threshold settings to create a ROC curve. The AUC-ROC is 

calculated to provide a single measure of the model's 
performance. In parallel, the code computes the precision 

and recall for different probability thresholds to construct a 

Precision-Recall Curve (PRC). It also calculates the Average 

Precision (AP), which summarizes the precision-recall curve.  

Visualization is plotted for understanding the model’s 

capacity to accurately distinguish between “conflict” and 

“non-conflict” areas. The ROC curve shows the model’s 

effectiveness across different thresholds, while the PRC is 

particularly informative in the context of imbalanced 

datasets typical of conflict susceptibility scenarios. Using 

both the ROC curve and PRC, this evaluation provides 

insights into the model’s predictive power and the reliability 

of conflict susceptibility mapping. 

The AUC-ROC score of RFC conflict susceptibility mapping 

models is high, 0.98. It indicates the model is good at 

distinguishing between areas that are prone to “conflict” 

(labeled as "1" or positive) and areas identified as “non-

conflicts” (labeled as "0" or negative). A score of 0.98 means 

there's a 98% chance that the model will rate a randomly 

chosen susceptible area as more likely to have “conflict” than 

a randomly selected “non-conflict” area.  
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An AUC of 1 indicates perfect conflict prediction, though 

this suggests overfitting, while an AUC of 0.5 implies 

random guessing, highlighting a lack of meaningful insights 

into conflict. 

 

Figure 3 – AUC-ROC graph validating the accuracy of the RFC 

model 

Another assessment indicator that was applied in this 

research was AUC-PRC. The PRC is a graphical 

representation that plots precision against recall for different 

thresholds. The area under this curve quantifies the 

classifier's overall performance across all possible decision 

thresholds. In other words, using different probability 

thresholds, AUC-PRC summarizes the balance between the 

true positive rate and the positive predictive value. 

Fig. 4 is the graph representing the PRC for conflict 

susceptibility mapping trained and executed based on RFC 

models. The PRC score for our model is 0.98.  

 

Figure 4 – PRC graph validating the accuracy of the RFC Model 

 

The AUC-PRC score of 0.98 is very good, indicating that the 

RFC model can distinguish between areas that are 

susceptible to “conflict” and those that are “non-conflicts.” 

Similar to AUC-ROC, if 0.5 PRC, this is no better than a 

random guess. On the other hand, 1.0 PRC is a perfect 

classifier but can also indicate an overfitting.  

A PRC of 0.98 suggests that the model has a good balance of 

precision and recall. It means that for most thresholds, the 

model can identify a high percentage of actual susceptible 

areas (high recall) while maintaining a low rate of false 

positives (high precision).  

Both validation models, AUC-ROC and PRC, returned a 

score of 0.98. Such a high score can provide relative 

confidence in using the model's predictions to give 

actionable information to the decision-making processes for 

conflict prevention.  It suggests that the random forest 

classifier model can correctly identify areas of high conflict 

susceptibility based on the provided data and features. 

6. EXPERIMENTS WITH SUPPORT 
VECTOR MACHINE CLASSIFIER 
MODEL  

The Support Vector Machine (SVM) classifier is a powerful 

and versatile machine learning model experimented with in 

developing conflict susceptibility mapping models. The 

SVM demonstrates its effectiveness in managing complex 

and high-dimensional data, typically present in conflict and 

socio-economic datasets. The SVM is particularly good at 

finding a hyperplane that best separates data into different 

classes, which is essential for distinguishing between 

“conflict” and “non-conflict” areas based on various socio-

economic, political, and geographical indicators and other 

conflict conditioning factors. One of the key strengths of 

SVM in conflict susceptibility mapping is its ability to model 

non-linear relationships using kernel functions. These 

capabilities are important for capturing the interactions 

between multiple factors that can contribute to conflict. 

Unlike simpler linear models, SVM can handle the 

complexity and nuances present in conflict data, making it 

generally well-suited for conflict analysis. 

