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Abstract - Modeling network communication environments with Graph Neural Networks (GNNs) has gained notoriety in
recent years due to the capability of GNNs to generalize well for data defined over graphs. Hence, GNN models have been
used to abstract complex relationships from network environments, creating the so-called digital twins, with the objective
of predicting important quality of service metrics, such as delay, jitter, link utilization, and so on. However, most previous
work has used synthetic data obtained with simulations. The research question posed by the “ITU Graph Neural Networking
Challenge 2023 is whether GNN models are capable of estimating the mean per-flow delay network, using data from a real
network environment. The solution presented in this paper achieved first place in the mentioned challenge. It adopted a GNN
based on multiple-stage message passing and the attention mechanism to predict the mean per-flow delay. Furthermore,
feature selection was used to choose a reasonable subset of input parameters. The developed GNN model achieved a mean
absolute percentage error under 20.1% in the challenge test dataset, which was composed by network conditions not used in

the training dataset.
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1. INTRODUCTION

Given the rapid evolution of communication technologies
and the emergence of 5G and 6G networks, the demand
for continuous connectivity and efficient real time com-
munication has never been more significant. As the com-
plexity of networks continues to grow, optimizing them
becomes critical. In this sense, it highlights the impor-
tance of predicting users’ Quality-of-Service (QoS), such
as network delay, to reduce latency, ensure timely de-
livery of services, and provide more efficient communi-
cation and a consistent experience for users in the digi-
tal scenario. Whether enabling ultra-low latency for crit-
ical applications or supporting massive connectivity for
IoT devices, network optimization plays a central role in
meeting the diverse needs of today’s digital landscape.

Following this reasoning, Network Digital Twins (NDTs)
emerge as a promising approach to managing dynamic
network behavior through a virtual representation of the
physical network. This tool is valuable for analyzing, diag-
nosing, emulating, and controlling the physical network
in real time through data, models, and interfaces, facilitat-
ing an interactive mapping between the physical and the
digital twin model [1]. A DTN can also be used to handle
large amounts of network data, facilitate decision-making
and monitoring of the network in real time, conduct trou-
bleshooting, what-if analysis, and the strategic planning
of network updates [2, 3, 4].

Graph Neural Network (GNN) models are suitable for net-
work modeling as a virtual representation of the physi-
cal network due to their ability to process topological in-

formation and generalize over data graphs, overcoming
the limitations of conventional approaches [5, 6]. This
type of neural network is designed to work with graph-
structured data, and it can hold the structure informa-
tion embedded in a graph via a message-passing algo-
rithm among nodes and aggregate the node features at
various levels of the graph [7, 8]. With nodes, in the
telecommunications field, representing entities such as
devices, routers, or communication endpoints; and edges
(links) depicting the connections or interaction between
them, carrying crucial information regarding the band-
width and latency characteristics, forming the backbone
of the network’s topology.

The RouteNet-Fermi architecture, as proposed in [9] for
network modeling, extends its scope beyond nodes and
links, considering the activated flow of the network as an
input graph. This flow follows specific source-destination
paths generated from a given traffic model. The model
incorporates a modification in the message phase of the
Message-Passing Neural Network (MPNN), allowing iter-
ations over multiple stages and offering an effective ap-
proach to address complex structures within the network.
In this work, we took as a baseline a modified version
of the RouteNet-Fermi architecture provided by the chal-
lenge organizers.

Therefore, this paper presents the solution developed
within the scope of the ITU Graph Neural Networking
(GNNet) Challenge 2023, created by the Barcelona Neural
Networks Center (BNNC), which provided the competi-
tors with a dataset with characteristics extracted from a
real network communication. The presented solution fo-
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cuses on predicting the QoS metric mean per-flow delay
and incorporates feature selection processing combined
with the modified RouteNet-Fermi model to reduce the
complexity of the model and prevent it from learning ir-
relevant patterns. In addition, we apply z-score feature
normalization, which, unlike min-max normalization used
in the baseline, can deal with outliers more robustly. Fi-
nally, an attention mechanism is also implemented inside
the Multiple-Stage Message Passing (MSMP) architecture
to improve the model’s ability to focus on relevant infor-
mation during the learning process.

