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Abstract – New capabilities in wireless network security have been enabled by deep learning that leverages and exploits
signal patterns and characteristics in Radio Frequency (RF) data captured by radio receivers to identify and authenticate
radio transmitters. Open‑set detection is an area of deep learning that aims to identify RF data samples captured from new
devices during deployment (aka inference) thatwere not part of the training set; i.e. devices thatwere unseen during training.
Past work in open‑set detection has mostly been applied to independent and identically distributed data such as images. In
contrast, RF signal data present a unique set of challenges as the data forms a time series with non‑linear time dependencies
among the samples. In this paper, we introduce a novel open‑set detection approach for RF data‑driven device identiϔication
that extracts its neural network features frompatterns of the hidden state valueswithin a Convolutional Neural Network Long
Short‑Term Memory (CNN+LSTM) model. Experimental results obtained using real datasets collected from 15 IoT devices,
each enabled with LoRa, wireless‑Wi‑Fi, and wired‑Wi‑Fi communication protocols, show that our new approach greatly
improves the area under the precision‑recall curve, and hence, can be used successfully to monitor and control unauthorized
network access of wireless devices.
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1. INTRODUCTION
The proliferation of Internet Of Things (IoT) devices in 
sensitive environments, such as military bases, govern‑ 
ment buildings, and private businesses, creates a need for 
detecting anomalous devices that pose security threats. 
These devices can easily bypass security measures as they 
can be concealed. Traditional detection methods are inef‑ 
fective at identifying unauthorized wireless devices, espe‑ 
cially with attacks like cloning and man‑in‑the‑middle [1].

1.1 Deep learning‑based RF Fingerprinting
RF ϐingerprinting is a recognized key method to enhance 
security in IoT networks [2, 3, 4]. It extracts device‑ 
speciϐic features from RF signals to identify wireless 
transmitters, leveraging unique hardware imperfections 
during transmitter manufacturing. Feature extraction 
methods range from hand‑crafted to deep learning‑based 
approaches that identify features from raw RF signals. 
This paper proposes HiNoVa, a new machine learning‑ 
based open‑set detection method that identiϐies unautho‑ 
rized (also referred to as unknown or unseen) IoT de‑ 
vices and authorized (also referred to as known or seen) 
devices. HiNoVa is tested on datasets collected from de‑ 
vices using LoRa and Wi‑Fi protocols [5]. LoRa is a wire‑ 
less communication technology designed for IoT devices 
that operates in the sub‑gigahertz frequency range, en‑ 
abling long‑range, low‑power, bidirectional communica‑ 
tion. LoRa’s advantages include longer range, better pen‑

etration through obstacles, and low power consumption, 
making it suitable for IoT applications that require a wide 
area network coverage. However, LoRa has lower data 
rates than Wi‑Fi, making it unsuitable for high‑speed data 
transfer applications. The crowded sub‑gigahertz fre‑ 
quency range can also lead to interference from other de‑ 
vices. Each of the protocols, LoRa and Wi‑Fi, has its prac‑ 
tical use and is commonly adopted by various transmit‑ 
ters, and hence, our proposed open‑set detection method 
is tested using both protocols.

1.2 Open‑set detection
Supervised machine learning algorithms are increasingly 
being used to perform RF ϐingerprinting [6]. However, 
these algorithms typically operate under closed‑set recog‑ 
nition, meaning that they assume the classes encountered 
during testing are identical to those seen during training. 
This means that if a Neural Network (NN) is trained to 
identify the two classes of cats and dogs, it fails to rec‑ 
ognize an unknown type of animal, such as a bird, as a 
distinct animal and will instead misclassify it as either a 
cat or a dog. This limitation is particularly problematic in 
real‑world scenarios where device ϐingerprinting is used 
for security purposes such as network access authentica‑ 
tion. In this authentication use case, the classes corre‑ 
spond to known or legitimate devices and it is crucial for 
the system to accurately detect unknown or illegitimate 
devices (i.e. the open‑set devices) to raise security alerts.
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For these types of problems, open‑set detection [7] can
be used, where the classiϐier needs to recognize that data
samples do not belong to any of the known devices seen
during training, and raises an alert when this happens.
Our work introduces HiNoVa, a novel open‑set detection
approach for authenticatingwireless devices usingRF ϐin‑
gerprinting.

1.3 Contributions
We present HiNoVa, a novel open‑set detection method
for wireless communication protocols. HiNoVa leverages
the Hidden Node Values within a trained Long‑Short‑
Term Memory (LSTM) unit of a deep NN to generate a
unique device ϐingerprint for each known device. Then,
new ϐingerprints encountered during deployment can be
compared against the ϐingerprints of known devices, en‑
abling the system to accurately identify unknowndevices.
After undergoing training on a set of known devices, the
open‑set detection process is highly efϐicient and can be
performed in real time even on consumer‑grade devices.
This makes HiNoVa an ideal solution for wireless security
applications, where the ability to quickly identify unau‑
thorized/unknown devices is of utmost importance.

The paper is structured as follows: Section 3 presents the
machine learning architecture used by our method. Sec‑
tion 4 presents the details of the HiNoVa algorithm. Sec‑
tion 5 describes the LoRa, wireless‑Wi‑Fi, and wired‑Wi‑
Fi datasets used in our evaluation and Section 6 evaluates
the performance of HiNoVa using these datasets. The last
section concludes the paper. For ease of reference, Table 1
contains a list of acronyms used in this publication, along
with their meanings.
Table 1 – Acronyms that are used in this publication, along with their
meanings.

Acronym Meaning
AUPRC Area Under the Precision‑Recall Curve
CNN Convolutional Neural Network
CSS Chirp Spread Spectrum
DTW Dynamic TimeWarping
I.I.D. Independently and Identically Dis‑

tributed
IoT Internet of Things
IQ In‑phase and Quadrature
LSTM Long Short‑Term Memory
NN Neural Network
ReLU Rectiϐied Linear Unit
RF Radio Frequency
RNN Recurrent Neural Network
USRP Universal Software Radio Peripheral

2. RELATEDWORK
Open‑set detection is an area ofmachine learning that has
attracted considerable attention and the literature is vast.