However, the SVM models present several challenges in this 

context. SVM-based models can be computationally 

intensive, especially with large datasets and when using 

complex kernel functions. This requires consideration of 

computational resources and process optimization during 

model training. SVM-based models can present challenges 

in understanding how each feature influences the 

classification, which can present challenges in explaining the 

model's decisions in a policy-making context. Another 

challenge is the selection of an appropriate kernel and tuning 

of hyperparameters like the penalty parameter (C) and kernel 

parameters. The performance of SVM heavily relies on these 

choices. Additionally, SVM models can be challenging with 

very large datasets and may require techniques like data 

reduction or approximation methods for efficient processing. 
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Despite these challenges, the high accuracy and 

effectiveness of SVM-based models in complex 

classification tasks make it a valuable tool for conflict 

analysis and developing conflict susceptibility mapping 

models. By efficiently handling high-dimensional data and 

providing clear decision boundaries, SVM can contribute to 

predicting and understanding conflict dynamics.  

6.1 Training and executing the support 
vector machine classifier model  

The Python code in Google Colab for the training and 

execution of the model is based on the Support Vector 

Machine (SVM) classifier algorithm. This code develops a 

machine learning model to predict conflict susceptibility in 

Somalia and creates a map presenting the locations of 

“conflicts” and “non-conflicts” based on the SVM classifier. 

After mounting Google Drive and providing access to the 

datasets, we set up the Python environment by installing 

essential packages. To prepare historical Somali conflict data, 

we loaded it into a data frame. This data is then augmented 

by creating pseudo-absence data, which is critical to 

developing the model because it provides examples of 

locations where conflict is not present. This augmentation is 

conducted by randomly sampling data from the original 

dataset and then altering the “presence” flag to zero, 

simulating “non-conflict” areas. The following process 

involves extracting geographical features using raster data. 

The code processes various raster files, extracting features 

based on the latitude and longitude coordinates from the 

combined dataset. These extracted features are then added to 

the data frame, enriching the original data with spatially 

relevant information essential for understanding the 

geographical context of conflict. 

After data preparation, the code handles non-numeric and 

missing data in the dataset using an imputer and standardizes 

using a scaler. This standardization is essential for an SVM's 

performance, as it is sensitive to the scale of input features. 

The data is then split into training and test sets, balancing the 

two classes using the Synthetic Minority Oversampling 

Technique (SMOTE). This is important for dealing with the 

imbalanced nature of conflict data, where data points of 

conflict might be significantly fewer than non-conflict 

instances. The SVM classifier tuned through a grid search to 

find the optimal parameters. This process involves 

experimenting with different values for the regularization 

parameter (C), kernel types, and gamma values to determine 

the best combination for the model. The SVM model is 

trained on the resampled training data when the best 

parameters are identified. The trained model is used to 

predict conflict susceptibility on the test dataset, and the 

model's performance is evaluated using standard metrics like 

accuracy and a detailed classification report. These metrics 

provide insights into the model's effectiveness in 

differentiating between “conflict” and “non-conflict” areas. 

Finally, the predicted results are visualized on a map. Using 

the test set's latitude and longitude, along with the predicted 

values, a geodata frame is created. This geodata frame is then 

plotted on a base map sourced from OpenStreetMap, using 

different colors to represent predicted “conflict” and “non-

conflict” areas. This visual representation is essential for 

understanding the geographical distribution of conflict 

susceptibility and helps in the practical application of the 

model's findings, such as conflict prevention and 

management. 

The SVM-based model used in this analysis initially 

provided the lowest accuracy among the various models 

tested. In its first trial, the SVM model achieved an accuracy 

of approximately 0.752 on the test set. Following a detailed 

hyperparameter tuning process, there was a slight 

improvement in the model's performance, with the accuracy 

increasing to approximately 0.761. The training and 

execution time for the SVM model was significantly longer 

compared to other models.  
 

Accuracy on Test Set (SVM): 0.761443661971831 

Classification Report (SVM):                

           precision    recall  f1-score   support 

       0       0.74      0.82      0.77      1136 

       1       0.79      0.71      0.75      1136 

 

    accuracy                       0.76      2272 

   macro avg   0.76      0.76      0.76      2272 

weighted avg   0.76      0.76      0.76      2272 

This extended processing time is a notable drawback of the 

SVM, particularly when handling large datasets such as 

raster image data and requiring extensive hyperparameter 

tuning. Such time-intensive computation can be a limiting 

factor in scenarios where quick model iteration or real-time 

analysis is needed.  

6.2 Visualization of support vector machine 
classifier model predictions  

Fig. 5 presents a map of predicted “conflict” and “non-

conflicts” derived from the Support Vector Machine (SVM) 

classifier machine learning model. As in the RFC-based 

model, the map provides potential “conflict” and “non-

conflict” locations. See Section 5.2 for details.  

