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This research presents an innovative approach and methodology to conflict susceptibility mapping
by integrating machine learning technologies with geospatial data analysis. Utilizing public datasets
from Somalia, the study experiments with applying machine learning models such as random forest
classifier, support vector machine classifier, and gradient boosting classifier models to predict areas
susceptible to conflict. The methodology includes data preprocessing, model training, execution, and
validation, employing various software and machine learning techniques. The random forest
classifier emerged as the most accurate model through experiments with the machine learning
models, demonstrating the potential of using machine learning to enhance our understanding of
conflict dynamics. The study highlights the critical role of selecting appropriate conditioning factors
and the need to continuously refine methodologies to improve prediction accuracy. By providing a
practical method for conflict susceptibility mapping, this research contributes to the broader field of
peace and security research, which directly contributes to Sustainable Development Goal 16 and
explores the potential of using machine learning to support peace, justice, and strong institutions,
and contribute to global peace and security.
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1. INTRODUCTION

In 2015, the United Nations General Assembly set a global agenda by adopting the 17
Sustainable Development Goals (SDGs) to ensure prosperity, environmental sustainability, and
social equity by 2030. These goals address today's most pressing challenges, including poverty,
inequality, climate change, environmental issues, peace, and justice. The SDGs build upon the
success and lessons learned from the Millennium Development Goals (MDGs), aiming to
address the root causes of these challenges and foster an inclusive approach involving all
stakeholders: governments, the private sector, civil society, and individuals worldwide [1, 2].
The SDGs envision a future where no one is left behind, highlighting the interdependencies of
social, economic, and environmental sustainability and the collective effort required to achieve
these ambitious objectives.

Sustainable Development Goal 16 (SDG 16) focuses on promoting peaceful and inclusive
societies for sustainable development, providing access to justice for all, and building effective,
accountable, and inclusive institutions at all levels. This goal underscores the importance of
peace, security, justice, and strong institutions for sustainable development. It acknowledges that
without a peaceful environment and a justice system that serves all members of society equally,
achieving the other SDGs would be challenging. The SDG 16 targets are to significantly reduce
all forms of violence, protect children from abuse, exploitation, trafficking, and violence,
promote the rule of law and ensure equal access to justice, develop effective, accountable, and
transparent institutions, provide responsive, inclusive, and representative decision-making, and
strengthen the participation of developing countries in the institutions of global governance. The
realization of SDG 16 is crucial for creating and maintaining the social and political stability
necessary to implement initiatives across all other SDGs [3, 4].
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Applying machine learning technology to SDG 16 offers
innovative pathways to enhance peace, security, and justice.
Machine learning models can analyze vast datasets to
recognize patterns, predict the onset of conflicts, monitor
elections for fairness, and identify patterns of corruption and
human rights abuses, thus providing actionable insights for
policymakers and law enforcement [5, 6]. However, based
on comprehensive research on the identification of conflict
susceptibility, the application of machine learning
technologies to predict the likelihood of conflict onset [7]
and, in general, SDG 16 is limited. The research has revealed
that machine learning technology is promising in predicting
conflicts; machine learning models can process vast datasets,
recognize complex patterns, and generate reliable
predictions, making them instrumental in conflict analysis
and prevention [7].

Machine learning technologies offer nuanced insights into
conflict dynamics by integrating socio-economic,
governance, environmental, and political factors into
predictive models. This approach not only enhances the
understanding of conflict triggers but also aids in developing
targeted strategies for conflict mitigation and prevention. As
the accuracy of these predictive models relies on the quality
of data and the selection of conditioning factors, the study
advocates for continuing improvement of methodologies to
improve prediction accuracy. In essence, leveraging machine
learning in the context of conflict analysis represents a
forward-thinking method to identify conflict-prone areas and
contribute to global peace and security. This research
identified a set of conflict susceptibility factors that can be
instrumental in accurately predicting conflict locations.
However, there are no universal condition factors that can
apply to conflicts. Given the diverse factors influencing
conflict susceptibility, the study argues for a tailored
approach to developing machine learning models. The
unique aspects and drivers of conflicts in various regions
should be considered for more precise and relevant
predictions [7].

The research "ldentifying Conditioning Factors and
Predictors of Conflict Likelihood for Machine Learning
Models: A Literature Review" [7] served as a foundational
reference for this study. We further explored the
methodology of developing machine learning models to
create a susceptibility map of Somalia to identify areas
susceptible to conflict.

2. PUBLIC SOMALIA DATASETS

This research uses a case study methodology, focusing on
public Somalia datasets. Somalia was selected due to its
geopolitical significance and the complexity of its ongoing
conflict. The case study provides insights into various
conflict dynamics, the involvement of numerous parties and
actors, the significant humanitarian needs, and the security
implications for the Somali people.

We conducted in-depth research on primary historical
conflict datasets, which are also used to train and validate the
models in this document. These datasets include the Armed
Conflict Location & Event Data Project (ACLED) [42] and

the Uppsala Conflict Data Program (UCDP) [43]. Both
datasets provide detailed information on conflict events,
actors, and their interactions across various geographical
regions and timelines.

The ACLED data is a widely used dataset that tracks and
reports conflict events and provides data on each event's
location, timing, type, and severity. The ACLED also
includes information on the actors involved and their
affiliations and interactions. This dataset covers state and
non-state actors, allowing for a thorough examination of the
complexities of conflicts. Various scholars and academic
institutions, international organizations such as the United
Nations and its Agencies, Funds and Programmes (UNAFP),
International Committee of the Red Cross (ICRC), European
Union agencies, and other government and inter-government
institutions, think tanks, as well as media news agencies use
the ACLED database [8] for their research and analysis of
historic and ongoing events in different parts of the world.

The UCDP is another prominent dataset that systematically
collects and categorizes data on violence, armed conflicts,
and related events worldwide. The UCDP includes
information on conflict events, actors, fatalities, and conflict
dynamics. The UCDP data is combined with the ACLED
data to provide a more comprehensive understanding of
global conflict patterns.

These two data sources are used for training and validating
machine learning models to understand, predict, and map
conflict susceptibility in different areas in Somalia. The data
provided by the ACLED is event-based, and the UCDP
provides data that focuses on significant wars or conflicts
and the number of victims associated with a conflict. Both
the ACLED and UCDP datasets are used for conflict analysis.
While they share the same aim of documenting violent
conflicts, they use different methodologies and levels of
granularity. The ACLED covers political violence and
protest events and the UCDP covers individual incidents of
violence, both fatal and non-fatal. In terms of timeline and
update aspects, the ACLED is near-real time, and the UCDP
datasets are updated yearly. Overall, the ACLED and UCDP
provide invaluable insight into conflict dynamics, and they
are used complementarily to gain a comprehensive
understanding of violent conflicts [7].

Leveraging the information provided by the ACLED and
UCDP, researchers develop models that take into account a
wide range of conflict-related factors from the local to the
global level. These datasets enable the development of
training and evaluation of our machine learning models.

Furthermore, we explored a set of conditioning factors that
play a crucial role in providing context for conflict events.
Different factors may lead to armed conflicts in different
countries. Some conditions that increase the likelihood of
conflicts include the inability of governments to provide
essential governance and the protection of their populations
[9]. Various publications refer to such factors that could
potentially lead to conflicts. Armed conflicts are still among
the biggest threats to human societies, and identifying the
underlying pro-cases and potential drivers is an area of
intense scientific research [10]. The possible factors that
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enhance the conflict have been identified in the scientific
research literature, including poverty [11], income inequality
[12], economic struggle [13], weak governance [14], or pre-
existing history of conflicts [15], financial assets from
natural resource exploitation [25], ethnic fractionalization
[16, 17], vulnerability to natural disasters [18] and climate
change [19]. However, after years of research, there has been
no agreement among scholars regarding whether and how
climate change influences the risk of conflict [19]. By
incorporating these datasets into our analysis, we want to
identify the factors that influence conflict dynamics and
enhance the interpretability of our machine learning models.