The remaining sections of this paper are organized as fol-
lows: Section 2 compares work that used GNN for net-
work modeling to our model developed for the GNNet
Challenge 2023. In Section 3, we present the network
topology used in this work. Section 4 discusses the base-
line, a modified version of the RouteNet-Fermi model. In
Section 5, we present our solution, exposing the steps
we followed so that our model reached a Mean Abso-
lute Percentage Error (MAPE) of 20.001% in the pre-
diction of mean per-flow delay, followed by Section 6,
which presents the results of the experiments, discussing
the performance improvements after each change in the
model, and Section 7 concludes the paper and discusses
future work.

2. RELATED WORK

Network modeling plays a crucial role in the field of com-
puter networks, being essential for the planning and op-
timization of these infrastructures. Although traditional
deep learning models have shown their usefulness in
complex scenarios such as non-linear traffic behavior and
high-dimensional problems, where their effectiveness is
limited by the lack of generalization when faced with dif-
ferent topologies [5]. GNNs emerge as a suitable alterna-
tive in this scenario due to their unique ability to gener-
alize to networks not seen during training. They dynam-
ically adapt to operational changes, overcoming conven-
tional limitations, and can be used to understand complex
relationships between topology, routing, and traffic [3].

Considering this, numerous studies have employed GNNs
to model network communication. Suzuki et al. [10], use
a Graph Convolutional Networks (GCNs) to propose a sim-
ple semi-supervised learning classifier. The model em-
ploys three stacked GCN layers, enabling the estimation
of communication delays between pairs of nodes. Jin et
al. [4], a GNN model was proposed to estimate the la-
tency between an origin-destination pair in a routing net-
work for a prediction task in a Software Define Network
(SDN), also using GCN principles. Almasan et al. [11] in-
tegrated GNN into a deep reinforcement learning agent to
solve routing optimization in optical networks. Similar to
our work, they used MPNN to capture meaningful infor-
mation about the relation between the links and the traf-
fic flowing through the network topologies. Happ et al. [6]
is close to our approach in the sense their authors, in the

scope of GNNet Challenge 2021, employ an architecture
based on the MSMP focusing on predicting the mean per-
flow delay in a network communication. But this work
differs from ours by using multiple scheduling policies to
deal with packets of different flows, using a topology net-
work of synthetic nature with a dataset generated by the
OMNeT++ [12] simulator.

Our work distinguishes itself from the others by explor-
ing the MSMP architecture with two stages in the mes-
sage passing process, which provide an effective way of
dealing with complex structures in the network, imple-
menting the attention mechanism algorithm inside the
MSMP update function. The attention mechanism, unlike
GCN, gives each node in the graph the ability to weigh its
neighbors’ relevance, not only considering the number of
neighbors but also their local structure. Our work stands
out by using the network topology based on a real-world
dataset! obtained from the BNNC testbed that comprises
eight hardware routers and two switches interconnecting
with the open source projects TRex [13] and DPDK [14];
for traffic generator and capture, respectively.

3. PROBLEM CONTEXT

The definitions of the problem considered in this work
were derived from the ITU GNNet Challenge 2023, where,
the main objective was to create a network digital twin
model capable of predicting accurately QoS performance
metrics. Moreover, the starting point for this was a base-
line constructed by the organizers with the RouteNet-
Fermi GNN model that uses as input different network
features from links and flows of a communication topol-
ogy, intended to generalize this data defined over graphs
and estimate the mean per-flow delay metric. Thereby, in
a simplified perspective, this problem could be summa-
rized by the pipeline in Fig. 1, where there is the GNN
model that should take the network input features to per-
form the necessary training processing, considering a su-
pervised learning approach, aimed to generate the pre-
dicted delay.
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Figure 1 - Systematic perspective of the delay estimation problem.

In addition, these network features shown in Fig. 1,
are part of a raw real network dataset with two traf-
fic types, called Constant-Bit Rate and Multi-Burst, and
with network topology organized as a 4-tuple graph I =
(V, &, r,s) which depicts a set of nodes V, with a range
of 5 up to 8 nodes, with each node comprising a network
router, organized pair-to-pair to compose a set of edges

Ihttps://bnn.upc.edu/challenge/gnnet2023/dataset/
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& CV x V, representing the network link between them.
Moreover, each node {u,v} € V and edge e € & have
intrinsically a feature vector r and s that defines, respec-
tively, the node and edges entity’s characteristics, namely
node and edges features.

