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The integration of data science and Artificial Intelligence (AI) into geospatial analysis has 

revolutionized Earth observation, driving progress towards the Sustainable Development Goals 

(SDGs). Recent developments in data acquisition technologies like high-resolution satellites and 

sensors have generated vast and diverse datasets for monitoring environmental changes and 

managing natural resources. Concurrently, innovations in Machine Learning (ML) and AI have 

significantly enhanced the processing, analysis and interpretation of this geospatial data. Techniques 

such as deep learning, spatial data mining and automated feature extraction are now essential to 

deriving actionable insights from complex geospatial datasets. This paper reviews the latest trends 

and breakthroughs in the application of AI/ML to geospatial data for Earth observation, emphasizing 

their role in advancing the SDGs. Key areas of focus include improved algorithms for land cover 

classification, disaster prediction and climate monitoring. These technologies enable more precise 

and timely responses to environmental challenges, such as deforestation, urbanization and natural 

disasters, thereby supporting sustainable management and policymaking. Furthermore, the 

integration of AI with geospatial data enhances predictive modelling, scenario planning and decision 

support systems, which are critical for achieving SDG targets related to environmental sustainability 

and resilience. The synthesis of recent research and technological developments highlights the 

potential of AI/ML approaches for geospatial analysis and their alignment with global sustainability 

goals. The outcomes underline the requirement for continued innovation and collaboration across 

disciplines to fully leverage these advancements for effective Earth observation and sustainable 

development. 
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1. INTRODUCTION  

Recent years have seen an evolution of new space technologies that are capturing the planet in 

multiple modalities (EO, SAR, LiDAR, RF, etc.) and in multiple dimensions (spectral, spatial 

and temporal) that can help nations with the successful implementation of a strong national 

geospatial infrastructure [1], [2]. New space developments include technology advances in the 

field of rocket launches, miniaturization of payloads and sensors resulting in reduced costs of 

satellites, Inter-satellite Links (ISLs), satellite on-board processing technologies, increasing 

network of ground stations, and others [3], [4]. However, the key aspect of national geospatial 

infrastructures is the foundational data. Aerial technologies have also advanced in the last few 

years with commercial companies collecting imagery at ultra-high spatial resolutions (<-15cm) 

as well as LiDAR data at high densities (10-20 points per sq. m) for the creation of Digital 

Elevation Models (DEMs) as well as 3D mesh models. Drone technology has also rapidly 

evolved in recent years allowing for ultra-high-resolution capture of imagery and 3D data for 

local areas, and their ability to rapidly mobilize allows for frequent map updates [5]–[7].  

https://creativecommons.org/licenses/by-nc-nd/3.0/igo/
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Rapid advances in autonomous driving vehicles resulted in 

HD mapping technology from terrestrial vehicles that 

includes street views and detailed 3D surface maps to capture 

road furniture such as traffic signs, stop signs, lane markings, 

etc. Public agencies such as NASA and ESA have continued 

their scientific satellite missions, Landsat and Copernicus 

missions respectively, providing global imagery datasets at 

medium spatial resolution. Several Non-Governmental 

Organizations (NGOs), such as Open Street Map (OSM), 

Google.Org and others, have developed global map/vector 

datasets such as building footprints, road networks, etc. that 

can be leveraged for national mapping [8]–[10]. Nowadays, 

any national mapping agency can leverage multiple datasets 

available in the commercial industry, as well as from public 

sector agencies to execute their mapping missions. 

The last few years have also seen the increasing adoption of 

AI/ML technologies for a variety of applications including 

Generative AI (GenAI), Large Language Models (LLMs), 

Deep Learning (DL) and Machine Learning (ML) models. 

The invention of transformers by Google coupled with 

increased computational infrastructure has drastically 

increased the adoption of AI/ML technologies in our daily 

lives [11]–[14].  

 
Source: http://www.statista.com/statistics/1474143/global-ai-market-size/  

Figure 1 – Artificial intelligence (AI) market size worldwide from 

2020 to 2030 (in billion U.S. dollars) 

Fig. 1 tells us about the global market size of AI (for 2020 to 

2030) in U.S. dollars. The global market size of AI seems to 

increase progressively each year, suggesting a projection of 

economic growth or investment over time. In the context of 

the global market size of Artificial Intelligence (AI), the bar 

chart likely illustrates projected growth in AI investment, 

spending or overall market size over the next decade. The 

chart clearly shows exponential growth in AI market size, 

which aligns with industry forecasts. In 2020, the market was 

valued at $93.27 billion but by 2030 it is projected to reach 

$826.73 billion, almost nine times the size in a decade. This 

reflects rapid advancements and adoption of AI across 

various sectors, including healthcare, finance, manufacturing, 

and more. Increasing computational power, improvements in 

AI algorithms (e.g., deep learning, neural networks) and the 

availability of large datasets are driving AI development. AI 

is being integrated into almost every industry. From 

autonomous vehicles and smart healthcare systems to 

finance, retail and logistics, the ability of AI to enhance 

productivity, accuracy and decision-making makes it highly 

valuable. Governments and companies are heavily investing 

in AI, both to gain competitive advantages and to address 

global challenges like climate change, healthcare and 

economic inequality. This increase in investment is reflected 

in the projected figures shown in the chart. AI is expected to 

contribute trillions of dollars to the global economy. 

According to some estimates, AI could add $15.7 trillion to 

the global economy by 2030, with productivity and product 

improvements. The chart aligns with projections for the 

global AI market, showing a significant growth trajectory 

from 2020 to 2030. This trend is driven by technological 

advancements, cross-industry adoption and increasing 

investment. As AI transforms industries, the global market 

size will continue expanding, with key sectors such as 

healthcare, autonomous vehicles and AI as a service being 

primary drivers of this growth. 

Further, improvements in the classification 

technologies/platforms, as well as segmentation 

technologies have enhanced the use of AI/ML technology. 

The geospatial industry has seen an increased adoption of 

AI/ML (GeoAI) for object and feature extraction, change 

detection, and other mapping applications. GeoAI is poised 

to become integral to the geospatial community and national 

mapping agencies should embrace GeoAI for national 

mapping and maintenance in 2D, as well as 3D [12], [15], 

[16]. The major focus of the work is on “AI/ML 

Approaches+Geospatial AI+ Earth Observation+Sustainable 

Development Goals”. 

Geospatial datasets, such as imagery, elevation models, road 

vectors and others, can be leveraged for a variety of 

applications beyond traditional mapping. EO imagery can be 

used for a variety of missions including agriculture, 

environment, transportation, natural resources management, 

atmospheric monitoring, census, etc [1], [17]. One of the key 

applications of EO imagery is Satellite-Derived Shallow 

water Bathymetry (SDSB) which allows for mapping and 

updating shallow water bathymetry in open oceans, as well 

as for inland waterways. DEMs play a critical role in flood 

plain/watershed modelling, transportation, insurance, 

topographic maps, and others [18], [19]. 3D texture models 

are becoming important for various missions including 

digital twins for smart cities, modelling and simulation, 

autonomous driving and other applications. A coordinated 

geospatial data acquisition mission will benefit national 

mapping agencies in efficiently leveraging various 

geospatial datasets for multi-purpose missions. 

2. VARIOUS DATASETS AVAILABLE 
FOR NATIONAL MAP UPDATES 

There are several datasets publicly available, as well as those 

from the private sector, for national mapping. The main 

datasets used for mapping include Electro-Optical (EO) 

imagery, Synthetic Aperture RADAR (SAR), digital 

elevation models including Digital Surface Models (DSMs) 

and Digital Terrain Models (DTMs), LiDAR and other 3D 

point clouds, 3D textured models, bathymetry, Ground 

Control Points (GCPs), image control points and various 

vector datasets including roads, buildings, coastlines, 

field/parcel boundaries, and others (Bui et al. 2021). 

http://www.statista.com/statistics/1474143/global-ai-market-size/
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2.1 EO imagery 

EO imagery is one of the main data sources used for mapping 

missions by national mapping agencies. EO imagery sources 

include satellites, planes, drones and terrestrial sensors [20], 

[21]. Key dimensions for the selection of EO imagery 

include spatial resolution (pixel resolution/Ground Sampling 

Distance (GSD) that defines the finest object that can be 

extracted from an image, spectral resolution (number of 

spectral bands, wavelengths of the spectrum, width of 

spectral bands to capture spectral signature of interest) and 

temporal resolution (revisit frequency over area of interest) 

