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Abstract – Wi‑Fi networks enable user‑friendly network connectivity in various environments, ranging from home to enter‑
prise networks. However, vulnerabilities in Wi‑Fi implementations may allow nearby adversaries to gain an initial foothold
into a network, e.g., in order to attempt further network penetration. In this paperwepropose amethodology for the detection
of attacks originating from Wi‑Fi networks, along with a Wi‑Fi Network Intrusion Detection (Wi‑Fi‑NID) tool, developed to
automate the detection of such attacks at 802.11 networks. In particular,Wi‑Fi‑NIDhas the ability to detect and trace possible
illegal network scanning attacks, which originate from attacks at the Wi‑Fi access layer. We extend our initial implementa‑
tion to increase the efϔiciency of detection, based on mathematical and statistical function techniques. A penetration testing
methodology is deϔined, in order to discover the environmental security characteristics, relatedwith the current conϔiguration
of the devices connected to the 802.11 network. The methodology covers known Wi‑Fi attacks such as de‑authentication at‑
tacks, capturing and crackingWPA‑WPA/2 handshake, captive portal andWPA attacks, mostly based on various open source
software tools, custom tools, as well as on specialized hardware.
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1. INTRODUCTION

Wi‑Fi networks, also known as IEEE 802.11, have be‑
come essential in our everyday lives, offering increased
access and convenience. Yet, the nature of wireless com‑
munications makes them susceptible to interference, ma‑
nipulation, or disruption by malicious individuals, cre‑
ating signiϐicant security challenges. Proactively gather‑
ing and scrutinizing this data from a security perspec‑
tive can lead to the prompt identiϐication of suspicious
activities and early resolution of potential conϐiguration
weaknesses. Because attackers often engage in this sort
of network scanning as a preliminary step before launch‑
ing an assault on the intended services or information,
network administrators must prioritize the early detec‑
tion and resolution of these vulnerabilities to prevent ex‑
ploitation.

Packet capturing and analysis play a crucial role in net‑
work forensics [1]. Capturing packets in real time offers
a comprehensive log of all communications, and this data
can be analyzed immediately or reviewed later. Profes‑
sionals in network security rely on pcap ϐiles to dissect
network trafϐic, recreate network events, and pinpoint
trafϐic origins and destinations. These ϐiles help ascertain
trafϐic characteristics, including the protocols and appli‑
cations in use. During incident management, pcap ϐiles
are especially crucial because they present a factual and
precise history of network activity for investigating inci‑
dents and detecting security infractions. Recognizing the
critical role of pcap ϐiles in network forensics, is vital for
security experts to be adept at capturing, preserving, and

evaluating these ϐiles efϐiciently. While it’s less typical to
use thismethod forWi‑Fi network oversight, employing a
similar approach can prove advantageous in scrutinizing
and identifying suspicious behavior in 802.11 networks,
thereby allowing an administrator to swiftly detect and
address potential risks.

Wireless networks are particularly vulnerable to attacks,
often because inϐiltrating them can be unexpectedly easy.
Once attackers gain control over a wireless network, they
gain an advantageous attack vector capability, i.e., adja‑
cent network access, fromwhich they can extend their at‑
tack to other systems within the internal network. One
of the primary threats involves the theft of sensitive data.
By breaching the network, cybercriminals can intercept
any informationbeing transmittedover thenetwork, such
as personal messages, ϐinancial information, or conϐiden‑
tial business data. This information can be used for ϐinan‑
cial gain through selling the data on the darkweb, identity
theft, or even blackmailing purposes [2].

Gaining control also allows attackers to launch secondary
attacks on connected or adjacent networks [3], often tar‑
geting more secure or high‑value systems like corporate
networks. These secondary attacks, originating from the
compromised network, add layers of obfuscation, chal‑
lenging cybersecurity professionals to traceback these in‑
cidents to their sources. The attackers’ ongoing presence
creates a continual security risk, as they can install back‑
doors or exploit existing vulnerabilities, ensuring persis‑
tent access and leaving the network open to additional
future compromises. This sustained threat can have a
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domino effect, weakening thebroader security infrastruc‑
ture connected to the initial breach.

To ensure the security and stability of network infrastruc‑
ture, detecting and addressing harmful actions in wire‑
less networks is crucial. The National Institute of Stan‑
dards and Technology (NIST) recommends that organiza‑
tions employ IntrusionDetection and Prevention Systems
(IDPS) [4] to track and evaluate network trafϐic, as well as
detect and respond to malicious activity [5]. By putting
in place efϐicient detection strategies, organizations can
diminish the threat of cyberattacks and protect their net‑
works.

1.1 Motivation
As cyberattacks becomemore advanced andwireless net‑
works remain exposed to risks, organizations are con‑
fronted with increasing security threats. Even with se‑
curity measures like WPA2/WPA3 encryption in place,
802.11 networks are still prone to breaches. The ease
with which attacks on Wi‑Fi networks can be conducted,
even by those with little technical know‑how, is concern‑
ing. Thus, it’s essential for both corporate environments
and home Wi‑Fi setups to enhance security by employ‑
ing speciϐic detection and response strategies. This ef‑
fort complements proactive steps like using robust pass‑
words, keeping security protocols updated, and consis‑
tently overseeing network activity.

In addition we try to enhance and innovate within the
realm of attack detection methodologies. In an era where
digital threats have become increasingly sophisticated,
traditional defensive mechanisms often fall short in both
speed and accuracy when identifying and neutralizing
such threats. Our primary motivation in conducting this
research is to bridge these gaps by developing superior
and more efϐicient methods for detecting network intru‑
sions and malicious activities. By doing so, we aim to re‑
ϐine the precision of attack detection systems, focusing
onminimizing false positives without compromising sen‑
sitivity. This heightened accuracy ensures that security
resources are not misdirected toward benign anomalies,
which is crucial for maintaining optimal operational ef‑
ϐiciency and allows for a more focused and effective re‑
sponse to actual threats. By reducing the incidence of
false positives, we enhance the credibility of alarm sys‑
tems and ensure that genuine threats receive immediate
and undivided attention, thereby strengthening the over‑
all security posture.

1.2 Contribution
In this paper, we deϐine a methodology for the detec‑
tion and attack propagation analysis of attacks originat‑
ing from the Wi‑Fi layer. In particular our main contribu‑
tions are:

• Wedeϐine aWi‑Fi‑speciϐic intrusion detectionmodel,

based on statistical metrics. The model uses the
rollingmedian todynamically calculate the appropri‑
ate threshold for detecting anomalies in Wi‑Fi net‑
work trafϐic. Our dynamic detection model is corre‑
lated with standard detection techniques (e.g. pcap
packet analysis and signature‑based detection).

• The proposed model is capable of detecting Wi‑
Fi‑speciϐic attacks, not only attacks that originate
from known Wi‑Fi attack tools such as Aircrack‑ng,
Reaver, mdk4 etc, but also customized attacks. This
is due to the fact that the proposed statistical model
provides a systematic and highly reliable means of
identifying anomalies that indicate potential security
breaches.