The referred input features for the GNN model utilized
are obtained by transforming the homogeneous graph I
into undirected heterogeneous [15] 3-tuple graph G =
(V’, &, x) with an object function map 7 : V' — A, where
A is set of the node type, such that each node v belongs to
one particular type 7(v) € A. In the scope of this work,
there are two: flow and link node types. Furthermore,
since there are two node types, there exists a node fea-
turex = {X; V X, }, where, X; and x, are respectively flow
and link level features. In this sense, with two different
node features, these could assume different dimensions,
meaning in the end, that two different embedding types
should be used for each node feature. Therefore, in a di-
mensionality analysis, the node features x of a graph in
this work is given by a flow-level x; € R™ and link-level
x; € R™.

The process to obtain the graph G is conducted with a
transformation whose initial state is the network topol-
ogy I" already known, that is, the routers and the links that
define the communication between those; and the final
state is the graph considering the flows and links in each
communication between the routers. For example, the fi-
nal and the last state is shown graphically in Fig. 2, being
in (a) the initial state defined by network topology com-
posed of four routers, with three links (L1, L2, and L3)
and two flows (F'1, F'2). The final state in (b) considers
the two aforementioned types of nodes, and for each de-
pendency between a flow and a link, an edge is defined.
For instance, the flow F'2 depends on two links, 12, and
L3; for this reason there exist two edges that link node
F2 with the nodes L2 and L3.

(a) High-level relation between flows and links considering four routers.
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(b) Heterogeneous graph generated from flows and links in (a).

Figure 2 - Graph transformation considering the flows and links from a
network communication topology.

With this heterogeneous graph, given a node w, its neigh-

borhood V, is defined by the edge that links a node v to
anode u or vice versa, as described in

N, = {v[(u,v) € EV (v,u) € EF. (1)

In qualitative terms, there are plenty of features, more
than considered in the baseline, in the dataset offered by
the GNNet challenge organizers, to be used as input for
both flow and link features. Some of these features are
displayed in Table 1. In this table, the features are split
into three classes namely, network topology, routing con-
figuration, and traffic configuration. Moreover, each fea-
ture has a specific role depending on its type, which can
be flow, link, global, label, or topological. Finally, each fea-
ture has a unit for a better comprehension of its purpose.

Table 1 - Different types of features in the dataset.

Class ‘ Features ‘ Feature Role ‘ Unit
Nodes Topological
Network Topology Edges Topological -
Link capacity Link Gbits/s
Source Topological -
Routing Configuration Destination Topological -
Flow length Flow flow
Average bandwidth Flow Mbits/s
Constant bitrate Flow Mbits/s
Link load Link ratio
Maximum Link load Global ratio
Global delay Global s
Normalized link load Link ratio
Number of packets per burst Flow packets
Traffic Configuration Average packet size Flow bytes
Inter burst gap Flow s
Bitrate per burst Flow Mbits/s
Traffic type Flow string
Packet size 90 percentile Flow bits
Packet size 80 percentile Flow bits
Packet size 50 percentile Flow bits
Packet size 20 percentile Flow bits
Packet size 10 percentile Flow bits
Type of Service Flow bits
Inter packet gap mean Flow ns
Packets generated Flow packets/s
Inter packet gap variance Flow ns
Packet size variance Flow bits
Delay Label s

It is noteworthy that topological and global roles are dif-
ferent kinds of features; the former do not work as input
features for the GNN model, but are used to organize in-
formation about the source and destination of each packet
in the network communication, as well as, the path of
these packets; hence this type of feature could be defined
as metadata for each flow and link level features. The lat-
ter features could be used as input since these types of
features measure the general performance of the simula-
tion, i.e. the maximum link load feature considers the load
of all flows in the simulation and takes the maximum of it
to generate this metric. However, is necessary to mention
that an underlying preprocessing must be made for it, as
the dimension of global features is different from flow and
link level features. In other words, global features are just
a real number. An example of this preprocessing is the
feature that we have created called normalized link load.
This feature was obtained by dividing the load applied in
each link, referred to as link load, by the maximum link
load when generating the traffic matrix of the scenario.

Finally, the label role is associated with the learning ap-

©International Telecommunication Union, 2024 467



ITU Journal on Future and Evolving Technologies, Volume 5, Issue 4, December 2024

proach used in this work; in this case, the supervised
learning to predict the mean per-flow delay.