 

Figure 5 – SVM classifier conflict susceptibility map 
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6.3 Support vector machine classifier model 
validation  

Fig. 6 presents a graph of AUC-ROC of the performance of 

a binary classifier for the validation of SVM classifier model 

performance.  

 

Figure 6 –AUC-ROC graph validating the accuracy of SVM. 

As for the random fort classifier model validation, the curve 

is generated by plotting the True Positive Rate (TPR) against 

the False Positive Rate (FPR) at various threshold settings 

for SVM model validation. True Positive Rate (Sensitivity) 

presented in Equation 3 is the percentage of positive 

instances (actual "1"s) that are correctly identified by the 

classifier. False Positive Rate (1-Specificity) presented in 

Equation 5 is the percentage of negative instances (actual 

"0"s) that are incorrectly identified as positive by the 

classifier. 

This Python code calculates the AUC-ROC and PRC scores 

for an SVM model and plots the graphs for both performance 

indicators. This code is set to evaluate and visualize the 

performance of an SVM model using two key metrics: the 

ROC curve and the PRC. It begins by importing the 

necessary functions for calculating these metrics and plotting 

data. The trained model provides the output probability 

estimates. 

The script predicts the probabilities for the positive class of 

the test data using the trained conflict susceptibility SVM 

model. These predicted probabilities are crucial for 

calculating the ROC and PRC. Then, the code computes the 

false positive and true positive rates at various threshold 

levels and calculates the area under the ROC curve. This area 

represents a measure of the model's capability to differentiate 

between the positive and negative classes. Also, the PRC is 

computed. The area under the PRC provides an aggregated 

measure of the model's performance, especially when there 

is a class imbalance. The script then proceeds to the metrics 

and plots the graph. This visual representation is essential in 

many machine learning tasks, particularly for evaluating 

classification models.  

 

The AUC-ROC score of 0.83 for the SVM-based conflict 

susceptibility mapping models signifies a strong predictive 

performance. The AUC-ROC provides a single measure of 

the model's overall performance. An AUC-ROC score of 

0.83 indicates that the SVM model can correctly distinguish 

between the two classes, “conflict” and “non-conflict” areas. 

This score implies that in 83% of the cases, the model will 

correctly differentiate a randomly chosen positive instance 

(actual conflict area) from a negative one (non-conflict area). 

This level of accuracy is generally considered reasonable and 

suggests that the SVM model is effective for the task of 

conflict susceptibility mapping.  

In Fig. 7, the PRC score of 0.78 for the SVM-based conflict 

susceptibility mapping models indicates a satisfactory level 

of performance, particularly in the context of class imbalance, 

which is often related to conflict databases and socio-

economic conditioning factors.  

A score of 0.78 in this case suggests that the SVM model is 

quite adept at identifying true “conflict” areas, however, with 

slightly less accuracy. However, the model is effective in 

correctly identifying areas of conflict susceptibility. While 

performing the model execution, we tried to improve the 

model's performance by tuning hyperparameters, which gave 

us an insignificant increase in PRC values. It improved from 

0.77 to 0.78.  

 

Figure 7 – PRC graph validating the accuracy of SVM. 

For stakeholders, these scores mean the SVM-based model 

can distinguish between “conflict” and “non-conflict” with 

83% accuracy and identify potential “conflict” areas with 78% 

accuracy. Overall, the SVM-based model can support early 

warning, although some misclassifications may be present. 

Thus, supplementing the model's results with expert 

validation and cross-referencing with other models is 

recommended to ensure the accuracy of the decision-making 

process. 
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7. EXPERIMENTS WITH GRADIENT 
BOOSTING CLASSIFIER MODEL  

The Gradient Boosting Classifier (GBC) is selected for 

conflict susceptibility mapping models due to several factors 

aligned with conflict analysis and susceptibility mapping 

requirements [44]. GBC is recognized for high accuracy in 

complex classification tasks, which is essential for conflict 

analysis. One of the main reasons for selecting GBC is its 

capability to work with diverse and high-dimensional 

datasets, which are common in conflict, socio-economic, and 

conditioning factors datasets. These datasets often include 

various variables, such as socio-economic, political, and 

geographical indicators. GBC's approach of building 

successive decision trees, each correcting the errors of the 

previous, allows us to effectively interpret this complexity, 

providing insights into potential conflict drivers. 