Wewill refer the reader to a survey such as [8] and in this
section, wewill only highlight themost closely related ap‑
proaches.

One of the simplest approaches to open‑set detection is to
use the predicted class probability as an indicator of the
model’s conϐidence that the data instance belongs to one
of the known devices [9]. In an NN, the predicted class
probability is the maximum class probability output by a
softmax distribution. If this value is low, it indicates that
the instance is likely from an unknown device.

Recentwork [10, 11] shows that themaximum logit score
(which we refer to asMaxLogit) is a stronger baseline for
detecting open‑set instances. Logits are the outputs of the
last linear layer of a deep neural network. In classiϐica‑
tion, these logits are the inputs to the softmax layer, which
normalizes the logits to be a valid probability. Normaliz‑
ing the logits removes information about their raw mag‑
nitude, which is valuable for detecting open‑set instances
[10]. The MaxLogit score is the value of the largest logit,
which is indicative of the uncertainty of the classiϐier as
to the device; an open‑set instance should have a lower
maximum logit value.

Recent approaches to open‑set detection focus on lever‑
aging internal node values and activation patterns of neu‑
rons inside neural networks to detect open‑set samples.
For example, ReAct [12] analyzes the internal activations
of neural networks and identiϐies highly distinctive signa‑
ture patterns for open‑set distributions. Dietterich et al.
[11] argue that detecting novel objects in object recogni‑
tion applicationswith an open set of possible categories is
a familiarity‑based problem rather than a novelty‑based
problem. Their familiarity hypothesis posits that state‑
of‑the‑artmethods based on the computed logits of visual
object classiϐiers succeed by detecting the absence of fa‑
miliar learned features rather than the presence of nov‑
elty.

Much of the literature for open‑set detection applies to
data instances that are independent and identically dis‑
tributed (i.i.d). To our knowledge the only work for
open‑set detection on time series is by Akar et al. [13],
which clusters the time series in each known class to
identify a class‑speciϐic barycenter. Then, during deploy‑
ment, new time series are identiϐied by how close they
are to these barycenters, where the closeness is deter‑
mined by Dynamic Time Warping (DTW) and also by
cross‑correlation. Time series that are not close to the
barycenters of known devices are ϐlagged as an unknown
device. DTW has a complexity of 𝑂(𝑇 2), where 𝑇 is the
length of the two time series to be aligned. The algorithm
by Akar et al. uses DTW in the inner loop of several oper‑
ations and is extremely computationally expensive.

A handful of papers have applied open‑set detection to
RF ϐingerprinting. Gritsenko et al. [14] use the maxi‑
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mum probability from the softmax layer and the ratio of
slices predicted to belong to each device to establish the
conϐidence in the device prediction. Hanna et al. [15]
investigate a variety of methods such as the maximum
softmax probability and methods that incorporate data
from known unauthorized devices. Gaskin et al. [16, 17]
propose Tweak, a lightweight calibration approach that
leverages metric learning to achieve high open‑set ac‑
curacy without the need for model retraining, making it
more suitable for resource‑constrained applications. In a
recent work, Karunaratne et al. [18] use generative deep
learning models to produce synthetic data from unautho‑
rized devices, which are used to augment the training set.
Our approach differs from these approaches by model‑
ing the sequential nature of the time series data with a
CNN+LSTM and leveraging these sequential relationships
for open‑set detection.

Another closely related area to open‑set detection is
anomaly detection [19]. In anomaly detection, the goal is
to identify individual outliers that are rarewith respect to
the nominal (i.e. “normal”) data instances. Anomaly de‑
tection has some subtle differences with open‑set detec‑
tion. First, in open‑set detection, data instances from the
unknown class come froma semantically coherent group‑
ing that is different from the known classes. In contrast,
the anomalies found by anomaly detection need not form
a coherent grouping. Second, the anomalies in a typi‑
cal anomaly detection setting make up a small fraction of
the data, with the nominal instances forming a large pro‑
portion of the data. In open‑set detection, the unknown
classes can potentially contain a large number of data in‑
stances. Despite these subtleties, anomaly detection tech‑
niques can, in some cases, be applied to open‑set detec‑
tion and vice versa; however, open‑set detectionmethods
have been found to outperform anomaly detection meth‑
ods for detecting unknown devices [20].

3. THE CNN‑LSTM NEURAL NETWORK AR‑
CHITECTURE

Indeep learning, aRecurrentNeuralNetwork (RNN) layer
is a layer type that allows for the processing of sequential
data such as a time series by maintaining a memory state
that can store information about the recent past. It con‑
sists of a single time step of the RNN, which involves com‑
puting a hidden state vector ℎ𝑡 and an output vector 𝑦𝑡 at
each time step 𝑡. The vector ℎ𝑡 depends not only on the
input vector 𝑥𝑡 at time step 𝑡, but also on the hidden state
vector ℎ𝑡−1 at the previous time step. This dependence
allows the network to maintain a memory of past inputs
and use this information to inform its current output.

One limitation of this RNN layer is that it can have difϐi‑
culty remembering long‑term dependencies in the input
sequence. To overcome this difϐiculty, the Long Short‑
Term Memory (LSTM) [21] layer was developed to han‑
dle long‑term dependencies in the input sequence more

3.1 Long‑Short‑Term Memory (LSTM) layer
The LSTM layer consists of the following equations, where 
⊙ represents an element‑wise product:

𝑖𝑡 = 𝜎(𝑊𝑖𝑖𝑥𝑡 + 𝑏𝑖𝑖 + 𝑊ℎ𝑖ℎ𝑡−1 + 𝑏ℎ𝑖) (1)
𝑓𝑡 = 𝜎(𝑊𝑖𝑓𝑥𝑡 + 𝑏𝑖𝑓 + 𝑊ℎ𝑓ℎ𝑡−1 + 𝑏ℎ𝑓) (2)
𝑔𝑡 = tanh(𝑊𝑖𝑔𝑥𝑡 + 𝑏𝑖𝑔 + 𝑊ℎ𝑔ℎ𝑡−1 + 𝑏ℎ𝑔) (3)
𝑜𝑡 = 𝜎(𝑊𝑖𝑜𝑥𝑡 + 𝑏𝑖𝑜 + 𝑊ℎ𝑜ℎ𝑡−1 + 𝑏ℎ𝑜) (4)
𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝑔𝑡 (5)
ℎ𝑡 = 𝑜𝑡 ⊙ tanh(𝑐𝑡) (6)

Each term in the LSTM equations is described below:

• 𝑥𝑡: The input vector at time 𝑡.
• ℎ𝑡−1: The previous hidden state vector.

