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The integration of data science and Artificial Intelligence (Al) into geospatial analysis has
revolutionized Earth observation, driving progress towards the Sustainable Development Goals
(SDGs). Recent developments in data acquisition technologies like high-resolution satellites and
sensors have generated vast and diverse datasets for monitoring environmental changes and
managing natural resources. Concurrently, innovations in Machine Learning (ML) and Al have
significantly enhanced the processing, analysis and interpretation of this geospatial data. Techniques
such as deep learning, spatial data mining and automated feature extraction are now essential to
deriving actionable insights from complex geospatial datasets. This paper reviews the latest trends
and breakthroughs in the application of AI/ML to geospatial data for Earth observation, emphasizing
their role in advancing the SDGs. Key areas of focus include improved algorithms for land cover
classification, disaster prediction and climate monitoring. These technologies enable more precise
and timely responses to environmental challenges, such as deforestation, urbanization and natural
disasters, thereby supporting sustainable management and policymaking. Furthermore, the
integration of Al with geospatial data enhances predictive modelling, scenario planning and decision
support systems, which are critical for achieving SDG targets related to environmental sustainability
and resilience. The synthesis of recent research and technological developments highlights the
potential of AlI/ML approaches for geospatial analysis and their alignment with global sustainability
goals. The outcomes underline the requirement for continued innovation and collaboration across
disciplines to fully leverage these advancements for effective Earth observation and sustainable
development.

Keywords — Climate change, data science, Earth observation, geospatial Al, spatial data mining,
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1. INTRODUCTION

Recent years have seen an evolution of new space technologies that are capturing the planet in
multiple modalities (EO, SAR, LiDAR, RF, etc.) and in multiple dimensions (spectral, spatial
and temporal) that can help nations with the successful implementation of a strong national
geospatial infrastructure [1], [2]. New space developments include technology advances in the
field of rocket launches, miniaturization of payloads and sensors resulting in reduced costs of
satellites, Inter-satellite Links (ISLs), satellite on-board processing technologies, increasing
network of ground stations, and others [3], [4]. However, the key aspect of national geospatial
infrastructures is the foundational data. Aerial technologies have also advanced in the last few
years with commercial companies collecting imagery at ultra-high spatial resolutions (<-15c¢m)
as well as LiDAR data at high densities (10-20 points per sq. m) for the creation of Digital
Elevation Models (DEMs) as well as 3D mesh models. Drone technology has also rapidly
evolved in recent years allowing for ultra-high-resolution capture of imagery and 3D data for
local areas, and their ability to rapidly mobilize allows for frequent map updates [5]-[7].
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Rapid advances in autonomous driving vehicles resulted in
HD mapping technology from terrestrial vehicles that
includes street views and detailed 3D surface maps to capture
road furniture such as traffic signs, stop signs, lane markings,
etc. Public agencies such as NASA and ESA have continued
their scientific satellite missions, Landsat and Copernicus
missions respectively, providing global imagery datasets at
medium spatial resolution. Several Non-Governmental
Organizations (NGOs), such as Open Street Map (OSM),
Google.Org and others, have developed global map/vector
datasets such as building footprints, road networks, etc. that
can be leveraged for national mapping [8]-[10]. Nowadays,
any national mapping agency can leverage multiple datasets
available in the commercial industry, as well as from public
sector agencies to execute their mapping missions.

The last few years have also seen the increasing adoption of
Al/ML technologies for a variety of applications including
Generative Al (GenAl), Large Language Models (LLMs),
Deep Learning (DL) and Machine Learning (ML) models.
The invention of transformers by Google coupled with
increased computational infrastructure has drastically
increased the adoption of AI/ML technologies in our daily
lives [11]-[14].
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Figure 1 — Artificial intelligence (Al) market size worldwide from
2020 to 2030 (in billion U.S. dollars)

Fig. 1 tells us about the global market size of Al (for 2020 to
2030) in U.S. dollars. The global market size of Al seems to
increase progressively each year, suggesting a projection of
economic growth or investment over time. In the context of
the global market size of Artificial Intelligence (Al), the bar
chart likely illustrates projected growth in Al investment,
spending or overall market size over the next decade. The
chart clearly shows exponential growth in Al market size,
which aligns with industry forecasts. In 2020, the market was
valued at $93.27 billion but by 2030 it is projected to reach
$826.73 billion, almost nine times the size in a decade. This
reflects rapid advancements and adoption of Al across
various sectors, including healthcare, finance, manufacturing,
and more. Increasing computational power, improvements in
Al algorithms (e.g., deep learning, neural networks) and the
availability of large datasets are driving Al development. Al
is being integrated into almost every industry. From
autonomous vehicles and smart healthcare systems to
finance, retail and logistics, the ability of Al to enhance
productivity, accuracy and decision-making makes it highly
valuable. Governments and companies are heavily investing

in Al, both to gain competitive advantages and to address
global challenges like climate change, healthcare and
economic inequality. This increase in investment is reflected
in the projected figures shown in the chart. Al is expected to
contribute trillions of dollars to the global economy.
According to some estimates, Al could add $15.7 trillion to
the global economy by 2030, with productivity and product
improvements. The chart aligns with projections for the
global Al market, showing a significant growth trajectory
from 2020 to 2030. This trend is driven by technological
advancements, cross-industry adoption and increasing
investment. As Al transforms industries, the global market
size will continue expanding, with key sectors such as
healthcare, autonomous vehicles and Al as a service being
primary drivers of this growth.

Further, improvements in the classification
technologies/platforms, as well as segmentation
technologies have enhanced the use of Al/ML technology.
The geospatial industry has seen an increased adoption of
AI/ML (GeoAl) for object and feature extraction, change
detection, and other mapping applications. GeoAl is poised
to become integral to the geospatial community and national
mapping agencies should embrace GeoAl for national
mapping and maintenance in 2D, as well as 3D [12], [15],
[16]. The major focus of the work is on “AI/ML
Approaches+Geospatial Al+ Earth Observation+Sustainable
Development Goals”.

Geospatial datasets, such as imagery, elevation models, road
vectors and others, can be leveraged for a variety of
applications beyond traditional mapping. EO imagery can be
used for a variety of missions including agriculture,
environment, transportation, natural resources management,
atmospheric monitoring, census, etc [1], [17]. One of the key
applications of EO imagery is Satellite-Derived Shallow
water Bathymetry (SDSB) which allows for mapping and
updating shallow water bathymetry in open oceans, as well
as for inland waterways. DEMs play a critical role in flood
plain/watershed modelling, transportation, insurance,
topographic maps, and others [18], [19]. 3D texture models
are becoming important for various missions including
digital twins for smart cities, modelling and simulation,
autonomous driving and other applications. A coordinated
geospatial data acquisition mission will benefit national
mapping agencies in efficiently leveraging various
geospatial datasets for multi-purpose missions.

2.  VARIOUS DATASETS AVAILABLE
FOR NATIONAL MAP UPDATES

There are several datasets publicly available, as well as those
from the private sector, for national mapping. The main
datasets used for mapping include Electro-Optical (EO)
imagery, Synthetic Aperture RADAR (SAR), digital
elevation models including Digital Surface Models (DSMs)
and Digital Terrain Models (DTMs), LiDAR and other 3D
point clouds, 3D textured models, bathymetry, Ground
Control Points (GCPs), image control points and various
vector datasets including roads, buildings, coastlines,
field/parcel boundaries, and others (Bui et al. 2021).
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2.1 EO imagery