Another vital aspect is GBC's capability to model non-linear 

relationships [45]. The interactions between factors that 

contribute to conflicts are rarely linear or obvious. GBC's 

algorithms can uncover and model these complex 

interactions, providing an understanding of the underlying 

conflict dynamics. Moreover, the aspect of GBC, where each 

new model incrementally improves based on the previous, is 

particularly suited for the evolving nature of conflict data. As 

new data becomes available or the socio-political landscape 

changes, GBC models can be efficiently updated, ensuring 

that the conflict susceptibility mapping models remain 

relevant and accurate. While GBC requires careful tuning of 

hyperparameters and can be computationally intensive, its 

accuracy and ability to manage complex, high-dimensional 

data make it a good choice for conflict susceptibility 

mapping models. These strengths enable GBC to 

significantly contribute to predicting and understanding 

conflict dynamics, making it a valuable tool in conflict 

analysis. 

Meanwhile, implementing GBC models in conflict 

susceptibility mapping presents some challenges. They are 

primarily related to the risk of overfitting [44], as GBC 

models might adapt too closely to the training data, leading 

to poor performance on unseen datasets. Another challenge 

is the intensive computational demand of GBC models [44], 

mainly when processing large datasets or during the 

extensive hyperparameter tuning process. This can strain 

resources and increase the time required for model 

development and deployment. The "black box" nature of 

GBC models [46] is another problem regarding 

interpretability and understanding how various conditioning 

factors influence predictions. The quality and availability of 

data significantly impact model performance. Data can often 

be incomplete, unbalanced, or inaccurate in conflict mapping, 

leading to skewed or unreliable predictions. These 

challenges require a careful approach to model development 

and continuous evaluation to ensure the reliability of conflict 

susceptibility mapping models. 

 

7.1 Training and executing with the gradient 
boosting classifier model 

The Python code in Google Colab for the training and 

execution of the model is based on the GBC model. The 

process involves data preparation, feature extraction, model 

training, hyperparameter tuning, and visualization of 

predictions. After mounting Google Drive and installing 

Python libraries, it imports relevant functions and classes for 

model selection, ensemble methods (specifically gradient 

boosting), metrics, preprocessing, imputation, and SMOTE 

for handling class imbalance. The historical conflict data is 

loaded from a CSV file, generating pseudo-absence data by 

sampling from the original data, adjusting the latitude and 

longitude, and generating “non-conflict” data points. These 

pseudo-absence data points are combined with the original 

data to form a complete dataset. The code then extracts raster 

features from a list of TIFF files related to conditioning 

factors of the conflicts, such as population density, roads, 

schools, etc.  

The combined dataset is split into training and testing subsets, 

ensuring a balanced representation of presence and absence 

data. The script processes the data by selecting numeric 

columns, imputing missing values, and standardizing the 

features. It addresses class imbalance using the synthetic 

minority oversampling technique. The GBC is an ensemble 

learning method known for its effectiveness in classification 

tasks. The model is searched through a range of 

hyperparameters to find the most effective model 

configuration. The model is now trained on the resampled 

training data. The best model from the grid search is then 

used to make predictions on the test set. The accuracy and 

classification reports are printed to evaluate the model's 

performance. 

The accuracy test result has returned quite a high percentage 

of accuracy of the predictions for the GBC of the conflict 

susceptibility mapping model, which is presented below. The 

GBC-based mode provided high accuracy, 0.91, closer to the 

results of the RFC-based models, which is 0.93. Such an 

accuracy test provides positive results and indicates that the 

GBC model was a good choice for the set of historical 

conflicts and conditioning factors datasets available for 

Somalia's use case.  
 

Accuracy on Test Set (GB): 0.9141725352112676 

Classification Report (GB): 

          precision    recall  f1-score   support 

       0       0.93      0.90      0.91      1136 

       1       0.90      0.93      0.92      1136 

 

    accuracy                       0.91      2272 

   macro avg   0.91      0.91      0.91      2272 

weighted avg   0.91      0.91      0.91      2272 

 

7.2 Visualization of gradient boosting 
classifier model predictions  

Fig. 8 presents a map of predicted “conflict” and “non-

conflicts” derived from the GBC-based machine learning 

model. As in the RFC-based model, the map provides 

locations of potential “conflict” and “non-conflict” areas. 
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See Section 5.2 for details. 