• 𝑖𝑡, 𝑓𝑡, 𝑔𝑡, 𝑜𝑡: The input gate, forget gate, cell gate, and
output gate activation vectors, respectively.

• 𝑐𝑡: The memory cell content vector, containing old
memory cell content and newly added cell content.

• 𝑊𝑖𝑖, 𝑊𝑖𝑓 , 𝑊𝑖𝑔, 𝑊𝑖𝑜: The weight matrices for input
gates, forget gates, cell gates, and output gates for the
input vector.

• 𝑊ℎ𝑖, 𝑊ℎ𝑓 , 𝑊ℎ𝑔, 𝑊ℎ𝑜: The weight matrices for the in‑
put gates, forget gates, cell gates, and output gates for
the previous hidden state.

• 𝑏𝑖𝑖, 𝑏𝑖𝑓 , 𝑏𝑖𝑔, 𝑏𝑖𝑜: The bias vectors for the input gates,
forget gates, cell gates, and output gates for the input
vector.

• 𝑏ℎ𝑖, 𝑏ℎ𝑓 , 𝑏ℎ𝑔, 𝑏ℎ𝑜: The bias vectors for the input gates,
forget gates, cell gates, and output gates for the pre‑
vious hidden state.

• ℎ𝑡: The hidden state at time 𝑡.

The LSTM network has a cell state that can store informa‑ 
tion for long periods of time, and three gates that control 
the ϐlow of information: the input gate, forget gate, and 
output gate. The input gate controls the input to the cell 
state, the forget gate controls how much of the previous 
cell state is retained, and the output gate controls the out‑ 
put from the cell state.

At each time step, the LSTM network takes an input 𝑥𝑡, 
the previous hidden state ℎ𝑡−1 and the previous cell state
𝑐𝑡−1, and uses these to compute the input gate 𝑖𝑡, forget 
gate 𝑓𝑡, cell gate 𝑔𝑡, and output gate 𝑜𝑡.

The cell state 𝑐𝑡 (Eqn (5)) is updated based on the input 
gate 𝑖𝑡, forget gate 𝑓𝑡, and cell gate 𝑔𝑡. The input gate (Eqn 
(1)) controls how much new information is added to the

effectively.
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Fig. 1 – An overview of the HiNoVa framework.

cell state and the forget gate (Eqn (2)) controls howmuch
old information is retained. The cell gate (Eqn (3)) con‑
trols what new information is added to the cell state, by
applying an activation function (e.g. 𝑡𝑎𝑛ℎ) to the input
and previous hidden state.

Finally, the output gate 𝑜𝑡 (Eqn (4)) controls how much
of the current cell state is output as the new hidden state
ℎ𝑡. The new hidden state (Eqn (6))is computed by apply‑
ing the 𝑡𝑎𝑛ℎ function to the updated cell state 𝑐𝑡 and then
multiplying it by the output gate 𝑜𝑡. The hidden state now
contains both short and long‑term memory, making it an
excellent choice for an informative latent description.

3.2 Convolutional Neural Network LSTMs

Convolutional Neural Networks (CNNs) have been suc‑
cessful at image recognition because of their locality bias,
which assumes that nearby pixels are useful in identify‑
ing an object. The key component of a CNN responsible
for this locality bias is the convolutional layer, which con‑
volves a set of ϐilters to the input data in order to extract
local features. The ϐilters are typically small in size and
slide over the input data in a sequential, linear fashion.
This results in a feature map that highlights patterns in
the input data and these patterns have the property of
translational invariance (i.e. moving a cat a few pixels
over still makes the cat present in the image).

A CNN can also be combinedwith an LSTM layer by piping
the output of the convolutional layer into the LSTM. We
call this hybrid a CNN+LSTM, which is well suited for dis‑
covering patterns in RF transmissions, which have cyclic
patterns over time that are predictive of the device.

4. METHODOLOGY

Fig. 1 provides an overview of the entire HiNoVa algo‑
rithm and illustrates how each component interacts with
the others. The top half shows how the training data is
processed and the bottom half represents the detection
phase operating on test data.

Fig. 2 – An overview of the preprocessing pipeline.

4.1 Preprocessing
The data captured from IoT devices during testing is ini‑ 
tially processed and stored in the In‑phase and Quadra‑ 
ture (IQ) format. The IQ components of an RF signal are 
crucial in accurately reproducing the original signal and 
are represented as complex numbers, with the real and 
imaginary values represented by I and Q, respectively. 
During testing, each IoT device sends a 20‑second mes‑ 
sage, which is captured by a USRP receiver and saved in a 
complex number format.

To preprocess the data for analysis, the complex numbers 
are converted back into their I and Q parts and then seg‑ 
mented into non‑overlapping time windows of 2048 sam‑ 
ples which we call a slice. A signal correlation function is 
then run on each of the 2048 I and Q samples, each cor‑ 
related with itself (I to I and Q to Q) to produce the auto‑ 
correlation at lags 0 to 2047. The resulting (2×4096) ma‑ 
trix emphasizes cyclostationary features, which are a key 
part of RF ϐingerprinting. This new slice contains a mir‑ 
ror image as a result of auto‑correlation, so the ϐirst half 
(2×2048) is used as the modiϐied feature set (i.e. slice) for 
training. Fig. 2 illustrates the preprocessing pipeline. In 
Section 6.4, we show that this preprocessing step to pro‑ 
duce an auto‑correlated representation of the data results 
in a substantially more effective detector than the raw IQ 
signal. On a current state‑of‑the‑art laptop, converting a 
one second window of IQ data to this auto‑correlated rep‑ 
resentation takes less than 70 milliseconds. This fast pre‑ 
processing makes it viable to deploy a trained HiNoVa de‑ 
tector in a time‑critical setting.