• In addition to the Wi‑Fi intrusion detection phase,
the proposed methodology is able to evaluate the
propagation of security attacks originating fromWi‑
Fi 802.11 networks and targeting internal networks
beyond theWi‑Fi network layer. Based on a penetra‑
tion testing phase, we identify the key security chal‑
lenges faced by Wi‑Fi 802.11 networks, in order to
evaluate how Wi‑Fi attack vectors can be extended
and cascaded to network attack vectors. These in‑
clude Denial of Service (DoS) attacks on the WPA2
handshake, social engineering and DoS attacks using
a fake captive portal, exploiting theWPS at the access
point and de‑authentication attacks.

To evaluate the proposed methodology, we have imple‑
mented Wi‑Fi‑NID1, a Wi‑Fi network intrusion detection
tool that can detect and respond to security incidents. Wi‑
Fi‑NID offers an innovative approach to detecting mali‑
cious activity in Wi‑Fi networks, by focusing on Wi‑Fi‑
speciϐic attack features to identify attacks that originate
from the 802.11 layer. As Wi‑Fi‑NID operates at the edge
of theWi‑Fi network, it can be easily integrated as an add‑
on security mechanism and may be complementary to
general IDS solutions that do not focus at the Wi‑Fi layer.
By providing a level of protection critical to maintain‑
ing the security and integrity of Wi‑Fi networks, Wi‑Fi‑
NID represents a valuable addition to any organization’s
network security toolkit. Finally we present the valida‑
tion of Wi‑Fi‑NID based on various test scenarios. During
our validation,we testeddifferent approaches that exploit
various vulnerabilities in WPA2, which were successfully
identiϐied and analyzed.

1.3 Paper structure
In Section 2 we review related work. In Section 3 we out‑
line the suggestedmethodology for conductingWi‑Fi pen‑
etration tests, while in Section 4 we describe Wi‑Fi‑NID,
an automated tool that implements theproposedmethod‑
ology. In Section 5 we conϐirm the effectiveness of our
model by showcasing outcomes for each attribute of the
1https://github.com/panosdimitrellos/Wi-Fi-NID
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tool. Finally, Section 6 concludes this paper with a discus‑
sion about future plans.

2. RELATEDWORK
2.1 Wi‑Fi attack detection tools
Several intrusion or attack detection tools can be found
in the literature. In [6] an IDS is proposed, which is highly
effective against WPA2/3 de‑authentication attacks. The
proposed system has some level of automation, but not
against various Wi‑Fi attacks, while it is not able to iden‑
tify attacks such as WPS null pin attack. Chen et al. [7]
suggest a method for operator networks to detect phish‑
ing attacks. But none of the aforementioned solutions
concentrate on threat analysis for Wi‑Fi networks, either
alone or in conjunction with automated pcap ϐile analysis
tools.
In [8] authors propose a lightweight and efϐicient DDoS
attack detection approach using change point analysis,
which demonstrates high detection rates and linear com‑
plexity, making it suitable for WSNs. They use change
point detectors to monitor anomalies in two metrics: the
data packets’ delivery rate and the control packets’ over‑
head.
Wi‑Fi‑IDS2 is a tool that can sniff Wi‑Fi trafϐic for mali‑
cious activity, likeWEP,WPA, andWPS packet attacks, but
it is unable to identify some of the attacks that the Mdk4
tool3 can detect, such as WPA2 and null pin attacks.
In [9] authors include variations in the minimum DDoS
attack rates that cause disruptions in different IoT smart
home devices, the impact of Wi‑Fi group key updating on
DDoS attacks, and the factors affecting the energy con‑
sumption of victim devices during attacks. This research
aims to enhance the understanding of IoT device vulner‑
abilities in smart home environments and lay the ground‑
work for future defense solutions.
Thework of [10] introduces “EvilScout,” a framework that
uses IP‑preϐix distribution information from the legiti‑
mate Access Points (APs) to detect evil twins. EvilScout
leverages software‑deϐined networking to detect evil
twins without the need for extra hardware or modiϐica‑
tions to the AP or client.
The work of [11] categorizes association attacks onWi‑Fi
clients, based on the speciϐic network manager features
that are exploited by each attack, using the Wi‑Fiphisher
tool. The paper explore various strategies for increasing
the success rate of these attacks and assess their impact
on new security protocols like WPA3, Wi‑Fi Enhanced
Open, and Easy Connect.
In [12], the authors address the vulnerability of WLAN‑
based localization systems to location spooϐing attacks,
which present major privacy concerns in Mobile Social
Network Services (MSNS). They introduce a privacy at‑
tack model based on spooϐing in MSNS and propose a de‑
fense mechanism using Wi‑Fi‑hotspot tags (base‑station
2https://en.kali.tools/?p=83
3https://github.com/aircrack-ng/mdk4

tags, BS tags) for authenticating spatial‑temporal proper‑
ties of geolocations.
In [13] the authors propose an IoT‑based method to de‑
tect and prevent fake access point attacks in Wi‑Fi net‑
works. Utilizing a single board computer and a wireless
antennawith a “Soft AP” feature, they conducted air scans
to identify and mitigate fake AP broadcasts.
In our preliminary work [14], an initial version of our de‑
tection framework presented in this paper for Wi‑Fi at‑
tacks is presented. However, in [14] the application of
a static threshold in attack detection is applied, encoun‑
tering signiϐicant challenges in the form of pervasive false
positives. In the initial version, the system was capa‑
ble of detecting only those Wi‑Fi attack scenarios where
the number of packets sent by the attacker exceeded a
predetermined static threshold. This observation led to
the consideration and subsequent adoption of a dynamic
threshold.

2.1.1 Wi‑Fi ML attack detection tools
We examine indicative examples of Wi‑Fi detection
tools that incorporate Machine Learning (ML) techniques
within their methodologies. The work of [15] explores
the potential of using network proϐiling and ML to secure
IoT against cyberattacks. The proposed anomaly‑based
intrusiondetection solutiondynamically and actively pro‑
ϐiles andmonitors all networked devices for the detection
of IoT device tampering attempts, as well as suspicious
network transactions. Raw trafϐic is also passed on to the
machine learning classiϐier for examination and identiϐi‑
cation of potential attacks.
In [16], an ML‑based Wireless Intrusion Detection Sys‑
tem (WIDS) is developed to efϐiciently detect attacks on
wireless networks, using attribute selection methods to
improve accuracy and speed. The system’s performance,
evaluated on the Aegean wireless intrusion dataset using
tools likeWeka, Rstudio, andAnacondaNavigator Python,
demonstrates the effectiveness of the chosen ML algo‑
rithm.
In Table 1, wepresent a comprehensive comparison of the
variousWi‑Fi intrusion detection systems previously dis‑
cussed. This comparison focuses on four critical dimen‑
sions: the number of attacks detectable by each system,
the capability to identify attacks originating from custom
tools, the implementationof dynamicmethodologies such
as dynamic detection thresholds, and the effectiveness in
evaluating and elucidating attack propagation. The crite‑
ria are chosen to highlight the strengths and limitations
of each system in a practical security environment.