EO imagery is one of the main data sources used for mapping
missions by national mapping agencies. EO imagery sources
include satellites, planes, drones and terrestrial sensors [20],
[21]. Key dimensions for the selection of EO imagery
include spatial resolution (pixel resolution/Ground Sampling
Distance (GSD) that defines the finest object that can be
extracted from an image, spectral resolution (number of
spectral bands, wavelengths of the spectrum, width of
spectral bands to capture spectral signature of interest) and
temporal resolution (revisit frequency over area of interest)
[22], [23]. Spatial resolution can vary from 5cm for
applications such as planimetric mapping to 3-meter-15-
meter GSD for nationwide change detection. A standardized
schema such as the National Imagery Interpretation Scale
(NIIRS) [24], [25] describes the objects that can be detected
at multiple pixel resolutions and helps agencies select the
right spatial resolution for a specific mission. Also, it is
important to keep in mind that image quality for the same
spatial resolution can vary from one data source to another
based on image quality parameters like Signal Noise Ratio
(SNR), radiometric resolution (preferred >10 bits of data per
pixel), and others that influence the overall usability of EO
images [26]-[28]. National mapping agencies should also be
aware of techniques such as pan sharpening, super-resolution
and resampling that simulate a spatial resolution that is much
finer than the native GSD in selecting an imagery source
[29]-[31]. The spectral resolution is an indicator of the
number of spectral bands captured by the EO sensor [1], [32],
[33]. Typical sensors used for mapping missions include a
minimum of four bands spanning across the Visible and
Near-Infrared (VNIR) part of the Electromagnetic (EM)
spectrum of sunlight. Depending on the number of bands, EO
imagery can be classified as Multi-spectral (MS) bands (2-10
bands), Super-spectral (SS) (10-20 bands) and Hyper-
spectral (HS) (>20 bands). Most of the AI/ML applications
use multi-spectral visible bands (Red, Green, Blue (RGB))
for object detection, while applications like land use/land
cover, agriculture, etc. require additional information from
the NIR band, which contain unique spectral information for
feature extraction. Few sensors in the market collect imagery
in the Short Wave Infrared (SWIR) part of the EM spectrum
[34], [35]. SWIR imagery can be used for specialized
applications such as mineral mapping, methane detection in
the atmosphere, soil and canopy moisture detection, and
others. Mid-wave Infrared (MWIR) and Long Wave Infrared
(LWIR) bands transmit information about thermal responses
of land features that can be leveraged for unique missions
comprising energy efficiency measurements of buildings,
monitoring emissions in the oil and gas industry, and other
applications [36]-[39].

Several commercial companies provide aerial and drone
imagery and a few companies such as NearMap and
Aerometrix are collecting imagery globally [40]-[42]. There
are a select few companies including NCTech that are offering
street view terrestrial imagery as an alternative to HD datasets
from companies such as Google, Apple, HERE, and others.
Table 1 shows a partial list of companies that provide global
satellite imagery that can be used for national mapping.

Table 1 — Source of satellite EO imagery

Source / Data Type/ EM

Spectrum/ GSD Public / Private

Landsat 8 (MS) VNIR, SWIR,
MWIR

Sentinel 5 (MS)
Maxar (SS), VNIR-SWIR
Airbus (MS), VNIR

Public (NASA)

Public (ESA)
Private (USA)
Private (Europe)

Planet (MS), VNIR Private (USA)
Satellogic (MS), VNIR Private (Argentina)
BlackSky (MS), VNIR Private (USA)

SIIS (MS), VNIR Private (S. Korea)
ISI (MS), VNIR Private (Israel)
Superview (MS), VNIR Private (China)
Jilin (MS), VNIR Private (China)

Satlantis (MS), VNIR
SatelliteVu (MS), MWIR
Albedo (MS), VNIR
Pixxel (HS), VNIR

Orbital Sidekick (HS), VNIR,
SWIR

Earth Daily Analytics (VNIR,
SWIR, MWIR)

Axelspace (MS), VNIR

Private (Europe)
Private (UK)
Private (USA)
Private (India)
Private (USA)

Private (Canada)

Private (Japan)

National mapping agencies can also take advantage of
Commercial Off The Shelf (COTS ) global/national/regional
image mosaic products offered by companies such as Maxar,
Airbus, NearMap, and others [43], [44]. These datasets are
typically built on global specification (e.g. UTM WGS84)
and agencies can leverage these COTS products to rapidly
create imagery base maps of their nation [45], [46].

Commercial companies offer various business models to
access their imagery and products, as well as offering
sovereign access to satellites to nations [47], [48]. Agencies
can acquire new images for their areas of interest by tasking
the satellites as well as accessing older data from the image
archives, with the latter being a relatively cheaper option
compared to tasking [49]-[51]. Several commercial
companies have built platforms and Application
Programming Interfaces (APIs) to provide access to new
tasked imagery and archive imagery, as well as COTS
products. For scientific applications, some companies are
offering Analytics Ready Data (ARD or Data Cube) that is
spectrally, spatially and temporally corrected imagery, from
both public and private sources of imagery [52], [53]. Further,
there are several data aggregators such as EUSI, UP42,
SkyWatch, SkyFi, Appollo Mapping and others that provide
access to multiple sources of EO imagery using one platform.

The positional accuracy of the EO imagery is a significant
reason to consider the map scale of national maps. Satellite
image accuracy is dependent on the pointing accuracy of the
satellites as well as spatial errors propagated through various
image processing steps [54]. Supplementary data like the
Digital Terrain Model (DTM) with Ground Control Points
(GCPs) play an essential role in the absolute accuracy of
processed images. Also, positional accuracy of mosaic image
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products involves error propagation from bundle adjustment
aerial triangulation of tie points from multiple images [55],
[56]. National agencies require positional accuracies of EO
imagery and associated products before using them for
national map generations.

2.2 Synthetic Aperture RADAR (SAR)

SAR imagery can see through clouds and day/night and all-
weather imaging is useful for national mapping in several
pursuits involving geology, maritime, surface deformation,
infrastructure maintenance, disaster response, and others
(Arai et al. 2019; Perez et al. 2022). SAR imagery requires
considering other dimensions like spatial resolution,
wavelength (X, C, L), polarization and imaging modes (Spot,
Strip, Scan) for mapping. SAR satellites acquire imagery by
scanning the ground in two dimensions and the associated
spatial resolution of SAR data is defined by Impulse
Response (IPR) (Abe et al. 2020; Ghorbanian et al. 2021).
The IPR is a two-dimensional entity that is characterized by
the range-dimension width (the width of the IPR in the
ranging dimension) and the cross-range (or azimuth)
dimension width. An image is built up from the reflected
signals in both dimensions (Dungan et al. 2002; Motwani,
Shukla, and Pawar 2021) and a typical SAR sensor
resolution is defined by the slant-range plane. L, C and X-
bands are the most widely employed in SAR instruments
with variable microwave pulses for different mapping
missions. Table 2 summarizes the missions supported by
variable microwave bands.

Table 2 — SAR applications

Band Mission

L (15-30 cm) Geophysical monitoring, biomass and

vegetation mapping, INSAR

C (3.8-7.5cm) Global mapping, change detection and
monitoring of areas with low to moderate
vegetation; ice, ocean, and maritime
navigation

X (2.4-3.8 cm) Urban monitoring

Most SAR systems provide dual and quad-polarized images,
essentially giving multiple images of the same scene. Quad-
polarized SAR, also referred to as Polarimetric SAR
(PoISAR), captures diverse structural and texture
information and allows the recognition of different scattering
mechanisms [57]-[59]. The specific frequency, look angle,
polarization and illuminated area of a SAR dataset determine
which applications the dataset is appropriate for where
several commercial companies offer a range of image
capture modes that define the spatial resolution and the area
captured in an SAR scan [60]. SPOT modes typically offer
the highest resolution with a relatively small area
(5 km x5 km to 10 km x 10 km at sub-1-meter resolution),
Strip mode offers 1-2-meter GSD and a larger footprint than
the spot model, and the scan model at >2 m GSD with large
areas ranging in thousands of sq km [61], [62]. Commercial
SAR satellite companies offer various business models for
tasking SAR satellites, as well as for accessing their image
archives. Like EO companies, customers can access tasking
and imagery via a platform and associated APIs. There are

several public and private sources of SAR imagery and
Table 3 provides a partial list of SAR sources:

Table 3 — Sources of SAR imagery

Company / Region Public/Private
Sentinel 1/Europe Public
ALOS/Japan Public
Airbus (Tandem-X)/Europe Private
MDA (Radarsat-2)/Canada Private
eGeos (COSMOS-SkyMed)/Europe Private
ICEYE/Europe Private
Capella Space/USA Private
Umbra/USA Private
Synspective/Japan Private

Few aerial companies are providing SAR imaging services
that can be also leveraged by national mapping agencies.