The idea of conceptualizing conflict conditioning factors was
derived from applying conditioning factors in determining
landslide susceptibility mapping [21]. This approach uses
conditioning factors, such as topographical, geological, and

environmental variables, to identify areas prone to landslides.

Similarly, in the context of conflict susceptibility,
conditioning factors such as socio-political dynamics,
economic disparities, and environmental factors can be
applied to locate areas susceptible to conflicts. Many
complex factors contribute to the occurrence of armed
conflicts. Conditions that enhance the probability of conflicts
include governments' inability to provide effective
governance and safeguard their populations [9]. This study
used available public datasets from various public sources,
including several international organizations, UNAFPs, and
government agencies.

2.1 Challenges of using Somalia datasets

The exploration of publicly available data for this research
presented its challenges. First, there is limited availability of
reliable data [20]. This is a common challenge in conflict
zones like Somalia, where data collection can be dangerous.
Moreover, available data often contains inconsistencies,
particularly in the completeness of geographical coordinates
for data points, such as in datasets for health facilities and
school locations. Further, the data collection projects or
processes are not collected in Somalia due to a lack of
statistical capacity and financial or security constraints [20].
These challenges collectively complicated the process of
data collection and validation. Despite these challenges, the
data gathered from public sources for Somalia provided
valuable insights into the conflict dynamics in the country,
and it is necessary to keep these limitations in mind when
interpreting the findings.

The temporal period selected for the Somalia data in this
research is from 2000 to 2023. This time frame was chosen
to ensure temporal data consistency across all datasets used
in our study. Aligning the temporal boundaries of the
different datasets can minimize potential discrepancies in the
entire collection of datasets. This selection balances
capturing an adequate amount of data and ensuring that the
data is as recent and relevant as possible. Thus, the chosen
period significantly enhances the integrity and robustness of
our analysis and findings.

If this methodology and process can be developed and
successfully applied in an exceptionally data-challenging
situation like Somalia, these processes could be even more
efficient in other regions, where data is more available,
reliable, and consistent. Applying these processes and
methods would provide more precise and accurate results.
Therefore, this research contributes to our understanding of
conflict dynamics in Somalia and provides a methodological
framework that can be adapted to other geographical areas.
This adaptability contributes to the broader field of conflict
analysis and geospatial data science.

3. CONFLICT SUSCEPTIBILITY
METHODOLOGY

Conflict susceptibility mapping is a methodology that
leverages machine learning technology to predict areas at
risk of conflict by analyzing diverse conditioning factors,
including socio-economic, political, environmental, and
other relevant variables. The conflict susceptibility mapping
methodology concept is presented in Fig. 1; the concept
includes four main components: data preprocessing,
deployment and execution of machine learning models,
development of conflict susceptibility maps, and validation
of machine learning models.

Data preprocessing is one of the important steps for machine
learning applications [22] to conflict susceptibility mapping.
Conflict susceptibility mapping relies on a broad spectrum
of public unstructured data sources, providing data in various
data models and formats, using different spatial and temporal
resolutions and scales, often containing inconsistencies,
missing values, and noise. Data preprocessing aims to
transform this raw data into a clean, standardized format that
machine learning models can easily process and provide
accurate prediction results. By transforming the datasets to a
consistent data format structure such as GeoTIFF and
bringing the data grids to a uniform resolution and WGS84
coordinate reference system, we ensure the compatibility of
data from different data sources across various spatial and
temporal data resolutions. Furthermore, preprocessing also
involves dealing with missing data, a critical aspect of
improving the quality of the input data [23]. Without such
preprocessing steps, the machine learning algorithms may
produce misleading results, leading to unreliable conflict
susceptibility mapping results.
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Figure 1 — Concept of conflict susceptibility mapping
methodology.

To split conflict data between training and validation, we
selected the standard principle 80/20 [24, 25]. Data division
into 80% for training and 20% for validation. This concept is
used for model development and is called the 80/20 rule.
80% of the data is allocated for the training dataset, allowing
the model to learn from a larger portion of the historical
dataset. That provides enough information to understand the
data patterns and relationships between data points. The
training portion is necessary for the model to develop
predictive capabilities. The 20% of the data is allocated for
model validation for the model performance testbed. Using
the 80/20 rule, we can validate machine learning models and
ensure they are trained and tested for accuracy, reliability,
and effectiveness.

Regarding the application of data splitting processes, we
considered two options: splitting data during the
preprocessing stage, as provided in Fig. 1. This approach is
typically conducted before the execution of the machine
learning model and involves segmentation of the dataset
using QGIS software. The second option, which we have
used in our case, consists of splitting the data dynamically
while executing the machine learning model using Python
code. This method offers flexibility and integration with the
modeling process. This splitting process during model
execution ensures that our models are trained and tested on
current conflict historical data.

We selected a Random Forest Classifier (RFC), a Support
Vector Machine (SVM) classifier, and a Gradient Boosting
Classifier (GBC) for the development of our conflict
susceptibility mapping models. Because each machine
learning technique has its specific strengths and weaknesses,
we also aim to identify which algorithm is better suited to the
particular requirements of conflict susceptibility mapping.
Throughout the research process, it was noted that the
selection of machine learning algorithms applied to the
conflict susceptibility mapping machine learning model
depends on the data quality, their resolution, the complexity

of the system, and the required degree of accuracy from the
outcome of the predictions and, also, to the available
computing power.

Model validation is essential in our methodology to ensure
that the conflict susceptibility mapping models have the
required accuracy and reliability. We used several metrics
and validation techniques, each designed to assess different
aspects of model performance. Among these, the Area Under
the Receiver Operating Characteristic Curve (AUC-ROC)
and Precision Recall Curve (PRC) are crucial metrics used
in binary classification tasks [26]. In addition to AUC-ROC,
we also employed metrics like accuracy, Precision, Recall,
and F1 score. Accuracy represents the proportion of total
predictions the model got correct, while precision (also
known as the positive predictive value) measures the
proportion of correct identifications among all predicted
positives. Recall is the proportion of actual positives that
were correctly identified. The F1 score, which is the
harmonic mean of precision (P) and recall (R), balances
these two metrics, making it particularly useful in cases of
class imbalance. Equation (1) represents the mathematical
formula of the F1 score:

F1=2x28 (1)
P+R

The conflict susceptibility mapping methodology provides
flexibility and adaptability, independent of specific
algorithms, models, or datasets. This approach allows for the
customization of the methodology based on conflicts' unique
context and geographical location. The conflict susceptibility
mapping concept provides the ability to select from various
machine learning models. We used RFC, SVM classifier,
and GBC for our case study. These algorithms can be
replaced with other algorithms depending on the technical
requirements and historical conflict and conditioning factors
data. Each model brings specific strengths and can be
selected based on factors like data complexity, required
prediction accuracy, and available computing power.

4. SOFTWARE AND MACHINE
LEARNING TECHNIQUES

In this research, we employed different tools and software to
execute different tasks for data preprocessing, data research,
development, execution, and validation of machine learning
models.