• Number of detectable attacks: This criterion evalu‑
ates the breadth of the attack spectrum that each IDS
can identify. A higher number of detectable attacks
indicates a more versatile and comprehensive detec‑
tion capability, which is crucial for effective network
security.
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Table 1 – Related work ‑ comparison

Paper Number of
attacks covered

Dynamic
Threshold

Detection of attacks
from custom tools

Evaluation of
attack propagation

Current
work up to 25 Yes Yes Yes

[14] up to 20 No (static
threshold) No Yes

[7] up to 10 No (avg
Function)

Not
mentioned No

[17] up to 10 No
(Frames/sec) No No

[8] up to 10(DoS) No (time besed
function) Not mentioned No

[10] up to 10 No Not mentioned No
[15] up to 15 Dynamic

technique Yes No

[16] up to 20 Dynamic
technique Not mentioned No

[18] up to 20 Dynamic
technique No Yes

(partially)
[12] up to 10 N/A No Yes

(partially)
[13] up to 5 No No No

• Detection of attacks from custom attack tools: Given
the evolving nature of cyberthreats, it is imperative
for an IDS to recognize attacks that are not part of
standard threat databases, particularly those origi‑
nating from custom, previously unseen tools. This
criterion assesses each system’s adaptability and re‑
silience against novel threats.

• Use of dynamic detection methodologies: The im‑
plementation of dynamic methodologies, such as
dynamic detection thresholds, plays a vital role in
the adaptability of an IDS. These methodologies en‑
able the system to adjust its detection parameters in
real time, enhancing its effectiveness in diverse and
changing network environments.

• Evaluation of attack propagation: This aspect exam‑
ines each system’s capability to not only detect but
also evaluate the propagation and potential impact
of an attack, such as extendingWi‑Fi attack vectors to
network attack vectors. Understanding attack prop‑
agation is essential for developing effective mitiga‑
tion strategies and for providing insights into the se‑
curity posture of the network.

2.2 Penetration testing methodologies for
802.11 wireless networks

Several general methodologies for penetration testing ex‑
ist in the literature, e.g. [19, 20]. The ϐirst strategy re‑
lies on using different tools, like IDS for forensic anal‑
ysis. The second strategy emphasizes the value of em‑
ploying red teaming resources, which is noteworthy and
pertinent in our situation. The paper of [21] provides a
methodology for a number of network attacks, including
packet snifϐing, DoS attacks, and unauthorised access at‑

tacks, that is extremely similar towhatwe need. Matthew
et al. [22] carries out a penetration test using a vari‑
ety of attacks, but only with the help of a sophisticated
port scanner.Building upon the methodologies presented
in [19] and [20], our approach incorporates, we will ex‑
port and analyze forensic data from pcap ϐiles using a va‑
riety of red teaming tools and specialized hardware. We
will also concentrate on attacks that are pertinent to Wi‑
Fi networks.

2.3 Malicious MAC address‑related mecha‑
nisms

FindingmalevolentMAC addresses could be a crucial ϐirst
step in stopping 802.11 layer attacks. The literature has
identiϐied a number of relevant mechanisms. For exam‑
ple, Girdler et al. [23] present an IDPS system that fo‑
cuses on malicious MAC addresses associated with ARP
spooϐing attacks. Yaibuates et al. [24] try to identify ma‑
licious requests for IP addresses via DHCP, and combine
the ICMP and ARP protocols. The paper of Hsu et al. [25]
suggests a method that uses a range of reverse traceroute
data gathered by a remote server to identify the existence
of a malicious rogue AP.

In Anathi et al. [26], in order to provide a thorough anal‑
ysis of its efϐicacy in identifying and mitigating threats, a
network localization‑based approach is presented that is
supplemented by the use of port scanning, OS ϐingerprint‑
ing, and route tracing algorithms. Finally, Wang et al. [27]
present an Unmanned Aerial Vehicle (UAV)‑based rogue
Wi‑Fi access point recognition system. This systemmakes
use of Software‑Deϐined Radio’s (SDR) wireless analysis
capabilities, as well as the remarkable mobility capabili‑
ties of UAVs.
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2.4 Pcap ϐile inspection
In the literature, several pieces of work focus on packet
capture and pcap ϐile analysis. For instance [28] propose
a technique for analyzing pcap ϐiles that focuses on min‑
imizing the duration of the parsing process. Kismet4 is
a packet snifϐing application with IDS features that sup‑
ports pcap ϐiles, and it mainly makes use of the device’s
network card. It does not have automated capabilities
for analyzing pcap ϐiles to ϐind Wi‑Fi assaults, despite the
fact that it can identify active wireless spying programs.
Deri et al. [29] uses the packet header and the payload
from network analysis trafϐic packets in order to detect
the application layer protocol employed during the trans‑
action of information. Contrary to our approach, which
leverages the entirety of information provided by a pcap
ϐile. The Song et al. [30] approach presents notewor‑
thy aspects worth considering. They try to detect net‑
work anomalies in the system behavior. But in their case,
they use standard intrusion detection andprevention sys‑
tems. Instead, in our case we try to make our own intru‑
sion detection systemwith a very speciϐic target. Another
proposal entails sourcing information from proxy logs in‑
stead of pcap ϐiles, utilizing the pcap ϐiles as supplemen‑
tary data for cross‑validation and timeline analysis [31].

3. THE PROPOSEDMETHODOLOGY

Fig. 1 – The proposed methodology: Wi‑Fi‑speciϐic attack vectors are
captured and correlated with attack indicators identiϐied in internal
hosts

4https://www.kali.org/tools/kismet/

The main goal of the proposed methodology is to detect
and analyse network attacks originating from the Wi‑Fi
layer and propagating to other internal networks. The
proposedmethology involves twomain phases, as shown
inFig. 1. In the ϐirst phase,weutilize detection techniques
based on dynamic thresholds for detecting anomalies in
Wi‑Fi network trafϐic. In the second phase, we combine
the detection results identiϐied in the ϐirst phase, in order
to evaluate the propagation of attacks originating from
the Wi‑Fi networks to internal networks, based on pen‑
etration testing techniques.

3.1 Phase 1 ‑ Analysis of Wi‑Fi‑speciϐic attack
vectors

The initial phase of our approach focuses on the early de‑
tection of potential Wi‑Fi‑speciϐic attack vectors that aim
to inϐiltrate wireless networks. These vectors include,
but are not limited to, more advanced techniques and
cracking attempts directed at encryption protocols like
WPA2, PSK, orWEP, aswell as complicated tactics like evil
twin attacks, de‑authentication attacks, and exploitation
of vulnerabilities within the WPS protocol.