2.3 Elevation data

Elevation is one of the key foundational pieces of data for
national geospatial infrastructure. Elevation data types
comprise Digital Terrain Models (DTMs), Digital Surface
Models (DSMs), 3D texture models and point clouds (Bui et
al. 2021; Roca and Arellano 2021). Sources of elevation data
can range from sensors in space to aerial as well as terrestrial
platforms. Key dimensions for the selection of DEM (DTM
and DSM) data sources include spatial resolution of gridded
data or density for point clouds for LIDAR and associated
positional accuracy in X, Y and Z dimensions.

Shuttle RADAR Topographic Mission (SRTM) global
elevation datasets, at 90-meter or 30-meter resolution, have
been the commonly used elevation data around the globe
(Ramirez et al. 2020; Zeng et al. 2020). National elevation
programs have been in place in several countries that have
collected DTM data at 10-meter spatial resolution and in the
last few years, programs such as the 3D Elevation Program
(3DEP) in the United States of America (USA) have
captured the entire nation at 1-meter postings. These
programs are primarily using aerial LiDAR technology with
satellite and Interferometric SAR (IfSAR)-based elevation
models complementing the LIDAR datasets (Katz,
Batterman, and Brines 2020; Qabagaba et al. 2023).
Metropolitan areas in select countries across the globe have
been mapped at much higher spatial resolution/ postings
using aerial stereo photogrammetric, as well as LiDAR,
technologies. Aerial oblique photography has been one of the
commonly used technologies for creating photo-realistic 3D
textured models of cities (Pratico, Di Fazio, and Modica
2021; Z. Sun, Deal, and Pallathucheril 2009; L. Yao et al.
2021). Terrestrial street view photogrammetry for HD
mapping for autonomous vehicles has also been used to
create 3D data.
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Table 4 — Sources of DEM data

Elevation Source / Product / Posting / Public/private
Technology
SRTM (NASA)/DTM/30 m or 90 m (SAR) | Public
Airbus/DTM/10 m (SAR) Private
Maxar/DSM-DTM-3D/<=1 m (EO) Private
NTT Data/DTM/3 m (EO) Private

There are several efforts, research and commercial, to
combine the terrestrial and aerial 3D datasets to create a
cohesive 3D dataset with photo-realistic representation of an
area. Table 4 details some of the global sources of DEM data.
Few companies are providing global satellite-derived
shallow water bathymetry data including EOMAP and
TCarta. Other technologies used for high-accuracy
bathymetry maps include SONAR and LiDAR techniques
and there are several companies offering services for
maritime mapping of shallow waters and littoral zones [63],
[64].

2.4 Ground Control Points (GCPs)

GCPs are an important aspect of ancillary data for enhancing
and validating the positional accuracy of 2D images as well
as 3D data. Surveying technologies such as Real-Time
Kinematic (RTK) GPS provide centimetre-level accuracy
GCPs in real-time (Dongsheng Liu et al. 2021; Petrocchi et
al. 2024; Pierdicca and Paolanti 2022). Traditionally GCPs
were collected on the ground for precisely geolocating 2D
datasets, they can also be leveraged to validate the Z
dimension of 3D datasets. Photo Identifiable Features (PIFs)
of GCPs can be existing known points of interest and some
nations have created a nationwide network of PIFs, like
surveying monuments, that can serve multiple missions
including georeferencing, cadaster creation and maintenance,
transportation planning, and others. Few companies such as
CompassData from the USA offer global GCPs from an
archive (Aratjo et al. 2019; Woo et al. 2018).

National agencies requiring GCPs only for georeferencing of
imagery and datasets can use other alternatives to RTK GPS
surveying, which can be resource-intensive and costly
(Hagenaars et al. 2018; Zular et al. 2012). There are GPS
technologies available on the market that can achieve sub-50
cm accuracy at much lower costs than RTK GPS. Similarly,
image chips from high-accuracy imagery sources, both 2D
and 3D, can also serve as sources for GCPs.

2.5 Open-source datasets

There are several open-source vector datasets that national
agencies can leverage for national maps. Open Street Map
(OSM) is a free open-source vector dataset with global
coverage of roads, buildings and other features, and it is
updated by millions of volunteers daily (Forghani and
Delavar 2014; T. Zhang and Tang 2018). Humanitarian
Open Street Map (HOT) is a non-profit organization that
supports disaster response across the globe and produces
vector datasets that agencies can use to respond to disasters
(Aung 2021; Dias et al. 2023; Henderson 2010). Microsoft
has released millions of building footprint data it has derived

from its global aerial imagery missions and these datasets are
available using Bing Maps API and have been also integrated
into OSM (Asif, Naeem, and Khalid 2024; Dou et al. 2018;
Huidong Li et al. 2018). Few entities have created global
population density estimates including Oak Ridge National
Laboratory (ORNL), WorldPop and Columbia University,
NY USA that could be of help to national mapping agencies
(Campbell-Lendrum and Corvalan 2007; Garshasbi et al.
2020; L. Yang et al. 2022).

Many public as well as private sources, now addressing
climate change and are providing global datasets for trace
gases and atmospheric pollutants. ESA, NASA, JAXA and a
few other public agencies have scientific missions that
provide information about greenhouse gases such as methane,
nitrous oxide, formaldehyde and others, using satellites in
Low Earth Orbit (LEO) and Geostationary Earth Orbit (GEO)
(Ho et al. 2007; H Li et al. 2018; Segovia, Gaso, and
Armienta 2007). Various NGOs such as the Environmental
Defense Fund (EDF), Carbon Mapper and others, are now
providing/planning to provide free access to methane and
carbon dioxide data, on a global scale. Further, several
private entities are now launching satellites for atmospheric
mapping as well.

3. USE OF TECHNOLOGY FOR MAP
MAINTENANCE AND UPDATE

3.1 AIl/ML overview

AI/ML technologies are ready to transform map making and
national agencies would prepare the current and future
workforce to adopt these technologies (Casali, Aydin, and
Comes 2022; Shahab et al. 2024). AI/ML is a rapidly
evolving technology that is transforming our way of life
(Joshi et al. 2016; Odu et al. 2022; Y. Yang et al. 2024).
Multibillion-dollar AI/ML investments from Microsoft,
Google, Meta OpenAl and other technology enterprises, are
contributing to increased technological advances in this field.
While techniques like ML/DL have been around for decades,
it was the invention of transformers by Google engineers that
resulted in the rapid evolution of the technology in the last
few years (Dhedia et al. 2021; Pamela Flores, Gaudiano, and
Gamba 2017; Scharien and Nasonova 2020). Computing
technology from companies like NVIDIA, AMD, Intel,
Google, Alibaba and others played a key role in the
development of large AI/ML models (Chugh, Kumar, and
Singh 2021; Perci¢, Zelenika, and Mezi¢ 2021).

ML/DL value chain is comprised of different levels like the
data value chain. Most of the applications like object
detection, feature extraction and image classification fall into
the descriptive category (Motwake et al. 2024). Change
detection between two or more temporal sequences of
imagery or geospatial datasets falls into the descriptive
category. Few services companies provide diagnostic
services but they typically leverage human analysts to
diagnose the information derived from imagery/geospatial
sources (Gasparovi¢ and Klobucar 2021; W. Li et al. 2023;
S. Wang and Li 2021). The diagnostic phase typically
requires the use of multiple data sources (multi-INT) to
understand the image (Chakraborty et al. 2020; Mendoza et
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al. 2015; Vanama et al. 2021). An example of a diagnostic
step can be understanding the agricultural output of a nation
and correlating excess, or shortage of food supplies based on
weather conditions. Patterns of life, both natural and human,
can be predictable most of the time and mobile phone
companies can predict the daily behaviours of people and
recommend traffic situations along a route routinely taken by
an individual. A GeoAl example of a predictive step could
be the predictive socio-economic recovery of a
neighbourhood, post-disaster, by observing traffic patterns
on streets (Hou et al. 2024; H. Lee and Li 2024; Vitale, Salvo,
and Lamonaca 2024). The prescriptive segment of DL/ML is
presently used in the aircraft industry where the technology
is being used to prescribe when maintenance is required for
an aircraft engine. Likewise, a geospatial mission of the
national agencies uses predictive recommendations from
ML/DL including recommendations for pesticide
applications based on potential pest infestations in
agriculture (Hou et al. 2024; Randhawa et al. 2023;
Qianheng Zhang, Kang, and Roth 2023). The diagnostic,
predictive and prescriptive stages of the ML/DL value chain
of GeoAl offer tremendous opportunities for new research
for various national mapping missions (Cornara et al. 2019;
Jayaraman, Srivastava, and Gowrisankar 2009; Lin et al.
2020).