7.3 Gradient boosting classifier model 
validation  

Fig. 9 presents a graph of the AUC-ROC of the performance 

of a binary classifier as its discrimination threshold is varied.  

 

Figure 8 – GBC conflict susceptibility map  

The Python code to calculate the AUC-ROC, PRC scores for 

GBC model evaluates a conflict susceptibility mapping 

model based on the GBC using AUC-ROC and PRC. It 

imports necessary libraries for plotting and calculating 

evaluation metrics. The code first predicts the probability of 

the positive class for the test set using the already trained 

GBC model. It then computes the false positive rate and true 

positive rate at various threshold settings to create a ROC 

curve. The AUC-ROC is calculated to provide a single 

measure of the model's performance. 

In parallel, the code computes the precision and recall for 

different probability thresholds to construct a PRC. It also 

calculates the average precision that summarizes the 

precision-recall curve. Fig. 9 represents the AUC-ROC curve, 

plotting the tradeoff between true positive and false positive 

rates, and it is labeled with the AUC value. Fig. 10 presents 

PRC, highlighting the model's precision at different recall 

levels and labeling it with the average precision value. 

Visualization helps understand the model’s capacity to 

accurately distinguish between “conflict” and “non-conflict” 

areas. The ROC curve shows the model’s effectiveness 

across different thresholds, while the precision-recall curve 

is particularly informative in the context of imbalanced 

datasets typical of conflict susceptibility scenarios. This 

comprehensive evaluation using both AUC-ROC and PRC 

provides a deep insight into the model’s predictive power 

and reliability in the domain of conflict mapping. 

The AUC-ROC score of GBC conflict susceptibility 

mapping models is high: 0.98, which means there's a 98% 

chance that the model will rate a randomly chosen 

susceptible area as likely to have “conflict” than a randomly 

selected “non-conflict” area. 

Another validation model that was applied in this research 

was PRC (Fig. 9). It is a graphical representation that plots 

precision against recall for different thresholds.  

 

Figure 9 – AUC-ROC graph validating the accuracy of the GBC 

model 

The area under this curve quantifies the classifier's overall 

performance across all possible decision thresholds. Using 

different probability thresholds, PRC summarizes the 

balance between the true positive rate and the positive 

predictive value. Conflict susceptibility mapping predicted 

areas that are considered vulnerable or prone to conflict. By 

training a model like the GBC on historical conflict data, we 

want to understand patterns and factors that lead to conflicts 

based on various conditioning factors. Our model is trained; 

it can be used to predict susceptibility for unobserved or 

future scenarios. 

Fig. 10 represents the PRC for conflict susceptibility 

mapping trained and executed based on random forest 

classifier models. The PRC score for our model is 0.98. It is 

a very good score, indicating that the GBC model can 

distinguish between areas susceptible to conflict and those 

not. An AUC-PRC of 0.98 suggests that the model has a 

good balance of precision and recall. It means that for most 

thresholds, the model can identify a high percentage of actual 

susceptible areas (high recall) while maintaining a low rate 

of false positives (high precision). 
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Figure 10 – AUC-PRC graph validating the accuracy of the GBC 

model.  

Both validation models, AUC-ROC and AUC-PRC, returned 

a score of 0.98. Such a high score can provide relative 

confidence in using the model's predictions to guide 

interventions, allocate resources, or make strategic decisions 

related to conflict prevention. It suggests the GBC model can 

correctly identify areas of high conflict susceptibility based 

on the provided data and features. 

8. COMPARISON OF MODELS’ 
PERFORMANCE  

Table 1 outlines the performance metrics for three machine 

learning models regarding conflict susceptibility mapping. 

The performance of three models, Random Forest Classifier 

(RFC), Support Vector Machine (SVM) classifier, and 

Gradient Boosting Classifier (GBC), was compared across 

various performance metrics. The RFC emerged as the most 

reliable, boasting the highest overall accuracy at 0.93, 

closely followed by the GBC at 0.91, while the SVMC 

lagged at 0.76. This trend of an RFC's superiority extended 

to precision in both “conflict” and “non-conflict” areas, 

scoring 0.94 and 0.93, respectively, indicating a lower false 

positive rate. The GBC was not far behind, especially in 

“non-conflict” areas, but the SVM model showed notably 

lower precision in both categories. 