[22], [23]. Spatial resolution can vary from 5cm for 

applications such as planimetric mapping to 3-meter-15-

meter GSD for nationwide change detection. A standardized 

schema such as the National Imagery Interpretation Scale 

(NIIRS) [24], [25] describes the objects that can be detected 

at multiple pixel resolutions and helps agencies select the 

right spatial resolution for a specific mission. Also, it is 

important to keep in mind that image quality for the same 

spatial resolution can vary from one data source to another 

based on image quality parameters like Signal Noise Ratio 

(SNR), radiometric resolution (preferred >10 bits of data per 

pixel), and others that influence the overall usability of EO 

images [26]–[28]. National mapping agencies should also be 

aware of techniques such as pan sharpening, super-resolution 

and resampling that simulate a spatial resolution that is much 

finer than the native GSD in selecting an imagery source 

[29]–[31]. The spectral resolution is an indicator of the 

number of spectral bands captured by the EO sensor [1], [32], 

[33]. Typical sensors used for mapping missions include a 

minimum of four bands spanning across the Visible and 

Near-Infrared (VNIR) part of the Electromagnetic (EM) 

spectrum of sunlight. Depending on the number of bands, EO 

imagery can be classified as Multi-spectral (MS) bands (2-10 

bands), Super-spectral (SS) (10-20 bands) and Hyper-

spectral (HS) (>20 bands). Most of the AI/ML applications 

use multi-spectral visible bands (Red, Green, Blue (RGB)) 

for object detection, while applications like land use/land 

cover, agriculture, etc. require additional information from 

the NIR band, which contain unique spectral information for 

feature extraction. Few sensors in the market collect imagery 

in the Short Wave Infrared (SWIR) part of the EM spectrum 

[34], [35]. SWIR imagery can be used for specialized 

applications such as mineral mapping, methane detection in 

the atmosphere, soil and canopy moisture detection, and 

others. Mid-wave Infrared (MWIR) and Long Wave Infrared 

(LWIR) bands transmit information about thermal responses 

of land features that can be leveraged for unique missions 

comprising energy efficiency measurements of buildings, 

monitoring emissions in the oil and gas industry, and other 

applications [36]–[39]. 

Several commercial companies provide aerial and drone 

imagery and a few companies such as NearMap and 

Aerometrix are collecting imagery globally [40]–[42]. There 

are a select few companies including NCTech that are offering 

street view terrestrial imagery as an alternative to HD datasets 

from companies such as Google, Apple, HERE, and others. 

Table 1 shows a partial list of companies that provide global 

satellite imagery that can be used for national mapping. 

Table 1 – Source of satellite EO imagery 

Source / Data Type/ EM 

Spectrum/ GSD 
Public / Private 

Landsat 8 (MS) VNIR, SWIR, 

MWIR 

Public (NASA) 

Sentinel 5 (MS) Public (ESA) 

Maxar (SS), VNIR-SWIR Private (USA) 

Airbus (MS), VNIR Private (Europe) 

Planet (MS), VNIR Private (USA) 

Satellogic (MS), VNIR Private (Argentina) 

BlackSky (MS), VNIR Private (USA) 

SIIS (MS), VNIR Private (S. Korea) 

ISI (MS), VNIR Private (Israel) 

Superview (MS), VNIR Private (China) 

Jilin (MS), VNIR Private (China) 

Satlantis (MS), VNIR Private (Europe) 

SatelliteVu (MS), MWIR Private (UK) 

Albedo (MS), VNIR Private (USA) 

Pixxel (HS), VNIR Private (India) 

Orbital Sidekick (HS), VNIR, 

SWIR 

Private (USA) 

Earth Daily Analytics (VNIR, 

SWIR, MWIR) 

Private (Canada) 

Axelspace (MS), VNIR Private (Japan) 

National mapping agencies can also take advantage of 

Commercial Off The Shelf (COTS ) global/national/regional 

image mosaic products offered by companies such as Maxar, 

Airbus, NearMap, and others [43], [44]. These datasets are 

typically built on global specification (e.g. UTM WGS84) 

and agencies can leverage these COTS products to rapidly 

create imagery base maps of their nation [45], [46]. 

Commercial companies offer various business models to 

access their imagery and products, as well as offering 

sovereign access to satellites to nations [47], [48]. Agencies 

can acquire new images for their areas of interest by tasking 

the satellites as well as accessing older data from the image 

archives, with the latter being a relatively cheaper option 

compared to tasking [49]–[51]. Several commercial 

companies have built platforms and Application 

Programming Interfaces (APIs) to provide access to new 

tasked imagery and archive imagery, as well as COTS 

products. For scientific applications, some companies are 

offering Analytics Ready Data (ARD or Data Cube) that is 

spectrally, spatially and temporally corrected imagery, from 

both public and private sources of imagery [52], [53]. Further, 

there are several data aggregators such as EUSI, UP42, 

SkyWatch, SkyFi, Appollo Mapping and others that provide 

access to multiple sources of EO imagery using one platform. 

The positional accuracy of the EO imagery is a significant 

reason to consider the map scale of national maps. Satellite 

image accuracy is dependent on the pointing accuracy of the 

satellites as well as spatial errors propagated through various 

image processing steps [54]. Supplementary data like the 

Digital Terrain Model (DTM) with Ground Control Points 

(GCPs) play an essential role in the absolute accuracy of 

processed images. Also, positional accuracy of mosaic image 
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products involves error propagation from bundle adjustment 

aerial triangulation of tie points from multiple images [55], 

[56]. National agencies require positional accuracies of EO 

imagery and associated products before using them for 

national map generations. 

2.2 Synthetic Aperture RADAR (SAR) 

SAR imagery can see through clouds and day/night and all-

weather imaging is useful for national mapping in several 

pursuits involving geology, maritime, surface deformation, 

infrastructure maintenance, disaster response, and others 

(Arai et al. 2019; Perez et al. 2022). SAR imagery requires 

considering other dimensions like spatial resolution, 

wavelength (X, C, L), polarization and imaging modes (Spot, 

Strip, Scan) for mapping. SAR satellites acquire imagery by 

scanning the ground in two dimensions and the associated 

spatial resolution of SAR data is defined by Impulse 

Response (IPR) (Abe et al. 2020; Ghorbanian et al. 2021). 

The IPR is a two-dimensional entity that is characterized by 

the range-dimension width (the width of the IPR in the 

ranging dimension) and the cross-range (or azimuth) 

dimension width. An image is built up from the reflected 

signals in both dimensions (Dungan et al. 2002; Motwani, 

Shukla, and Pawar 2021) and a typical SAR sensor 

resolution is defined by the slant-range plane. L, C and X- 

bands are the most widely employed in SAR instruments 

with variable microwave pulses for different mapping 

missions. Table 2 summarizes the missions supported by 

variable microwave bands. 

Table 2 – SAR applications 

Band Mission 

L (15-30 cm) Geophysical monitoring, biomass and 

vegetation mapping, InSAR 

C (3.8-7.5 cm) Global mapping, change detection and 

monitoring of areas with low to moderate 

vegetation; ice, ocean, and maritime 

navigation 

X (2.4-3.8 cm) Urban monitoring 

Most SAR systems provide dual and quad-polarized images, 

essentially giving multiple images of the same scene. Quad-

polarized SAR, also referred to as Polarimetric SAR 

(PolSAR), captures diverse structural and texture 

information and allows the recognition of different scattering 

mechanisms [57]–[59]. The specific frequency, look angle, 

polarization and illuminated area of a SAR dataset determine 

which applications the dataset is appropriate for where 

several commercial companies offer a range of image 

capture modes that define the spatial resolution and the area 

captured in an SAR scan [60]. SPOT modes typically offer 

the highest resolution with a relatively small area 

(5 km × 5 km to 10 km × 10 km at sub-1-meter resolution), 

Strip mode offers 1–2-meter GSD and a larger footprint than 

the spot model, and the scan model at >2 m GSD with large 

areas ranging in thousands of sq km [61], [62]. Commercial 

SAR satellite companies offer various business models for 

tasking SAR satellites, as well as for accessing their image 

archives. Like EO companies, customers can access tasking 

and imagery via a platform and associated APIs. There are 

several public and private sources of SAR imagery and 

Table 3 provides a partial list of SAR sources: 

Table 3 – Sources of SAR imagery 

Company / Region Public/Private 

Sentinel 1/Europe Public 

ALOS/Japan Public 

Airbus (Tandem-X)/Europe Private 

MDA (Radarsat-2)/Canada Private 

eGeos (COSMOS-SkyMed)/Europe Private 

ICEYE/Europe Private 

Capella Space/USA Private 

Umbra/USA Private 

Synspective/Japan Private 

Few aerial companies are providing SAR imaging services 

that can be also leveraged by national mapping agencies. 