4.2 Training
The architecture for the CNN+LSTM is shown in Table 2. 
We train the model with the ADAM optimizer [22] at a 
ϐixed learning rate (0.0001) with a cross‑entropy loss 
function. We will discuss hyperparameter tuning in Sec‑ 
tion 6.1.

4.3 Detection
During the detection phase, the IQ data is preprocessed in 
the same way as in training. Each slice is passed through 
the trained CNN+LSTM and the ϐinal transition in the 
LSTM layer is extracted. The ϐinal transition was deter‑
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Table 2 – HiNoVa’s CNN+LSTM architecture. Notation: Convolu‑
tional2D(channels in:channels out, kernel dims), BatchNorm2D(num fea‑
tures), MaxPool2D(pool dims), ReLU is a Rectiϐied Linear Unit.

Input
↓

Convolutional2D (1:16, 2x256)
BatchNorm2D(16)

ReLU
Dropout(10%)

Convolutional2D (16:16, 2x256)
BatchNorm2D(16)

ReLU
Convolutional2D (16:32, 2x256)

BatchNorm2D(32)
ReLU

Dropout(10%)
Convolutional2D (32:32, 2x256)

BatchNorm2D(32)
ReLU

MaxPool2D(2x2)
LSTM(64)

Fully Connected Layer
LogSoftmax Layer

↓
Known or Unknown Device

mined to be the most suitable for analysis due to the fact 
that at this point, the LSTM has processed all prior infor‑ 
mation within the slice. As a result, the internal nodes of 
the LSTM, speciϐically the forget gate and cell state, now 
contain both the long‑term and short‑term memory asso‑ 
ciated with the entire slice. This encoding effectively rep‑ 
resents the transmission of the device during this speciϐic 
time slice and is used to create a unique ϐingerprint.

4.4 Hidden state value ϐingerprinting
Algorithm 1 shows how HiNoVa uses the hidden state 
values within a trained CNN+LSTM to produce a unique 
ϐingerprint for each device in the training set. The ϐirst 
step involves aggregating, for each known device, the 
hidden node values from all the correctly classiϐied slices 
during training. Then, for each known device, a histogram 
with 𝐵 bins is built that describes the distribution of the 
hidden state values (i.e. ℎ𝑡 in Eqn (6)) for each hidden 
layer node in the LSTM. With 𝑀 hidden state nodes, this 
histogram will be a (𝑀 × 𝐵)  matrix, which serves as the 
unique ϐin‑ gerprint for that device. Examples of these 
ϐingerprints are shown in Fig. 3.

(a) Device 5 ϐingerprint

(b) Device 6 ϐingerprint

Fig. 3 – Two unique ϐingerprints using HiNoVa under the wireless‑Wi‑Fi
dataset (described in Section 5).

Algorithm 1 The Fingerprint Generation Algorithm
Require: 𝐻 ▷ Hidden node values from correctly

classiϐied training slices
1: 𝐹𝑃 ← 𝑧𝑒𝑟𝑜𝑒𝑠(Kknown × M × B)
2: for 𝑘 ← 0 to (𝐾𝑘𝑛𝑜𝑤𝑛 − 1) do ▷Over known devices
3: for 𝑚 ← 0 to (𝑀 − 1) do ▷ Over hidden nodes
4: 𝐻𝑘,𝑚 ← 𝐻[𝑘, 𝑚]
5: FP[𝑘, 𝑚, ∶] ← Histogram(𝐻𝑘,𝑚,B)
6: end for
7: end for
8: return FP

1. 𝐾𝑘𝑛𝑜𝑤𝑛: the number of closed‑set devices

2. 𝑀 : the number of hidden nodes

3. 𝐵: the number of bins in the histogram

4. 𝐻𝑖𝑠𝑡𝑜𝑔𝑟𝑎𝑚(𝑉 𝑎𝑙𝑢𝑒𝑠, 𝐵): Creates a histogram for
𝑉 𝑎𝑙𝑢𝑒𝑠 with 𝐵 bins
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4.5 Open‑set ϐingerprint correlation
A number of different approaches can be used to com‑
pare test set device ϐingerprints to the ϐingerprints of
the known devices. For instance, we could compute the
probability of a test slice belonging to the histogram for
that device, since the histogram is a valid probability dis‑
tribution. We experimented with different approaches
and found that correlations produced the best results.
The most common approach for measuring correlation is
Pearson’s correlation coefϐicient, which makes a strong
assumption that the relationship between two variables
is linear. To avoid this strict assumption, we investigated
Kendall’s 𝜏 [23], which is a non‑parametric measure of
correlation that quantiϐies the rank‑order association be‑
tween two variables.

To compute Kendall’s 𝜏 , let 𝑓𝑝𝑖 = (𝑓𝑝1
𝑖 , … , 𝑓𝑝𝑀∗𝐵

𝑖 ) be
the 𝑀 ∗ 𝐵 features (i.e. matrix values) for the ϐinger‑
print for the 𝑖th known device. Furthermore, let 𝑓𝑝𝑗 =
(𝑓𝑝1

𝑗 , … , 𝑓𝑝𝑀∗𝐵
𝑗 ) be the 𝑀 ∗ 𝐵 matrix values for the ϐin‑

gerprint of the 𝑗th device seen in the test set. Kendall’s
𝜏 measures the rank correlation in terms of the ranks
of the magnitudes of the features (𝑓𝑝1

𝑖 , … , 𝑓𝑝𝑀∗𝐵
𝑖 ) and

(𝑓𝑝1
𝑗 , … , 𝑓𝑝𝑀∗𝐵

𝑗 ). Speciϐically, two feature indices 𝑖1 and
𝑖2 are said to be concordant if 𝑓𝑝𝑖1

𝑖 > 𝑓𝑝𝑖2
𝑖 and 𝑓𝑝𝑖1

𝑗 > 𝑓𝑝𝑖2
𝑗

(or equivalently if 𝑓𝑝𝑖1
𝑖 < 𝑓𝑝𝑖2

𝑖 and 𝑓𝑝𝑖1
𝑗 < 𝑓𝑝𝑖2

𝑗 ), other‑
wise they are said to be discordant. ComputingKendall’s 𝜏
(see (7)) requires the number of concordant (𝑃 ) and dis‑
cordant pairs (𝑄), as well as the number of tied pairs of
feature indices only in 𝑓𝑝𝑖 (𝑇 ) and only in 𝑓𝑝𝑗 (𝑈).