Regarding recall, which measures the ability to identify true 

positives, both the RFC and GBC demonstrated strong 

performance in identifying “conflict” and “non-conflict” 

areas, with scores around 0.93 and 0.94. However, the SVM 

was less effective, particularly in conflict zones, with a recall 

of only 0.71. The F1 scores, reflecting a balance between 

precision and recall, were consistently high for RFC and 

GBC across both zone types, underscoring their robustness. 

The SVM model's lower F1 score of 0.76 highlighted its 

weaker performance. 

Table 1 – Comparison of performance of the models  

Attribute RFC SVMC GBC 

Accuracy test    0.93 0.76 0.91 

Precision    

 Conflict zones (1) 0.94 0.79 0.90 

 Non-conflict zones (0) 0.93 0.74 0.93 

Recall    

 Conflict zones (1) 0.93 0.71 0.93 

 Non-conflict zones (0) 0.94 0.82 0.90 

F1-score accuracy    

 Conflict zones (1) 0.94 0.76 0.91 

 Non-conflict zones (0) 0.94 0.76 0.91 

AUC-ROC 0.98 0.83 0.98 

PRC 0.98 0.78 0.98 

Another critical aspect is the AUC-ROC and PRC values, 

where both the RFC and GBC excelled with scores of 0.98, 

indicating excellent class separability and a strong 

relationship between precision and recall. SVM, on the other 

hand, had significantly lower scores in these areas, further 

confirming its comparatively weaker performance. Overall, 

the analysis suggests that the RFC and GBC are closely 

matched in effectiveness, making them more suitable for 

conflict susceptibility mapping than the SVM model. Table 2 

presents the number of locations predicted as “conflict” areas 

by three machine learning models experimented with in this 

research: RFC, SVMC, and GBC-based models. According 

to the predictions made by the models, the RFC-based model 

identified 1 121 locations as potential conflict areas, the 

SVMC-based model predicted a lower number, 998 

locations, as “conflict” areas, and the GBC-based model 

identified 1 123 locations as susceptible to conflict.  

To identify geographical locations classified as "conflict" 

areas by all three machine learning models, RFC, SVMC, 

and GBC-based, we used QGIS software. We overlaid 

prediction layers generated by each of the three models in 

QGIS to conduct a spatial analysis of the specific locations 

where all three models predicted "conflict" areas. The 

number of the areas predicted as “conflict” by all three 

models is 908. This method helped to ensure a high level of 

confidence in the expected conflict areas, thereby reducing 

the likelihood of false positives and enhancing the reliability 

of the predictions.  

Table 2 – Predicted “conflict” areas by individual models and 

locations that all three models predicted as “conflict” areas.  

Attribute RFC SVMC GBC 

Predicted as “conflicts” 

areas    
1 121 998 1 123 

The exact locations 

predicted by all three 

models  

908 

All three models predicted the overlap of 908 areas as 

"conflict" susceptible, suggesting the consensus among the 

models on data patterns that indicate a strong possibility of 

conflicts in overlapped areas. Such indicators include socio-
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economic, population, geographical, and environmental 

factors. In addition, the similarity in results among the 

machine learning models in identifying the "conflict" 

susceptible locations indicates the level of robustness in the 

models' predictions. Despite the methodological differences 

between the ensemble tree-based methods (RFC and GBC) 

and margin-based methods (SVM), the data patterns are 

strong enough to be identified as "conflict" susceptible 

across different models. The overlapping predictions also 

suggest that the training data was representative and 

comprehensive, enabling all three models to learn effectively 

and providing a balanced mix of "conflict" and "non-

conflict" instances influencing the conflicts.  

The locations of conflict-susceptible areas not overlapped by 

the predictions of one or more models resulted from several 

factors, including the methodological characteristics of each 

machine learning algorithm, hyperparameters tuning, model 

complexity, and elements of randomness in machine 

learning models' training. Considering the similarities 

between the RFC and GBC, we observe that the number of 

non-overlapping locations is considerably low, 82, which is 

approximately 7% of the number of RFC or GBC locations 

(overlapped locations between RFC (1 121 locations) and 

GBC (1 123 locations) 1 039). The geographical distribution 

of these 82 areas displays a predominantly non-urban trend, 

where the values of the conditioning datasets population 

distribution and availability services such as hospitals, 

schools, and others are at their lower margin. Other aspects, 

such as the methodology of machine learning algorithms, 

also contributed to predicting RFC and GBC models' 

"conflict" areas that geographically did not overlap. 