2.3 Elevation data 

Elevation is one of the key foundational pieces of data for 

national geospatial infrastructure. Elevation data types 

comprise Digital Terrain Models (DTMs), Digital Surface 

Models (DSMs), 3D texture models and point clouds (Bui et 

al. 2021; Roca and Arellano 2021). Sources of elevation data 

can range from sensors in space to aerial as well as terrestrial 

platforms. Key dimensions for the selection of DEM (DTM 

and DSM) data sources include spatial resolution of gridded 

data or density for point clouds for LiDAR and associated 

positional accuracy in X, Y and Z dimensions. 

Shuttle RADAR Topographic Mission (SRTM) global 

elevation datasets, at 90-meter or 30-meter resolution, have 

been the commonly used elevation data around the globe 

(Ramírez et al. 2020; Zeng et al. 2020). National elevation 

programs have been in place in several countries that have 

collected DTM data at 10-meter spatial resolution and in the 

last few years, programs such as the 3D Elevation Program 

(3DEP) in the United States of America (USA) have 

captured the entire nation at 1-meter postings. These 

programs are primarily using aerial LiDAR technology with 

satellite and Interferometric SAR (IfSAR)-based elevation 

models complementing the LiDAR datasets (Katz, 

Batterman, and Brines 2020; Qabaqaba et al. 2023). 

Metropolitan areas in select countries across the globe have 

been mapped at much higher spatial resolution/ postings 

using aerial stereo photogrammetric, as well as LiDAR, 

technologies. Aerial oblique photography has been one of the 

commonly used technologies for creating photo-realistic 3D 

textured models of cities (Praticò, Di Fazio, and Modica 

2021; Z. Sun, Deal, and Pallathucheril 2009; L. Yao et al. 

2021). Terrestrial street view photogrammetry for HD 

mapping for autonomous vehicles has also been used to 

create 3D data. 
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Table 4 – Sources of DEM data 

Elevation Source / Product / Posting / 

Technology 

Public/private 

SRTM (NASA)/DTM/30 m or 90 m (SAR) Public 

Airbus/DTM/10 m (SAR) Private 

Maxar/DSM-DTM-3D/<=1 m (EO) Private 

NTT Data/DTM/3 m (EO) Private 

There are several efforts, research and commercial, to 

combine the terrestrial and aerial 3D datasets to create a 

cohesive 3D dataset with photo-realistic representation of an 

area. Table 4 details some of the global sources of DEM data. 

Few companies are providing global satellite-derived 

shallow water bathymetry data including EOMAP and 

TCarta. Other technologies used for high-accuracy 

bathymetry maps include SONAR and LiDAR techniques 

and there are several companies offering services for 

maritime mapping of shallow waters and littoral zones [63], 

[64]. 

2.4 Ground Control Points (GCPs) 

GCPs are an important aspect of ancillary data for enhancing 

and validating the positional accuracy of 2D images as well 

as 3D data. Surveying technologies such as Real-Time 

Kinematic (RTK) GPS provide centimetre-level accuracy 

GCPs in real-time (Dongsheng Liu et al. 2021; Petrocchi et 

al. 2024; Pierdicca and Paolanti 2022). Traditionally GCPs 

were collected on the ground for precisely geolocating 2D 

datasets, they can also be leveraged to validate the Z 

dimension of 3D datasets. Photo Identifiable Features (PIFs) 

of GCPs can be existing known points of interest and some 

nations have created a nationwide network of PIFs, like 

surveying monuments, that can serve multiple missions 

including georeferencing, cadaster creation and maintenance, 

transportation planning, and others. Few companies such as 

CompassData from the USA offer global GCPs from an 

archive (Araújo et al. 2019; Woo et al. 2018). 

National agencies requiring GCPs only for georeferencing of 

imagery and datasets can use other alternatives to RTK GPS 

surveying, which can be resource-intensive and costly 

(Hagenaars et al. 2018; Zular et al. 2012). There are GPS 

technologies available on the market that can achieve sub-50 

cm accuracy at much lower costs than RTK GPS. Similarly, 

image chips from high-accuracy imagery sources, both 2D 

and 3D, can also serve as sources for GCPs. 

2.5 Open-source datasets 

There are several open-source vector datasets that national 

agencies can leverage for national maps. Open Street Map 

(OSM) is a free open-source vector dataset with global 

coverage of roads, buildings and other features, and it is 

updated by millions of volunteers daily (Forghani and 

Delavar 2014; T. Zhang and Tang 2018). Humanitarian 

Open Street Map (HOT) is a non-profit organization that 

supports disaster response across the globe and produces 

vector datasets that agencies can use to respond to disasters 

(Aung 2021; Dias et al. 2023; Henderson 2010). Microsoft 

has released millions of building footprint data it has derived 

from its global aerial imagery missions and these datasets are 

available using Bing Maps API and have been also integrated 

into OSM (Asif, Naeem, and Khalid 2024; Dou et al. 2018; 

Huidong Li et al. 2018). Few entities have created global 

population density estimates including Oak Ridge National 

Laboratory (ORNL), WorldPop and Columbia University, 

NY USA that could be of help to national mapping agencies 

(Campbell-Lendrum and Corvalán 2007; Garshasbi et al. 

2020; L. Yang et al. 2022). 

Many public as well as private sources, now addressing 

climate change and are providing global datasets for trace 

gases and atmospheric pollutants. ESA, NASA, JAXA and a 

few other public agencies have scientific missions that 

provide information about greenhouse gases such as methane, 

nitrous oxide, formaldehyde and others, using satellites in 

Low Earth Orbit (LEO) and Geostationary Earth Orbit (GEO) 

(Ho et al. 2007; H Li et al. 2018; Segovia, Gaso, and 

Armienta 2007). Various NGOs such as the Environmental 

Defense Fund (EDF), Carbon Mapper and others, are now 

providing/planning to provide free access to methane and 

carbon dioxide data, on a global scale. Further, several 

private entities are now launching satellites for atmospheric 

mapping as well. 

3. USE OF TECHNOLOGY FOR MAP 
MAINTENANCE AND UPDATE 

3.1 AI/ML overview 

AI/ML technologies are ready to transform map making and 

national agencies would prepare the current and future 

workforce to adopt these technologies (Casali, Aydin, and 

Comes 2022; Shahab et al. 2024). AI/ML is a rapidly 

evolving technology that is transforming our way of life 

(Joshi et al. 2016; Odu et al. 2022; Y. Yang et al. 2024). 

Multibillion-dollar AI/ML investments from Microsoft, 

Google, Meta OpenAI and other technology enterprises, are 

contributing to increased technological advances in this field. 

While techniques like ML/DL have been around for decades, 

it was the invention of transformers by Google engineers that 

resulted in the rapid evolution of the technology in the last 

few years (Dhedia et al. 2021; Pamela Flores, Gaudiano, and 

Gamba 2017; Scharien and Nasonova 2020). Computing 

technology from companies like NVIDIA, AMD, Intel, 

Google, Alibaba and others played a key role in the 

development of large AI/ML models (Chugh, Kumar, and 

Singh 2021; Perčić, Zelenika, and Mezić 2021).  

ML/DL value chain is comprised of different levels like the 

data value chain. Most of the applications like object 

detection, feature extraction and image classification fall into 

the descriptive category (Motwake et al. 2024). Change 

detection between two or more temporal sequences of 

imagery or geospatial datasets falls into the descriptive 

category. Few services companies provide diagnostic 

services but they typically leverage human analysts to 

diagnose the information derived from imagery/geospatial 

sources (Gašparovič and Klobučar 2021; W. Li et al. 2023; 

S. Wang and Li 2021). The diagnostic phase typically 

requires the use of multiple data sources (multi-INT) to 

understand the image (Chakraborty et al. 2020; Mendoza et 
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al. 2015; Vanama et al. 2021). An example of a diagnostic 

step can be understanding the agricultural output of a nation 

and correlating excess, or shortage of food supplies based on 

weather conditions. Patterns of life, both natural and human, 

can be predictable most of the time and mobile phone 

companies can predict the daily behaviours of people and 

recommend traffic situations along a route routinely taken by 

an individual. A GeoAI example of a predictive step could 

be the predictive socio-economic recovery of a 

neighbourhood, post-disaster, by observing traffic patterns 

on streets (Hou et al. 2024; H. Lee and Li 2024; Vitale, Salvo, 

and Lamonaca 2024). The prescriptive segment of DL/ML is 

presently used in the aircraft industry where the technology 

is being used to prescribe when maintenance is required for 

an aircraft engine. Likewise, a geospatial mission of the 

national agencies uses predictive recommendations from 

ML/DL including recommendations for pesticide 

applications based on potential pest infestations in 

agriculture (Hou et al. 2024; Randhawa et al. 2023; 

Qianheng Zhang, Kang, and Roth 2023). The diagnostic, 

predictive and prescriptive stages of the ML/DL value chain 

of GeoAI offer tremendous opportunities for new research 

for various national mapping missions (Cornara et al. 2019; 

Jayaraman, Srivastava, and Gowrisankar 2009; Lin et al. 