For data exploration and cleansing tasks, we employed both
R [28] and RStudio [31] for their statistical computation
capabilities. R programming language provides statistical
techniques such as linear and nonlinear modeling, classical
statistical tests, time-series analysis, classification, clustering,
graphs, and chart plotting. RStudio is an Integrated
Development Environment (IDE) for R. It provides a user-
friendly interface for using R and developing R scripts.
These tools are used to verify public data quality and assist
in identifying the patterns otherwise invisible during the data
review. R is free and open-source software for statistical
computing and the development of graphs. R software is
provided under the GNU General Public License (GPL) [32].
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In conjunction, the RStudio integrated development
environment (IDE) operates under the GNU Affero General
Public License version 3 (AGPL v3) [33]. AGPL v3 is an
open-source license that promotes the sharing of code.

For geographic data preprocessing and visualization, we
used QGIS [27], an open-source geographic information
system software. It is used for managing geospatial data and
geostatistical analyses. The synergy of QGIS and Python
allowed the conversion of various data formats to GeoTIFF
format and the normalization of data grids to uniform
mapping units.

We used an open-source programming language, Python, to
prove the methodological concept for machine learning
models’ development for conflict susceptibility mapping.
We selected Google Colab's free cloud service to deploy and
execute machine learning code. Google Colab is based on the
Jupiter Notebook environment, which allows you to write
and execute Python code and deploy machine learning
models. Using libraries, frameworks, and a variety of
machine learning techniques, we employed various machine
learning algorithms and models to train, execute, and
validate conflict susceptibility mapping models. These
models include, but are not limited to, the random forest
classifier [34, 35], the support vector machine classifier, and
the gradient boosting classifier [36].

Available Python libraries, such as Scikit-learn [37],
NumPy [38], SciPy [39], Pandas, and Geopandas, along with
validation metrics including accuracy, precision, recall, F1
score, and Area Under the Curve—Receiver Operating
Characteristic (AUC-ROC) and Precision-Recall Curve
(PRC), were used in the model deployment process.

For our tasks, Python is utilized in data preprocessing,
normalizations, training, and validation of machine learning
models and generating conflict susceptibility mapping.
Python is an open-source programming language licensed
under the Python Software Foundation License [40]. This
license allows for free distribution, modification, and use of
the software, even in commercial applications, without the
requirement to disclose the source code of the proprietary
part.

Two processes were researched for using conflict historical
data in conflict susceptibility mapping models. One is to
transform the vector dataset into a raster format. We
employed the Inverse Distance Weighting (IDW)
interpolation process in QGIS for this process. This
technique allowed us to interpolate the density of conflict
locations, using the number of fatalities per event as the
observed value. In our research, we considered the number
of deaths per event as an indicator of the severity of each
conflict event in ACLED and UCDP GED datasets. The
second process included conflict historical data in the
original CSV format, which was directly used in the machine
learning models. Python code was used to process geospatial
vector data using available libraries.

The relevance of IDW interpolation lies in its ability to
convert raw conflict event data into spatially continuous
patterns by interpolating the density of conflict locations

using the number of fatalities per event as the observed value.
This transformation enables machine learning models to
analyze conflict severity and conflict distribution effectively.

IDW interpolation generates a continuous surface that
reflects the severity of conflicts by assigning values based on
neighboring data points. This method transforms discrete
conflict events into a spatially smooth distribution of conflict
data. In this process, each conflict event contributes
proportionally to the interpolated values based on its severity
(number of fatalities) and its distance from other points, with
closer events having a more significant impact.

The IDW is a deterministic method for multivariate
interpolation with a known scattered set of points [41]. The
IDW algorithm is used in QGIS, among other software, for
spatial interpolation. The interpolated surface is a weighted
average of the data points, and the weight assigned to each
point diminishes as the distance from the interpolation point
to the data point increases.

Mathematically, the IDW interpolation function (2) can be
represented as:

X wiwz
TiLiwiw

u;, if d(u,u;) =0forsomei,

Jif d(u,u;) # 0for all i,

fw) = )

f(u) is the interpolated value at location u,
z; are the observed values at location i,

w;(u) is the weight based on the distance between the
interpolated location u and the data point i, and

N is the total number of points.

The weight w; (u) is typically defined as:

1
d(u,u;)P

3

w;(u) =

where:

d(u,u;) is the distance between the interpolated location u
and the data point i, and

p is a power parameter that controls the significance of
known points on the interpolated values based on their
distance to u. A larger p decreases the influence of distant
points.

It is important to note that the selection of the power
parameter p can influence the results of the IDW
interpolation, and it should be chosen carefully based on the
specifics of the dataset and the intended use of the
interpolated surface. To convert the ACLED and UCDP
GED vector point data into a raster format, we employed the
IDW interpolation method in QGIS. The weighting factor in
this process was determined by both the number of fatalities
and the density of conflict incidents, allowing us to capture
the severity and the spatial concentration of conflicts in our
study area.
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5.  EXPERIMENTS WITH RANDOM
FOREST CLASSIFIER MODEL

The choice of the Random Forest Classifier (RFC) for
developing the conflict susceptibility mapping model was
based on the algorithm’s capability to handle complex
datasets, which is crucial when working with public conflict
and socio-economic conditioning factor datasets. These
datasets often exist in various formats and with differing
levels of accuracy. The RFC-based model is particularly
useful at capturing the complex and non-linear relationships
between socio-economic, political, and geographical factors
that contribute to conflict.

A key aspect of RFC is its ability to aggregate decisions from
multiple decision trees, using an ensemble learning method
known as bootstrapping. This process ensures that
predictions are more accurate than those of individual
models by averaging outputs from trees trained on different
subsets of the data. By exposing each tree to only a portion
of the dataset, the RFC minimizes the risk of overfitting
while maintaining robustness. This is important in conflict
datasets, which often contain irregular patterns, noise, and
other anomalies. Averaging decisions helps the RFC focus
on broader trends, ensuring the model remains reliable even
when faced with data inconsistencies. Additionally, the
RFC’s ability to handle missing data is a significant
advantage in scenarios where field data collection processes
may lack reliability or completeness, as is common in
conflict zones.

Tree height is a significant hyperparameter in the RFC that
impacts both performance and interpretability. In the context
of conflict susceptibility mapping, higher trees enable the
model to capture interactions between variables such as
population density, road networks, and conflict events.
However, overly high trees can lead to overfitting, where the
model learns noise or anomalies rather than meaningful
patterns. Conversely, shallow trees may underfit the data,
oversimplifying the relationships and missing critical
patterns.

Despite the obvious RFC advantage, developing models for
conflict susceptibility mapping using the RFC presents
numerous challenges. The RFC models lack straightforward
interpretability, which can be critical for understanding the
influence of specific conditioning factors on conflicts. The
computation requirements for the models with numerous
trees or large datasets lead to extended training and
processing times. The model’s performance can present a
challenge with the imbalanced datasets often observed in
conflict-related public datasets.  Additionally, the
performance of an RFC heavily relies on the correct tuning
of hyperparameters, like the number of trees and their depth,
adding complexity to model development. Lastly, the “black
box” nature of an RFC limits the understanding of the
internal decision-making processes for peacemaking and
mediation-related activities.

However, despite the challenges presented by using an RFC,
the model provides the required accuracy, interpretability,
and robustness, which makes it a good choice for developing

models for predicting conflict susceptibility and mapping.
The model's technical capabilities help predict conflicts and
understand key conditioning factors, supporting the
formulation of more effective preventive strategies and
policies.

5.1 Training and executing the random
forest classifier model

The Python code was deployed in Google Colab to train and
execute the model based on the RFC. In this paragraph, we
describe the process of developing the RFC-based conflict
susceptibility mapping model using a combination of RFC
machine learning techniques and geospatial data analysis.