At this point, our methodology can engage penetration
testing approaches, in order to test the responses of at‑
tacks starting from the Wi‑Fi vector and targeting the in‑
ner systems. As shown in Fig. 1, we deϐine three dif‑
ferent ϐlows (denoted with three different colors) start‑
ing from three different attacks. For the implementa‑
tion of these three attack ϐlows, from the initial attack to
the penetration of the system, various custom and non‑
custom attack tools were used. In the ϐirst attack ϐlow
(red color), encryption cracking constitutes a threat to
wireless security, as breachingWPA2,WPA3, PSK, orWEP
barriers grant attackers access to conϐidential informa‑
tion transmitted over the network. In the second attack
ϐlow (blue color), by using the evil twin attack, attackers
may set up a counterfeit access point mimicking a legiti‑
mate one, deceiving users into establishing a connection.
This deceptive strategy not only enables the interception
of user trafϐic but also paves the way for additional, of‑
tenmore harmful, attacks. Finally, in the third attack ϐlow
(green color) attacks in theWPSprotocol can be exploited
to allow attackers to retrieve the network’s WPA2‑PSK
passphrase. These methodologies, while straightforward
in execution, represent substantial security risks. In sce‑
narios involving encryption cracking or the deployment
of an evil twin attack, the adversary commonly resorts
to de‑authentication or disassociation attacks. These are
preliminary steps to disconnect users from the legitimate
network, making it easier to retrieve the access point’s
password throughmethods such as handshake capturing.
Furthermore, the attacker might execute a Denial of Ser‑
vice (DoS) attack, inundating the network with authenti‑
cation packets or creating a barrage of fake AP beacons,
thereby disrupting normal network operations.
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We aim to intercept malicious communications at the
critical intersection before an attacker, leveraging any of
the aforementioned Wi‑Fi‑speciϐic techniques, succeeds
in acquiring the Wi‑Fi password and intruding into the
wireless network. This preventive stance on early‑stage
intrusion attempts is foundational to our comprehensive
security framework, serving as a pre‑emptive measure
to protect sensitive data and maintain network integrity.
Ourmethodology underscores the importance of not only
recognizing the symptoms of an attack but also interven‑
ing decisively before the security breachmatures, thereby
preserving the sanctity of the wireless environment.

3.1.1 Formulating detection of Wi‑Fi‑speciϔic
attacks

In our study, we have established a methodology for de‑
tecting Wi‑Fi‑speciϐic attacks using the rolling median.
This approach is particularly effective in addressing the
substantial trafϐic variations characteristic of Wi‑Fi layer
attacks. The rolling median, as opposed to the mean,
demonstrates a robust resistance to extreme values. It’s
imperative to understand that the median, being the cen‑
tral value in a sorted data array, remains unaffected by
the magnitude of outliers, relying solely on their relative
placement. Conversely, the mean is highly susceptible to
such extremes, with a single anomalous value capable of
signiϐicantly altering its calculation.
Crucially, the median maintains consistency amidst var‑
ied data points, reϐlecting the core tendency of the dataset
without distortion from extreme values. This attribute
renders the median a more reliable indicator of the over‑
all data trend, ensuring that the analysis is not dispropor‑
tionately inϐluenced by outliers.

Given that the rolling median remains relatively stable
even in the presence of outliers, it becomes a preferred
choice for detecting anomalies or outliers, as in this case.
The rolling median essentially sets a dynamic threshold,
which allows the detection of outliers in a dataset. We
achieve this by checking if each element in the list of, for
example de‑authentication packet counts per second, ex‑
ceeds the calculated threshold. When an element sur‑
passes this threshold, it is considered an outlier and is
categorized into a new list of outliers for further analysis.
Non‑outliers are marked with a value of 0, while outliers
retain their original values. This way, we ϐilter the data
to identify values that deviate from the desired thresh‑
old. Essentially, the rolling median’s ability to ignore very
high or low points and focus on the more consistent, cen‑
tral data makes it a stronger tool for identifying odd data
points that might be worth our attention.

Once an attack is spotted, we take a closer look at the CSV
ϐile (it is obtained via a custom script from the pcap ϐile)
to ϐigure out who the targets are. From our tests with reg‑
ular trafϐic and during different attacks, we noticed that
de‑authentication packets aren’t common and show up

more frequently when an attack is happening, causing a
big jump in their numbers. So, to ϐind the targets, we
check which MAC addresses are sending out the most de‑
authentication packets and who they’re sending them to
themost. This helps us see themain players in the attack,
so the ’Client’ is sending the packets and the ’Access Point’
receiving them. We also make a note of the packets going
to and from these targets to get the full picture of the at‑
tack.

3.1.2 Statistical model

The Rolling Median (RM)5 is a statistical measure rep‑
resenting the median of a group of numbers. In this
instance, the rolling median calculates the dynamic
threshold for detecting anomalies in network trafϐic, such
as a de‑authentication attack. It is represented as:

𝑅𝑀(𝑋, 𝑤, 𝑡) = 𝑀𝑒𝑑𝑖𝑎𝑛(𝑋[𝑡 − 𝑤/2 ∶ 𝑡 + 𝑤/2])
Where:
𝑋 : represents the dataset or time series.
𝑤 : is the window size, which is typically an odd integer
to ensure a clear center.
𝑡 : is the point in timeor indexwhere youwant to calculate
the rolling median.
[𝑡−𝑤/2 ∶ 𝑡+𝑤/2]) : represents thewindowof data points,
including t and containing w data points. The median is
calculated within this window.

The expression for the median of a dataset with an even
number of data points can be represented as follows:

𝑀𝑒𝑑𝑖𝑎𝑛  =
 𝑋 𝑛

2
+ 𝑋 𝑛

2 +1
2

Where:
Median : represents the median value.
𝑋 : represents the dataset.
𝑛 : is the total number of data points in the dataset.
𝑋 𝑛

2
: represents one of the middle data points when the

data is sorted.
𝑋 𝑛

2 +1 : represents the other middle data point when the
data is sorted.

To calculate the rolling median, a moving window of a
speciϐied size (e.g., 10 seconds) is applied to ϐind the
median of packet counts within each window. This of‑
fers a smooth representation of de‑authentication packet
counts over time, simplifying the identiϐication of data
trends and patterns.

The dynamic threshold Τ is derived from the Rolling Me‑
5https://pandas.pydata.org/docs/reference/api/pandas.
core.window.rolling.Rolling.median.html
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dian (𝑅𝑀) of the dataset. It is calculated using the mean
and standard deviation of the rolling median, with the
threshold computed as themeanplus one standard devia‑
tion. The general expression of the threshold is as follows:

𝑇 (𝑅𝑀) = 𝜇(𝑅𝑀) + 𝜎(𝑅𝑀)

Where:
𝑇 (𝑅𝑀) : represents the threshold value for the rolling
median.
𝜇(𝑅𝑀) : represents themean (average) of the rollingme‑
dian.
𝜎(𝑅𝑀) : represents the standard deviation of the rolling
median.

The general expression for themean (𝜇)of theRollingMe‑
dian (𝑅𝑀) is as follows:

𝜇(𝑅𝑀) = 1
𝑛

𝑛
∑
𝑖=1

𝑅𝑀𝑖

Where:
𝑅𝑀 : represents the rolling median dataset.
𝑛 : is the total number of data points in the rollingmedian
dataset.
𝑅𝑀𝑖 : represents an individual data point within the
rolling median dataset, where i ranges from 1 to n.
𝑛

∑
𝑖=1

: denotes the summation of all the data points from
𝑖 = 1 to 𝑖 = 𝑛.

The general expression for the standard deviation (𝜎) of
the Rolling Median (𝑅𝑀) is as follows:

𝜎(𝑅𝑀) = √ 1
𝑛

𝑛
∑
𝑖=1

(𝑅𝑀𝑖 − 𝜇(𝑅𝑀))2

Where:
𝜎(𝑅𝑀): represents the standard deviation of the rolling
median.
𝑅𝑀 : represents the rolling median dataset.
𝑛 : is the total number of data points in the rollingmedian
dataset.
𝑅𝑀𝑖 : represents an individual data point within the
rolling median dataset, where i ranges from 1 to n.
𝜇(𝑅𝑀) : is the mean of the rolling median, as previously
deϐined.√... : denotes the square root of the expression inside,
which provides the standard deviation.