2020). 

The AI/ML methods can be categorized into two discrete 

categories descriptive and generative. ML and DL 

techniques typically are descriptive while generative AI 

methods and algorithms are used to generate new data or 

content which resembles, and often extends beyond, the 

original training data (Matakanye and van der Poll 2021; H. 

Wang 2024). Unlike traditional AI methods with a focus on 

recognizing patterns in data or making predictions based on 

existing data, generative AI can create entirely new data 

instances for explicitly unseen scenarios. 

There are several methods for generative AI like Generative 

Adversarial Networks (GANs), Variational Autoencoders 

(VAEs), autoregressive models, and transformer models 

including OpenAI’s Generative Pre-trained Transformer 

(GPT) series Generative Adversarial Networks (Chen et al. 

2024; X Li et al. 2021). Generative AI has a wide range of 

applications for GeoAI. Large Language Models (LLMs) 

overlap with generative AI models and are designed to 

understand and generate human-like text. These models are 

built upon deep learning architectures, particularly 

transformer architectures, and are trained on vast amounts of 

text data (Wei, Gao, and Zhang 2023). Some of the key 

characteristics and features of large language models include 

scale, transformer architecture, pre-training and fine-tuning, 

generative and predictive capabilities, contextual 

understanding, and versatility. Examples of large language 

models comprise Generative Pre-trained Transformer (GPT) 

models developed by OpenAI, Bidirectional Encoder 

Representations from Transformers ( BERT) developed by 

Google, and T5 (Text-To-Text Transfer Transformer) 

developed by Google Brain (Bosco, Wang, and 

Hategekimana 2021; Hastings et al. 2020). There are a few 

examples in the geospatial industry today where GeoAI 

professionals are starting to take advantage of GenAI and 

LLMs to address geospatial applications. These models have 

the potential to completely transform national mapping 

workflows in the future (H. Lee and Li 2024; Scorza, 

Corrado, and Muzzillo 2024). 

3.2 AI/ML workflows 

The first step in a typical AI/ML workflow includes data 

preparation which consumes a large volume of resources and 

time. Data preparation includes the creation of labels for 

training, testing and validation of the model performance. 

Labels for features of interest include image tiles with fixed 

dimensions (e.g. 64x64 pixels, 128x128 pixels, …) and 

involve drawing bounding boxes and/or polygons around 

features of interest. In many machine learning tasks, fixed 

image sizes for label images are not strictly required but they 

can be beneficial depending on the specific requirements of 

the model and the nature of the task. Convolutional Neural 

Networks (CNNs) commonly used for tasks like image 

classification, object detection and segmentation, typically 

require fixed-size input images (Guard and Budihal 2022; 

Song et al. 2021). This is because the convolutional layers in 

CNNs have fixed-size filters that slide over the input image, 

and the size of the output feature maps depends on the size 

of the input image (Guard and Budihal 2022; Yan Xie et al. 

2019; Zhu, He, and He 2019). Therefore, using fixed-size 

images ensures consistency in the input size across different 

samples and allows for efficient processing in the network. 

In data preprocessing, even if the model does not strictly 

require fixed-size images, it’s often beneficial to preprocess 

your data to have fixed-size inputs (Kogilavani et al. 2022; 

Komathy 2022; T. Sun et al. 2021). Resizing images to a 

common size can simplify data preprocessing and model 

training pipelines. Moreover, it can improve computational 

efficiency and memory usage during training. Some models, 

such as certain types of recurrent neural networks (RNNs) or 

attention-based models, can handle variable-length inputs 

more naturally (Manasa, Shukla, and Saranya 2021; 

Motwake et al. 2024; Shoaei et al. 2024). The choice of 

model architecture may also influence whether fixed image 

sizes are required. Some architectures, such as fully 

connected networks, may require fixed-size inputs, while 

others, like convolutional and recurrent networks, can handle 

variable-size inputs more flexibly (Motwake et al. 2024; 

Pandey and Janghel 2019; S. Sharma et al. 2020). There are 

several commercial companies and open-source tools that 

offer labelling technologies that can be leveraged by national 

agencies. There are ongoing efforts at global standards 

organizations such as the Open Geospatial Consortium 

(OGC) to establish standards for labelling. The bounding 

boxes or polygons are saved in predefined formats and 

directories, depending on the AI/ML model used for analysis 

(V. K. Sharma et al. 2017; Truong et al. 2017; Walker 

Johnson et al. 2011). 
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Table 5 – Free label sources for EO and SAR imagery 

Label Sources 

SSDD (EO and SAR ship detection) 

SSDD+ 

SAR SHIP Dataset 

AIR-SARShip-1.0/2.0 Dataset 

HRSID 

LS-SSDD-V1.0 

Official SSDD 

SRSD-V 1.0 

RSDD-SAR 

iVision MRSSD 

xView3 

Synthetic label generation has been employed in GeoAI to 

simulate various geographic backgrounds, varying 

atmospheric conditions, varying spatial resolution and other 

image artefacts (Iabchoon, Wongsai, and Chankon 2017; 

Loukanov et al. 2020). Synthetic label generation practices 

leveraging CAD models of objects of interest and insert them 

into imagery with varying backgrounds. Synthetic data 

labels could be of interest to national agencies for specific 

objects/features that might not have enough real-world 

geospatial data labels. There are several open sources for 

labels for EO and SAR imagery datasets (Table 5) for 

national mapping agencies to get started with GeoAI 

applications (Jian et al. 2020; Nasarian et al. 2020; Pereira et 

al. 2018). 

There are evolving new developments in the AI/ML industry 

that are driving towards reducing manual labelling efforts 

(Dinesh and Rahul Prasad 2024; Waqar 2024). Zero-shot 

training and Segment Me Anything (SAM) are some of the 

examples of these developments that will help national 

agencies in their mapping efforts. There is also research 

being conducted to extend the LLMs to recognize various 

types of semantic objects in an image with techniques such 

as Vision Language Models (VLMs) that eventually 

minimize the need for large-label dataset creation. 

Once the labels are created, the next step in AI/ML workflow 

is to create a subset of the labels into 3 categories i.e. 1. 

Training 2. Testing and 3. Validating the models. The next 

step includes selecting and running an AI/ML of choice 

(discussed in the next section) and validating the results. The 

training, testing and validation of the model are reiterated by 

modifying various parameters (e.g. epochs, label editing, etc.) 

and post-processing steps (e.g. lower probability objects) 

until the desired accuracy of object/feature detection is 

achieved. The final version of the models can be deployed to 

support real-time operations by the national mapping 

agencies. Reinforcement techniques are another technique 

that involves continuous training and validation of the 

models by using the new datasets to account for varying 

imaging artefacts. 

 

3.3 AI/ML approaches for image 
characterization  

AI/ML models for image characterization fall into 5 

categories: a) Image Classification, b) Object Detection, c) 

Oriented Bounding Box Detection, d) Semantic 

Segmentation and e) Pose Detection. Image classification 

models are designed to identify image tiles with one or more 

features of interest such as image tiles with agricultural fields 

(J. Liu et al. 2014; Oliphant et al. 2019). Image classification 

techniques are also ideal for area reduction for broad area 

search missions as well as for change detection (Anupama et 

al. 2021; Stibig et al. 2014; K. Wang et al. 2010). Object 

detection is the most common application in GeoAI and is 

used to identify objects such as buildings, cars, ships, planes, 

etc. in images (H. Lee and Li 2024; Petrocchi et al. 2024; 

Swietek 2024). Objects in the image tile are identified by 

bounding boxes and each bounding box is associated with a 

confidence of prediction for one or more labels/ classes. 