After mounting Google Drive and providing access to the
datasets, we set up the Python environment by installing
essential packages. The loading phase involves importing
conflict data from a CSV file using panda. This dataset
contains geospatial coordinates and other conflict-related
attributes and undergoes a process of marking for “presence”
(indicative of conflict) and “pseudo-absence” (indicative of
non-conflict scenarios). The geospatial features are extracted
from various conditioning factors raster files, such as
population densities and road networks. This step is crucial
to understanding the geographic nuances of conflict areas
and conditioning factors potentially influencing the conflict.
The data is then subjected to preprocessing, where non-
numeric and missing values are addressed, and the dataset is
split into training and testing sets. This ensures the model is
evaluated on any missing values presented in the datasets, a
key aspect of the model assessment.

The fundamental aspect of this process is model training and
hyperparameter tuning. The model is fine-tuned with the grid
search cross-validation process, determining optimal
configurations of parameters such as tree numbers and depth.

The accuracy test has returned high accuracy values for the
predictions for the RFC of the conflict susceptibility
mapping model. Below, the “0” value indicates “non-conflict”
predictions, and “1” means “conflict” predictions.

Accuracy on Test Set (RF): 0.9352992957746479
Classification Report (RF):

Precision recall fl-score support
0 0.93 0.94 0.94 1136
1 0.94 0.93 0.93 1136
accuracy 0.94 2272
macro avg 0.94 0.94 0.94 2272
weighted avg 0.94 0.94 0.94 2272

The model's effectiveness is assessed using key performance
metrics like accuracy, precision, recall, and F1-score,
calculated against the validation dataset. This evaluation
phase is crucial in understanding the model's predictive
capabilities in real-world scenarios.

The final stage of the model conducts the visualization of the
model's predictions on a map. A geodata frame is created and
plotted over a map with a base map from OpenStreetMap by
merging these predictions with the validation set of
geospatial data. The geodata frame defines the geographical
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locations and boundaries of the data points.

Through this process, combining machine learning with
geospatial analysis, we provide a tool capable of predicting
and visualizing areas susceptible to conflict. The RFC
delivers a robust, reliable model, while geographic
visualization represents the results.

5.2 Visualization of random forest classifier
model predictions
Fig. 2 presents a map of predicted conflict and non-conflict

locations derived from the RFC machine learning model.
This visual representation provides a spatial understanding

of potential hotspots and areas requiring further investigation.

The symbology is designed to display the locations of
“conflict” and “non-conflict” areas by a point. The prediction
dataset's latitude and longitude indicate each point's position
on the map.

The color coding of the points is presented in two colors used
to differentiate between “conflict” and ‘“non-conflict”
predictions. “Conflict” areas (positive prediction) points are
given in red color, and “non-conflict” (negative prediction)
points are colored in green color. In the resulting dataset of
RFC model conflict predictions, the value of predicted
conflicts is “1,” and the value of non-conflict is “0”. This
symbology allows researchers and stakeholders to visually
identify the areas that might require attention or prevention
for potential conflicts. It also helps to understand the
geographical distribution of conflict risk across the mapped
region and identify visual patterns in relation to various
geographical objects such as roads, rivers, international or
administrative borders, etc.

Random Forest Classifier
Model Predictions

Predicted
@ Non-Conflict
® Conflict

(c) OpenStreetMap contributors

Figure 2 — RFC Conflict Susceptibility Map

OpenStreetMap layers are selected as the baseline data for

this map. These layers provide the geographical context
necessary to understand the locations of predictions. They
include geographical features like roads, water bodies, and
urban areas, allowing for a better understanding of the terrain
and landscape where these predictions are located.

This visual representation is crucial for stakeholders, such as
policymakers, researchers, and humanitarian organizations,
as it helps them identify areas that might require attention,
intervention, or further study.

5.3 Random
validation

forest classifier model

Fig. 3 presents a graph of the Area Under Curve—Receiver
Operating Characteristic (AUC-ROC) of a binary classifier's
performance as its discrimination threshold varies. The curve
is generated by plotting the True Positive Rate (TPR) against
the False Positive Rate (FPR) at various threshold settings.
The true Positive Rate (Sensitivity) presented in Equation 4
is the percentage of positive instances (actual "1"s) that are
correctly identified by the classifier.

TRP (Sensitivity) = TruePositive @

TruePositive+FalseNegative

False Positive Rate (1-Specificity) presented in Equation 5 is
the percentage of negative instances (actual "0"s) that are
incorrectly identified as positive by the classifier.

TRP (Specificity) = FalseNegative (5)

TruePositive+FalseNegative

The Python code evaluates the AUC-ROC and PRC scores
for the RFC model and plots the graphs for both performance
indicators. Initially, the code imports necessary libraries for
plotting and calculating evaluation metrics. It then computes
the False Positive Rate and True Positive Rate at various
threshold settings to create a ROC curve. The AUC-ROC is
calculated to provide a single measure of the model's
performance. In parallel, the code computes the precision
and recall for different probability thresholds to construct a
Precision-Recall Curve (PRC). It also calculates the Average
Precision (AP), which summarizes the precision-recall curve.

Visualization is plotted for understanding the model’s
capacity to accurately distinguish between “conflict” and
“non-conflict” areas. The ROC curve shows the model’s
effectiveness across different thresholds, while the PRC is
particularly informative in the context of imbalanced
datasets typical of conflict susceptibility scenarios. Using
both the ROC curve and PRC, this evaluation provides
insights into the model’s predictive power and the reliability
of conflict susceptibility mapping.

The AUC-ROC score of RFC conflict susceptibility mapping
models is high, 0.98. It indicates the model is good at
distinguishing between areas that are prone to “conflict”
(labeled as "1" or positive) and areas identified as “non-
conflicts” (labeled as "0" or negative). A score of 0.98 means
there's a 98% chance that the model will rate a randomly
chosen susceptible area as more likely to have “conflict” than
a randomly selected “non-conflict” area.
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An AUC of 1 indicates perfect conflict prediction, though
this suggests overfitting, while an AUC of 0.5 implies
random guessing, highlighting a lack of meaningful insights
into conflict.
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Figure 3 — AUC-ROC graph validating the accuracy of the RFC
model

Another assessment indicator that was applied in this
research was AUC-PRC. The PRC is a graphical
representation that plots precision against recall for different
thresholds. The area under this curve quantifies the
classifier's overall performance across all possible decision
thresholds. In other words, using different probability
thresholds, AUC-PRC summarizes the balance between the
true positive rate and the positive predictive value.

Fig. 4 is the graph representing the PRC for conflict
susceptibility mapping trained and executed based on RFC
models. The PRC score for our model is 0.98.
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Figure 4 — PRC graph validating the accuracy of the RFC Model

The AUC-PRC score of 0.98 is very good, indicating that the
RFC model can distinguish between areas that are
susceptible to “conflict” and those that are “non-conflicts.”
Similar to AUC-ROC, if 0.5 PRC, this is no better than a
random guess. On the other hand, 1.0 PRC is a perfect
classifier but can also indicate an overfitting.

A PRC of 0.98 suggests that the model has a good balance of
precision and recall. 1t means that for most thresholds, the
model can identify a high percentage of actual susceptible
areas (high recall) while maintaining a low rate of false
positives (high precision).

Both validation models, AUC-ROC and PRC, returned a
score of 0.98. Such a high score can provide relative
confidence in using the model's predictions to give
actionable information to the decision-making processes for
conflict prevention. It suggests that the random forest
classifier model can correctly identify areas of high conflict
susceptibility based on the provided data and features.