𝜏 = 𝑃 − 𝑄
√(𝑃 + 𝑄 + 𝑇 ) ⋅ (𝑃 + 𝑄 + 𝑈)

(7)

We chose Kendall’s 𝜏 because it produced better perfor‑ 
mance than a linear correlation.
Algorithm 2 illustrates the unknown device detection 
process. Each test device has its slices converted to a test 
ϐingerprint, which is an 𝑀 × 𝐵 histogram. The test ϐin‑ 
gerprint for the 𝑘th test device was compared to all the 
known ϐingerprints, and its maximal rank correlation co‑
efϐicient 𝜏𝑘

∗ was computed. We use (1 − 𝜏𝑘
∗) to indicate the 

degree to which the test device was not correlated to a
known device. If the value (1 −𝜏𝑘

∗) was above a threshold, 
an open‑set ϐlag was raised.

5. TESTBED AND DATASETS
This work utilizes three RF datasets: LoRa, wireless‑Wi‑ 
Fi, and wired‑Wi‑Fi which have been collected using a 
testbed of 15 PyCom IoT devices as transmitters [5, 24]: 
nine Fipy boards and six Lopy4 boards on top of PySense 
sensor shields (pictured in Fig. 4 (top)). Pycom devices 
are equipped with ESP32, Semtech SX1276, and Sequans 
Monarch chips that support Wi‑Fi b/g/n, Bluetooth, LoRa, 
Sigfox,  and  Narrowband  IoT  network  protocols. 

Algorithm 2 The Open‑Set Detector
Require: 𝐹𝑃 ▷ Fingerprint Tensor (Alg. 1)
Require: 𝐻𝑡𝑒𝑠𝑡 ← Ktest × M × Stest
Require: 𝐹𝑃𝑡𝑒𝑠𝑡 ← 𝑧𝑒𝑟𝑜𝑒𝑠(Ktest × M × B)
Require: 𝑟𝑒𝑠𝑢𝑙𝑡 ← 𝑧𝑒𝑟𝑜𝑒𝑠(Ktest)
1: for 𝑘 ← 0 to (𝐾𝑡𝑒𝑠𝑡 − 1) do
2: for 𝑚 ← 0 to 𝑀 − 1 do
3: 𝐹𝑃𝑡𝑒𝑠𝑡[𝑘, 𝑚, ∶]←𝐻𝑖𝑠𝑡𝑜𝑔𝑟𝑎𝑚(𝐻𝑡𝑒𝑠𝑡[𝑘, 𝑚, ∶], 𝐵)
4: end for
5: end for
6: for 𝑘 ← 0 to (𝐾𝑡𝑒𝑠𝑡 − 1) do
7: for 𝑙 ← 0 to (𝐾𝑘𝑛𝑜𝑤𝑛 − 1) do
8: 𝜏𝑘,𝑙 = 𝐾𝑇 (𝑓𝑙𝑎𝑡𝑡𝑒𝑛(𝐹𝑃 [𝑙]), 𝑓𝑙𝑎𝑡𝑡𝑒𝑛(𝐹𝑃𝑡𝑒𝑠𝑡[𝑘]))
9: end for

10: 𝜏∗
𝑘 = max

𝑙
(𝜏𝑘,𝑙)

11: result[k] = (1 − 𝜏∗
𝑘)

12: end for
13: return result

1. 𝐾𝑡𝑒𝑠𝑡: the total number of test devices

2. 𝑀 : the number of hidden nodes

3. 𝑆𝑡𝑒𝑠𝑡: the number of test slices per device

4. 𝐵: the number of bins in the histogram

5. 𝐻𝑡𝑒𝑠𝑡: the hidden state values for the test slices

6. 𝐹𝑃𝑡𝑒𝑠𝑡 : the test ϐingerprints

7. 𝐾𝑘𝑛𝑜𝑤𝑛 : the number of known devices

8. KT: Kendall’s 𝜏 correlation function

9. 𝑓𝑙𝑎𝑡𝑡𝑒𝑛: function to ϐlatten 2D matrix to 1D vector

10. 𝜏𝑘: The rank correlation coefϐicient for device 𝑘
11. 𝑟𝑒𝑠𝑢𝑙𝑡: the per‑device vector of unthresholded pre‑

dictions (higher ismore indicative of anunknownde‑
vice)

On the reception side, we used an Ettus Universal Software 
Radio Peripheral (USRP) B210 with a VERT900 antenna for 
the data acquisition.
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Fig. 4 – IoT testbed consisting of 15 Pycom transmitting devices (top) 
and a USRP B210 receiving device (bottom).