The AI/ML methods can be categorized into two discrete
categories descriptive and generative. ML and DL
techniques typically are descriptive while generative Al
methods and algorithms are used to generate new data or
content which resembles, and often extends beyond, the
original training data (Matakanye and van der Poll 2021; H.
Wang 2024). Unlike traditional Al methods with a focus on
recognizing patterns in data or making predictions based on
existing data, generative Al can create entirely new data
instances for explicitly unseen scenarios.

There are several methods for generative Al like Generative
Adversarial Networks (GANSs), Variational Autoencoders
(VAEs), autoregressive models, and transformer models
including OpenAl’s Generative Pre-trained Transformer
(GPT) series Generative Adversarial Networks (Chen et al.
2024; X Li et al. 2021). Generative Al has a wide range of
applications for GeoAl. Large Language Models (LLMs)
overlap with generative Al models and are designed to
understand and generate human-like text. These models are
built upon deep learning architectures, particularly
transformer architectures, and are trained on vast amounts of
text data (Wei, Gao, and Zhang 2023). Some of the key
characteristics and features of large language models include
scale, transformer architecture, pre-training and fine-tuning,
generative and predictive  capabilities, contextual
understanding, and versatility. Examples of large language
models comprise Generative Pre-trained Transformer (GPT)
models developed by OpenAl, Bidirectional Encoder
Representations from Transformers ( BERT) developed by
Google, and T5 (Text-To-Text Transfer Transformer)
developed by Google Brain (Bosco, Wang, and
Hategekimana 2021; Hastings et al. 2020). There are a few
examples in the geospatial industry today where GeoAl
professionals are starting to take advantage of GenAl and

LLMs to address geospatial applications. These models have
the potential to completely transform national mapping
workflows in the future (H. Lee and Li 2024; Scorza,
Corrado, and Muzzillo 2024).

3.2 AIl/ML workflows

The first step in a typical AI/ML workflow includes data
preparation which consumes a large volume of resources and
time. Data preparation includes the creation of labels for
training, testing and validation of the model performance.
Labels for features of interest include image tiles with fixed
dimensions (e.g. 64x64 pixels, 128x128 pixels, ...) and
involve drawing bounding boxes and/or polygons around
features of interest. In many machine learning tasks, fixed
image sizes for label images are not strictly required but they
can be beneficial depending on the specific requirements of
the model and the nature of the task. Convolutional Neural
Networks (CNNs) commonly used for tasks like image
classification, object detection and segmentation, typically
require fixed-size input images (Guard and Budihal 2022;
Song et al. 2021). This is because the convolutional layers in
CNN s have fixed-size filters that slide over the input image,
and the size of the output feature maps depends on the size
of the input image (Guard and Budihal 2022; Yan Xie et al.
2019; Zhu, He, and He 2019). Therefore, using fixed-size
images ensures consistency in the input size across different
samples and allows for efficient processing in the network.
In data preprocessing, even if the model does not strictly
require fixed-size images, it’s often beneficial to preprocess
your data to have fixed-size inputs (Kogilavani et al. 2022;
Komathy 2022; T. Sun et al. 2021). Resizing images to a
common size can simplify data preprocessing and model
training pipelines. Moreover, it can improve computational
efficiency and memory usage during training. Some models,
such as certain types of recurrent neural networks (RNNSs) or
attention-based models, can handle variable-length inputs
more naturally (Manasa, Shukla, and Saranya 2021;
Motwake et al. 2024; Shoaei et al. 2024). The choice of
model architecture may also influence whether fixed image
sizes are required. Some architectures, such as fully
connected networks, may require fixed-size inputs, while
others, like convolutional and recurrent networks, can handle
variable-size inputs more flexibly (Motwake et al. 2024;
Pandey and Janghel 2019; S. Sharma et al. 2020). There are
several commercial companies and open-source tools that
offer labelling technologies that can be leveraged by national
agencies. There are ongoing efforts at global standards
organizations such as the Open Geospatial Consortium
(OGC) to establish standards for labelling. The bounding
boxes or polygons are saved in predefined formats and
directories, depending on the AI/ML model used for analysis
(V. K. Sharma et al. 2017; Truong et al. 2017; Walker
Johnson et al. 2011).
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Table 5 — Free label sources for EO and SAR imagery

Label Sources

SSDD (EO and SAR ship detection)
SSDD+

SAR SHIP Dataset
AIR-SARShip-1.0/2.0 Dataset
HRSID

LS-SSDD-V1.0

Official SSDD

SRSD-V 1.0

RSDD-SAR

iVision MRSSD

xView3

Synthetic label generation has been employed in GeoAl to
simulate  various geographic backgrounds, varying
atmospheric conditions, varying spatial resolution and other
image artefacts (labchoon, Wongsai, and Chankon 2017
Loukanov et al. 2020). Synthetic label generation practices
leveraging CAD models of objects of interest and insert them
into imagery with varying backgrounds. Synthetic data
labels could be of interest to national agencies for specific
objects/features that might not have enough real-world
geospatial data labels. There are several open sources for
labels for EO and SAR imagery datasets (Table 5) for
national mapping agencies to get started with GeoAl
applications (Jian et al. 2020; Nasarian et al. 2020; Pereira et
al. 2018).

There are evolving new developments in the Al/ML industry
that are driving towards reducing manual labelling efforts
(Dinesh and Rahul Prasad 2024; Waqgar 2024). Zero-shot
training and Segment Me Anything (SAM) are some of the
examples of these developments that will help national
agencies in their mapping efforts. There is also research
being conducted to extend the LLMSs to recognize various
types of semantic objects in an image with techniques such
as Vision Language Models (VLMs) that eventually
minimize the need for large-label dataset creation.

Once the labels are created, the next step in Al/ML workflow
is to create a subset of the labels into 3 categories i.e. 1.
Training 2. Testing and 3. Validating the models. The next
step includes selecting and running an AI/ML of choice
(discussed in the next section) and validating the results. The
training, testing and validation of the model are reiterated by
modifying various parameters (e.g. epochs, label editing, etc.)
and post-processing steps (e.g. lower probability objects)
until the desired accuracy of object/feature detection is
achieved. The final version of the models can be deployed to
support real-time operations by the national mapping
agencies. Reinforcement techniques are another technique
that involves continuous training and validation of the
models by using the new datasets to account for varying
imaging artefacts.