6. EXPERIMENTS WITH SUPPORT
VECTOR MACHINE CLASSIFIER
MODEL

The Support Vector Machine (SVM) classifier is a powerful
and versatile machine learning model experimented with in
developing conflict susceptibility mapping models. The
SVM demonstrates its effectiveness in managing complex
and high-dimensional data, typically present in conflict and
socio-economic datasets. The SVM is particularly good at
finding a hyperplane that best separates data into different
classes, which is essential for distinguishing between
“conflict” and “non-conflict” areas based on various socio-
economic, political, and geographical indicators and other
conflict conditioning factors. One of the key strengths of
SVM in conflict susceptibility mapping is its ability to model
non-linear relationships using kernel functions. These
capabilities are important for capturing the interactions
between multiple factors that can contribute to conflict.
Unlike simpler linear models, SVM can handle the
complexity and nuances present in conflict data, making it
generally well-suited for conflict analysis.

However, the SVM models present several challenges in this
context. SVM-based models can be computationally
intensive, especially with large datasets and when using
complex kernel functions. This requires consideration of
computational resources and process optimization during
model training. SVM-based models can present challenges
in understanding how each feature influences the
classification, which can present challenges in explaining the
model's decisions in a policy-making context. Another
challenge is the selection of an appropriate kernel and tuning
of hyperparameters like the penalty parameter (C) and kernel
parameters. The performance of SVM heavily relies on these
choices. Additionally, SVM models can be challenging with
very large datasets and may require techniques like data
reduction or approximation methods for efficient processing.
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Despite these challenges, the high accuracy and
effectiveness of SVM-based models in complex
classification tasks make it a valuable tool for conflict
analysis and developing conflict susceptibility mapping
models. By efficiently handling high-dimensional data and
providing clear decision boundaries, SVM can contribute to
predicting and understanding conflict dynamics.

6.1 Training and executing the support
vector machine classifier model

The Python code in Google Colab for the training and
execution of the model is based on the Support Vector
Machine (SVM) classifier algorithm. This code develops a
machine learning model to predict conflict susceptibility in
Somalia and creates a map presenting the locations of
“conflicts” and “non-conflicts” based on the SVM classifier.
After mounting Google Drive and providing access to the
datasets, we set up the Python environment by installing
essential packages. To prepare historical Somali conflict data,
we loaded it into a data frame. This data is then augmented
by creating pseudo-absence data, which is critical to
developing the model because it provides examples of
locations where conflict is not present. This augmentation is
conducted by randomly sampling data from the original
dataset and then altering the “presence” flag to zero,
simulating “non-conflict” areas. The following process
involves extracting geographical features using raster data.
The code processes various raster files, extracting features
based on the latitude and longitude coordinates from the
combined dataset. These extracted features are then added to
the data frame, enriching the original data with spatially
relevant information essential for understanding the
geographical context of conflict.

After data preparation, the code handles non-numeric and
missing data in the dataset using an imputer and standardizes
using a scaler. This standardization is essential for an SVM's
performance, as it is sensitive to the scale of input features.
The data is then split into training and test sets, balancing the
two classes using the Synthetic Minority Oversampling
Technique (SMOTE). This is important for dealing with the
imbalanced nature of conflict data, where data points of
conflict might be significantly fewer than non-conflict
instances. The SVM classifier tuned through a grid search to
find the optimal parameters. This process involves
experimenting with different values for the regularization
parameter (C), kernel types, and gamma values to determine
the best combination for the model. The SVM model is
trained on the resampled training data when the best
parameters are identified. The trained model is used to
predict conflict susceptibility on the test dataset, and the
model's performance is evaluated using standard metrics like
accuracy and a detailed classification report. These metrics
provide insights into the model's effectiveness in
differentiating between “conflict” and “non-conflict” areas.

Finally, the predicted results are visualized on a map. Using
the test set's latitude and longitude, along with the predicted
values, a geodata frame is created. This geodata frame is then
plotted on a base map sourced from OpenStreetMap, using

different colors to represent predicted “conflict” and “non-
conflict” areas. This visual representation is essential for
understanding the geographical distribution of conflict
susceptibility and helps in the practical application of the
model's findings, such as conflict prevention and
management.

The SVM-based model used in this analysis initially
provided the lowest accuracy among the various models
tested. In its first trial, the SVM model achieved an accuracy
of approximately 0.752 on the test set. Following a detailed
hyperparameter tuning process, there was a slight
improvement in the model's performance, with the accuracy
increasing to approximately 0.761. The training and
execution time for the SVM model was significantly longer
compared to other models.

Accuracy on Test Set (SVM): 0.761443661971831
Classification Report (SVM):

precision recall fl-score support
0 0.74 0.82 0.77 1136
1 0.79 0.71 0.75 1136
accuracy 0.76 2272
macro avg 0.76 0.76 0.76 2272
weighted avg 0.76 0.76 0.76 2272

This extended processing time is a notable drawback of the
SVM, particularly when handling large datasets such as
raster image data and requiring extensive hyperparameter
tuning. Such time-intensive computation can be a limiting
factor in scenarios where quick model iteration or real-time
analysis is needed.

6.2 Visualization of support vector machine
classifier model predictions

Fig. 5 presents a map of predicted “conflict” and “non-
conflicts” derived from the Support Vector Machine (SVM)
classifier machine learning model. As in the RFC-based
model, the map provides potential “conflict” and “non-
conflict” locations. See Section 5.2 for details.

Support Vector Machine
Classifier Model Predictions

Predicted
e Non-conflcit
* Conflict

(c) OpenStreetMap contributors

Figure 5 — SVM classifier conflict susceptibility map
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6.3 Support vector machine classifier model
validation

Fig. 6 presents a graph of AUC-ROC of the performance of
a binary classifier for the validation of SVM classifier model
performance.
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Figure 6 ~AUC-ROC graph validating the accuracy of SVM.

As for the random fort classifier model validation, the curve
is generated by plotting the True Positive Rate (TPR) against
the False Positive Rate (FPR) at various threshold settings
for SVM model validation. True Positive Rate (Sensitivity)
presented in Equation 3 is the percentage of positive
instances (actual "1"s) that are correctly identified by the
classifier. False Positive Rate (1-Specificity) presented in
Equation 5 is the percentage of negative instances (actual
"0"s) that are incorrectly identified as positive by the
classifier.

This Python code calculates the AUC-ROC and PRC scores
for an SVM model and plots the graphs for both performance
indicators. This code is set to evaluate and visualize the
performance of an SVM model using two key metrics: the
ROC curve and the PRC. It begins by importing the
necessary functions for calculating these metrics and plotting
data. The trained model provides the output probability
estimates.

The script predicts the probabilities for the positive class of
the test data using the trained conflict susceptibility SVM
model. These predicted probabilities are crucial for
calculating the ROC and PRC. Then, the code computes the
false positive and true positive rates at various threshold
levels and calculates the area under the ROC curve. This area
represents a measure of the model's capability to differentiate
between the positive and negative classes. Also, the PRC is
computed. The area under the PRC provides an aggregated
measure of the model's performance, especially when there
is a class imbalance. The script then proceeds to the metrics
and plots the graph. This visual representation is essential in
many machine learning tasks, particularly for evaluating
classification models.