4. BASELINE

The starting point of this work is associated with the base-
line created in the scope of the GNNet Challenge 2023;
in this sense, a modified version of the RouteNet-Fermi
model. In the first place, the RouteNet-Fermi is an ar-
chitecture constructed having as a base the MPNN pro-
posed by [16]. In simple terms, the MPNN model was
a framework that assumed different architectures over
time during the development of GNN theory in the liter-
ature. Thereby, this state-of-the-art model is composed
of three major blocks: the first one is the embedding ini-
tialization phase, the second one is the message phase
and the last one is the readout phase. Each block could
be defined in different ways and with various works that
made it, as shown in [16]. However, the MPNN proposed
in this same work does not specify the embedding initial-
ization algorithm but defines that the message phase is
constructed with a Gated Recurrent Unit (GRU) layer as
proposed initially by [17] in a model called Gated Graph
Neural Networks. The readout function could be defined
by the same function used in [17] or a set2set model from
[18].

Taking the above into consideration, the embedding ini-
tialization function defined in the baseline is made with
a Multilayer Perceptron (MLP); this MLP considers as in-
put a matrix X € R™*™, where n is the number of nodes
and m the number of features per node of graph §. Fi-
nally, generating another matrix H € R™*¥ called feature
embedding; the rows of this matrix are also defined by
the number of nodes n in the graph, but the number of
columns is defined by a model hyperparameter, the em-
bedding length k. In the case of this baseline, m = 3 and
m = 2 were adopted for the input layer of flow h; and
link h; embeddings, respectively; where {f, 1} € N*. And
k = 64 for both embedding types. Pictorially, in Fig. 3 it
is possible to identify this embedding creation process in
a generalized form.

The message phase shares some similarities, but
RouteNet-Fermi implements a modification that makes
this phase iterate by a certain amount of time through
multiple stages. In this sense, the amount of stages
in the message phase is determined by the number
of embedding types, and for each one, there is a GRU
layer that must process this information and update
the embedding with the neighborhood information. As
mentioned previously, there are two embedding types,
namely flow and link embedding.

The readout phase is also different from the classical
MPNN, being used as the function of the MLP proposed
by [19]. The readout output is the occupancy rate O in
a given flow, which is used to predict the mean per-flow
delay 2 by dividing it by the link capacity C' that a flow

11 T2 ... Tim
11 T2 .- Tim
Xn,m = . . .
Tn1l Tn2 -+ Tpm
s
eccce Input Layer € R™
esee Hidden Layer € R¥
K
ccece Output Layer € R¥
NS
hl,l h1,2 ce th
h171 h],g - hr]_’k
Hn,k = . . . .
hn,l hn,Z ce h’n,k

Figure 3 - Embedding initialization scheme.

passes through. Hence, considering that a flow could pass
by N links, generating an occupancy rate for each one, the
delay predicted is given by

N Oj
D= Z (C) , (2)
7=0 J

Finally, the modified RouteNet-Fermi used in our context
can be represented by Fig. 4, which shows the embed-
dings h; and h; created by the MLP in the initialization
phase, using the features present in Table 2, designed by
their names and units; and these embeddings are being
processed during 7T iterations in message phase, to gen-
erate the occupancy at the end of the model closing the
loop.
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Figure 4 - Message-passing architecture with two stages.

Table 2 - Subset of features utilized as inputs in the baseline model.

Features | Unit
Link capacity Gbits/s
Average bandwidth | Mbits/s
Link Load ratio
Packets generated | packets/s
Constant bitrate Mbits/s

5. PROPOSED SOLUTION

The design of our proposed solution aimed at enhancing
the baseline solution defined by the challenge organizers.
In this sense, the understanding of our developed solu-
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tion ? pass throughout to detail the feature selection pro-
cess applied in each feature intends to define the best sub-
set of it and use this as the input for the MSMP with two
stages, define the feature normalization technique used
during the learning process of the neural model, the mod-
ifications applied in the MLP presents in the initialization
and readout phase of the MSMP, and finally, the attention
mechanism layer explored inside of update function of the
MSMP.