3.3 AI/ML approaches for
characterization

image

AI/ML models for image characterization fall into 5
categories: a) Image Classification, b) Object Detection, c)
Oriented Bounding Box Detection, d) Semantic
Segmentation and e) Pose Detection. Image classification
models are designed to identify image tiles with one or more
features of interest such as image tiles with agricultural fields
(J. Liu et al. 2014; Oliphant et al. 2019). Image classification
techniques are also ideal for area reduction for broad area
search missions as well as for change detection (Anupama et
al. 2021; Stibig et al. 2014; K. Wang et al. 2010). Object
detection is the most common application in GeoAl and is
used to identify objects such as buildings, cars, ships, planes,
etc. in images (H. Lee and Li 2024; Petrocchi et al. 2024;
Swietek 2024). Objects in the image tile are identified by
bounding boxes and each bounding box is associated with a
confidence of prediction for one or more labels/ classes.
Oriented Bounding Box object detection is an improvement
over object detection where the bounding boxes are oriented
in the direction of the object of interest (Peng et al. 2021; Q
Zhang et al. 2016). This technique leverages the Segment Me
Anything (SAM) model to determine the size and direction
of the objects of interest. Image Segmentation identifies the
outlines of various objects in an image and is useful for
various GeoAl applications including extraction of building
footprints, agricultural field boundaries, flood extent, and
others. Pose detection in the field of AI/ML involves
estimating the pose (object position and orientation) of an
object from an image or video (Nadian-Ghomsheh, Farahani,
and Kavian 2021; Zaman et al. 2023). It aims to identify the
spatial locations of key object joints (also known as key
points). The relative positions of these key points can be used
to distinguish one pose from another. GeoAl can leverage
pose detection for object tracking missions such as MTI
(Moving Target Indicator) of objects in 2D and 3D space and
could be an area of interest to national mapping agencies in
the future.

3.4 AI/ML techniques

Like the remote sensing image classification techniques,
AI/ML techniques follow two approaches for image
classification including supervised and unsupervised.
Supervised classification approaches require priority
training datasets that the GeoAl models leverage to
characterize objects/features in an image (Chugh, Kumar,
and Singh 2021; Seh et al. 2021). Unsupervised
classification is gaining ground for object detection, outside
the GeoAl field, and does not need any training datasets for
image classification (Jian et al. 2020; Oetter et al. 2001,
Pratico, Di Fazio, and Modica 2021). A combination of
open-source labelling datasets such as Microsoft Common
Obijects in Context (Microsoft COCO ), large-scale object
detection, segmentation, key-point detection, and captioning
datasets and the emergence of LLM for semantic correlation
are driving the use of unsupervised classification approaches
(Gallwey et al. 2019; Hao Li et al. 2023; Potnis et al. 2023).
We will focus on supervised AI/ML model training which is
commonly used in GeoAl.
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There are two approaches in supervised Al/ML classification.

Each approach has its strengths and weaknesses. An example
of two-stage detection is You Only Look Once (YOLO)
where a pre-trained model with pre-assigned weights can be
adjusted to predict objects of interest in new images (Pratico,
Di Fazio, and Modica 2021; Yeiser et al. 2020). Two-stage
detectors are the most used technique in GeoAl. A Single
Shot Detector (SSD) is a single-stage detector where a pre-
trained model for image classification is used as the
backbone network. The model can be tweaked for a specific
detection task. One key distinction between YOLO and SSD
is that the SSD model attempts to directly predict the
probability of a class present in each bounding box whereas
the YOLO model predicts the probability of multiple
potential label classes (Berganzo-Besga et al. 2021; Deng,
Lu, and Xu 2024). Another method for Al/ML classification
is anchor-free object detection which has gained attention
due to its speed and generalizability. Anchor-free methods
directly predict object locations without predefined anchors/
boxes. Instead of bounding boxes predict points or key points
associated with objects. They are more generalizable and can
extend to tasks like key-point detection and 3D object
detection (Hake et al. 2023; Ma et al. 2022). Anchor-free
object detection offers advantages in terms of simplicity,
generalizability and speed, making it a promising approach
for improving small-size object detection models. Object
training from scratch is another approach suitable for GeoAl
for features that are not commonly used in pre-trained
models. There are several tools available for this approach.
National agencies may start with two-stage models such as
YOLO and keep track of new trends that can improve GeoAl
workflows in the future (Petrocchi et al. 2024; Wei, Gao, and
Zhang 2023).

3.5 AIl/ML frameworks

Frameworks are the backbone of AI/ML models. With the
advancements in the field of Al/ML, its complexity grows,
emphasizing the significance of frameworks in simplifying
its processes. Conventionally, successful technologies have
leveraged frameworks for efficient development (Martin et
al. 2022; Swain et al. 2022). Acquiring proficiency in AI/ML
frameworks not only saves time but also optimizes the
development process. Some of the common frameworks
used in the industry today include:

1. TensorFlow: TensorFlow is a free end-to-end open-
source platform that has a wide variety of tools, libraries and
resources for AI/ML. It was developed by the Google Brain
team and initially released on November 9, 2015. You can
easily build and train machine learning models with high-
level APIs such as Keras using TensorFlow. It also provides
multiple levels of abstraction so you can choose the option
you need for your model (Xin Li and Su 2024; Martin et al.
2022).

2. CAFFE, Convolutional Architecture for Fast Feature
Embedding, was originally developed at the Berkeley Vision
and Learning Center at the University of California and
released on 18 April 2017 (Guignard, Amato, and KanevskKi
2021; K. 2022; Mani et al. 2020). It is a deep learning
framework written in C++ that has an expression architecture

that easily allows you to switch between the CPU and GPU.
Caffe also has a MATLAB and Python interface. Caffe is the
perfect framework for image classification and segmentation
as it supports various GPU and CPU-based libraries such as
NVIDIA, cuDNN, Intel MKL, etc (Capasso, Lauria, and
Veneri 2018; She, Dong, and Liu 2022). Caffe can currently
process over 60M images in a day with a single NVIDIA
K40 GPU which makes it one of the fastest options today.
Because of all these reasons, CAFEE is extremely popular in
startups, academic research projects and even multinational
industrial applications in the domains of computer vision,
speech and multimedia (Aswani and Menaka 2021; Bathla,
Aggarwal, and Rani 2019; Hijazi, Faris, and Aljarah 2021; S.
Zhao et al. 2022).

3. Apache Spark: Apache Spark is an open-source cluster-
computing framework that can provide programming
interfaces for entire clusters. It was developed at Berkeley’s
AMPLab at the University of California and initially
released on May 26, 2014. Spark Core is the foundation of
Apache Spark which is centred on RDD abstraction
(Campana and Delmastro 2021; Sarumi and Leung 2022;
Sujitha and Seenivasagam 2021; Thirumal, Thangakumar,
and Venkata Subramanian 2019).

4. PyTorch: PyTorch is a machine-learning library that is
based on the earlier open-source Torch library. It was
initially released in October 2016 and is in primary use now
that Torch is not actively in development anymore (Laaber,
Basmaci, and Salza 2021; Schoonderwoerd et al. 2021;
Tamiminia et al. 2020). PyTorch provides TorchScript,
which facilitates a seamless transition between the eager
mode and graph mode. Moreover, the PyTorch distributed
backend provides scalable distributed training for machine
learning and optimized performance (D Liu et al. 2021; Sato
et al. 2021).

5. Amazon SageMaker: Amazon SageMaker is a fully
integrated development environment (IDE) for machine
learning that was initially released on 29 November 2017.
Amazon Web Services provides this machine learning
service for applications such as computer vision,
recommendations, image and video analysis, forecasting,
text analytics, etc. Amazon SageMaker allows you to build,
train and deploy machine learning models on the cloud (Ball,
Anderson, and Chan 2018; Gaigg et al. 2020; Perez et al.
2022). Amazon SageMaker Autopilot also has an automated
machine-learning capability that allows you to do all this
automatically. Amazon SageMaker also allows you to create
machine learning algorithms from scratch because of its
connections to TensorFlow and Apache MXNet (Gao et al.
2021; Kozak et al. 2021; Surianarayanan and Chelliah 2021).

6. Accord.NET: Accord.NET is a machine learning
framework that is completely written in C#. It was developed
by César Roberto de Souza and was initially released on May
20, 2010. Accord.NET provides coverage on various topics
like statistics, machine learning and artificial neural
networks with various machine learning algorithms, like
classification, regression, clustering etc. along with audio
and image processing libraries (Bassuk et al. 2015; Kumar
2020). Accord.NET libraries are available as source code,
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executable installers, as well as NuGet packages (wherein
NuGet is a free and open-source package manager that was
created for the Microsoft development platform) (Bassuk et
al. 2015; Huang, Mendis, and Xu 2019; Manos et al. 2023).