Oriented Bounding Box object detection is an improvement 

over object detection where the bounding boxes are oriented 

in the direction of the object of interest (Peng et al. 2021; Q 

Zhang et al. 2016). This technique leverages the Segment Me 

Anything (SAM) model to determine the size and direction 

of the objects of interest. Image Segmentation identifies the 

outlines of various objects in an image and is useful for 

various GeoAI applications including extraction of building 

footprints, agricultural field boundaries, flood extent, and 

others. Pose detection in the field of AI/ML involves 

estimating the pose (object position and orientation) of an 

object from an image or video (Nadian-Ghomsheh, Farahani, 

and Kavian 2021; Zaman et al. 2023). It aims to identify the 

spatial locations of key object joints (also known as key 

points). The relative positions of these key points can be used 

to distinguish one pose from another. GeoAI can leverage 

pose detection for object tracking missions such as MTI 

(Moving Target Indicator) of objects in 2D and 3D space and 

could be an area of interest to national mapping agencies in 

the future. 

3.4 AI/ML techniques  

Like the remote sensing image classification techniques, 

AI/ML techniques follow two approaches for image 

classification including supervised and unsupervised. 

Supervised classification approaches require priority 

training datasets that the GeoAI models leverage to 

characterize objects/features in an image (Chugh, Kumar, 

and Singh 2021; Seh et al. 2021). Unsupervised 

classification is gaining ground for object detection, outside 

the GeoAI field, and does not need any training datasets for 

image classification (Jian et al. 2020; Oetter et al. 2001; 

Praticò, Di Fazio, and Modica 2021). A combination of 

open-source labelling datasets such as Microsoft Common 

Objects in Context (Microsoft COCO ), large-scale object 

detection, segmentation, key-point detection, and captioning 

datasets and the emergence of LLM for semantic correlation 

are driving the use of unsupervised classification approaches 

(Gallwey et al. 2019; Hao Li et al. 2023; Potnis et al. 2023). 

We will focus on supervised AI/ML model training which is 

commonly used in GeoAI. 
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There are two approaches in supervised AI/ML classification. 

Each approach has its strengths and weaknesses. An example 

of two-stage detection is You Only Look Once (YOLO) 

where a pre-trained model with pre-assigned weights can be 

adjusted to predict objects of interest in new images (Praticò, 

Di Fazio, and Modica 2021; Yeiser et al. 2020). Two-stage 

detectors are the most used technique in GeoAI. A Single 

Shot Detector (SSD) is a single-stage detector where a pre-

trained model for image classification is used as the 

backbone network. The model can be tweaked for a specific 

detection task. One key distinction between YOLO and SSD 

is that the SSD model attempts to directly predict the 

probability of a class present in each bounding box whereas 

the YOLO model predicts the probability of multiple 

potential label classes (Berganzo-Besga et al. 2021; Deng, 

Lu, and Xu 2024). Another method for AI/ML classification 

is anchor-free object detection which has gained attention 

due to its speed and generalizability. Anchor-free methods 

directly predict object locations without predefined anchors/ 

boxes. Instead of bounding boxes predict points or key points 

associated with objects. They are more generalizable and can 

extend to tasks like key-point detection and 3D object 

detection (Hake et al. 2023; Ma et al. 2022). Anchor-free 

object detection offers advantages in terms of simplicity, 

generalizability and speed, making it a promising approach 

for improving small-size object detection models. Object 

training from scratch is another approach suitable for GeoAI 

for features that are not commonly used in pre-trained 

models. There are several tools available for this approach. 

National agencies may start with two-stage models such as 

YOLO and keep track of new trends that can improve GeoAI 

workflows in the future (Petrocchi et al. 2024; Wei, Gao, and 

Zhang 2023). 

3.5 AI/ML frameworks 

Frameworks are the backbone of AI/ML models. With the 

advancements in the field of AI/ML, its complexity grows, 

emphasizing the significance of frameworks in simplifying 

its processes. Conventionally, successful technologies have 

leveraged frameworks for efficient development (Martín et 

al. 2022; Swain et al. 2022). Acquiring proficiency in AI/ML 

frameworks not only saves time but also optimizes the 

development process. Some of the common frameworks 

used in the industry today include: 

1. TensorFlow: TensorFlow is a free end-to-end open-

source platform that has a wide variety of tools, libraries and 

resources for AI/ML. It was developed by the Google Brain 

team and initially released on November 9, 2015. You can 

easily build and train machine learning models with high-

level APIs such as Keras using TensorFlow. It also provides 

multiple levels of abstraction so you can choose the option 

you need for your model (Xin Li and Su 2024; Martín et al. 

2022). 

2. CAFFE, Convolutional Architecture for Fast Feature 

Embedding, was originally developed at the Berkeley Vision 

and Learning Center at the University of California and 

released on 18 April 2017 (Guignard, Amato, and Kanevski 

2021; K. 2022; Mani et al. 2020). It is a deep learning 

framework written in C++ that has an expression architecture 

that easily allows you to switch between the CPU and GPU. 

Caffe also has a MATLAB and Python interface. Caffe is the 

perfect framework for image classification and segmentation 

as it supports various GPU and CPU-based libraries such as 

NVIDIA, cuDNN, Intel MKL, etc (Capasso, Lauria, and 

Veneri 2018; She, Dong, and Liu 2022). Caffe can currently 

process over 60M images in a day with a single NVIDIA 

K40 GPU which makes it one of the fastest options today. 

Because of all these reasons, CAFEE is extremely popular in 

startups, academic research projects and even multinational 

industrial applications in the domains of computer vision, 

speech and multimedia (Aswani and Menaka 2021; Bathla, 

Aggarwal, and Rani 2019; Hijazi, Faris, and Aljarah 2021; S. 

Zhao et al. 2022). 

3. Apache Spark: Apache Spark is an open-source cluster-

computing framework that can provide programming 

interfaces for entire clusters. It was developed at Berkeley’s 

AMPLab at the University of California and initially 

released on May 26, 2014. Spark Core is the foundation of 

Apache Spark which is centred on RDD abstraction 

(Campana and Delmastro 2021; Sarumi and Leung 2022; 

Sujitha and Seenivasagam 2021; Thirumal, Thangakumar, 

and Venkata Subramanian 2019). 

4. PyTorch: PyTorch is a machine-learning library that is 

based on the earlier open-source Torch library. It was 

initially released in October 2016 and is in primary use now 

that Torch is not actively in development anymore (Laaber, 

Basmaci, and Salza 2021; Schoonderwoerd et al. 2021; 

Tamiminia et al. 2020). PyTorch provides TorchScript, 

which facilitates a seamless transition between the eager 

mode and graph mode. Moreover, the PyTorch distributed 

backend provides scalable distributed training for machine 

learning and optimized performance (D Liu et al. 2021; Sato 

et al. 2021). 

5. Amazon SageMaker: Amazon SageMaker is a fully 

integrated development environment (IDE) for machine 

learning that was initially released on 29 November 2017. 

Amazon Web Services provides this machine learning 

service for applications such as computer vision, 

recommendations, image and video analysis, forecasting, 

text analytics, etc. Amazon SageMaker allows you to build, 

train and deploy machine learning models on the cloud (Ball, 

Anderson, and Chan 2018; Gaigg et al. 2020; Perez et al. 

2022). Amazon SageMaker Autopilot also has an automated 

machine-learning capability that allows you to do all this 

automatically. Amazon SageMaker also allows you to create 

machine learning algorithms from scratch because of its 

connections to TensorFlow and Apache MXNet (Gao et al. 

2021; Kozak et al. 2021; Surianarayanan and Chelliah 2021). 

6. Accord.NET: Accord.NET is a machine learning 

framework that is completely written in C#. It was developed 

by César Roberto de Souza and was initially released on May 

20, 2010. Accord.NET provides coverage on various topics 

like statistics, machine learning and artificial neural 

networks with various machine learning algorithms, like 

classification, regression, clustering etc. along with audio 

and image processing libraries (Bassuk et al. 2015; Kumar 

2020). Accord.NET libraries are available as source code, 
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executable installers, as well as NuGet packages (wherein 

NuGet is a free and open-source package manager that was 

created for the Microsoft development platform) (Bassuk et 

al. 2015; Huang, Mendis, and Xu 2019; Manos et al. 2023). 

7. Microsoft Cognitive Toolkit: Microsoft Cognitive Toolkit 

is a machine learning or specifically, deep learning 

framework that was developed by Microsoft Research and 

initially released on 25 January 2016 (Bhalodia et al. 2021; 

G. Yang, Huang, and Zhao 2020). You can easily develop 

popular deep learning models such as feed-forward DNNs, 

convolutional neural networks and recurrent neural networks 

using the Microsoft Cognitive Toolkit. This toolkit uses 

multiple GPUs and servers providing parallelization across 

the backend. You can use the Microsoft Cognitive Toolkit in 

a customizable manner as per your requirements with your 

metrics, networks, and algorithms (Bai, Mas, and Koshimura 

2018). You can use it as a library in your Python, C++, or C# 

programs or you can use BrainScript, its model description 

language. 