5.1 Feature selection

The role of Artificial Intelligence (AI) in communication
has become more relevant since it is being used in con-
gestion control [20], cybersecurity [21], 5th Generation
(5G) mobile networks [22], among others. However, sig-
nificant challenges arise when obtaining a large set of
data from diverse sources to feed Al models for a given
problem. The indiscriminate use of this extensive dataset
as input to a model can increase complexity and exces-
sive resource consumption, impacting scalability, practi-
cal feasibility, and increasing training time [23]. Further-
more, adopting data without prior filtering can expose the
model to noisy and redundant information, leading it to
learn irrelevant patterns from the training data that are
not representative of the real problem (overfitting), thus
compromising effectiveness, efficiency, and the capacity
of model generalization. Given this, to train an optimal
model, itis important to make sure that it uses only the es-
sential features. Feature selection, one of the most crucial
techniques in Machine Learning (ML) and data science,
automatically chooses relevant features for an ML model
based on the problem that must be solved. It is done by
including or excluding essential features without chang-
ing them, and it helps cut down the noise and reduce the
size of input data.

This feature characteristics selection has aroused con-
siderable interest among researchers due to the possi-
bility of its application in different fields. As a result,
several feature selection approaches have been proposed
over the years for supervised, unsupervised, and semi-
supervised problems [24]. For this work, we chose two
supervised techniques: filter-based and wrapper-based
approaches.

5.1.1 Filter-based approach

This technique is called "filter-based” because it uses the
selected metric to find irrelevant attributes and is filtered
out from the model. This approach was chosen for its sim-
plicity and to evaluate the features individually, since the
filter methods assess the relevance of each feature and
rank them according to their scores, reflecting their rela-
tionship with the target variable, the label in the dataset.
This model is faster than the wrapper approach, making

20ur solution is available at  https://github.com/
ITU-AI-ML-in-5G-Challenge/ITU-ML5G-PS-007-GNN-mOblus

it particularly suitable for situations with many features.
It results in a better generalization since it acts indepen-
dently of the learning algorithm [25].

For this approach, the Mutual Information (MI) algorithm
[26] was chosen. The MI between two random variables
is a non-negative value, which measures the dependency
of these variables. It is equal to zero if and only if two ran-
dom variables are independent, and higher values mean
higher dependency. For continuous random variables,
the mutual information is given by [27]:

Haiy) = [ [plo.y)tog (258) dedy. ()
z Jy

In Equation (3), p(z) is the probability density of the fea-
ture z, p(y) is the probability density of the mean per-flow
delay, represented by y, and p(z,y) is the joint density.
Therefore, the criterion I(x;y), in our context, measures
the dependence between the features and the mean per-
flow delay.

In numerical terms, to avoid dealing with integrals in
Equation (3), one possibility is to convert the continuous
random variables to discrete values using binning. In-
stead of doing that, in this work a method of entropy esti-
mation based on the distances of the k-nearest neighbors
[28,29] was used. This method locally estimates distribu-
tions through statistics of distances between data points,
providing a more refined view of the characteristics of the
continuous data set.

5.1.2 Wrapper-based approach

The wrapper method was used because filters may not
identify features that bring complementary information
from others. This approach includes assessing the impor-
tance of features using a specific machine learning model,
in our case, the linear regression, and often gives bet-
ter performance results than the filter method because
it takes into account the feature dependencies and di-
rectly incorporates bias in the learning algorithm [24].
For this approach, an exhaustive feature selection search
was used, which traverses the entire search space, evalu-
ates every possible set of features, compares their perfor-
mance, and chooses the best performing subset. This ap-
proach is computationally demanding, especially for large
datasets, yet it ensures the optimal feature subset [30].

The subset of features was evaluated based on the Mean
Square Error (MSE) metric, with the best performing sub-
set being the one with the features that best contribute to
the prediction of the mean per-flow delay.

5.1.3 Feature selection preprocessing

The network features utilized as input to the feature se-
lection models, was organized in a matrix inserted in the
R™*™ space, with n denoting the amount of flow and m
the number of features. This organization extends to the
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mean per-flow delay, which is our label. Before the appli-
cation of feature selection algorithms, aiming to reduce
the data volume, certain flow features from Table 1 were
discarded after the analysis and testing process. Further-
more, since the link-level features were fewer in number,
these types of features were not considered in the pro-
cess. Given that, some flow exhibited values on different
scales, the z-score normalization, presented in Subsection
5.2, was also applied to the data.

5.1.4 The chosen features

From the flow-level traffic in the dataset, all features ex-
cept for traffic type, since this is a non-numerical feature
and packet size variance, underwent the feature selection
process, as detailed in Table 3. This table considers that
these features are grouped into two classes, one class as-
sociated with traffic configuration features, and another
one regarding routing configuration features.