7. Microsoft Cognitive Toolkit: Microsoft Cognitive Toolkit
is a machine learning or specifically, deep learning
framework that was developed by Microsoft Research and
initially released on 25 January 2016 (Bhalodia et al. 2021,
G. Yang, Huang, and Zhao 2020). You can easily develop
popular deep learning models such as feed-forward DNNSs,
convolutional neural networks and recurrent neural networks
using the Microsoft Cognitive Toolkit. This toolkit uses
multiple GPUs and servers providing parallelization across
the backend. You can use the Microsoft Cognitive Toolkit in
a customizable manner as per your requirements with your
metrics, networks, and algorithms (Bai, Mas, and Koshimura
2018). You can use it as a library in your Python, C++, or C#
programs or you can use BrainScript, its model description
language.

Machine learning is a rapidly evolving field that has seen a
significant surge in adoption by companies seeking to
revolutionize industries (Bassuk et al. 2015; J. Kim and Song
2021; F. Zhao et al. 2021). As this technology progresses, the
need for frameworks becomes increasingly important to
simplify processes and ensure efficient development. These
frameworks provide the necessary resources to create
advanced machine-learning models tailored to specific
requirements.

3.6 AI/ML models

AI/ML models use a mathematical formula to make
predictions about future events. They are trained on a set of
data and then used to make predictions about new data. Some
common examples of ML models include regression models
and classification models. A deep learning model, or a DL
model, is a neural network that has been trained to learn how
to perform a task, such as recognizing objects in digital
images and videos or understanding human speech. Deep
learning models are trained by using large sets of data and
algorithms that enable the model to learn how to perform the
task. The more data the model is trained on, the better it can
learn to perform the task. DL models are composed of
multiple layers of neurons or processing nodes. The deeper
the model, the more layers of neurons it contains (Ansari and
Akhoondzadeh 2020; McNorton et al. 2021). This allows the
model to learn more complex tasks by breaking them down
into smaller and smaller pieces. For example, ResNet is a
deep learning model for computer vision tasks such as image
recognition. It is one of the deepest models currently
available, with a version that contains 152 layers (ResNet-
152). Visual Geometry Group (VGG) deep convolutional
neural network architecture YOLO, or “You Only Look
Once,” is a deep learning model for real-time object
detection (Bassuk et al. 2015; Fan et al. 2021; Gallwey et al.
2019; J. S. H. Lee et al. 2016). Surpassing YOLOv4 and
YOLOR, the latest versions, YOLOv7 and YOLOVS, are
super-fast and very accurate, the current state of the art for
several Al vision tasks. Some of the most popular open-
source Al models include You Only Look Once (YOLO),

Segment Me Anything (SAM), Regional-Convolution
Neural Networks (R-CNN), and others (Bassuk et al. 2015;
Smerdu, Kanjir, and Kokalj 2020).

AI/ML models are typically optimized for speed vs accuracy.
An example of various model sizes available for
YOLOV810 range from nano (YOLOvV8n) to extra-large
(YOLOvV8x) with nano being the fastest and smallest, while
extra-large is the most accurate yet the slowest among them
(Berganzo-Besga et al. 2021; Ou et al. 2019; dos Santos et al.
2019). In addition, YOLO model iterations are managed by
epochs. By trial and error and associated model performance
statistics for the best and last epochs, analysts can identify
the right number of epochs to be used to extract objects of
interest. While most of the national mapping efforts need
accuracy and can leverage extra-large size models, situations
such as disaster management can leverage small models for
faster response. Python is a commonly used programming
language for running AI/ML models with several open-
source tutorials on how to run the models with custom
datasets of interest to national mapping agencies and several
open-source tools are available for analysts to test different
model sizes for GeoAl (Canty et al. 2020; Reichert et al.
2017; Yiqun Xie et al. 2023).

Post-processing is one of the last steps in analyzing an
AI/ML model performance that can improve the object
detection accuracy. Some of the commonly used post-
processing steps include filtering the model results by size
(absolute vs relative size to image tile), intersection and
unions of various bounding boxes identifying objects of
interest, confidence threshold of various labels, and others.
The last few years have seen increasing adoption of AI/ML
in the geospatial industry and there are examples of using
AI/ML object/feature extraction at national/global scales.
The following examples show the use of GeoAl for
geospatial applications.

3.7 GeoAl composition

Combining generative Al with spatial reasoning and analysis
techniques is the new frontier for automating authoritative
and trustworthy spatial queries. Knowledge-based Al
techniques have been around in geospatial sciences for
decades while machine learning techniques and LLMs
identify patterns from data, knowledge-based techniques rely
on automated reasoning with symbolic representations of
data. GeoAl orchestration combines multiple Al and
analytical tools into workflows. Knowledge-based reasoners
and authoritative data repositories are used to generate
reliable and trustworthy responses to questions. Al
“orchestration” is emerging as a foundational approach to
combining the exceptional text-extruding capabilities of
LLMs with reliable knowledge-based spatial reasoning and
analysis.

3.8 Applications in national maps beyond
traditional mapping

Several of the datasets, such as imagery, elevation models,
GCPs, transportation networks and others, can be used for
multiple missions within national agencies ranging from
agriculture, census, transportation, environment, natural
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resources management, coastal management, disaster
response, and others. Countries such as the USA have
created federal geospatial programs such as the 3D Elevation
Program (3DEP), National Agriculture Imagery Program
(NAIP), US Census TIGER Road Network, and others that
are leveraged by a combination of agencies across
state/local/federal, as well as by military agencies. Some of
the agencies in the USA were able to save hundreds of
millions of dollars by leveraging the national geospatial
programs. Table 6 shows various national missions and data
requirements that can be leveraged for a unified nationwide
geospatial program.

Table 6 — Various national missions and data requirements for EO
and SAR imagery

Mission Data GeoAl Requirements
application
Census EO Building Blds: EO -
Imagery footprints, RGB - 50 cm
change Change: 2 m-
detection 5m MS
Agriculture EO Field Field
Imagery Boundaries, Boundaries:
Crop EO RGB
Type, Change | 50 cm
Detection Crop Type:
EO Imagery,
MS, 50 cm
Change
Detection: EO
Imagery MS
2m-5m
Forestry EO Tree Deforestation:
Imagery, Identification, | EO MS 2-5m
DEM Tree Tree Height:
Height/width, | DEM, 50 cm
De/ postings
Reforestation | Change
Detection: EO
Imagery MS
2m-5m
Cadastre EO Agriculture Ag Parcels:
Imagery, Parcels, EO RGB
GCPs Urban 50 cm; GCP's
Parcels, <1 meter
Change accuracy.
Detection Urban Parcels:
EO RGB 5-
15cm.
GCP's:5¢cm
accuracy
Change
Detection: EO
1-2 meters
Disaster Planning/ EO/SAR Flood plain Flood plain:
Response Imagery, mapping, DTM,1m
DEM Damage postings
assessment Disaster: EO
Imagery, SAR
Imagery,
50 cm
Water Resources EO Watershed EO Imagery:
Management Imagery, Modeling MS 1-5 meters
DEMs DTM: 1-2
meters
Mineral Resources EO Mineral Mineral: EO
Imagery, Deposits, Imagery; HS:
DEM Mining 1-2 meters
Mining:
DSM's <1 m

20

Mission Data GeoAl Requirements
application
Atmospheric EO Methane, EO Imagery:
Monitoring Imagery Particulate MS or HS:
Matter 5-50 meters
Coastal Monitoring EO Coastlines, Coastlines:
Imagery Bathymetry EORGB <1
meter
Bathymetry:
EO MS, <1
meter
Transportation EO Road/Rail Road Rail: EO
Imagery, Mapping, Imagery:
DEM Road <=50 cm
furniture for Autonomous:
Autonomous EO Imagery
Vehicles <=15cm;
StreetViews:
3D <=30 cm
Telecommunications | EO Cell tower EO Imagery:
Imagery, detection MS <50 cm
3D 3D: <=30cm
Oil & Gas EO Detect roads, | EO Imagery:
Imagery, infrastructure | MS: <50 cm
DEM DTM:
<=50 cm

4. RECENT TRENDS WITH CASES

Recent trends in geospatial Al for Earth observation
comprise the use of Al/ML for precision agriculture, climate
change monitoring and disaster management. Table 7
explains the worldwide adoption of Atrtificial Intelligence
(Al) by 2022 across various industries and functions. It
reports that human resources, manufacturing including
marketing and sales significantly adopted Al.