6. RESULTS AND DISCUSSION

For each of the three studied datasets, we set up three 
experiments in which we randomly selected 10 devices 
to be the known devices and ϐive devices to be the un‑ 
known devices. We then evaluate our approach using a 
variant of 5‑fold cross‑validation designed to handle eval‑ 
uation of open‑set detection. We use a dataset with an 
equal number of data samples (i.e. slices) from each of 
the 15 devices. We divide each device’s data into ϐive 
non‑overlapping equally‑sized partitions. Under the tra‑ 
ditional cross‑validation process, in each fold of cross‑ 
validation, four of the partitions for that device are used 
as the training set while the remaining partition is used 
as the test set. The partitions are reassigned to training 
and testing in the other folds, such that each fold ends 
up using a different partition for testing, with no overlap 
between test sets for each fold. Data from the 10 known 
devices follow this traditional 5‑fold cross‑validation pro‑ 
cess. The main difference in our variant occurs with the 
test partition in each fold. In open‑set detection, the test 
set contains both the test partition for the 10 known de‑ 
vices, as well as the test partition for the ϐive unknown 
devices. We emphasize  that  in  each fold, the data from 
the five unknown devices are only seen during testing  and 
never seen during training.
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5.1 LoRa dataset
We transmitted LoRa transmissions using LoRa modu‑ 
lation, a proprietary physical layer implementation that 
utilizes a variant of the Chirp Spread Spectrum (CSS) 
technique [25]. This technology operates in the subGHz 
ISM band and strategically balances data rate with cover‑ 
age range, power consumption, and/or link robustness. 
Each Pycom device was connected to a dedicated LoRa 
antenna, powered by a LiPo battery, and set up to trans‑ 
mit LoRa signals within the 915MHz US band, conϐigured 
with the following parameters: Raw‑LoRa mode, 125kHz 
bandwidth, a Spreading Factor (SF) of 7, a preamble 
of 8, a TX power of 20dBm, and a coding rate of 4/5. 
The devices were programmed to send the same LoRa 
messages for 20s in a round‑robin fashion with a 15min 
gap between devices, generating 20M complex‑valued 
samples per device. Positioned ϐive meters from the 
receiver, these transmissions were captured by the USRP 
B210 receiver and sampled at a rate of 1 MSps. The 
datasets can be downloaded from NetSTAR Laboratory at 
http://research.engr.oregonstate.edu/hamdaoui/datasets. 
Detailed description of the LoRa dataset is provided in [5].

5.2 Wi‑Fi dataset
We reprogrammed the same 15 Pycom devices to trans‑ 
mit Wi‑Fi IEEE802.11B frames at a center frequency 
of 2.412GHz and a bandwidth of 20MHz. The data‑ 
capturing process was initiated 12 minutes after device 
activation to ensure the stability of the hardware [26]. 
The transmitters were programmed to consecutively 
transmit identical IEEE 802.11b frames, each lasting 
559 microseconds, with a small gap in between. To 
eliminate any data dependency on the identity of the 
Wi‑Fi transmitter, all transmitters were set to broadcast 
identical packets, featuring the same spoofed MAC ad‑ 
dress and a payload of zero bytes. For data acquisition, 
we employed an Ettus USRP B210 receiver, synchronized 
with an external signal synthesizer to enhance both 
sampling accuracy and stability. The power supply for 
all devices was facilitated through USB connections from 
an HP laptop. This setup and synchronization strategy 
were crucial in ensuring precise and stable data capture, 
providing a robust foundation for our subsequent anal‑ 
ysis. The Wi‑Fi frames have been sampled and digitally 
down‑converted at a sample rate of 45MSps. Each Wi‑Fi 
capture lasts for two minutes generating more than 5000 
frames per device where each frame consists of 25, 170 
complex‑valued samples. While the transmitters were 
located 1m away from the receiver and connected to the 
same antenna in the wireless‑Wi‑Fi dataset, a 12inch 
SMA cable was used to connect them directly to the USRP
receiver in the wired-Wi-Fi dataset as shown in Fig. 4 
(right). Both of these datasets are publicly available at 
http://research.engr.oregonstate.edu/hamdaoui/datasets. 
Detailed descriptions of the Wi-Fi dataset are provided 
in [27, 28].



Thus, to summarize the overall process, in each fold of 
cross‑validation, HiNoVa is trained on the training set. 
After training, we generated 10 device ϐingerprints us‑ 
ing the correctly classiϐied samples from the 4 partitions 
of the known device training data. During the detection 
phase, HiNoVa takes each test sample from the test parti‑ 
tion and compares it to the 10 known device ϐingerprints 
to perform a binary prediction as to whether or not the 
sample belongs to a known or unknown device.

6.1 Algorithms and performance metrics
We compare HiNoVa against a number of other open‑set 
detection methods. These are summarized next:
1) CNN with MaxLogit (CNN Max Logit): This baseline 
uses a CNN augmented with the MaxLogit process for de‑ 
tecting open set instances. As was pointed out in a recent 
work [10], MaxLogit, though simple, is a strong open‑set 
detector.
2) CNN+LSTM with MaxLogit (CNN+LSTM Max Logit): 
The previous baseline interprets each observation in a 
slice as an i.i.d. data instance. In reality, the observa‑ 
tions in a slice have a sequential relationship and using 
a CNN+LSTM instead of a CNN enables the detector to 
model these sequential relationships. As before, we use 
the MaxLogit approach for open‑set detection.
3) OpenMax  [29]  (CNN+LSTM OpenMax):  This  base‑ 
line re‑weights  the  activation vectors that go into the ϐi‑ 
nal Softmax layer to better separate the known from the 
unknown devices. The weighting function uses a Weibull 
distribution  for  modeling  extreme values and is used in 
OpenMax to model the right tail of the activation distribu‑ 
tion corresponding to the highest activation values. Open‑ 
Max only re‑weights the activations for the top 𝛼 classes 
with the highest activation values.
4) Akar et al. [13] (Akar): This algorithm is the most 
closely related work to our approach as it is an open‑ 
set detector speciϐically for time series. We refer to this 
approach as Akar. The Akar algorithm uses Dynamic 
Time Warping (DTW) to compute the similarity between 
a test set time series and the barycenters of known de‑ 
vices. Devices that are greater than a speciϐied threshold 
in terms of DTW distance to the barycenters of known de‑ 
vices or less than a speciϐied threshold in terms of cross‑ 
correlation are declared to be open set devices.

We use the Area Under Precision‑Recall Curve (AUPRC 
as the evaluation metric [30] since there is a signiϐicant 
class imbalance as we have twice as much data from 
known devices than from unknown devices during test‑ 
ing. AUPRC considers the trade‑off between precision and 
recall across a range of detection thresholds and yields an
overall threshold-independent summary statistic of the 
detector’s performance.