The AUC-ROC score of 0.83 for the SVM-based conflict
susceptibility mapping models signifies a strong predictive
performance. The AUC-ROC provides a single measure of
the model's overall performance. An AUC-ROC score of
0.83 indicates that the SVM model can correctly distinguish
between the two classes, “conflict” and “non-conflict” areas.
This score implies that in 83% of the cases, the model will
correctly differentiate a randomly chosen positive instance
(actual conflict area) from a negative one (non-conflict area).
This level of accuracy is generally considered reasonable and
suggests that the SVM model is effective for the task of
conflict susceptibility mapping.

In Fig. 7, the PRC score of 0.78 for the SVM-based conflict
susceptibility mapping models indicates a satisfactory level
of performance, particularly in the context of class imbalance,
which is often related to conflict databases and socio-
economic conditioning factors.

A score of 0.78 in this case suggests that the SVM model is
quite adept at identifying true “conflict” areas, however, with
slightly less accuracy. However, the model is effective in
correctly identifying areas of conflict susceptibility. While
performing the model execution, we tried to improve the
model's performance by tuning hyperparameters, which gave
us an insignificant increase in PRC values. It improved from
0.77t0 0.78.
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Figure 7 — PRC graph validating the accuracy of SVM.

For stakeholders, these scores mean the SVM-based model
can distinguish between “conflict” and “non-conflict” with
83% accuracy and identify potential “conflict” areas with 78%
accuracy. Overall, the SVM-based model can support early
warning, although some misclassifications may be present.
Thus, supplementing the model's results with expert
validation and cross-referencing with other models is
recommended to ensure the accuracy of the decision-making
process.
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7. EXPERIMENTS WITH GRADIENT
BOOSTING CLASSIFIER MODEL

The Gradient Boosting Classifier (GBC) is selected for
conflict susceptibility mapping models due to several factors
aligned with conflict analysis and susceptibility mapping
requirements [44]. GBC is recognized for high accuracy in
complex classification tasks, which is essential for conflict
analysis. One of the main reasons for selecting GBC is its
capability to work with diverse and high-dimensional
datasets, which are common in conflict, socio-economic, and
conditioning factors datasets. These datasets often include
various variables, such as socio-economic, political, and
geographical indicators. GBC's approach of building
successive decision trees, each correcting the errors of the
previous, allows us to effectively interpret this complexity,
providing insights into potential conflict drivers.

Another vital aspect is GBC's capability to model non-linear
relationships [45]. The interactions between factors that
contribute to conflicts are rarely linear or obvious. GBC's
algorithms can wuncover and model these complex
interactions, providing an understanding of the underlying
conflict dynamics. Moreover, the aspect of GBC, where each
new model incrementally improves based on the previous, is
particularly suited for the evolving nature of conflict data. As
new data becomes available or the socio-political landscape
changes, GBC models can be efficiently updated, ensuring
that the conflict susceptibility mapping models remain
relevant and accurate. While GBC requires careful tuning of
hyperparameters and can be computationally intensive, its
accuracy and ability to manage complex, high-dimensional
data make it a good choice for conflict susceptibility
mapping models. These strengths enable GBC to
significantly contribute to predicting and understanding
conflict dynamics, making it a valuable tool in conflict
analysis.

Meanwhile, implementing GBC models in conflict
susceptibility mapping presents some challenges. They are
primarily related to the risk of overfitting [44], as GBC
models might adapt too closely to the training data, leading
to poor performance on unseen datasets. Another challenge
is the intensive computational demand of GBC models [44],
mainly when processing large datasets or during the
extensive hyperparameter tuning process. This can strain
resources and increase the time required for model
development and deployment. The "black box" nature of
GBC models [46] is another problem regarding
interpretability and understanding how various conditioning
factors influence predictions. The quality and availability of
data significantly impact model performance. Data can often
be incomplete, unbalanced, or inaccurate in conflict mapping,
leading to skewed or unreliable predictions. These
challenges require a careful approach to model development
and continuous evaluation to ensure the reliability of conflict
susceptibility mapping models.

7.1 Training and executing with the gradient
boosting classifier model

The Python code in Google Colab for the training and
execution of the model is based on the GBC model. The
process involves data preparation, feature extraction, model
training, hyperparameter tuning, and visualization of
predictions. After mounting Google Drive and installing
Python libraries, it imports relevant functions and classes for
model selection, ensemble methods (specifically gradient
boosting), metrics, preprocessing, imputation, and SMOTE
for handling class imbalance. The historical conflict data is
loaded from a CSV file, generating pseudo-absence data by
sampling from the original data, adjusting the latitude and
longitude, and generating “non-conflict” data points. These
pseudo-absence data points are combined with the original
data to form a complete dataset. The code then extracts raster
features from a list of TIFF files related to conditioning
factors of the conflicts, such as population density, roads,
schools, etc.

The combined dataset is split into training and testing subsets,
ensuring a balanced representation of presence and absence
data. The script processes the data by selecting numeric
columns, imputing missing values, and standardizing the
features. It addresses class imbalance using the synthetic
minority oversampling technique. The GBC is an ensemble
learning method known for its effectiveness in classification
tasks. The model is searched through a range of
hyperparameters to find the most effective model
configuration. The model is now trained on the resampled
training data. The best model from the grid search is then
used to make predictions on the test set. The accuracy and
classification reports are printed to evaluate the model's
performance.

The accuracy test result has returned quite a high percentage
of accuracy of the predictions for the GBC of the conflict
susceptibility mapping model, which is presented below. The
GBC-based mode provided high accuracy, 0.91, closer to the
results of the RFC-based models, which is 0.93. Such an
accuracy test provides positive results and indicates that the
GBC model was a good choice for the set of historical
conflicts and conditioning factors datasets available for
Somalia's use case.

Accuracy on Test Set (GB): 0.9141725352112676
Classification Report (GB):

precision recall fl-score support

0 0.93 0.90 0.91 1136

1 0.90 0.93 0.92 1136

accuracy 0.91 2272

macro avg 0.91 0.91 0.91 2272

weighted avg 0.91 0.91 0.91 2272
7.2 Visualization of gradient boosting

classifier model predictions

Fig. 8 presents a map of predicted “conflict” and “non-
conflicts” derived from the GBC-based machine learning
model. As in the RFC-based model, the map provides
locations of potential “conflict” and “non-conflict” areas.
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See Section 5.2 for details.

7.3 Gradient classifier model

validation

boosting

Fig. 9 presents a graph of the AUC-ROC of the performance
of a binary classifier as its discrimination threshold is varied.

Gradient Booster Classifier
Model Predictions

Predicted
o Non-conflcit
e Conflict

(c) OpensStreetMap contributors

Figure 8 — GBC conflict susceptibility map

The Python code to calculate the AUC-ROC, PRC scores for
GBC model evaluates a conflict susceptibility mapping
model based on the GBC using AUC-ROC and PRC. It
imports necessary libraries for plotting and calculating
evaluation metrics. The code first predicts the probability of
the positive class for the test set using the already trained
GBC model. It then computes the false positive rate and true
positive rate at various threshold settings to create a ROC
curve. The AUC-ROC is calculated to provide a single
measure of the model's performance.

In parallel, the code computes the precision and recall for
different probability thresholds to construct a PRC. It also
calculates the average precision that summarizes the
precision-recall curve. Fig. 9 represents the AUC-ROC curve,
plotting the tradeoff between true positive and false positive
rates, and it is labeled with the AUC value. Fig. 10 presents
PRC, highlighting the model's precision at different recall
levels and labeling it with the average precision value.

Visualization helps understand the model’s capacity to
accurately distinguish between “conflict” and “non-conflict”
areas. The ROC curve shows the model’s effectiveness
across different thresholds, while the precision-recall curve
is particularly informative in the context of imbalanced
datasets typical of conflict susceptibility scenarios. This
comprehensive evaluation using both AUC-ROC and PRC
provides a deep insight into the model’s predictive power
and reliability in the domain of conflict mapping.