Cases like Al-driven deforestation tracking in the Amazon
and ML-based urban growth prediction showcase how these
technologies are advancing the Sustainable Development
Goals by providing actionable insights for environmental
and resource management. Some of these are listed below:

Table 7 — Worldwide adoption of Artificial intelligence (Al) by
2022 (with industry and function)

Characteristic Human Manufac | Marke Pro Ri
resources turing ting & | duct | sk

Sales | /serv

ice

deve

lop

men

t
All industries 11% 8% 5% 10% | 19
%
Business, legal, 11% 10% 9% 8% 16
and professional %
services

Consumer 14% 4% 3% 4% 15
goods/retail %
Financial 1% 8% 7% 31% | 17
services %
Healthcare/Phar 15% 7% 2% 4% 22
ma %
High- 6% 6% 4% 7% 38
tech/telecom %

Source: http://www.statista.com/statistics/1112982/ai-adoption-worldwide-industry-function/
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a) Climate change monitoring

Satellite data is extensively used to monitor climate change
impacts. Several space agencies utilize satellites like
RADARSAT to observe ice cover, forest changes and
climate patterns. Integrating satellite data with ground-based
observations helps in tracking temperature changes, the rise
in sea levels and permafrost thawing.

b) Biodiversity and ecosystem health

The forest service and other agencies use remote sensing to
monitor forest health and biodiversity. This includes tracking
deforestation rates and habitat changes. Data on wetland
changes and health is gathered through satellites, which is
crucial for conservation efforts.

c) Land cover classification

Al-driven image classification techniques process satellite
imagery to classify land cover types and monitor changes
over time. This helps in land use planning and environmental
management. Machine learning algorithms detect changes in
land cover and vegetation, which is useful for tracking
deforestation and urban expansion.

d) Disaster management

Several nations frequently experience natural disasters like
hurricanes and earthquakes. Remote sensing data helps in
disaster preparedness and response, including monitoring
flood risks and earthquake impacts. Satellite imagery and
data are used to assess damage and coordinate emergency
response efforts in disaster-stricken areas. Machine learning
models analyse weather forecasts, satellite imagery and
historical flood data to predict and manage flood risks. Al
algorithms assess damage from natural disasters by
analysing satellite and aerial imagery, aiding in quick and
accurate responses.

e) Urbanization and land use

Remote sensing data tracks urban expansion and land use
changes in rapidly growing cities. This helps in planning and
managing urban development. Satellite data supports
agricultural monitoring, including crop health and land use
efficiency. Al techniques classify and monitor land use
patterns, helping in sustainable urban planning and
managing urban sprawl. Al-driven analysis of geospatial
data helps in optimizing traffic flow and reducing congestion
in major cities.

f)  Agricultural optimization

Machine learning models analyse satellite data to monitor
crop health and predict yields, which supports precision
agriculture and improves food security to help optimize the
use of resources such as water and fertilizers by analysing
soil and crop data.

g) AI/ML approaches - predictive modelling

Machine learning models predict climate impact, including
extreme weather events and ecosystem changes. These models
analyse historical climate data and current trends to forecast
future scenarios. Al algorithms predict forest fire risks by
analysing satellite imagery, weather data and historical fire
patterns.

h) Data integration and visualization

Al tools integrate diverse datasets (e.g., satellite imagery and
ground data) into geospatial platforms to allow for more
comprehensive analysis. Visualization tools help in
presenting complex data in an accessible format. It leverages
geospatial Al and machine learning to address a range of
environmental and developmental challenges. Their efforts
align with various Sustainable Development Goals by
utilizing recent data trends and advanced technologies to
monitor climate change, manage natural resources and
enhance disaster response. The integration of Al/ML with
Earth observation data enhances the ability to make informed
decisions and take timely actions towards achieving
sustainability.

i) Sustainable Development Goals (SDGS)

Monitoring and forecasting climate impact (SDG 13-Climate
Action) contribute to understanding and mitigating climate
change. Tracking forest health, biodiversity and land use
supports sustainable land management and conservation
efforts (SDG 15-Life on Land). Urban planning and disaster
management efforts contribute to more resilient and
sustainable cities (SDG 11 Sustainable Cities and
Communities). Monitoring agricultural productivity and
optimizing resource use supports food security and
sustainable agriculture (SDG 2-Zero Hunger).

5. CHALLENGES AND LIMITATIONS

The integration of recent data trends and Al/ML approaches
in geospatial Al for Earth observation brings significant
advancements  towards achieving the  Sustainable
Development Goals (SDGs). The need for robust validation
processes for critical considerations is crucial for ensuring
the reliability, accuracy and relevance of Al/ML approaches
in geospatial analysis, particularly in Earth observation for
Sustainable Development Goals (SDGs). Al models should
be validated to ensure that their use in decision-making,
especially regarding environmental justice and conservation,
is ethical and equitable. Poorly validated models could lead
to unintended consequences, such as misallocation of
resources or displacement of communities. Validation
processes enhance trust among stakeholders (governments,
NGOs, local communities) who rely on geospatial Al for
policy and decision-making in the pursuit of SDGs. Rigorous
validation ensures that the data and insights provided are
trusted and respected. Nevertheless, these technologies also
face several challenges and limitations and some key issues
include:

5.1 Data quality and availability
a) Resolution and accuracy

High-resolution satellite data is often expensive and not
always available for all regions. Lower-resolution data might
not provide the detail needed for precise analysis. Limited
resolution can affect the accuracy of models used for
monitoring and managing resources, impacting decision-
making processes.
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b) Data gaps

Incomplete or inconsistent data coverage in some regions,
especially in developing countries or remote areas, can
hinder comprehensive analysis. Data gaps can lead to biased
or incomplete insights, affecting the effectiveness of
interventions and policy decisions.

5.2 Computational and technical constraints
a) Processing power

Al and ML models dealing with large-scale geospatial data
require substantial computational resources. This can be a
barrier for organizations with limited access to high-
performance computing. Inadequate processing power can
slow down data analysis and model development, delaying
critical insights and actions.

b) Algorithm complexity

Developing and fine-tuning complex algorithms for
geospatial data can be resource-intensive and requires
expertise in both Al and geospatial sciences. The complexity
of algorithms may limit their applicability and scalability,
especially in regions with fewer technical resources.

5.3 Integration and interoperability
a) Data integration

Combining data from different sources (e.g., satellite
imagery, ground-based observations, historical data) can be
challenging due to differences in formats, scales and
resolutions. Ineffective integration can result in incomplete
or inaccurate analyses, reducing the reliability of the insights
generated.

b) System interoperability

Different organizations and systems may use varying
standards and protocols for geospatial data, complicating
collaboration and data sharing. Lack of interoperability can
hinder the seamless exchange of information and
collaborative efforts, impacting the overall effectiveness of
projects.

5.4 Ethical and privacy concerns

a) Data privacy

Geospatial data can sometimes reveal sensitive information
about individuals or communities, raising privacy concerns.
Ensuring data privacy and adhering to ethical standards is

crucial to maintaining public trust and avoiding misuse of
information.

b) Bias and fairness

Al models can inherit biases present in training data, leading
to unfair or skewed outcomes. Biases in models can
perpetuate inequalities and affect the fairness of
interventions, especially in marginalized communities.

5.5 Cost and accessibility
a) High costs

The cost of acquiring high-quality satellite imagery and
maintaining advanced Al infrastructure can be prohibitive

for many organizations, particularly in developing countries.
High costs can limit access to essential data and tools,
affecting the ability to leverage geospatial Al for sustainable
development.

b) Limited access

Access to advanced geospatial Al tools and expertise can be
limited in certain regions, hindering their effective use.
Limited access can reduce the ability to implement and
benefit from Al-driven solutions, affecting overall
development outcomes.