Table 3 - Subset of features to be analyzed by the feature selection al-
gorithms.

Features | Feature Role |  Unit
Flow length Flow flow
Average bandwidth Flow Mbits/s
Constant bitrate Flow Mbits/s
Number of packets per burst Flow packets
Average packet size Flow bytes
Inter burst gap Flow s
Bitrate per burst Flow Mbits/s
Type of Service Flow always O
Packet size 90 percentile Flow bits
Packet size 80 percentile Flow bits
Packet size 50 percentile Flow bits
Packet size 20 percentile Flow bits
Packet size 10 percentile Flow bits
Inter packet gap mean Flow ns
Packets generated Flow packets/s
Inter packet gap variance Flow ns

The subset of features that obtained the highest rank-
ings through the filter method closely matched the opti-
mal subset identified by the wrapper method, affirming
their suitability for our model. Table 4 presents the final
subset of flow-level features used as input to our model,
which was selected using feature selection techniques, or-
ganized in descending order from the highest contribu-
tion to the lowest, as generated by the filter algorithm.

Graphically, the feature selection pipeline is depicted in
Fig. 5, illustrating the matrix features and the sequential
application of z-score normalization to the dataset. Fol-
lowing normalization, the features underwent a feature
selection process utilizing both filter and wrapper-based
methods. The algorithms employed yielded comparable
results in identifying the most influential characteristics
of our model, with the wrapper method encompassing
features with the highest scores as determined by the MI

Table 4 - Subset of features obtained after the feature selection.

Features \ Feature Role \ Unit
Flow length Flow flow
Average bandwidth Flow bits/s
Inter packet gap variance Flow ns
Bitrate per burst Flow Mbits/s
Packet size 90 percentile Flow bits
Packets generated Flow packets/s
Constant bitrate Flow Mbits/s
Number of packets per burst Flow packets
Inter packet gap mean Flow ns
Inter burst gap Flow s
algorithm.
s HHH
R Features

Features (m) . r—7n

TL1 T12 - T1m : |
o Z-score ! Flow-level |
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Figure 5 - Steps that describe the feature selection process adopted.

5.2 Feature normalization

The next step of our proposed solution is to suit each in-
put feature in a common range, performing a different
normalization approach from the baseline. In this sense,
the z-score normalization was used in our solution in-
stead of the default feature normalization found in the
baseline model, that is min-max normalization. Usually,
the z-score approach can lead to a model more robust to
outliers’ values than min-max [31] considering the distri-
bution of each feature, since the normalization parame-
ters of a node feature x is defined by the mean p and the
standard deviation o of this array, instead their maximum
and minimum. Therefore given a sample z of this array,
the normalization value is defined by

T — u_ 4)

norm
g

5.3 SelU activation function

The use of Scaled Exponential Linear Unit (SeLU) repre-
sents an improvement in different layers for each MLP
in our solution’s initialization and readout phase. In this
sense, in optimization and challenge context, not neces-
sarily the use of Rectified Linear Unit (ReLU) represents
the best choice since different activation functions could
achieve better performance [32]. Moreover, once the ac-
tivation function, in the case of MLP, to be used is cho-
sen, it is necessary to take a step further and match this
ac-tivation function with the right weight initialization
algo-rithm. Thus, in the case of the baseline, this further
step was not taken, and by default, Keras uses the Glorot
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with uniform distribution as an initialization algorithm
[32]. Therefore, to suit the SeLU in each layer of MLP
present in the initialization and readout phase of the
MSMP, with the right algorithm, the LeCun algorithm with
normal dis-tribution was used.

5.4 Attention mechanism

Before the training process starts, the approach of giv-
ing importance to a feature instead of another is made
using feature selection techniques, as previously men-
tioned. In this sense, the basic premise relies on the fact
that features that do not contribute to increasing the per-
formance of the model are discarded. However, during
the training process, it is also interesting to perform a
kind of fine-tuning to identify again the importance of
selected features, but in this case, not eliminating them
definitively, but decreasing or increasing their relevance
from scores. In the literature, there are several ways to
compute these scores [33], with emphasis on the method
proposed by Vaswani et al. [34] called scaled dot-product
attention; but, in the graph-structured data, a widely used
manner to obtain it is Graph Attention Networks (GAT),
proposed by Veli¢kovié¢ et al. [35] as the first GNN ar-
chitecture to implement an attention mechanism applied
over graphs.