To determine the hyperparameter settings for our deep 
learning models, we use post‑hoc tuning on CNN+LSTM 
MaxLogit. We use CNN+LSTM MaxLogit because parts 
of its architecture are shared with CNN MaxLogit and 
CNN+LSTM OpenMax. Post‑hoc tuning refers to looking 
at the performance of CNN+LSTM MaxLogit on the test 
set, which gives CNN+LSTM MaxLogit an unfair advantage 
as it is allowed to see the test set, but we will show that 
even with this advantage, HiNoVa still signiϐicantly out‑ 
performs the MaxLogit models.

Speciϐically, we post‑hoc tune the kernel size (2×256) and 
dropout rate (10%) in the CNN layer to achieve high accu‑ 
racy in closed set classiϐication using a grid search. Attain‑ 
ing good closed set accuracy has recently been shown to 
produce good open set detectors [10]. We also post‑hoc 
tune the number of hidden nodes to achieve high AUPRC 
for the open‑set prediction task for CNN+LSTM MaxLogit. 
The resulting values of these hyperparameters were ap‑ 
plied to HiNoVa, which clearly puts it at a disadvantage 
because these hyperparameters were tuned for a com‑ 
pletely different algorithm (i.e. CNN+LSTM MaxLogit), 
but HiNoVa still performs well.

We evaluated HiNoVa with 25, 50, 75 and 100 bins and 
found that it resulted in small differences in AUPRC 
(< 0.03). As a result, we report results with 25 bins in 
our experiments.

6.2 Comparison results
We begin by comparing HiNoVa against CNN+LSTM Max 
Logit, CNN Max Logit and CNN+LSTM OpenMax. Our 
evaluation is done using three different RF datasets: 
LoRa, wireless‑Wi‑Fi, and wired‑Wi‑Fi, as described in 
Section 5. Fig. 5 shows the average AUPRC values for 
the  LoRa, wireless‑Wi‑Fi,  and  wired‑Wi‑Fi  datasets  re‑ 
spectively. HiNoVa consistently outperformed the other 
methods, achieving statistically signiϐicant improvements 
(Wilcoxon Signed Rank Test, 𝛼 = 0.05)  in all three exper‑ 
iments. CNN+LSTM MaxLogit, CNN MaxLogit, and Open‑ 
Max lagged behind both HiNoVa by a substantial gap in 
AUPRC, with no consistent top performer in this second 
tier of algorithms.

Overall, the results suggest that HiNoVa is an effective de‑ 
tector of unknown devices using LoRa, wireless‑Wi‑Fi and 
wired‑Wi‑Fi protocols, outperforming other methods by 
a signiϐicant margin. The hidden state values correspond 
to a compact representation of the autocorrelation lags in 
the IQ data within a slice, and the distribution of this rep‑ 
resentation, as represented in the histogram used to de‑ 
rive the ϐingerprint, provides an effective summary of the 
device‑speciϐic information that HiNoVa is able to lever‑ 
age. Finally, the MaxLogit and OpenMax approaches only
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(a) LoRa (b)Wireless‑Wi‑Fi (c)Wired‑Wi‑Fi

Fig. 5 – Average test AUPRC for HiNoVa vs other algorithms on the (a) LoRa, (b) wireless‑Wi‑Fi and (c) wired‑Wi‑Fi datasets. The differences between
HiNoVa and the other algorithms are statistically signiϐicant (Wilcoxon Signed Rank Test, 𝛼 = 0.05).

(a) LoRa dataset (b)Wireless‑Wi‑Fi dataset (c)Wired‑Wi‑Fi dataset

Fig. 6 – Test AUPRCs for HiNoVa vs Akar (Auto‑Correlated) and Akar (Raw IQ).

(a) LoRa dataset (b)Wireless‑Wi‑Fi dataset (c)Wired‑Wi‑Fi dataset

Fig. 7 – Average test AUPRCs for HiNoVa using Auto‑Correlated data vs Raw IQ data.

(a) LoRa dataset (b)Wireless‑Wi‑Fi dataset (c)Wired‑Wi‑Fi dataset

Fig. 8 – Average test AUPRCs for HiNoVa vs HiNoVa‑C.
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(a) LoRa dataset (b)Wireless‑Wi‑Fi dataset (c)Wired‑Wi‑Fi dataset

Fig. 9 – Average test AUPRCs for the single hidden node detector vs the pairwise hidden node detector.

rely on the logits of the penultimate layer of theNN. These
logits, which are used to derive the output probabilities
from the NN, lack the information contained in the ϐinger‑
prints and are thus less effective at identifying unknown
devices.

6.3 Comparison with Akar et al. [13]
For the Akar algorithm, we used the implementation pro‑
vided by the authors themselves1. The Akar algorithm is
computationally expensive as its use of DTWas a distance
metric is quadratic in the length of the input time series.
Even with efϐicient DTW methods in their implementa‑
tion, the algorithm is prohibitively slow for the data in our
experiments from Section 6.2, taking weeks to complete.
As such, we modiϐied our experimental setup in Section
6.2 in the following ways. First, we truncate the training
data to be 25% of its original size. Second, we reduce the
number of known devices to six and the number of un‑
knowns to three. Finally, we report AUPRC over one‑fold
of the 5‑fold cross‑validation (over the truncated training
data size) for our three datasets. We also modiϐied the
Akar algorithm to output a binary classiϐication of known
or unknown, rather than classifying the device as one of
𝐾 known devices or a (𝐾 + 1)th value of unknown. This
modiϐication to abinary classiϐicationwasnecessary to al‑
low direct comparison to HiNoVa in terms of the AUPRC
metric. We apply the Akar algorithm to both the auto‑
correlation representation and the raw IQ version of the
data.