5.6 Data interpretation and usability
a) Complexity of interpretation

Interpreting complex Al-generated insights requires
specialized knowledge and skills, which may not be readily
available in all regions. Difficulty in interpreting results can
limit the actionable value of the data and reduce the
effectiveness of decision-making processes.

b) Decision-making support

Al tools and models must be designed to provide clear,
actionable insights rather than overwhelming users with
complex data. Inadequate support for decision-making can
undermine the practical utility of Al solutions, impacting
their successful implementation.

5.7 Sustainability and long-term viability
a) Maintenance and updates

Al models and geospatial tools require regular maintenance
and updates to remain effective and accurate. Lack of
ongoing support and updates can lead to obsolescence,
reducing the long-term viability of Al solutions.

b) Scalability

Scaling Al solutions to cover larger areas or additional
applications can be technically challenging and resource-
intensive. Challenges in scaling can limit the widespread
adoption and impact of Al-driven geospatial tools.

While recent trends in data and advancements in AI/ML
approaches for geospatial Al offer significant potential for
advancing the Sustainable Development Goals, addressing
these challenges is crucial for realizing their full benefits.
Overcoming these limitations involves improving data
quality and availability, enhancing computational resources,
ensuring ethical standards and fostering collaboration and
accessibility. The stakeholders can better leverage geospatial
Al to address critical global challenges and support
sustainable development effectively.

6. FUTURE DIRECTIONS

The future of trends in recent data and Al/ML approaches for
geospatial Al in Earth observation is poised to significantly
enhance efforts toward achieving the Sustainable
Development Goals (SDGs). Here’s a look at some
promising future directions and trends in this field.
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6.1 Enhanced data integration and fusion
a) Multi-source data fusion

Integrating data from diverse sources, including satellites,
drones, ground sensors and crowdsourced data, will become
more sophisticated. Advanced fusion techniques will
combine these datasets to provide more comprehensive and
accurate insights. Improved integration will enhance the
accuracy and completeness of geospatial analyses,
supporting better decision-making and more effective
management of resources.

b) Real-time data processing

With advancements in streaming technologies and edge
computing, real-time processing of geospatial data will
become more feasible. This will allow for immediate
analysis and response to dynamic changes. Real-time data
will enable quicker responses to environmental changes,
disasters and other urgent situations, improving overall
resilience and adaptability.

6.2 Advances in Al and machine learning
techniques

a) Deep learning innovations

Continued advancements in deep learning, including the
development of more sophisticated neural networks and
algorithms, will enhance the ability to extract features, detect
anomalies and classify land cover from satellite imagery.
These innovations will lead to more precise and nuanced
analyses, improving the monitoring of environmental
changes, urban growth and resource management.

b) Explainable Al (XAl)

The development of explainable Al will make complex Al
models more transparent and interpretable. This is crucial for
understanding model predictions and gaining the trust of
stakeholders. Explainable Al will facilitate better decision-
making by providing clear insights into how predictions are
made, supporting more informed and accountable actions.

6.3 Improved accessibility and inclusivity
a) Democratization of tools

Efforts will focus on making geospatial Al tools and data
more accessible to a broader audience, including smaller
organizations and developing countries. This includes open-
source platforms and affordable data solutions. Increased
accessibility will enable a wider range of stakeholders to
utilize geospatial Al for sustainable development, fostering
inclusive and collaborative efforts.

b) Capacity building

Training and capacity-building programs will be expanded
to equip individuals and organizations with the skills needed
to effectively leverage geospatial Al. This includes
educational initiatives and technical support. Enhanced skills
and knowledge will empower more communities to apply
geospatial Al to local challenges, contributing to more
effective and sustainable development outcomes.

6.4 Integration with emerging technologies
a) Internet of Things (l1oT)

Integrating geospatial Al with 10T devices will enable
continuous monitoring and real-time data collection from
various sensors and devices embedded in the environment.
This integration will provide more granular and timely data,
enhancing monitoring capabilities and supporting proactive
management of resources and infrastructure.

b) Blockchain for data integrity

Blockchain technology will be explored to ensure data
integrity and security in geospatial data management.
Blockchain can provide a transparent and tamper-proof
record of data collection and processing. Improved data
security and transparency will enhance trust in geospatial
data, supporting more reliable and accountable decision-
making.

6.5 Focus on specific sustainable

development goals
a) Climate change mitigation and adaptation

Geospatial Al may play a crucial role in monitoring and
mitigating climate change impact, including tracking
greenhouse gas emissions, deforestation and land-use
changes. Enhanced modelling will predict climate impact
and support adaptation strategies. More accurate climate data
and predictive models will inform policies and actions to
mitigate and adapt to climate change, supporting SDG 13
(Climate Action).

b) Biodiversity and conservation

Al-driven approaches will improve the monitoring of
biodiversity, wildlife habitats and conservation efforts.
Enhanced species detection and habitat mapping will support
biodiversity conservation strategies. Improved biodiversity
monitoring will aid in the protection of ecosystems and
species, contributing to SDG 15 (Life on Land).

¢) Urban development and sustainability

Geospatial Al will assist in sustainable urban planning by
providing insights into land use, infrastructure development
and urban sprawl. Advanced analytics will support smart city
initiatives and sustainable urban growth. Better urban
planning and management will promote sustainable cities
and communities, aligning with SDG 11 (Sustainable Cities
and Communities).

6.6 Ethical and regulatory considerations
a) Ethical Al practices

There will be an increased focus on developing ethical
guidelines and standards for the use of Al in geospatial
applications. This includes addressing biases, ensuring
privacy and promoting transparency. Ethical practices will
ensure that Al applications are used responsibly, reducing
potential negative impacts and fostering trust among users
and stakeholders.
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b) Regulatory frameworks

The development of regulatory frameworks to govern the use
of geospatial data and Al technologies will become more
critical. These frameworks will address data privacy,
security and usage rights. Clear regulations will support the
responsible use of geospatial Al, ensuring compliance with
legal and ethical standards and protecting individuals’ rights.

The future of geospatial Al in Earth observation holds
tremendous potential for advancing the Sustainable
Development Goals (SDGs). With the emphasis on enhanced
data integration, advances in Al techniques, improved
accessibility, integration with emerging technologies and
ethical considerations, stakeholders can harness the power of
geospatial Al to address global challenges effectively.
Innovation and collaboration will be key to maximizing the
benefits and achieving sustainable development outcomes.

7. CONCLUSION

The integration of data, Artificial Intelligence (Al) and
Machine Learning (ML) approaches in geospatial Al for
Earth observation represents a significant leap toward
achieving the Sustainable Development Goals (SDGSs).
Recent trends indicate a growing sophistication in the use of
Al/ML techniques to analyse and interpret vast amounts of
geospatial data. These advancements are enabling more
precise and timely insights into environmental changes,
resource management and societal impacts, directly
contributing to sustainable development efforts. The key
theme for this work focuses on  “AI/ML
Approaches+Geospatial Al+ Earth Observation+Sustainable
Development Goals”. One notable trend is the increasing
accessibility and democratization of geospatial data, which
is being driven by open data initiatives and advancements in
cloud computing. This has empowered a broader range of
stakeholders, from governments to NGOs, to harness AI/ML
tools for environmental monitoring and decision-making.
Moreover, the development of more robust and scalable Al
models has enhanced the accuracy of predictions in critical
areas such as climate change, urbanization and disaster
management. However, challenges remain, including the
need for better data quality, integration of diverse data
sources and addressing ethical concerns related to Al usage.
As these technologies continue to evolve, fostering
interdisciplinary collaborations and ensuring the inclusion of
local knowledge and expertise will be crucial. The synergy
between AI/ML and geospatial data in Earth observation is
increasingly pivotal in driving progress toward the SDGs. By
leveraging these technological advancements, we can
enhance our ability to monitor, predict and respond to global
challenges, ultimately fostering a more sustainable and
resilient future.
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