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Abstract – In modern wireless communication systems, the Multiple‑Input Multiple‑Output (MIMO) technology allows to
greatly increase power efϔiciency, the serving area, and the overall cell throughput through the use of the antenna array
beamforming. Nevertheless, the MIMO systems require accurate channel state knowledge to apply correct precoding. In
5G Time Division Duplex (TDD) systems, the Channel State Information (CSI) is obtained via Sounding Reference Signals
(SRS) transmitted by the User Equipment (UE). UEs have limited power capabilities and thus cannot achieve high Uplink
(UL) Signal‑to‑Noise Ratio (SNR) on gNodeB (gNB) in large bandwidth. There are multiple techniques that can be applied to
improve the accuracy of Channel Estimation (CE) in noisy conditions. In this paper, we describe a classical method, namely
the Vector Autoregression (VAR) with adaptive model order estimation, as well as a modern Deep Neural Network (DNN)
approach for the massive‑MIMO channel estimation de‑noising problem. The developed methods and signal pre and post‑
processing steps are described, followed by their performance evaluation in a set of realistic simulations. The designed algo‑
rithms provide results outperforming the baseline spatio‑temporal windowing approaches by≈ 2𝑑𝐵 effective Downlink (DL)
Signal‑to‑Interference‑plus‑Noise Ratio (SINR) metric in single and multi‑user MIMO scenarios. Extensive simulation results
demonstrate the robustness of the developed methods to the dynamic channel conditions.

Keywords – 5G, channel estimation, CSI, deep learning, de‑noising, DFT, massive MIMO, neural networks, sparse channel
representation, SRS, vector autoregression

1. INTRODUCTION

The quality of radio Channel Estimation (CE) plays a cru‑ 
cial role in the performance of Multiple‑Input Multiple‑ 
Output (MIMO) communication systems. The gain of 
MIMO systems lies in the spatial domain multiplexing 
technique. Using the radio channel state knowledge, 
gNodeB (gNB) can construct the proper precoding matrix 
to steer the radiation pattern of the antenna array in the 
desired direction.
The degradation of the communication system’s perfor‑ 
mance can be caused by the imprecise estimation of the 
channel state. This issue occurs when the pilot signals 
are received at a low Signal‑to‑Noise Ratio (SNR). The 
User Equipment (UE) radio transmission power is lim‑ 
ited by battery, power ampliϐier efϐiciency, and maximum 
power radiation constraints. Thus, the UE cannot trans‑ 
mit sounding signals on large bandwidths while retaining 
high SNR levels on the gNB side. In order to overcome 
such constraints advanced processing techniques of chan‑ 
nel estimation and noise suppression are applied at the 
gNB side.
Nowadays, a wide variety of approaches are used for 
channel estimation. Among them, Machine Learning (ML) 
approaches are becoming popular. In this paper, we in‑ 
vestigate the performance of vector autoregression and 
the convolutional Deep Neural Network (DNN) model for 
a massive MIMO channel estimation de-noising task.

Autoregressive (AR) models are an important class of sta‑ 
tistical methods for describing time‑varying processes. In 
its generalized version, Vector Autoregression (VAR) is 
widely used to capture multivariate relationships rather 
than univariate ones. This class of models is often used for 
time‑series forecasting. There are a number of works de‑ 
scribing the AR models application for the radio channel 
state prediction [1, 2, 3, 4]. These models can be applied 
for multivariate time‑series de‑noising as well. Recently, 
VAR models have been used in application to seismic data 
[5], audio recordings [6, 7], and medical data de‑noising 
[8, 9].
Recently, the deep learning approach has become popular 
for channel de‑noising in MIMO systems [10, 11], due to 
the possibility of achieving higher performance than clas‑ 
sical algorithms. However, deep learning models tend to 
have high computational complexity. Those facts make 
learning models valuable for further research. In this pa‑ 
per, we consider one of the classical deep‑learning mod‑ 
els used for channel de‑noising called DnCNN [12] modi‑ 
ϐied to exploit signal processing in its sparse representa‑ 
tion.
In this paper, we exploit one of the classical approaches 
for MIMO systems to perform signal processing in the 
spatio-temporal domains, which helps to utilize the 
sparse nature of the received signal and improve system 
performance [13, 14, 15, 16]. These methods often use a 
Fourier basis for obtaining the channel representation in

ITU Journal on Future and Evolving Technologies, Volume 5, Issue 1, March 2024

© International Telecommunication Union, 2024 
Some rights reserved. This work is available under the CC BY-NC-ND 3.0 IGO license: https://creativecommons.org/licenses/by-nc-nd/3.0/igo/. 