Although the RFC and GBC are ensemble tree-based models, 

they construct multiple decision trees during training and 

classify the individual trees for predicting "conflict" areas. 

However, these two methods have differences in their 

characteristics. GBC models focus on correcting previous 

errors and the RFC on random subsets of features. The GBC 

model's repeated correction can lead to increased sensitivity 

towards patterns of conflict in some areas and capture 

additional conflict indicators that the RFC might miss due to 

its random selection process, which results in a slightly 

higher number of predicted "conflict" areas identified by the 

GBC compared to RFC.  

The SVM-based provided the lowest results in the accuracy 

test, 0.76. The number of "conflict" areas identified by the 

SVM-based model that did not overlap with ensemble-based 

models is considerably high, 212 or 19%. The geographical 

distribution of non-overlapped locations is more random, 

and no clear patterns were observed. Non-overlapped areas 

appear in both rural and urban locations, like Mogadishu city. 

From the methodological perspective, the SVM-based 

model's performance is sensitive to tuning the kernel or 

parameters (like C and gamma). If these parameters are not 

optimized, the SVM might not capture the complexity of the 

data or use tree-based methods, leading to lower accuracy.  

The ensemble methods can also help generalize unseen data, 

averaging biases and reducing variance. The SVM's 

generalization is notably strong but relies heavily on tuning 

the parameters. Thus, in application to our use case and for 

the available datasets, we consider giving ensemble-based 

preferences for developing conflict susceptibility mapping 

models.  

Fig. 11 presents the geographical locations predicted as 

susceptible to conflict by all three machine learning models: 

RFC, SVM, and GBC-based. This map provides the location 

represented in red points consistently identified across all 

models as potential conflict areas. This map provides a more 

reliable identification of areas that may require closer 

attention for conflict prevention. This alignment among 

diverse models provides the predictions' credibility and 

valuable insights for conflict analysis and resolution efforts.  

 

Figure 11 – Same locations of “Conflicts” predicted by all three 

models  

In evaluating the suitability of the three conflict 

susceptibility mapping models, each has distinct advantages 

and limitations. The strong correlation between predictions 

of ensemble methods (RFC and GBC) and their high 

accuracy, precision, and recall indicates their effectiveness 

in correctly identifying conflict and non-conflict zones with 

minimal false positives and negatives. The Support Vector 

Machine (SVM) classifier is known for its efficacy in high-

dimensional spaces. Despite these strengths, the SVM model 

falls behind the other models in almost all performance 

metrics. Such limitations are considered due to their 

sensitivity to the choice of kernel and the tuning of 

hyperparameters.  

The large number of overlapping locations where all three 

models identify the typical conflict pattern confirms our 

hypothesis that thorough data cleansing and preprocessing of 

publicly available data provides good quality datasets for 

machine learning models to make accurate predictions of 

conflict-susceptible areas. 

Moreover, selecting an appropriate machine learning model 

plays an important role in the accuracy of these predictions. 
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Choosing a suitable model, based on its strengths and the 

nature of the data, is crucial for capturing the patterns within 

the data, leading to more reliable predictions of conflict 

zones. 

9. CONCLUSION 

In this research, we provided the result of using Somalia data 

to develop the conflict susceptibility mapping models. The 

systematic development of this methodology provided the 

required integrity and reliability of the results. After 

thoroughly reviewing machine learning techniques and 

available data for Somalia, we developed three conflict 

susceptibility mapping models based on the RFC, SVM 

classifier, and GBC. Further, we provided a detailed 

explanation of the code of each machine learning model, 

along with the results of training, predictions, and maps of 

conflict-susceptible areas in Somalia. We also evaluated the 

performance metrics of these models, highlighting their 

strengths and potential areas for enhancement. Such metrics 

included the AUC-ROC, PRC, accuracy, precision, recall, 

and F1 score. The data preprocessing and experimentation 

phase relied on software tools for managing data-intensive 

operations, such as QGIS, R, Python, and the cloud-

computing environment of Google Colab.  