Machine learning is a rapidly evolving field that has seen a 

significant surge in adoption by companies seeking to 

revolutionize industries (Bassuk et al. 2015; J. Kim and Song 

2021; F. Zhao et al. 2021). As this technology progresses, the 

need for frameworks becomes increasingly important to 

simplify processes and ensure efficient development. These 

frameworks provide the necessary resources to create 

advanced machine-learning models tailored to specific 

requirements. 

3.6 AI/ML models 

AI/ML models use a mathematical formula to make 

predictions about future events. They are trained on a set of 

data and then used to make predictions about new data. Some 

common examples of ML models include regression models 

and classification models. A deep learning model, or a DL 

model, is a neural network that has been trained to learn how 

to perform a task, such as recognizing objects in digital 

images and videos or understanding human speech. Deep 

learning models are trained by using large sets of data and 

algorithms that enable the model to learn how to perform the 

task. The more data the model is trained on, the better it can 

learn to perform the task. DL models are composed of 

multiple layers of neurons or processing nodes. The deeper 

the model, the more layers of neurons it contains (Ansari and 

Akhoondzadeh 2020; McNorton et al. 2021). This allows the 

model to learn more complex tasks by breaking them down 

into smaller and smaller pieces. For example, ResNet is a 

deep learning model for computer vision tasks such as image 

recognition. It is one of the deepest models currently 

available, with a version that contains 152 layers (ResNet-

152). Visual Geometry Group (VGG) deep convolutional 

neural network architecture YOLO, or “You Only Look 

Once,” is a deep learning model for real-time object 

detection (Bassuk et al. 2015; Fan et al. 2021; Gallwey et al. 

2019; J. S. H. Lee et al. 2016). Surpassing YOLOv4 and 

YOLOR, the latest versions, YOLOv7 and YOLOv8, are 

super-fast and very accurate, the current state of the art for 

several AI vision tasks. Some of the most popular open-

source AI models include You Only Look Once (YOLO), 

Segment Me Anything (SAM), Regional-Convolution 

Neural Networks (R-CNN), and others (Bassuk et al. 2015; 

Smerdu, Kanjir, and Kokalj 2020). 

AI/ML models are typically optimized for speed vs accuracy. 

An example of various model sizes available for 

YOLOV810 range from nano (YOLOv8n) to extra-large 

(YOLOv8x) with nano being the fastest and smallest, while 

extra-large is the most accurate yet the slowest among them 

(Berganzo-Besga et al. 2021; Ou et al. 2019; dos Santos et al. 

2019). In addition, YOLO model iterations are managed by 

epochs. By trial and error and associated model performance 

statistics for the best and last epochs, analysts can identify 

the right number of epochs to be used to extract objects of 

interest. While most of the national mapping efforts need 

accuracy and can leverage extra-large size models, situations 

such as disaster management can leverage small models for 

faster response. Python is a commonly used programming 

language for running AI/ML models with several open-

source tutorials on how to run the models with custom 

datasets of interest to national mapping agencies and several 

open-source tools are available for analysts to test different 

model sizes for GeoAI (Canty et al. 2020; Reichert et al. 

2017; Yiqun Xie et al. 2023). 

Post-processing is one of the last steps in analyzing an 

AI/ML model performance that can improve the object 

detection accuracy. Some of the commonly used post-

processing steps include filtering the model results by size 

(absolute vs relative size to image tile), intersection and 

unions of various bounding boxes identifying objects of 

interest, confidence threshold of various labels, and others. 

The last few years have seen increasing adoption of AI/ML 

in the geospatial industry and there are examples of using 

AI/ML object/feature extraction at national/global scales. 

The following examples show the use of GeoAI for 

geospatial applications. 

3.7 GeoAI composition 

Combining generative AI with spatial reasoning and analysis 

techniques is the new frontier for automating authoritative 

and trustworthy spatial queries. Knowledge-based AI 

techniques have been around in geospatial sciences for 

decades while machine learning techniques and LLMs 

identify patterns from data, knowledge-based techniques rely 

on automated reasoning with symbolic representations of 

data. GeoAI orchestration combines multiple AI and 

analytical tools into workflows. Knowledge-based reasoners 

and authoritative data repositories are used to generate 

reliable and trustworthy responses to questions. AI 

“orchestration” is emerging as a foundational approach to 

combining the exceptional text-extruding capabilities of 

LLMs with reliable knowledge-based spatial reasoning and 

analysis. 

3.8 Applications in national maps beyond 
traditional mapping 

Several of the datasets, such as imagery, elevation models, 

GCPs, transportation networks and others, can be used for 

multiple missions within national agencies ranging from 

agriculture, census, transportation, environment, natural 
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resources management, coastal management, disaster 

response, and others. Countries such as the USA have 

created federal geospatial programs such as the 3D Elevation 

Program (3DEP), National Agriculture Imagery Program 

(NAIP), US Census TIGER Road Network, and others that 

are leveraged by a combination of agencies across 

state/local/federal, as well as by military agencies. Some of 

the agencies in the USA were able to save hundreds of 

millions of dollars by leveraging the national geospatial 

programs. Table 6 shows various national missions and data 

requirements that can be leveraged for a unified nationwide 

geospatial program. 

Table 6 – Various national missions and data requirements for EO 

and SAR imagery 

Mission Data GeoAI 

application 

Requirements 

Census EO 

Imagery 

Building 

footprints, 

change 

detection 

Blds: EO - 

RGB - 50 cm 

Change: 2 m-

5 m MS 

Agriculture EO 

Imagery 

Field 

Boundaries, 

Crop 

Type, Change 

Detection 

Field 

Boundaries: 

EO RGB 

50 cm 

Crop Type: 

EO Imagery, 

MS, 50 cm 

Change 

Detection: EO 

Imagery MS 

2 m-5 m 

Forestry EO 

Imagery, 

DEM 

Tree 

Identification, 

Tree 

Height/width, 

De/ 

Reforestation 

Deforestation: 

EO MS 2-5 m 

Tree Height: 

DEM, 50 cm 

postings 

Change 

Detection: EO 

Imagery MS 

2 m-5 m 

Cadastre EO 

Imagery, 

GCPs 

Agriculture 

Parcels, 

Urban 

Parcels, 

Change 

Detection 

Ag Parcels: 

EO RGB 

50 cm; GCP's 

<1 meter 

accuracy. 

Urban Parcels: 

EO RGB 5-

15 cm. 

GCP's: 5 cm 

accuracy 

Change 

Detection: EO 

1-2 meters 

Disaster Planning/ 

Response 

EO/SAR 

Imagery, 

DEM 

Flood plain 

mapping, 

Damage 

assessment 

Flood plain: 

DTM, 1 m 

postings 

Disaster: EO 

Imagery, SAR 

Imagery, 

50 cm 

Water Resources 

Management 

EO 

Imagery, 

DEMs 

Watershed 

Modeling 

EO Imagery: 

MS 1-5 meters 

DTM: 1-2 

meters 

Mineral Resources EO 

Imagery, 

DEM 

Mineral 

Deposits, 

Mining 

Mineral: EO 

Imagery; HS: 

1-2 meters 

Mining: 

DSM's <1 m 

Mission Data GeoAI 

application 

Requirements 

Atmospheric 

Monitoring 

EO 

Imagery 

Methane, 

Particulate 

Matter 

EO Imagery: 

MS or HS:  

5-50 meters 

Coastal Monitoring EO 

Imagery 

Coastlines, 

Bathymetry 

Coastlines: 

EO RGB <1 

meter 

Bathymetry: 

EO MS, <1 

meter 

Transportation EO 

Imagery, 

DEM 

Road/Rail 

Mapping, 

Road 

furniture for 

Autonomous 

Vehicles 

Road Rail: EO 

Imagery: 

<=50 cm 

Autonomous: 

EO Imagery 

<=15 cm; 

StreetViews: 

3D <=30 cm 

Telecommunications EO 

Imagery, 

3D 

Cell tower 

detection 

EO Imagery: 

MS <50 cm 

3D: <= 30cm 

Oil & Gas EO 

Imagery, 

DEM 

Detect roads, 

infrastructure 

EO Imagery: 

MS: <50 cm 

DTM: 

<=50 cm 

4. RECENT TRENDS WITH CASES 

Recent trends in geospatial AI for Earth observation 

comprise the use of AI/ML for precision agriculture, climate 

change monitoring and disaster management. Table 7 

explains the worldwide adoption of Artificial Intelligence 

(AI) by 2022 across various industries and functions. It 

reports that human resources, manufacturing including 

marketing and sales significantly adopted AI. 