More information regarding the license and suggested citation, additional permissions and disclaimers is available at: 
https://www.itu.int/en/journal/j-fet/Pages/default.aspx 



terms of beams and delay taps, followed by thresholding 
or other adaptive ϐiltering methods.

The goal of this paper is to investigate the applicability 
of the classical and modern machine learning methods 
for low‑SNR UL MIMO channel estimation (de‑noising). 
The paper is organized as follows. In Section 2, the sys‑ 
tem model and the signal preprocessing pipeline are de‑ 
scribed. Section 3 introduces the VAR model and de‑ 
scribes its application for beam domain Channel State In‑ 
formation (CSI) de‑noising. Section 4 is devoted to the 
DNN model architecture description. The complexity of 
the developed algorithms is evaluated in Section 5. Nu‑ 
merical results and performance comparisons are pro‑ 
vided in Section 6. Achieved results and possible im‑ 
provements are discussed in Section 7.

2. SYSTEM MODEL

2.1 MIMO channel
We consider the Uplink (UL) Sounding Reference Signals 
(SRS) transmission for channel state information estima‑ 
tion in 5G New Radio (NR) Time Division Duplex (TDD). 
Let 𝑁𝑈𝐸 be the total number of UEs in the system. Each 
UE has 𝑁𝑢 antenna elements and gNB has 𝑁𝐵𝑆 antenna 
elements.
We assume that the UEs are transmitting sounding refer‑ 
ence signals in a comb‑𝑛 manner, which implies that each 
𝑛 subcarrier is used for pilot transmission1. Let 𝑁𝑓 be the 
total number of active subcarriers. Then, the channel 
snapshot of user 𝑘 can be represented as a tensor

ℋ(𝑘) ∈ ℂ𝑁𝐵𝑆×𝑁𝑢×𝑁𝑓 , (1)

which is sliced by the frequency dimension

ℋ(𝑘) = [H(𝑘)
𝑓 ], ∀𝑓 ∈ [1, 𝑁𝑓 ], (2)

or by the UE antenna dimension

ℋ(𝑘) = [H(𝑘)
𝑢 ], ∀𝑢 ∈ [1, 𝑁𝑢]. (3)

TDD systems share the same frequency band for the up‑ 
link and downlink transmissions. Thus, the radio chan‑
nel is assumed to be reciprocal, implying that HDL = H𝐻

UL, 
where (⋅)𝐻 denotes the Hermitian transpose.

We assume that the received by gNB signal is corrupted 
by noise and, thus, the channel estimation is deϐined as 
follows

Ĥ(𝑘)
𝑓 = H(𝑘)

𝑓 + n(𝑘)
𝑓 , ∀𝑓, 𝑘. (4)

15G UL pilots structure is described in section 6 of [17].

In what follows, we assume that the de‑noising operator 
𝒟(⋅) is applied to the channel estimation

H̄(𝑘)
𝑓 = 𝒟(Ĥ(𝑘)

𝑓 ). (5)

The objective function of the MIMO system can be ex‑
pressed in terms of the system capacity [18]

maximize
W𝑓

∑
𝑘∈𝑁𝑈𝐸𝑠

𝔼𝑓[ log (1 + SINR(𝑘)
𝑓 (W𝑓))],

subject to W𝑓 = 𝒮([H̄(1)
𝑓 , ..., H̄(𝑘)

𝑓 ]), ∀𝑓,
(6)

whereW𝑓 is a Multiuser (MU) Downlink (DL) precoding
matrix, obtained via the function 𝒮(⋅) from the de‑noised
CSIs H̄𝑓 . Function 𝒮(⋅) implies zero forcing‑based MU
precoder design. Signal‑to‑Interference‑plus‑Noise ratio
(SINR) of 𝑘th UE is deϐined as

SINR(𝑘)
𝑓 =

|H(𝑘)𝐻
𝑓 W(𝑘)

𝑓 |2
𝑁𝑈𝐸
∑
𝑙=1
𝑙≠𝑘

|H(𝑘)𝐻
𝑓 W(𝑘)

𝑓 |2 + 𝜎2
. (7)

In order to keep the following description compact, we
omit the superscript (𝑘).

2.2 Sparse channel representation
It is possible to apply several transformations to repre‑
sent the CSI slicesH𝑢 ∈ ℂ𝑁𝐵𝑆×𝑁𝑓 , ∀𝑢 (3) in a sparse form.