The GAT model was subsequently enhanced by Brody et
al. [36] that proposed using

exp(a’LeakyReLU(W/h,,||h,]))

w = "5~ exp(a’ LeakyReLU(W[h, ||h,]))
keN,

(5)

for computing attention scores, which was adopted in this
work. In Equation (5), «,,,, corresponds to the normalized
attention coefficient between nodes v and v; a is a learn-
able weight vector; and W is a learnable weight matrix.
The -7 and || are the matrix transpose and concatenation
operations, respectively.

The difference between the attention equation in [35] and
Equation (5) is the order in which each operation is ap-
plied. In the latter equation the multiplication by W oc-
curs after the concatenation between the node embed-
dings, h,, and h,,, whereas in the former this concatena-
tion is done after the multiplication of each embedding
node by the weight matrix. Besides, in Equation (5) the
vector a is not used as an argument in the LeakyReLU
function.

This attentional model and its variants are also models
that have a narrow relationship with the MPNN architec-
ture as shown by the authors in [37]. This relationship is
defined in terms of generality and interpretability [38],
in such that they express this association in terms that
MPNN represents a generalization of GAT models, where
the main difference is how the arguments of update func-
tion are defined in each model. In mathematical terms,
the GAT model is also defined as a subset of the MPNN
model [39].

Considering either the GNN model formal definitions
[37], this generality relationship becomes more evident
when compared to the arguments of update function ¢(-)
of both models, where it is possible to note additional
terms in the GAT model if compared to the MPNN. In this
sense, using

h, = ¢ (x &P ¢(xu,xv)) (6)

veEN,

and

hy =@ (Xu, D a(Xu,XU)l/)(XU)) 7 (7)

veEN,

itis possible to depict that the additional term, is the pres-
ence of the attention mechanism a in the GAT architecture
inside the aggregation function 9. Hence, considering
this proposed generalization, it is utterly understandable
to leverage these attention mechanisms by applying it in-
side of the update function present in the MPNN model
that scales the output from message function ¢(-). There-
fore, the idea of the use the attention relied exactly on the
concept of exploring the attention layer simultaneously
with the MSMP structure present in the baseline.

6. EXPERIMENTS

In the scope of this work, three experiments were
conducted besides the baseline, considering different
architecture modifications in the MSMP compared to the
baseline, dif-ferent model hyperparameters, distinct
training param-eters, and the number of input features
for each experi-ment. Regarding these architectural
changes, the first ex-periment was proposed to decrease
the MAPE by using a different activation function in the
MLP of the initializa-tion and readout phase. Therefore,
except for the output layer of the readout phase, all
activation functions of all other MLP layers were
replaced by the SeLU activation function. The second
experiment organization ignored  the SeLU
modifications and maintained the ReLU as ac-tivation
functions equal to the baseline, but promoted a
modification in the message phase of MSMP using the at-
tention mechanism. Finally, the last experiments repre-
sented the final solution whose model architecture com-
bines the SeLU modifications of the first experiment with
the attention mechanism proposed in the previous one.

Moreover, when comparing the results obtained from
each modification with the baseline model, the metric
MAPE was used for the Loss Function (LF), whose defi-
nition is expressed by

100%
MAPE =

Ui — Y
Yi

(8)
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6.1 Hyperparameters

On hyperparameters of MSMP for each experiment, such
as the embedding length for each type and the number of
iterations, Table 5 summarizes the values for each one.

Table 5 - MSMP hyperparameters for each experiment.

Experiment | Tterations | Flow Emb. Length  Link Emb. Length
Baseline 8 64 64
MSMP + SeLU 8 64 64
MSMP + Attention 12 16 16
Final Solution 12 16 16

Forthe training parameters, there are two distinctions be-
tween the experiments, in this case, the number of epochs
and the normalization approach adopted in the training
process. Each experiment used the adamW as an opti-
mizer, Early Stoppings and Reduce on Plateau algorithms
with the same parameters. Thus, Table 6 summarizes
these distinct parameters for each experiment.

Table 6 - Training hyperparameters for each experiment.