The Akar algorithm also requires tuning of the 𝛼 and 𝛽
hyperparameters which are used to set the thresholds for
the DTW distance (𝜏𝑑𝑖𝑠𝑡

𝑘 ) and the cross‑correlation (𝜏𝑐𝑐
𝑘 )

for device 𝑘 respectively:

𝜏𝑑𝑖𝑠𝑡
𝑘 = ̃𝜇𝑑𝑖𝑠𝑡

𝑘 + 𝛼 ⋅ 𝜎𝑑𝑖𝑠𝑡
𝑘 (8)

𝜏𝑐𝑐
𝑘 = ̃𝜇𝑐𝑐

𝑘 − 𝛽 ⋅ 𝜎𝑐𝑐
𝑘 (9)

Here, 𝛼 and 𝛽 deϐine the multiples of standard deviations
beyond the means ( ̃𝜇𝑑𝑖𝑠𝑡

𝑘 and ̃𝜇𝑐𝑐
𝑘 ) such that a data in‑

1https://github.com/tolgaakar/Open‑Set‑Recognition‑for‑Time‑
Series‑Classiϐication

stance exceeding this threshold is declared an unknown
device. The source code for the original algorithm per‑
forms a grid search over the training set for values of 𝛼
and 𝛽 and then uses the best conϐiguration of hyperpa‑
rameter values on the test set. To speed up the experi‑
ments, we perform post‑hoc tuning on theAkar algorithm,
which evaluates the same combinations of (𝛼, 𝛽) used in
the source code grid search but we report the best setting
of these hyperparameters on the test data instead of the
training data. By using the test data, this post‑hoc tuning
reports the actual best performing values of the hyperpa‑
rameters for the Akar algorithm on the test data, giving it
an advantage over HiNoVa.

We also run HiNoVa on the auto‑correlated representa‑
tion of these same training datasets and report results on
the same single fold of cross‑validation. Weuse the hyper‑
parameters for HiNoVa selected in the experiments from
Section 6.2.

Fig. 6 depicts the difference in AUPRC between
HiNoVa and the Akar variants. In general, the Akar
algorithm performs better using the raw IQ repre‑
sentation than the auto‑correlation representation.
However, HiNoVa outperforms Akar, applied to the raw
IQ representation, in 8 out of 9 experiments, often by
a substantial amount. Due to only a single fold being
run on each experiment, we do not have a large enough
sample size to reliably perform a hypothesis test to
establish statistical signiϐicance. The use of DTW by the
Akar algorithm is largely focused on matching the overall
shape of the input data and is thus unable to learn an
effective representation of the input data that captures
salient features for detecting unknown devices. We also
note that evenwith themodiϐications to the experimental
setup, the runtime of Akar’s algorithm is still impractical
for real‑time deployment as each experiment took several
days to complete.

6.4 Auto‑correlated vs raw IQ
We demonstrate the value of applying a preprocessing
step that converts the 2048 sample window of raw IQ
data into the auto‑correlated representation described in
Section 4.1. The auto‑correlated representation reduces
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noise and allows the deep learning layers to use features
related to auto‑correlation in its prediction. This prepro‑
cessing step can be run efϐiciently on large datasets with‑
out signiϐicantly increasing system run‑time; in our im‑
plementation, we apply Python’s correlate functionwhich
is an efϐicient matrix operation. We compare the re‑
sults of applying HiNoVa to the raw IQ values versus
the auto‑correlated representation using the same ex‑
perimental setup as in Section 6.2. Fig. 7 illustrates
the large improvement in AUPRC (0.20 to 0.65) with us‑
ing the auto‑correlated representation versus the raw IQ
data. These improvements are statistically signiϐicant
(Wilcoxon Signed Rank Test, 𝛼 = 0.05).

6.5 HiNoVa vs HiNoVa‑C
A natural variant of the HiNoVa algorithm is to use the cell
state of the LSTM instead of the hidden state. Historically,
in a recurrent neural network, which is a pre‑cursor to
the LSTM, the hidden state corresponds to the short term
memory as it remembers the state in the previous time
step. In an LSTM, the cell state was introduced as a longer
termmemoryof patterns that extendbeyond theprevious
time step. However, in comparing equations (5) and (6),
the cell state 𝑐𝑡 misses anymathematical operation on the
output gate, so intuitively, the hidden state contains some
information that the cell state does not.

Using the same experimental setup as the beginning of
Section 6.2, we repeated the experiments with a version
of HiNoVa called HiNoVa-C, which builds the ϐingerprints
using patterns in the cell state rather than the hidden
state. Fig. 8 illustrates the results. For six experiments
(All LoRa experiments, experiments 1 and 2 for wireless‑
Wi‑Fi and experiment 1 of wired‑Wi‑Fi), HiNoVa out‑
performs HiNoVa-C while in two experiments, the dif‑
ferences are much closer, with a slight improvement for
HiNoVa-C in experiments 2 and 3 of the wired‑Wi‑Fi
dataset. These results suggest that the hidden state has
a slight advantage when building device ϐingerprints, but
more investigation is needed to determine which parts of
the internal state of a LSTM would be best for RF ϐinger‑
printing.

6.6 Pairwise vs single hidden node values
Since LSTMs use the hidden node value from the previ‑
ous time step (ℎ𝑡−1) to compute the value of the current
hidden node (ℎ𝑡), we explore building the RF ϐingerprint
with the pair of hidden node values at consecutive times
(ℎ𝑡−1, ℎ𝑡) instead of the hidden node value at a single time
(ℎ𝑡). Fig. 9 compares the performance of a single vs
pairwise hidden node value detector. Fig. 9 shows that
for HiNoVa, the results are mixed, with a pairwise detec‑
tor outperforming the single node detector in about half
of the experiments. These results indicate that pairwise
transitions can have predictive value in some cases, but
in other cases they are simply noise. Given the additional

computational cost of the pairwise node detector in both 
time and memory, we recommend using the single node 
detector.

7. CONCLUSION
HiNoVa is a novel open‑set detection method based on 
the activation patterns of the hidden states within a 
CNN+LSTM model. This approach signiϐicantly improves 
the AUPRC on LoRa, wireless‑Wi‑Fi, and wired‑Wi‑Fi 
datasets over other open‑set detection methods. Addi‑ 
tionally, because of its structure, the proposed method 
can run on standard consumer hardware with minimal 
setup data and training time. Future work will investigate 
using attention‑based deep learning models.
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