The antenna domain of the channel matrix describes the
superposition of the planar waves received by each an‑
tenna element. The straightforward de‑noising in the an‑
tenna domain is not optimal. The noise and the target sig‑
nal are spread across all antenna elements (see Fig.1a).

The antenna domain can be transformed to the beam (an‑
gular) domain by projecting CSI slices Ĥ𝑢 on the 2D‑DFT
beamspace F𝑏. The projection matrix F𝑏 depends on the
structure of the antenna array and can be constructed as
follows:

F𝑏 = F𝑁𝑅
⊗ F𝑁𝐶

, (8)

where F𝑁𝑅 
and F𝑁𝐶 

are the DFT matrices of size equal to
the number of rows 𝑁𝑅 and columns 𝑁𝐶 of the antenna 
array, respectively. The symbol ⊗ denotes the Kronecker 
product.

The channel angular representation is sparse since it 
characterizes signal Angles of Arrival (AoA). While the 
noise component is spread across all angular directions, 
the target signal AoA is deϐined by the location of the UEs 
and by the scatters in the environment of signal propaga- 
tion.

Here    𝑓 is the CSI estimated by SRS pilots, H𝑓 is the actual 
CSI, and n𝑓 is the Additive White Gaussian Noise (AWGN) 
with complex normal distribution 𝒞𝒩(0, 𝜎2).
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(a) (b)

Fig. 1 – Channel estimation matrix representation: (a) antenna‑ 
frequency domain, (b) sparse beam‑delay domain.

The frequency domain of the channel matrix can be 
transformed into the delay domain by applying the 
inverse FFT. Let us denote by F𝑑 ∈ ℂ𝑁𝑓×𝑁𝑓 the DFT 
matrix. Then the CSI slices of (3) in the beam‑delay 
domains are deϐined as

H̃

𝑢 = ℱ(Ĥ𝑢) = F𝑏Ĥ𝑢F𝐻
𝑑 , ∀𝑢. (9)

For the following description, we denote the taps set by 𝜏 
∈ [1, 𝑁𝜏 ] and the beams set by 𝑏 ∈ [1, 𝑁𝑏].  Applying (9) 
to CSI we expect the CE matrix   𝑢 to be sparse in the 
beam and delay domains (see Fig. 1b).

The beam‑delay domains CSI representation describes 
the MIMO channel in terms of the amplitude pulses, which 
are received from different angles and deϐined by the loca‑ 
tions of the scatters in the environment of signal propaga‑ 
tion. The target signal is localized by the AoA and by the 
propagation delays, while the noise remains distributed 
uniformly.

The wide frequency band of the SRS signal transmission 
allows a high resolution to be achieved in the delay do‑ 
main. The power distribution of channel taps in the de‑ 
lay domain is a Rayleigh‑Rice random process and may be 
deϐined by the Power‑Delay Proϐile (PDP). Channel PDP 
taps distribution has good localization properties inside 
the symbol (usually signal taps occupy a small part at the 
start of the symbol). Once the PDP is estimated, the rect‑ 
angular window can be applied for the PDP de‑noising. 
The angular spectrum of the CSI is a random process as 
well, and it describes the channel properties in the space 
domain (beams). The resolution of the CSI in the angular 
domain is deϐined by the aperture of the antenna array 
and the pattern design of each antenna port. The angular 
spectrum has an irregular distribution and, thus, it cannot 
be localized as simply as the PDP (see Fig. 1b) [19].

3. VECTOR AUTOREGRESSION FOR CSI DE‑
NOISING

3.1 VAR model
Autoregressive models are associated with time series
processing. The channel tensor (1) is deϐined for some

time snapshot 𝑡. In what follows by 𝑡 we denote the cur‑
rent time sample and by 𝑝 the model order. Let us con‑
sider the VAR time series applied on the beam dimension
of the channel vector h̃𝜏,𝑢(𝑡)

h̄′
𝜏,𝑢(𝑡) = a0 +

𝑝
∑
𝑖=1

A𝑖h̃𝜏,𝑢(𝑡 − 𝑖) + 𝜖𝑡, ∀𝜏, 𝑢, (10)

where h̃𝜏,𝑢(𝑡) ∈ ℂ𝑁𝑏 , h̃𝜏,𝑢(𝑡) ⊂ H̃𝑢(𝑡) is a vector of CSI,
which corresponds to a tap 𝜏 at time sample 𝑡 received
from UE antenna 𝑢 (2), a0 ∈ ℂ𝑁𝑏 is the ϐixed bias vector,
A𝑖 ∈ ℂ𝑁𝑏×𝑁𝑏 , ∀𝑖 ∈ [1, 𝑝] are the AR coefϐicients matrices
and 𝜖𝑡 ∈ ℂ𝑁𝑏 ‑ error term [20].