The AUC-ROC score of GBC conflict susceptibility
mapping models is high: 0.98, which means there's a 98%
chance that the model will rate a randomly chosen
susceptible area as likely to have “conflict” than a randomly
selected “non-conflict” area.

Another validation model that was applied in this research
was PRC (Fig. 9). It is a graphical representation that plots
precision against recall for different thresholds.
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Figure 9 — AUC-ROC graph validating the accuracy of the GBC
model

The area under this curve quantifies the classifier's overall
performance across all possible decision thresholds. Using
different probability thresholds, PRC summarizes the
balance between the true positive rate and the positive
predictive value. Conflict susceptibility mapping predicted
areas that are considered vulnerable or prone to conflict. By
training a model like the GBC on historical conflict data, we
want to understand patterns and factors that lead to conflicts
based on various conditioning factors. Our model is trained;
it can be used to predict susceptibility for unobserved or
future scenarios.

Fig. 10 represents the PRC for conflict susceptibility
mapping trained and executed based on random forest
classifier models. The PRC score for our model is 0.98. It is
a very good score, indicating that the GBC model can
distinguish between areas susceptible to conflict and those
not. An AUC-PRC of 0.98 suggests that the model has a
good balance of precision and recall. It means that for most
thresholds, the model can identify a high percentage of actual
susceptible areas (high recall) while maintaining a low rate
of false positives (high precision).
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Precision-Recall Curve
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Figure 10 — AUC-PRC graph validating the accuracy of the GBC
model.

Both validation models, AUC-ROC and AUC-PRC, returned
a score of 0.98. Such a high score can provide relative
confidence in using the model's predictions to guide
interventions, allocate resources, or make strategic decisions
related to conflict prevention. It suggests the GBC model can
correctly identify areas of high conflict susceptibility based
on the provided data and features.

8. COMPARISON OF MODELS’
PERFORMANCE

Table 1 outlines the performance metrics for three machine
learning models regarding conflict susceptibility mapping.
The performance of three models, Random Forest Classifier
(RFC), Support Vector Machine (SVM) classifier, and
Gradient Boosting Classifier (GBC), was compared across
various performance metrics. The RFC emerged as the most
reliable, boasting the highest overall accuracy at 0.93,
closely followed by the GBC at 0.91, while the SVMC
lagged at 0.76. This trend of an RFC's superiority extended
to precision in both “conflict” and “non-conflict” areas,
scoring 0.94 and 0.93, respectively, indicating a lower false
positive rate. The GBC was not far behind, especially in
“non-conflict” areas, but the SVM model showed notably
lower precision in both categories.

Regarding recall, which measures the ability to identify true
positives, both the RFC and GBC demonstrated strong
performance in identifying “conflict” and “non-conflict”
areas, with scores around 0.93 and 0.94. However, the SVM
was less effective, particularly in conflict zones, with a recall
of only 0.71. The F1 scores, reflecting a balance between
precision and recall, were consistently high for RFC and
GBC across both zone types, underscoring their robustness.
The SVM model's lower F1 score of 0.76 highlighted its
weaker performance.

Table 1 — Comparison of performance of the models

Attribute RFC | SVMC | GBC

Accuracy test 0.93 0.76 0.91
Precision

Conflict zones (1) 0.94 0.79 0.90

Non-conflict zones (0) 0.93 0.74 0.93
Recall

Conflict zones (1) 0.93 0.71 0.93

Non-conflict zones (0) 0.94 0.82 0.90
F1-score accuracy

Conflict zones (1) 0.94 0.76 0.91

Non-conflict zones (0) 0.94 0.76 0.91
AUC-ROC 0.98 0.83 0.98
PRC 0.98 0.78 0.98

Another critical aspect is the AUC-ROC and PRC values,
where both the RFC and GBC excelled with scores of 0.98,
indicating excellent class separability and a strong
relationship between precision and recall. SVM, on the other
hand, had significantly lower scores in these areas, further
confirming its comparatively weaker performance. Overall,
the analysis suggests that the RFC and GBC are closely
matched in effectiveness, making them more suitable for
conflict susceptibility mapping than the SVM model. Table 2
presents the number of locations predicted as “conflict” areas
by three machine learning models experimented with in this
research: RFC, SVMC, and GBC-based models. According
to the predictions made by the models, the RFC-based model
identified 1 121 locations as potential conflict areas, the
SVMC-based model predicted a lower number, 998
locations, as “conflict” areas, and the GBC-based model
identified 1 123 locations as susceptible to conflict.

To identify geographical locations classified as "conflict"
areas by all three machine learning models, RFC, SVMC,
and GBC-based, we used QGIS software. We overlaid
prediction layers generated by each of the three models in
QGIS to conduct a spatial analysis of the specific locations
where all three models predicted “conflict" areas. The
number of the areas predicted as “conflict” by all three
models is 908. This method helped to ensure a high level of
confidence in the expected conflict areas, thereby reducing
the likelihood of false positives and enhancing the reliability
of the predictions.

Table 2 — Predicted “conflict” areas by individual models and
locations that all three models predicted as “conflict” areas.

Attribute RFC SVMC GBC
Predicted as “conflicts 1121 998 1123
areas
The exact locations
predicted by all three 908
models

All three models predicted the overlap of 908 areas as
"conflict" susceptible, suggesting the consensus among the
models on data patterns that indicate a strong possibility of
conflicts in overlapped areas. Such indicators include socio-
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economic, population, geographical, and environmental
factors. In addition, the similarity in results among the
machine learning models in identifying the "conflict"
susceptible locations indicates the level of robustness in the
models' predictions. Despite the methodological differences
between the ensemble tree-based methods (RFC and GBC)
and margin-based methods (SVM), the data patterns are
strong enough to be identified as "conflict" susceptible
across different models. The overlapping predictions also
suggest that the training data was representative and
comprehensive, enabling all three models to learn effectively
and providing a balanced mix of "conflict" and "non-
conflict" instances influencing the conflicts.

The locations of conflict-susceptible areas not overlapped by
the predictions of one or more models resulted from several
factors, including the methodological characteristics of each
machine learning algorithm, hyperparameters tuning, model
complexity, and elements of randomness in machine
learning models' training. Considering the similarities
between the RFC and GBC, we observe that the number of
non-overlapping locations is considerably low, 82, which is
approximately 7% of the number of RFC or GBC locations
(overlapped locations between RFC (1 121 locations) and
GBC (1 123 locations) 1 039). The geographical distribution
of these 82 areas displays a predominantly non-urban trend,
where the values of the conditioning datasets population
distribution and availability services such as hospitals,
schools, and others are at their lower margin. Other aspects,
such as the methodology of machine learning algorithms,
also contributed to predicting RFC and GBC models'
"conflict" areas that geographically did not overlap.
Although the RFC and GBC are ensemble tree-based models,
they construct multiple decision trees during training and
classify the individual trees for predicting "conflict" areas.
However, these two methods have differences in their
characteristics. GBC models focus on correcting previous
errors and the RFC on random subsets of features. The GBC
model's repeated correction can lead to increased sensitivity
towards patterns of conflict in some areas and capture
additional conflict indicators that the RFC might miss due to
its random selection process, which results in a slightly
higher number of predicted "conflict” areas identified by the
GBC compared to RFC.