This approach ensures dynamic threshold adjustment
based on current packet counts, enabling detection to
adapt to changing network conditions and provide pre‑
cise results.
The value of the threshold (T) is derived from the function
T(RM) = μ(RM) + σ(RM)*, where it dynamically depends
on and is shaped by the value of the RollingMedian (RM).
It is calculated from the mean (𝜇) and standard deviation
(𝜎) values of each capture provided as input.
The rollingmedian valueRM(X,w, t) =Median(X[t ‑ w/2
: t + w/2]) depends on:

• X, representing the time series the captured trafϐic at
our disposal,

• w, which is the size of the rolling window we deϐine
as the desired detection window in the the captured
trafϐic,

• and the value t, which is the point in time or index
where the rolling median is calculated.

The only valuewe control is the size of the timewindoww
that wewant tomonitor and use to partition the captured
trafϐic. This gives us the ability to achieve better results by
breaking down the captured trafϐic into smaller pieces, al‑
lowing us to take more samples from the captured trafϐic
and avoid false positives or true negatives due to sparse
non‑ordinary values. Essentially, the rolling median’s
ability to ignore very high or low points and focus on the
more consistent, central data makes it a stronger tool for
identifying odd data points thatmight beworth our atten‑
tion.

3.1.3 Visualization

To visualize the rolling median and dynamic thresh‑
old, a scatter plot of packet counts over time is gen‑
erated, shown in Fig. 2. We plotted a scatter plot of
de‑authentication packets per second over the period of
time. When an attack is detected, a label reading “At‑
tack Detected” is displayed, indicating an anomaly in net‑
work trafϐic along with a red line representing the dy‑
namic threshold and (x) points indicating the malicious
trafϐic of de‑authentication packets. When no attack is
detected and normal network trafϐic is observed, a label
reading “Normal Trafϐic” is displayed, signifying the ab‑
sence of anomalies in the network trafϐic.The rolling me‑
dian is shown as a dashed red line and acts as the dy‑
namic threshold for detecting network trafϐic anomalies.
When an attack is detected, an ’Attack Detected’ label is
displayed, indicating an anomaly in the network trafϐic.
When no attack is detected and normal network trafϐic
is observed, a label reading “Normal Trafϐic” is displayed
(Fig. 3), signifying the absence of anomalies in the net‑
work trafϐic.
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Fig. 2 – De‑authentication attack detection

Fig. 3 – Normal packet transactions
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3.2 Phase 2 ‑ Analysis of generic network at‑
tack vectors

After successfully evading the Wi‑Fi authentication layer,
an attacker will try to move horizontally deeper into the
network in the ensuing phase (shown in Fig. 1 by the blue,
green, and red arrows, respectively). Assuming that the
primary objective of preventing Wi‑Fi intrusion has not
been achieved, our methodology applies a second line of
defense by identifying potential attacker attempts that
are already connected to the Wi‑Fi network. This is done
by scanning attempts made within the internal Wi‑Fi net‑
work in order to learn more about the network.

Although network security policies are typically set up to
examine intrusion attacks coming from the external net‑
work, it is a common mistake to underestimate such at‑
tacks from hosts within the network. To identify post‑Wi‑
Fi attack exploitation, the suggested methodology com‑
bines host identifying and network mapping attempts
coming from the internal network with indicators of in‑
terference with the Wi‑Fi network. While network map‑
ping produces a visual depiction of the topology of a net‑
work, host discovery deals with ϐinding active hosts on a
network. Port scanning is used to ϐind open ports and ser‑
vices on hosts. Together, these methods offer a thorough
picture of network activity, enabling network managers
to take preventative action to safeguard their infrastruc‑
ture. In the proposed methodology, when malicious traf‑
ϐic is detected at more than one points, an attempt to con‑
struct an “activity chain” of the attacker is made, in order
to capture the potential attack pattern starting from out‑
side and continuing within the network.

Furthermore, a crucial aspect shaping our methodology
pertains to the manner in which we identify each type of
attack. As previously mentioned, we employ mathemati‑
cal and statistical algorithms to identify Wi‑Fi‑related at‑
tacks, taking into account metrics like packet count (de‑
authentication and disassociation attacks). Nevertheless,
certain attacks aren’t reliant on packet quantities alone.
These sub‑attacks necessitate the utilization of data ex‑
tracted from the pcap ϐile for their detection. It’s worth
noting that each attack relies on distinct data sources, ob‑
tained through packet disassembly and protocol ϐiltering.
Additionally, in speciϐic scenarios, custom scripts are em‑
ployed for various purposes, always in conjunction with
packet and protocol information.

4. WI‑FI‑NID IMPLEMENTATION
Wi‑Fi‑NID implements the attack detection techniques
described in Section 3, and can be easily integrated into
corporate or homeWi‑Fi networks tominimize the risk of
security incidents originating from vulnerable Wi‑Fi net‑
works.

The goal of Wi‑Fi‑NID is to detect commonWi‑Fi‑speciϐic
attacks early and to correlate them with suspicious net‑

Fig. 4 – Experimental topology

work attacks originating from hosts directly or indirectly
connected to Wi‑Fi networks. Wi‑Fi‑NID implements the
proposedmethodology to detect: (a)Wi‑Fi‑based attacks
in 802.11 networks and (b) deeper network intrusion at‑
tempts that originate from 802.11 networks.

4.1 Wi‑Fi‑based attacks in 802.11 networks
Wi‑Fi‑NID can detect all common Wi‑Fi attack ϐlows. At‑
tack capture works as follows:

• De‑authentication attack: This kind of attack dis‑
connects authentic users from the network by send‑
ing forged de‑authentication packets to a wireless
access point. Tracing de‑authentication attacks is
based on the dynamic threshold detection method,
described in Section 3.1, to dynamically trace the de‑
authentication packets.

• Disassociation attack: Detection is similar to the one
described in the de‑authentication attack, but in this
case using disassociation packets [11].

• Authentication DoS: This kind of attack overloads an
access point with requests for authentication, mak‑
ing it unusable for authorized users. We look for
a high volume of authentication packets originating
from different MAC addresses in order to identify
this attack.

• Fake AP beacon ϐlood: We track if there are a lot of
random beacons in a wireless network because this
kind of attack ϐloods it with phony access point bea‑
cons.
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4.1.1 Wi‑Fi trafϔic ϔiltering and preparation
During the ϐirst phase of the methodology, the captured
network trafϐic, stored in pcap form, undergoes a ϐiltra‑
tion process to isolate the packets relevant to Wi‑Fi layer
attacks and to record their speciϐic timestamps.

After ϐiltration, the data is reformatted into a CSV ϐile.
This transformation allows for the establishment of a
DataFrame, which forms the basis for the current analy‑
sis. For this process, we utilize the Pandas library, known
for its efϐiciency in handling large datasets. We proceed
by loading the CSV ϐile, thereby creating a DataFrame re‑
plete with relevant information.