The vector autoregressive process can be estimated by
the Least Squares (LS) method. For the following de‑
scription by matrix B = [h̃𝜏,𝑢(𝑡 − 1), .., h̃𝜏,𝑢(𝑡 − 𝑝)] ∈
ℂ𝑁𝑏×𝑝 ∀𝜏, 𝑢wedenote the stacked beam‑domain CSI vec‑
tors corresponding to the time snapshots𝑇 ∈ [𝑡−𝑝, 𝑡−1].
In that notation, the VAR‑based ϐilter is constructed as

h̄′
𝜏,𝑢(𝑡) = B(B𝐻B + 𝛾I)−1B𝐻⏟⏟⏟⏟⏟⏟⏟⏟⏟

VAR ϐilter
h̃𝜏,𝑢(𝑡), ∀𝜏, 𝑢, (11)

where h̄′
𝜏(𝑡) is the de‑noised CSI vector in beam domain,

𝛾 is a regularization coefϐicient and I is an identitymatrix.

VAR de‑noising is applied on the beam dimension of CSI,
i.e., CSI is processed in a tap‑by‑tap manner. After the
VAR de‑noising, the CSI matrix is transformed back to the
antenna‑frequency domains.

H̄𝑢 = ℱ−1(H̄′
𝑢) ∀𝑢. (12)

The proposed de‑noising approach is summarized in Al‑ 
gorithm 1 and schematically depicted in Fig. 2.

Algorithm 1 Spatio‑temporal VAR de‑noising
Input: Ĥ𝑢(𝑡) ∈ ℂ𝑁𝐵𝑆×𝑁𝑓 ‑ CSI matrices, 𝑢 ∈ [1, 𝑁𝑢]
Output: H̄𝑢(𝑡) ∈ ℂ𝑁𝐵𝑆×𝑁𝑓 ‑ de‑noised CSI matrices

Transform to beam‑delay domains (9):
1: H̃𝑢(𝑡) = ℱ(Ĥ𝑢(𝑡)), ∀𝑢 ∈ [1, 𝑁𝑢]

Tap‑by‑tap VAR de‑noising:
2: for 𝑢 = 1 to 𝑁𝑢 do
3: for 𝜏 = 1 to 𝑁𝜏 do
4: B = [h̃𝜏,𝑢(𝑡 − 𝑝), … , h̃𝜏,𝑢(𝑡 − 1)]
5: h̄′

𝜏,𝑢(𝑡) = B(B𝐻B + 𝛾I)−1B𝐻h̃𝜏,𝑢(𝑡)
6: end for
7: end for
8: H̄′

𝑢(𝑡) = [h̄′
1(𝑡), .., h̄′

𝜏(𝑡)], ∀𝑢
Transform to antenna‑frequency domain:

9: H̄𝑢(𝑡) = ℱ−1(H̄′
𝑢(𝑡))

10: return H̄𝑢(𝑡)
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Buffer (p historical samples)

VAR beam-domain de-noising

Fig. 2 – Proposed VAR‑based de‑noising system architecture.

3.2 Adaptive VAR model order selection
The optimal VAR model order selection depends on the
speciϐic radio channel conditions. If the channel is static
(speed of UEs close to zero), the optimal noise suppres‑
sion approach would imply averaging over the inϐinite
number of CSI samples. In the high‑dynamic channel con‑
ditions (mobile UEs), the CSI history used for the model
construction shall not exceed the channel coherence time.

The coherence time 𝑇𝑐 of a wireless channel is deϐined (in
an order of magnitude sense) as the interval over which
the channel state information changes signiϐicantly. For
the Clarke’s model, it is deϐined as

𝑇𝑐 = 1
4𝐷𝑠

, (13)

where 𝐷𝑠 is the Doppler spread [18].

This is a somewhat imprecise relation, since in the real
case scenario the Doppler spread is not guaranteed to
match the U‑shape form and the Doppler shift harmonics
with the largest frequency may belong to paths that are
too weak to make a difference. Depending on the chan‑
nel multipath properties, the factor in the denominator
of (13) can differ from 4. In this paper, we consider the
adaptive scheme, which implies the ϐine‑tuning of the co‑
herence time 𝑇𝑐 factor, for the following denoted by 𝛼.