The SVM-based provided the lowest results in the accuracy
test, 0.76. The number of "conflict" areas identified by the
SVM-based model that did not overlap with ensemble-based
models is considerably high, 212 or 19%. The geographical
distribution of non-overlapped locations is more random,
and no clear patterns were observed. Non-overlapped areas
appear in both rural and urban locations, like Mogadishu city.
From the methodological perspective, the SVM-based
model's performance is sensitive to tuning the kernel or
parameters (like C and gamma). If these parameters are not
optimized, the SVM might not capture the complexity of the
data or use tree-based methods, leading to lower accuracy.

The ensemble methods can also help generalize unseen data,
averaging biases and reducing variance. The SVM's
generalization is notably strong but relies heavily on tuning
the parameters. Thus, in application to our use case and for

the available datasets, we consider giving ensemble-based
preferences for developing conflict susceptibility mapping
models.

Fig. 11 presents the geographical locations predicted as
susceptible to conflict by all three machine learning models:
RFC, SVM, and GBC-based. This map provides the location
represented in red points consistently identified across all
models as potential conflict areas. This map provides a more
reliable identification of areas that may require closer
attention for conflict prevention. This alignment among
diverse models provides the predictions' credibility and
valuable insights for conflict analysis and resolution efforts.

Predicted conflcits by RFC,
SVM and GBC

e Conflict

(c) OpenStreetMap contributors

Figure 11 — Same locations of “Conflicts” predicted by all three
models

In evaluating the suitability of the three conflict
susceptibility mapping models, each has distinct advantages
and limitations. The strong correlation between predictions
of ensemble methods (RFC and GBC) and their high
accuracy, precision, and recall indicates their effectiveness
in correctly identifying conflict and non-conflict zones with
minimal false positives and negatives. The Support Vector
Machine (SVM) classifier is known for its efficacy in high-
dimensional spaces. Despite these strengths, the SVM model
falls behind the other models in almost all performance
metrics. Such limitations are considered due to their
sensitivity to the choice of kernel and the tuning of
hyperparameters.

The large number of overlapping locations where all three
models identify the typical conflict pattern confirms our
hypothesis that thorough data cleansing and preprocessing of
publicly available data provides good quality datasets for
machine learning models to make accurate predictions of
conflict-susceptible areas.

Moreover, selecting an appropriate machine learning model
plays an important role in the accuracy of these predictions.
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Choosing a suitable model, based on its strengths and the
nature of the data, is crucial for capturing the patterns within
the data, leading to more reliable predictions of conflict
Zones.

9. CONCLUSION

In this research, we provided the result of using Somalia data
to develop the conflict susceptibility mapping models. The
systematic development of this methodology provided the
required integrity and reliability of the results. After
thoroughly reviewing machine learning techniques and
available data for Somalia, we developed three conflict
susceptibility mapping models based on the RFC, SVM
classifier, and GBC. Further, we provided a detailed
explanation of the code of each machine learning model,
along with the results of training, predictions, and maps of
conflict-susceptible areas in Somalia. We also evaluated the
performance metrics of these models, highlighting their
strengths and potential areas for enhancement. Such metrics
included the AUC-ROC, PRC, accuracy, precision, recall,
and F1 score. The data preprocessing and experimentation
phase relied on software tools for managing data-intensive
operations, such as QGIS, R, Python, and the cloud-
computing environment of Google Colab.

The developed conflict susceptibility mapping machine
learning models based on the RFC, SVM classifier, and GBC
provided promising results in predicting conflict-susceptible
areas and the models' accuracy level. The RFC showed the
highest accuracy on the accuracy test, 0.93, followed by
GBC at 0.91 and SVM at 0.76. The AUC-ROC and PRC
values for RFC and GBC were at 0.98, showing a precision-
recall solid relationship. The SVM had significantly lower
scores, confirming its lower performance. Regarding the
number of locations predicted as “conflict” areas, the RFC
identified 1121 locations, SVM 998 locations, and GBC
1123. An overlay analysis of the results of all three models
using QGIS showed that 908 locations were predicted as
“conflict” areas by all three models. This method enhanced
the reliability of predictions by reducing false positives.
Following the results of the experiments, the RFC provides
the most suitable model for conflict susceptibility mapping
using the experimental settings specific to Somalia.

The defined methodology of conflict susceptibility mapping
satisfied our hypothesis that publicly available data related
to socio-economic indicators, environmental variables, and
others can be used as sources for relevant conditioning
factors for conflict susceptibility mapping. The application
of such conditioning factors is crucial for accurate
predictions. However, it must be noted that no conditioning
factors can be applied to any or all environments due to
socio-cultural differences and conflict context. Each
geographical location and each conflict should be studied
through the prism of a unique set of conditioning factors.
Thus, to use this framework to predict the likelihood of
conflict escalation, we must identify a unique list of
conditioning factors that can be applied to that specific
geographic, political, or social scenario. It should be noted
that conflict dynamics are constantly changing, and new
types and elements may emerge in yet-to-be-studied

situations. Additionally, certain conditioning factors may
have been overlooked due to the limitations of available data
during this research. Therefore, we perceive this research as
a living process that is adaptable and open to future
enhancements with additional conditioning factors as
conflict prediction studies continue. As the application of
machine learning to conflict prediction gains momentum, we
anticipate an increase in the identification and understanding
of conflict conditioning factors, further enhancing the
accuracy of conflict prediction models. Machine learning
can potentially become a crucial tool for conflict study and
prevention. Understanding the elements that contribute to
conflict escalation and their relations to society, politics, and
geography enables the development of more effective
conflict analysis techniques. The data quality and availability
of data can provide challenges in using machine learning for
conflict prediction. This research is believed to be a practical
framework for using machine learning in conflict
susceptibility research.

A literature review conducted in 2023 [7] by the authors
revealed that research on machine learning susceptibility
mapping and using conditioning factors remains limited. The
application of machine learning technology to predict
conflict likelihood has gained academic attention only in the
past five years. Recognizing the importance of conditioning
factors in conflict research and analysis, several initiatives
have emerged. For instance, the Joint Research Centre (JRC)
of the European Commission launched the Index for Risk
Management (INFORM) project [47], a global open-source
tool for assessing and predicting risks of humanitarian crises
and disasters at the national level. This project represents a
milestone in leveraging conditioning factors for risk
assessment. Similarly, Uppsala University’s Violence Early
Warning System (VIiEWS) project provides predictions of
armed conflict likelihood on a national scale [48].

While initiatives like INFORM and VIEWS focus on global
or regional risk identification using conditioning factors and
machine learning techniques, some scholars emphasize the
importance of understanding local dynamics in conflict
prediction and analysis [16, 49]. Local factors often play a
pivotal role in the onset of conflicts, highlighting the need
for tailored, case-by-case conflict studies focusing on the
situation in the local communities. This study addresses this
gap by focusing on conflict susceptibility analysis and
mapping at a higher geographical resolution of 5 km,
tailoring the analysis and mapping, considering local,
cultural, socio-economic, and demographic nuances of the
communities of interest.

In conclusion, this study represents an advancement in
bridging fields such as data and geospatial science with
political science, marking it an essential step in the
interdisciplinary studies of conflict analysis. By integrating
machine learning technologies with political analysis, this
research provides a new understanding of conflict scenarios
in various locations worldwide. The application of machine
learning in this context is not only about technical
achievements but also a tool that can provide deeper insights
into the causes and possible resolutions of conflicts. The
connection between data science technology and
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humanitarian studies highlights the importance of using data-
driven approaches to understand political and social issues.
As we leverage cutting-edge machine learning technologies
to advance conflict studies, we must never forget the human
implications of our predictions and ensure that our efforts
serve the greater good.
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