For the accuracy of time‑based analysis, we convert the
‘Time’ column entries in the DataFrame into datetime ob‑
jects. This conversion is preparatory to the segmentation
of data into one‑second intervals, a crucial step that en‑
ables the quantiϐication of Wi‑Fi de‑authentication and
disassociation packets on a per‑second basis. As part of
this detailed process, we extract essential parameters, no‑
tably the speciϐic time segments and the corresponding
counts of packets. These values are pivotal for generat‑
ing scatter plots and identifying patterns in the network
trafϐic. The preparation of the captured trafϐic strength‑
ens our analysis by grounding it in concrete data. As a re‑
sult, the detection of de‑authentication packets becomes
a more streamlined and efϐicient process, increasing the
overall reliability and integrity of our network security
measures.

4.2 Deeper network intrusion detection
Wi‑Fi‑NID also implements detection techniques for the
identiϐication of generic network attack vectors, which
may be related with the identiϐied Wi‑Fi attacks.

Network mapping is one of the ϐirst actions an attacker
will take to escalate their attack after gaining access to
the network, with the goal of discovering other devices on
the network and the services running on them to further
penetrate and pursue the target. At this layer, Wi‑Fi‑NID
looks for possible illegal network scanning (e.g. Nmap6
scans or relevant tools). We have included various pa‑
rameters and data resulting from the packets such as, the
[destination] port state, ϐlags like RST, FIN, URG, PSH and
the size of the packet. Typical network scanning attempts
such as TCP SYN Scan, stealth scan and Xmass scan are
captured and analyzed.

Wi‑Fi‑NID is written as an automated script that com‑
bines Bash Scripting language with Python scripts. The
tool has been tested on Kali Linux (Release: 2022.3). The
key utility tool used to implement Wi‑Fi‑NID is TShark.
TShark7 is a network protocol analyser that is used in
Command Line Interface (CLI). It allows us to capture
6https://nmap.org/
7https://www.wireshark.org/docs/man-pages/tshark.html

packet data from a live network or read packets from a
previously saved log ϐile, either by printing a decoded
formof those packets to standard output or bywriting the
packets to a ϐile. In addition, TShark is able to detect, read
and write the same download ϐiles that are supported
by Wireshark. Using the proper parameters and ϐilters,
the relevant security eventswere recorded and displayed.
Other command line utilities that have been used to ϐilter
the output of TShark include awk8. Awk is a tool that al‑
lows a programmer towrite tiny but efϐicient programs in
the form of statements that specify text patterns to search
for on each line of a graph, and the action to be taken if a
match is found within a line.

In other words, the content of packets originating from
differentmalicious actions has been studied at a high level
of granularity compared to packets corresponding to ac‑
tual network trafϐic. The idea is to identify these different
ormalformedpackets anduse their content to identify the
threat.

5. VALIDATION
A variety of test scenarios have been put into place and
tested on testbed Wi‑Fi networks made up of access
points made by various manufacturers in order to vali‑
date the suggested tool. This implementation made use
of specialized hardware, as well as a number of software
tools created expressly to break into 802.11 networks.
Numerous attacks were carried out in various ways with
various pieces of equipment. The devices and topology
utilized to execute a test case are depicted in Fig. 4. The
topology’s technical speciϐications are listed below.

A number of software tools, such as the password‑
cracking program Hashcat and the Aircrack‑ng suite,
which consists of Airmon‑ng, Airodump‑ng, and Aireplay‑
ng, can be used to record and crack WPA/WPA2 hand‑
shakes. An Alfa AWUS036NHAWi‑Fi adapter was used to
apply the attack tools, capture packets, and carry out the
attack. We also used a Wi‑Fi Pineapple Mark VII, a spe‑
cialized tool for evaluatingWi‑Fi security, to carry out the
attacks. The WPA/WPA2 handshake was captured and
cracked using Wi‑Fi Pinapple, along with the Pineapple’s
password cracking tools and the Recon Scan module for
network scanning.

Tools likeAircrack‑ng suite,Wash, andReaver, all ofwhich
are frequently found in Kali Linux OS, can be used to carry
out theWPS attack using theNull PINmethod. It is impor‑
tant to note that every device tested with WPS enabled
was completely vulnerable to the WPS attack using the
Null PIN. In addition, it was executed quickly everywhere
even though the password was complicated.

The MDK4 module and the Aircrack‑ng suite, which in‑
cludes Airmon‑ng, Airodump‑ng, and Aireplay‑ng, can be
used to launch Denial of Service (DoS) attacks. Ethical
8https://www.gnu.org/software/gawk/manual/gawk.html
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Table 2 – Validation table ‑ ”Wi‑Fi‑NID” results

Feature Categories Packets Source Destination OBSERVATION
de‑authentication

attack

588
529
1185

14:ab:c5:c4:66:2f
8c:19:b5:31:6c:e4
8c:19:b5:31:6c:e4

8c:19:b5:31:6c:e4
14:ab:c5:c4:66:2f
8c:19:b5:31:6c:e4

Possible de‑authentication DoS attack detected involving MAC address 8c:19:b5:31:6c:e4
due to high number of Deuthentication packets. If this happens in a high volume
and in a small period of time,that indicates a high possibility of such an attack.

Disassociation
attack

590
588
1190

14:ab:c5:c4:66:2f
8c:19:b5:31:6c:e4
8c:19:b5:31:6c:e4

8c:19:b5:31:6c:e4
14:ab:c5:c4:66:2f
8c:19:b5:31:6c:e4

Possible Disassociation DoS attack detected involving MAC address 8c:19:b5:31:6c:e4
due to high number of Disassociation packets. If this happens in a high

volume and in a small period of time, that indicates a high possibility of such an attack.
Authentication

DoS
1
1
1

ff:d0:bb:25:77:69
ff:ef:45:a2:9b:6d
ff:f6:8e:d9:21:41

8c:19:b5:31:6c:e4
8c:19:b5:31:6c:e4
8c:19:b5:31:6c:e4

Possible Authentication DoS attack detected due to high number of Authentication
packets coming frommultiple MAC addresses. Targeted MACs: 8c:19:b5:31:6c:e4

was targeted 2018 times

Fake AP
beacon ϐlood

no
1
1
…
1

MAC address
fc:48:41:ad:98:32
fd:8b:52:61:ee:69

…
fd:b8:bf:23:f9:7c

SSID
FqeL}CghrlB.goi0

”NULL”
…

𝑁𝐷𝐻𝐻𝑗𝐵𝐷𝐵𝑠$𝑒3

Possible Beacon Flood attack detected due to high number of random
beacons. If this happens in a high volume and in a

small period of time, that indicates a high possibility of such an attack.Wi‑Fi ‑
speciϐic
Attacks

WPS Pin 10 8c:19:b5:31:6c:e4 00:c0:ca:99:42:02
Possible WPS bruteforce attack detected due to high number of EAP packets of WPS
with Device Password Authentication Error. Targeted MACs: 8c:19:b5:31:6c:e4

was targeted 10 times ‑ Malicious MACs 00:c0:ca:99:42:02
ARP scanning 2029 00:0c:29:5e:7c:a7 ff:ff:ff:ff:ff:ff Possible ARP Scan detected due to high number of ARP packets being transmitted

from a single MAC address.Malicious MACs: 00:0c:29:5e:7c:a7 transmitted 2029 packets.
IP protocol scan 515 192.168.1.39 192.168.1.4 Possible IP Protocol Scan detected due to high number of IPv4 packets being

transmitted from a sigle IP address. Target IPs: 192.168.1.4 ‑ Malicious IPs: 192.168.1.39

ICMP ping
sweeps

2
2
…
2

192.168.1.39
192.168.1.39

…
192.168.1.39

192.168.232.87
192.168.232.88

…
192.168.232.99

Possible ICMP Ping sweeping due to high number of ICMP packets being transmitted form
a single IP address targeting a subnet. Malicious IPs: 192.168.1.39. If we see a high volume of

such trafϐic destined to many different IP addresses, it means somebody is
probably performing ICMP ping sweeping to ϐind alive hosts on the network.