Experiment | Epochs | Normalization Approach
Baseline 100 min-max
MSMP + SeLU 150 min-max
MSMP + attention 150 min-max
Final Solution 150 z-score

Finally, regarding the input features, we considered the
output of the feature selection applied in the flow-level
feature type, presented in Table 4 and the traffic type;
along with link-level features presented in Table 1. There-
fore, the input features for each experiment are given by
Table 7.

Table 7 - Subset of features used as input for each experiment.

Features | Feature Role |  Unit
Link capacity Link Gbits/s
Flow length Flow flow
Average bandwidth Flow Mbits/s
Inter packet gap variance Flow ns
Link load Link ratio
Normalized link load Link ratio
Average packet size Flow bytes
Bitrate per burst Flow Mbits/s
Packet size 90 percentile Flow bits
Packets generated Flow packets/s
Constant bitrate Flow Mbits/s
Traffic type Flow String
Number of packets per burst Flow packets
Inter packet gap mean Flow ns
Inter burst gap Flow s
6.2 Results

The first result is related to the experiment with the base-
line model. This model achieved the LF MAPE in the last
epoch equal to 41.423% in the testing dataset. In simi-
lar terms, the second experiment showed that the impact
of combining a greater subset of selected features, with
the SeLU improvements in the MLP of initialization and

readout phase, is substantial to conducting better results
with an LF MAPE of about 26.360%. A reduction, in rela-
tive terms of 36.363% in comparison to the baseline. By
these results, it seems like a good approach to combine a
selected and greater subset of features along a better ac-
tivation function in the MLP used in both MSMP phases.

The third experiment aimed to improve the baseline us-
ing the same subset as used in the previous experiment
but changing the model’s hyperparameters and, instead
of modifying two modules of MSMP, a modification was
proposed only in the message phase using the attention
mechanism layer of Equation (5). This configuration led
to an LF MAPE equal to 24.021%, and a reduction of
42.010%. This experiment shows that the suit MSMP hy-
perparameters and the use of attention mechanism, as-
signing different degrees of importance to each feature,
are enough to overcome the improvements generated by
the SeLU in the aforementioned MLPs.

Finally, the last experiments aimed to explore the results
of both improvements created by the previous experi-
ments in a combination that merges the attention mech-
anism in the message phase and the use of the SeLU acti-
vation functions and using a different normalization fea-
ture approach, in this case, the z-score. And, indeed,
this combination generated a final result that achieved
an LF MAPE of about 20.001%, and with a reduction of
51.715%.

Taking into account these four experiments, the model be-
haviors throughout the training and validation process, in
terms of MAPE per epoch, are summarized in Fig. 6. In ad-
dition, in terms of predicted delay in the test dataset, Fig.
7 shows a relationship based on delays predicted in each
experiment by the known ground truth. In this sense,
each plot shows a heatmap, where how much more dis-
tant, a point is from the red line, the lighter their color will
be. Consequently, the ideal result, MAPE equal to 0 %, is
all scatter points concentrated on the identity red line.

7. CONCLUSIONS AND FUTURE WORK

In this paper, we show an approach that uses GNN based
on MSMP modules that operate in a real network dataset
to estimate the mean per-flow delay in a given network
communication modeled as a graph. It was used as a
baseline modified RouteNet-Fermi proposed by the GN-
Net Challenge 2023 organizers. In this sense, to improve
this baseline model, making the MAPE decrease, three ex-
periments with modifications in all modules of the MSMP
were proposed. Therefore, in comparison with the base-
line, the experiment that demonstrated a better perfor-
mance utilized the z-score approach as the feature nor-
malization, an attention mechanism layer in the message
phase of the MSMP, and the SeLU activation function in
specific MLP layers in the initialization and readout phase.
With this architecture, we were able to achieve a MAPE
of about 20.001%, in the test dataset, for predicting the
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mean per-flow delay.

Regarding future work, it is possible to expand estimating
the mean per-flow delay by proposing different architec-
tures for MSMP. The modularity of this model allows the
use of different deep-learning architectures, to increase
the performance of the model. Furthermore, it is also
interesting to extend this work for the estimation of
different QoS parameters, such as jitter and packet loss.
In this sense, this type of estimation is already done
considering synthetic datasets, also making use of the
RouteNet-Fermi model, but in the literature, there is a
lack of conclusions in terms of scalability and
generality of a GNN model taking into account real

network communication environments considering
these other metrics.
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