The developed conflict susceptibility mapping machine 

learning models based on the RFC, SVM classifier, and GBC 

provided promising results in predicting conflict-susceptible 

areas and the models' accuracy level. The RFC showed the 

highest accuracy on the accuracy test, 0.93, followed by 

GBC at 0.91 and SVM at 0.76. The AUC-ROC and PRC 

values for RFC and GBC were at 0.98, showing a precision-

recall solid relationship. The SVM had significantly lower 

scores, confirming its lower performance. Regarding the 

number of locations predicted as “conflict” areas, the RFC 

identified 1121 locations, SVM 998 locations, and GBC 

1123. An overlay analysis of the results of all three models 

using QGIS showed that 908 locations were predicted as 

“conflict” areas by all three models. This method enhanced 

the reliability of predictions by reducing false positives. 

Following the results of the experiments, the RFC provides 

the most suitable model for conflict susceptibility mapping 

using the experimental settings specific to Somalia. 

The defined methodology of conflict susceptibility mapping 

satisfied our hypothesis that publicly available data related 

to socio-economic indicators, environmental variables, and 

others can be used as sources for relevant conditioning 

factors for conflict susceptibility mapping. The application 

of such conditioning factors is crucial for accurate 

predictions. However, it must be noted that no conditioning 

factors can be applied to any or all environments due to 

socio-cultural differences and conflict context. Each 

geographical location and each conflict should be studied 

through the prism of a unique set of conditioning factors. 

Thus, to use this framework to predict the likelihood of 

conflict escalation, we must identify a unique list of 

conditioning factors that can be applied to that specific 

geographic, political, or social scenario. It should be noted 

that conflict dynamics are constantly changing, and new 

types and elements may emerge in yet-to-be-studied 

situations. Additionally, certain conditioning factors may 

have been overlooked due to the limitations of available data 

during this research. Therefore, we perceive this research as 

a living process that is adaptable and open to future 

enhancements with additional conditioning factors as 

conflict prediction studies continue. As the application of 

machine learning to conflict prediction gains momentum, we 

anticipate an increase in the identification and understanding 

of conflict conditioning factors, further enhancing the 

accuracy of conflict prediction models. Machine learning 

can potentially become a crucial tool for conflict study and 

prevention. Understanding the elements that contribute to 

conflict escalation and their relations to society, politics, and 

geography enables the development of more effective 

conflict analysis techniques. The data quality and availability 

of data can provide challenges in using machine learning for 

conflict prediction. This research is believed to be a practical 

framework for using machine learning in conflict 

susceptibility research.  

A literature review conducted in 2023 [7] by the authors 

revealed that research on machine learning susceptibility 

mapping and using conditioning factors remains limited. The 

application of machine learning technology to predict 

conflict likelihood has gained academic attention only in the 

past five years. Recognizing the importance of conditioning 

factors in conflict research and analysis, several initiatives 

have emerged. For instance, the Joint Research Centre (JRC) 

of the European Commission launched the Index for Risk 

Management (INFORM) project [47], a global open-source 

tool for assessing and predicting risks of humanitarian crises 

and disasters at the national level. This project represents a 

milestone in leveraging conditioning factors for risk 

assessment. Similarly, Uppsala University’s Violence Early 

Warning System (ViEWS) project provides predictions of 

armed conflict likelihood on a national scale [48]. 

While initiatives like INFORM and ViEWS focus on global 

or regional risk identification using conditioning factors and 

machine learning techniques, some scholars emphasize the 

importance of understanding local dynamics in conflict 

prediction and analysis [16, 49]. Local factors often play a 

pivotal role in the onset of conflicts, highlighting the need 

for tailored, case-by-case conflict studies focusing on the 

situation in the local communities. This study addresses this 

gap by focusing on conflict susceptibility analysis and 

mapping at a higher geographical resolution of 5 km, 

tailoring the analysis and mapping, considering local, 

cultural, socio-economic, and demographic nuances of the 

communities of interest.  

In conclusion, this study represents an advancement in 

bridging fields such as data and geospatial science with 

political science, marking it an essential step in the 

interdisciplinary studies of conflict analysis. By integrating 

machine learning technologies with political analysis, this 

research provides a new understanding of conflict scenarios 

in various locations worldwide. The application of machine 

learning in this context is not only about technical 

achievements but also a tool that can provide deeper insights 

into the causes and possible resolutions of conflicts. The 

connection between data science technology and 
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humanitarian studies highlights the importance of using data-

driven approaches to understand political and social issues. 

As we leverage cutting-edge machine learning technologies 

to advance conflict studies, we must never forget the human 

implications of our predictions and ensure that our efforts 

serve the greater good. 
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