TCP ping sweeps
2
2
…
2

192.168.1.39
192.168.1.39

…
192.168.1.39

192.168.232.87
192.168.232.88

…
192.168.232.99

Possible TCP Ping sweeping due to high number of TCP packets being transmitted form a
single IP address targeting a subnet. Also the packets have window size value 1024 which is very

small and unusual and that indicates suspicious trafϐic.Malicious IPs: 192.168.1.39. If we
see a high volume of such trafϐic destined to many different IP addresses, it means somebody

is probably performing TCP ping sweeping to ϐind alive hosts on the network.Host
Discovery
Network
Mapping UDP ping sweeps

2
2
…
2

192.168.1.39
192.168.1.39

…
192.168.1.39

192.168.232.87
192.168.232.88

…
192.168.232.99

Possible UDP Ping sweeping due to high number of UDP packets being transmitted form a
single IP address targeting a subnet. Also the packets have ”Total Length” of 68 which is very
small and unusual and that indicates suspicious trafϐic.Malicious IPs: 192.168.1.39. If we

see a high volume of such trafϐic destined to many different IP addresses, it means somebody
is probably performing UDP ping sweeping to ϐind alive hosts on the network.

TCP SYN Scan
Stealth Scan 1993 192.168.1.39 192.168.1.4 Possible TCP SYN/Stealth Scan detected. TCP SYN scans probably came from Nmap tool.

Target IPs: 192.168.1.4 ‑ Malicious IPs: 192.168.1.39
TCP Xmass Scan 2000 192.168.1.39 192.168.1.4 Possible TCP Xmass Scan detected. TCP Xmass scans probably came from Nmap tool.

Target IPs: 192.168.1.4 ‑ Malicious IPs: 192.168.1.39
TCP Null Scan 2000 192.168.1.39 192.168.1.4 Possible TCP NULL Scan detected. TCP NULL scans probably came from Nmap tool.

Target IPs: 192.168.1.4 ‑ Malicious IPs: 192.168.1.39
TCP FIN Scan 2000 192.168.1.39 192.168.1.4 Possible TCP FIN Scan detected. TCP FIN scans probably came from Nmap tool.

Target IPs: 192.168.1.4 ‑ Malicious IPs: 192.168.1.39

TCP Connect()
Scan

2005
6

192.168.1.39
192.168.1.4

192.168.1.4
142.250.186.78

Possible TCP Connect() Nmap Scan detected. Target IPs: 142.250.186.78, 192.168.1.4 ‑
Malicious IPs: 192.168.1.39.

To further investigate this attack, check the TCP Conversation Completeness in Wireshark with the
ϐilter ”tcp.completeness==39”. The number 39 means there were no data transferred in

the conversations and no FIN ϐlags set, which is suspicious. If NetSec‑Analyzer
also displayed a large amount of packets, this indicates a TCP Connect() Nmap scan

Network
Port

Scanning
Detection

UDP port scan 6 192.168.1.39 192.168.1.4 Possible UDP port Scan detected. UDP port scans probably came from Nmap tool.
Target IPs: 192.168.1.4 ‑ Malicious IPs: 192.168.1.39.

ARP poisoning 7
7

00:0c:29:5e:7c:a7
00:0c:29:5e:7c:a7

14:ab:c5:c4:66:2f
70:97:41:03:0f:40

Possible ARP Poisoning attack detected due to ARP duplicate addresses.
Maliciolus MACs: 00:0c:29:5e:7c:a7 ‑ Targeted MACs: 14:ab:c5:c4:66:2f , 70:97:41:03:0f:40

Network
Attacks
Detection

ICMP ϐlood 18 192.168.1.39 192.168.1.3
Possible ICMP ϐlood attack detected due to multiple ICMP packets transmitted with no

data targeting a single IP.Target IPs: 192.168.1.3
Malicious IPs: 192.168.1.39

hackers and security experts frequently use these tools to
assess wireless network security and spot possible weak‑
nesses. We also use The Wi‑Fi Pineapple Mark VII and
the Alfa AWUS036NHA Wi‑Fi adapter to conduct denial‑
of‑service attacks.

The results of the use of Wi‑Fi‑NID testing are presented
in Fig. 2. Note that the results shown in Fig. 2 are consis‑
tent with the results presented in the early version of this
work [14], while themain differences are presented at the
end of this section. The results shown correspond to one
of the several test networks used during the validation of
the tool. In this network, we executed all the attacks out‑
lined in the penetration testing methodology (see Fig. 1).
Thus, for each feature of the tool, a part of the results and
the ϐinal observation (both generated by the tool) are pre‑
sented.

• DoS attacks feature: The target’s MAC address is vis‑
ible in the event of de‑authentication, disassociation,
and authenticationDoS attacks. In the instance of the
fake AP beacon ϐlood, the attack’s attempted execu‑
tion is discovered.

• Host discovery ‑ network mapping feature and net‑
work attacks detection feature: These features dis‑
play the intruder’s MAC or IP address in addition to
the quantity and size of packets.

• Network port scanning detection feature: Alongwith
other data, this feature also shows the attacker’s IP
address.

• Brute force WPS pin feature: This feature displays
the packets that are harmful together with the tar‑
geted MAC and the attacker’s device MAC address.
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5.1 Initial attack detection validation
For each detection feature supported, every attack under‑
went 30 individual tests. In all cases the attackswere suc‑
cessfully detected, both theWi‑Fi‑speciϐic and the consec‑
utive host discovery and network scanning attacks that
followed the successful Wi‑Fi attacks and true negatives
were not detected.

Some false positiveswere detected however, in the case of
the generic network attacks. For example, in the case of
the TCP connect scan attack about 2.2% of the detected
packets were eventually false positives. This is due to
the fact that the detection of scanning attacks from inside
nodes requires setting up very low thresholds, in order to
avoid missing actual attacks (false negatives). This how‑
ever indicates the importance of linking, inWi‑Fi‑NID,Wi‑
Fi‑speciϐic attacks as indicators of compromise, for sub‑
sequent escalation attacks in the internal network, after
a successful penetration of a Wi‑Fi network. In this way,
the detection of generic network‑layer attacks canbe ϐine‑
tuned, by dynamically increasing or decreasing the de‑
tection thresholds, based on events detected at the Wi‑Fi
layer.