Cases like AI-driven deforestation tracking in the Amazon 

and ML-based urban growth prediction showcase how these 

technologies are advancing the Sustainable Development 

Goals by providing actionable insights for environmental 

and resource management. Some of these are listed below: 

Table 7 – Worldwide adoption of Artificial intelligence (AI) by 

2022 (with industry and function) 

Characteristic Human 

resources 

Manufac

turing 

Marke

ting & 

Sales 

Pro

duct

/serv

ice 

deve

lop

men

t 

Ri

sk 

All industries 11% 8% 5% 10% 19

% 

Business, legal, 

and professional 

services 

11% 10% 9% 8% 16

% 

Consumer 

goods/retail 

14% 4% 3% 4% 15

% 

Financial 

services 

1% 8% 7% 31% 17

% 

Healthcare/Phar

ma 

15% 7% 2% 4% 22

% 

High-

tech/telecom 

6% 6% 4% 7% 38

% 

Source: http://www.statista.com/statistics/1112982/ai-adoption-worldwide-industry-function/ 

http://www.statista.com/statistics/1112982/ai-adoption-worldwide-industry-function/
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a) Climate change monitoring 

Satellite data is extensively used to monitor climate change 

impacts. Several space agencies utilize satellites like 

RADARSAT to observe ice cover, forest changes and 

climate patterns. Integrating satellite data with ground-based 

observations helps in tracking temperature changes, the rise 

in sea levels and permafrost thawing. 

b) Biodiversity and ecosystem health 

The forest service and other agencies use remote sensing to 

monitor forest health and biodiversity. This includes tracking 

deforestation rates and habitat changes. Data on wetland 

changes and health is gathered through satellites, which is 

crucial for conservation efforts. 

c) Land cover classification 

AI-driven image classification techniques process satellite 

imagery to classify land cover types and monitor changes 

over time. This helps in land use planning and environmental 

management. Machine learning algorithms detect changes in 

land cover and vegetation, which is useful for tracking 

deforestation and urban expansion. 

d) Disaster management 

Several nations frequently experience natural disasters like 

hurricanes and earthquakes. Remote sensing data helps in 

disaster preparedness and response, including monitoring 

flood risks and earthquake impacts. Satellite imagery and 

data are used to assess damage and coordinate emergency 

response efforts in disaster-stricken areas. Machine learning 

models analyse weather forecasts, satellite imagery and 

historical flood data to predict and manage flood risks. AI 

algorithms assess damage from natural disasters by 

analysing satellite and aerial imagery, aiding in quick and 

accurate responses. 

e) Urbanization and land use 

Remote sensing data tracks urban expansion and land use 

changes in rapidly growing cities. This helps in planning and 

managing urban development. Satellite data supports 

agricultural monitoring, including crop health and land use 

efficiency. AI techniques classify and monitor land use 

patterns, helping in sustainable urban planning and 

managing urban sprawl. AI-driven analysis of geospatial 

data helps in optimizing traffic flow and reducing congestion 

in major cities. 

f) Agricultural optimization 

Machine learning models analyse satellite data to monitor 

crop health and predict yields, which supports precision 

agriculture and improves food security to help optimize the 

use of resources such as water and fertilizers by analysing 

soil and crop data. 

g) AI/ML approaches - predictive modelling 

Machine learning models predict climate impact, including 

extreme weather events and ecosystem changes. These models 

analyse historical climate data and current trends to forecast 

future scenarios. AI algorithms predict forest fire risks by 

analysing satellite imagery, weather data and historical fire 

patterns. 

h) Data integration and visualization 

AI tools integrate diverse datasets (e.g., satellite imagery and 

ground data) into geospatial platforms to allow for more 

comprehensive analysis. Visualization tools help in 

presenting complex data in an accessible format. It leverages 

geospatial AI and machine learning to address a range of 

environmental and developmental challenges. Their efforts 

align with various Sustainable Development Goals by 

utilizing recent data trends and advanced technologies to 

monitor climate change, manage natural resources and 

enhance disaster response. The integration of AI/ML with 

Earth observation data enhances the ability to make informed 

decisions and take timely actions towards achieving 

sustainability. 

i) Sustainable Development Goals (SDGs) 

Monitoring and forecasting climate impact (SDG 13-Climate 

Action) contribute to understanding and mitigating climate 

change. Tracking forest health, biodiversity and land use 

supports sustainable land management and conservation 

efforts (SDG 15-Life on Land). Urban planning and disaster 

management efforts contribute to more resilient and 

sustainable cities (SDG 11 Sustainable Cities and 

Communities). Monitoring agricultural productivity and 

optimizing resource use supports food security and 

sustainable agriculture (SDG 2-Zero Hunger). 

5. CHALLENGES AND LIMITATIONS 

The integration of recent data trends and AI/ML approaches 

in geospatial AI for Earth observation brings significant 

advancements towards achieving the Sustainable 

Development Goals (SDGs). The need for robust validation 

processes for critical considerations is crucial for ensuring 

the reliability, accuracy and relevance of AI/ML approaches 

in geospatial analysis, particularly in Earth observation for 

Sustainable Development Goals (SDGs). AI models should 

be validated to ensure that their use in decision-making, 

especially regarding environmental justice and conservation, 

is ethical and equitable. Poorly validated models could lead 

to unintended consequences, such as misallocation of 

resources or displacement of communities. Validation 

processes enhance trust among stakeholders (governments, 

NGOs, local communities) who rely on geospatial AI for 

policy and decision-making in the pursuit of SDGs. Rigorous 

validation ensures that the data and insights provided are 

trusted and respected. Nevertheless, these technologies also 

face several challenges and limitations and some key issues 

include: 

5.1 Data quality and availability 

a) Resolution and accuracy 

High-resolution satellite data is often expensive and not 

always available for all regions. Lower-resolution data might 

not provide the detail needed for precise analysis. Limited 

resolution can affect the accuracy of models used for 

monitoring and managing resources, impacting decision-

making processes. 
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b) Data gaps 

Incomplete or inconsistent data coverage in some regions, 

especially in developing countries or remote areas, can 

hinder comprehensive analysis. Data gaps can lead to biased 

or incomplete insights, affecting the effectiveness of 

interventions and policy decisions. 

5.2 Computational and technical constraints 

a) Processing power 

AI and ML models dealing with large-scale geospatial data 

require substantial computational resources. This can be a 

barrier for organizations with limited access to high-

performance computing. Inadequate processing power can 

slow down data analysis and model development, delaying 

critical insights and actions. 

b) Algorithm complexity 

Developing and fine-tuning complex algorithms for 

geospatial data can be resource-intensive and requires 

expertise in both AI and geospatial sciences. The complexity 

of algorithms may limit their applicability and scalability, 

especially in regions with fewer technical resources. 

5.3 Integration and interoperability 

a) Data integration 

Combining data from different sources (e.g., satellite 

imagery, ground-based observations, historical data) can be 

challenging due to differences in formats, scales and 

resolutions. Ineffective integration can result in incomplete 

or inaccurate analyses, reducing the reliability of the insights 

generated. 

b) System interoperability 

Different organizations and systems may use varying 

standards and protocols for geospatial data, complicating 

collaboration and data sharing. Lack of interoperability can 

hinder the seamless exchange of information and 

collaborative efforts, impacting the overall effectiveness of 

projects. 

5.4 Ethical and privacy concerns 

a) Data privacy 

Geospatial data can sometimes reveal sensitive information 

about individuals or communities, raising privacy concerns. 

Ensuring data privacy and adhering to ethical standards is 

crucial to maintaining public trust and avoiding misuse of 

information. 

b) Bias and fairness 

AI models can inherit biases present in training data, leading 

to unfair or skewed outcomes. Biases in models can 

perpetuate inequalities and affect the fairness of 

interventions, especially in marginalized communities. 

5.5 Cost and accessibility 

a) High costs  

The cost of acquiring high-quality satellite imagery and 

maintaining advanced AI infrastructure can be prohibitive 

for many organizations, particularly in developing countries. 

High costs can limit access to essential data and tools, 

affecting the ability to leverage geospatial AI for sustainable 

development. 

b) Limited access 

Access to advanced geospatial AI tools and expertise can be 

limited in certain regions, hindering their effective use. 