5.2 Wi‑Fi attack detection validation
The most important element of this approach is the ef‑
ϐiciency, conϐirmed through rigorous testing under un‑
conventional scenarios where the initial implementation
faltered. To simulate these conditions, we developed a
script to execute attacks with precision, diverging from
the constraints of conventional tools, which increases the
complexity of the test scenarios. We encountered sev‑
eral factors in our diverse tests that underscored the
need for a more efϐicient method, which we will discuss
next. It’s worth noting that by using well‑known, con‑
ventional tools that conduct de‑authentication attacks,
such as aireplay‑ng or mdk3 and mdk4, they could be
easily detected as they send a signiϐicant volume of de‑
authentication packets per second, approximately 100‑
400 packets per second. Hence, the outliers in the net‑
work trafϐic could be easily identiϐied without false posi‑
tives.

In our initial implementation [14], the use of a static
threshold for attack detection posed considerable issues,
including frequent false positives, prompting us to con‑
sider a dynamic threshold. This adjustment signiϐicantly
minimized false positives, as described in Section 3.1.

The primary difference between the two versions of our
framework lies in the implementation of static versus dy‑
namic thresholds. To evaluate the efϐiciency difference,
we replicated the same scenario in both versions. Speciϐi‑
cally, we chose to implement the de‑authentication attack
using available custom attack tools and our custom attack
tool, each with varying parameters.
In more detail, 100 tests were conducted on each frame‑

work. Although both frameworks (the initial version of
[14] and the enhanced dynamic framework presented
in this paper) showed a high accuracy (exceeding 90%
even in the initial version), the framework with the static
threshold failed to detect any attack, whether sophisti‑
cated or otherwise, with a packet count below the static
threshold. In contrast, the framework with the dynamic
threshold succeeded in detecting all instances except
some corner cases (such as setting the time interval set to
more than six seconds). However, such an attack would
not be successful in practice.
Additionally, we enhanced our approach to accurately
identify the attacker’s MAC address, a detail overlooked
in the initial methodology that occasionally misidentiϐied
the attacker’s access point instead of the device’s MAC
address. Bellow is the message in such cases:
Attack Detected Main targeted MAC Address:
70:97:41:03:0f:49 (targeted 16364 times)
Main targeted MAC Address associated with
70:97:41:03:0f:49: 0a:e8:83:1a:52:6e (targeted
16364 times)

For instance, we tested the system’s resilience by launch‑
ing de‑authentication attacks with minimal packets to
avoid detection. As shown in Fig. 5, our reϐinedmethodol‑
ogy proved robust, successfully identifying the attack ir‑
respective of the packet count or the timing disparities in
the network’s packet transactions. This outcome under‑
scores the enhanced adaptability and accuracy of our im‑
plementation in identifying threats.

To explore this scenario and test our tool, we created a
custom attack tool to carry out stealth de‑authentication
attacks. This tool provides us with the ability to construct
de‑authentication packets from scratch and reduce the
number of packets sent per second, as well as the fre‑
quency at which they are sent, blending them with nor‑
mal trafϐic. This makes the attack harder to detect. In this
way, we investigated scenarios where an attacker tries to
evadedetection,which allowedus to test the effectiveness
of our tool in such scenarios.

As mentioned earlier, non‑outliers are assigned a value
of 0, while outliers retain their original values. In our
approach to detecting anomalies in a scenario like the
one described above, we examine each data point in re‑
lation to its neighboring data points. If a data point is sur‑
rounded by at least ϐive consecutive zeros (meaning it has
a sequence of zeros both before and after it), it is not con‑
sidered a candidate for an attack point inmalicious trafϐic.
This is because it indicates that, in the ϐive seconds pre‑
ceding and following the spike in de‑authentication pack‑
ets, there were no other spikes exceeding the threshold
value. Therefore, it lacks the characteristics of a success‑
ful de‑authentication attack as the continuity of the at‑
tack breaks and considering our research we concluded
that usually in this time period a system would have
enough time to reconnect again to the access point before
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Fig. 5 – Custom de‑authentication attack packet transactions

it gets de‑authenticated again. However, if any outlier is
identiϐied with any neighboring data points within a 5‑
secondwindow that surpasses thedynamically calculated
threshold, it is considered an attack point and marked as
malicious trafϐic.

Therefore, in comparison to our initial version [14] Wi‑
Fi‑NID has now advanced to a point where it can accu‑
rately identify stealth attacks, including those involving
only a handful of packets that attempt to slip past secu‑
rity measures unnoticed. It was shown to be capable of
distinguishing these suspect activities from regular net‑
work trafϐic, eliminating confusion from false alerts that
can occur when the router transmits more packets than
what the security system recognizes as typical.

For example, as we can see in Fig. 5, our tool was able
to detect this successful attack even when the packets
sent per second were minimal (3‑10 packets) compared
to those in the previous image (90‑230 packets). Fur‑
thermore, it managed to distinguish between malicious
packets and legitimate ones, as there are spikes where,
at that moment, the router sent a considerable number
of de‑authentication packets to the client, well exceeding
the dynamic threshold, as well as the packets from the at‑
tacker per second.

6. CONCLUSION
The pen‑testing methodology for Wi‑Fi networks that we
presented in this paper is based on the techniques and
resources that attackers use to compromise these net‑
works. We implemented the methodology in Wi‑Fi‑NID,
a software tool that eavesdrops on Wi‑Fi network traf‑
ϐic and employs a layered analysis to detect malicious ac‑
tivity. Wi‑Fi‑NID detects attack patterns initiated at the
Wi‑Fi layer by employing dynamic detection thresholds,
in order to detect Wi‑Fi intrusion attempts and to con‑

currently detect and avoid outliers, by applying statisti‑
cal analysis based on the rolling median. This was based
on the observation that Wi‑Fi‑speciϐic attacks such as
de‑authentication and disassociation packets aren’t com‑
mon, but show upmore frequently when such attacks are
happening. Then, traces and important details about the
attacker, such as suspectedMACand IP addresses, are fur‑
ther investigated in the second phase of themethodology,
in order to detect additional attack patterns that indicate
lateral movements at the internal network. Wi‑Fi‑NID at‑
tempts to apprehend the attacker during actions that are
hard to evade. Our current proof of concept is deployed in
a test environment across multiple real‑world Wi‑Fi net‑
works.

A pivotal aspect of our strategy is the future adaptabil‑
ity of our system into a Machine Learning (ML) frame‑
work. The custom algorithms and mathematical models
we developed are designed with an inherent ϐlexibility
that will allow them to be integrated into a more com‑
plex ML model in the future. As a future step we will fo‑
cus on enhancing the tool with additional statistic mea‑
sures, towards amore sophisticated self‑learning defense
mechanism. This transition has been partially realized,
by implementing dynamic detection thresholds based on
rolling median. We aim to elaborate on these advance‑
ments in subsequent work. Furthermore, we will try to
create and then train this dataset so that we can detect
attacks using pure AI methods. It is also an opportunity
to see how much more efϐicient the AI methods are com‑
pared to the older ones. More speciϐically, the ϐirst step is
to create our owndataset for de‑authentication attacks, in
order to use it to test algorithms such as Long Short‑Term
Memory (LSTM) and Isolation forest. In addition, we plan
to extend the tool to an active prevention tool that beyond
detectionwill immediatelymitigatemalicious attempts to
penetrate an 802.11 network in real time.
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