Limited access can reduce the ability to implement and 

benefit from AI-driven solutions, affecting overall 

development outcomes. 

5.6 Data interpretation and usability 

a) Complexity of interpretation 

Interpreting complex AI-generated insights requires 

specialized knowledge and skills, which may not be readily 

available in all regions. Difficulty in interpreting results can 

limit the actionable value of the data and reduce the 

effectiveness of decision-making processes. 

b) Decision-making support 

AI tools and models must be designed to provide clear, 

actionable insights rather than overwhelming users with 

complex data. Inadequate support for decision-making can 

undermine the practical utility of AI solutions, impacting 

their successful implementation. 

5.7 Sustainability and long-term viability 

a) Maintenance and updates 

AI models and geospatial tools require regular maintenance 

and updates to remain effective and accurate. Lack of 

ongoing support and updates can lead to obsolescence, 

reducing the long-term viability of AI solutions. 

b) Scalability 

Scaling AI solutions to cover larger areas or additional 

applications can be technically challenging and resource-

intensive. Challenges in scaling can limit the widespread 

adoption and impact of AI-driven geospatial tools. 

While recent trends in data and advancements in AI/ML 

approaches for geospatial AI offer significant potential for 

advancing the Sustainable Development Goals, addressing 

these challenges is crucial for realizing their full benefits. 

Overcoming these limitations involves improving data 

quality and availability, enhancing computational resources, 

ensuring ethical standards and fostering collaboration and 

accessibility. The stakeholders can better leverage geospatial 

AI to address critical global challenges and support 

sustainable development effectively. 

6. FUTURE DIRECTIONS 

The future of trends in recent data and AI/ML approaches for 

geospatial AI in Earth observation is poised to significantly 

enhance efforts toward achieving the Sustainable 

Development Goals (SDGs). Here’s a look at some 

promising future directions and trends in this field. 
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6.1 Enhanced data integration and fusion 

a) Multi-source data fusion 

Integrating data from diverse sources, including satellites, 

drones, ground sensors and crowdsourced data, will become 

more sophisticated. Advanced fusion techniques will 

combine these datasets to provide more comprehensive and 

accurate insights. Improved integration will enhance the 

accuracy and completeness of geospatial analyses, 

supporting better decision-making and more effective 

management of resources. 

b) Real-time data processing 

With advancements in streaming technologies and edge 

computing, real-time processing of geospatial data will 

become more feasible. This will allow for immediate 

analysis and response to dynamic changes. Real-time data 

will enable quicker responses to environmental changes, 

disasters and other urgent situations, improving overall 

resilience and adaptability. 

6.2 Advances in AI and machine learning 
techniques 

a) Deep learning innovations 

Continued advancements in deep learning, including the 

development of more sophisticated neural networks and 

algorithms, will enhance the ability to extract features, detect 

anomalies and classify land cover from satellite imagery. 

These innovations will lead to more precise and nuanced 

analyses, improving the monitoring of environmental 

changes, urban growth and resource management. 

b) Explainable AI (XAI) 

The development of explainable AI will make complex AI 

models more transparent and interpretable. This is crucial for 

understanding model predictions and gaining the trust of 

stakeholders. Explainable AI will facilitate better decision-

making by providing clear insights into how predictions are 

made, supporting more informed and accountable actions. 

6.3 Improved accessibility and inclusivity 

a) Democratization of tools 

Efforts will focus on making geospatial AI tools and data 

more accessible to a broader audience, including smaller 

organizations and developing countries. This includes open-

source platforms and affordable data solutions. Increased 

accessibility will enable a wider range of stakeholders to 

utilize geospatial AI for sustainable development, fostering 

inclusive and collaborative efforts. 

b) Capacity building 

Training and capacity-building programs will be expanded 

to equip individuals and organizations with the skills needed 

to effectively leverage geospatial AI. This includes 

educational initiatives and technical support. Enhanced skills 

and knowledge will empower more communities to apply 

geospatial AI to local challenges, contributing to more 

effective and sustainable development outcomes. 

6.4 Integration with emerging technologies 

a) Internet of Things (IoT) 

Integrating geospatial AI with IoT devices will enable 

continuous monitoring and real-time data collection from 

various sensors and devices embedded in the environment. 

This integration will provide more granular and timely data, 

enhancing monitoring capabilities and supporting proactive 

management of resources and infrastructure. 

b) Blockchain for data integrity 

Blockchain technology will be explored to ensure data 

integrity and security in geospatial data management. 

Blockchain can provide a transparent and tamper-proof 

record of data collection and processing. Improved data 

security and transparency will enhance trust in geospatial 

data, supporting more reliable and accountable decision-

making. 

6.5 Focus on specific sustainable 
development goals 

a) Climate change mitigation and adaptation 

Geospatial AI may play a crucial role in monitoring and 

mitigating climate change impact, including tracking 

greenhouse gas emissions, deforestation and land-use 

changes. Enhanced modelling will predict climate impact 

and support adaptation strategies. More accurate climate data 

and predictive models will inform policies and actions to 

mitigate and adapt to climate change, supporting SDG 13 

(Climate Action). 

b) Biodiversity and conservation 

AI-driven approaches will improve the monitoring of 

biodiversity, wildlife habitats and conservation efforts. 

Enhanced species detection and habitat mapping will support 

biodiversity conservation strategies. Improved biodiversity 

monitoring will aid in the protection of ecosystems and 

species, contributing to SDG 15 (Life on Land). 

c) Urban development and sustainability 

Geospatial AI will assist in sustainable urban planning by 

providing insights into land use, infrastructure development 

and urban sprawl. Advanced analytics will support smart city 

initiatives and sustainable urban growth. Better urban 

planning and management will promote sustainable cities 

and communities, aligning with SDG 11 (Sustainable Cities 

and Communities). 

6.6 Ethical and regulatory considerations 

a) Ethical AI practices 

There will be an increased focus on developing ethical 

guidelines and standards for the use of AI in geospatial 

applications. This includes addressing biases, ensuring 

privacy and promoting transparency. Ethical practices will 

ensure that AI applications are used responsibly, reducing 

potential negative impacts and fostering trust among users 

and stakeholders. 
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b) Regulatory frameworks 

The development of regulatory frameworks to govern the use 

of geospatial data and AI technologies will become more 

critical. These frameworks will address data privacy, 

security and usage rights. Clear regulations will support the 

responsible use of geospatial AI, ensuring compliance with 

legal and ethical standards and protecting individuals’ rights. 

The future of geospatial AI in Earth observation holds 

tremendous potential for advancing the Sustainable 

Development Goals (SDGs). With the emphasis on enhanced 

data integration, advances in AI techniques, improved 

accessibility, integration with emerging technologies and 

ethical considerations, stakeholders can harness the power of 

geospatial AI to address global challenges effectively. 

Innovation and collaboration will be key to maximizing the 

benefits and achieving sustainable development outcomes. 

7. CONCLUSION 

The integration of data, Artificial Intelligence (AI) and 

Machine Learning (ML) approaches in geospatial AI for 

Earth observation represents a significant leap toward 

achieving the Sustainable Development Goals (SDGs). 

Recent trends indicate a growing sophistication in the use of 

AI/ML techniques to analyse and interpret vast amounts of 

geospatial data. These advancements are enabling more 

precise and timely insights into environmental changes, 

resource management and societal impacts, directly 

contributing to sustainable development efforts. The key 

theme for this work focuses on “AI/ML 

Approaches+Geospatial AI+ Earth Observation+Sustainable 

Development Goals”. One notable trend is the increasing 

accessibility and democratization of geospatial data, which 

is being driven by open data initiatives and advancements in 

cloud computing. This has empowered a broader range of 

stakeholders, from governments to NGOs, to harness AI/ML 

tools for environmental monitoring and decision-making. 

Moreover, the development of more robust and scalable AI 

models has enhanced the accuracy of predictions in critical 

areas such as climate change, urbanization and disaster 

management. However, challenges remain, including the 

need for better data quality, integration of diverse data 

sources and addressing ethical concerns related to AI usage. 

As these technologies continue to evolve, fostering 

interdisciplinary collaborations and ensuring the inclusion of 

local knowledge and expertise will be crucial. The synergy 

between AI/ML and geospatial data in Earth observation is 

increasingly pivotal in driving progress toward the SDGs. By 

leveraging these technological advancements, we can 

enhance our ability to monitor, predict and respond to global 

challenges, ultimately fostering a more sustainable and 

resilient future. 
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