𝑇𝑐 = 1
𝛼𝑓𝐷𝑚

, (14)

where the 𝛼 coefϐicient is supposed to be approximated
during the gNB conϐiguration stage and 𝑓𝐷𝑚

Doppler
spectrum harmonic with maximum power.

Nevertheless, the important thing is to recognize that the
major effect in determining the time coherence 𝑇𝑐 is the
Doppler spreadand that the relationship is reciprocal: the
larger the Doppler spread is, the smaller the time coher‑
ence and vice versa.

For the adaptive VAR‑basedMIMO channel de‑noising, we
consider the estimation of the model order, which would
utilize the historical samples

𝑝 = ⌊ 𝑇𝑐
𝑇𝑝

⌋ , (15)

where 𝑇𝑝 denotes the pilot transmission period.

For a known UE velocity and angular spectrum, the
Doppler frequency can be calculated as

𝑓𝐷 = r𝑇v
𝜆0

, (16)

where r = ⎡⎢
⎣

sin 𝜃 cos𝜙
sin 𝜃 sin𝜙

cos 𝜃
⎤⎥
⎦
is the spherical unit vector with

azimuth arrival angle 𝜙 and elevation arrival angle 𝜃, v =
𝑣 [sin 𝜃𝑣 cos𝜙𝑣 sin 𝜃𝑣 sin𝜙𝑣 cos 𝜃𝑣]𝑇 is the user veloc‑
ity vector with speed 𝑣, travel azimuth angle 𝜙𝑣 and ele‑
vation angle 𝜃𝑣, 𝜆0 is the carrier wavelength.

Since the true Doppler spread is not available to the gNB,
we consider Doppler spectrum estimation from the his‑
torical measurements. Let us deϐine the user 𝑘 de‑noised
channel estimation tensor time series as follows

ℋ̄(𝑇𝐷) = [ℋ̄(𝑡)] ∈ ℂ𝑁𝐵𝑆×𝑁𝑢×𝑁𝑓×𝑁𝐷 , (17)

where ℋ̄(𝑇𝐷) is the set of channel tensors estimation ℋ̄
at the timemoments𝑇𝐷 ∈ [𝑡−1, 𝑡−𝑁𝐷]. In the alternative
form, ℋ̄(𝑇𝐷) consist of the channel vectors h̄𝐷 ∈ ℂ𝑁𝐷

ℋ̄(𝑇𝐷) = [h̄𝐷]𝑏,𝑢,𝑓 , ∀𝑏, 𝑢, 𝑓
∀𝑏 ∈ [1, 𝑁𝐵𝑆], ∀𝑢 ∈ [1, 𝑁𝑢], ∀𝑓 ∈ [1, 𝑁𝑓 ],

(18)

where 𝑇𝐷 denotes the historical channel estimation time
indices.

To calculate the Doppler spectrum components of the
channel tensor (17), the discrete Fourier transform Φ(⋅)
is applied over the time domain samples 𝑇𝐷

[ȟ𝐷]𝑏,𝑢,𝑓 = Φ([h̄𝐷]𝑏,𝑢,𝑓), ∀𝑏, 𝑢, 𝑓, (19)

and then its power spectrum is averaged over the fre‑
quency and antenna domains

pȟ𝐷
= 𝔼𝑏,𝑢,𝑓 [ȟ𝐷ȟ𝐻

𝐷 ]𝑗𝑗, ∀𝑗 ∈ [1, 𝑁𝐷], (20)

where 𝔼(⋅) is an expectation over indices 𝑏, 𝑢, 𝑓 .
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N_layers

Conv3d -> ReLU
Conv3d -> BatchNorm -> ReLU
DillatedConv3d -> BatchNorm -> ReLU

TDnCNN

...

Fig. 3 – Tensor DnCNN architecture scheme in beam‑delay domain.

In this paper, we follow the simple idea of the VAR 
model order estimation based on the frequency of the 
Doppler harmonic with maximum power, which is 
obtained as

𝑓𝐷𝑚
= arg max

𝜏𝐷∈[1,𝑁𝐷]
pȟ𝐷

, (21)

where 𝑓𝐷𝑚
is the estimated Doppler frequency harmonic

with maximum power.

Recalling equation (15), the optimal VAR de‑noising
model order can be approximated as

𝑝 = ⌊ 𝑇𝑐
𝑇𝑝

⌋ = ⌊ 1
𝛼𝑓𝐷𝑚

𝑇𝑝
⌋ (22)

4. DEEP LEARNING CSI DE‑NOISING

4.1 Model description
A De‑noising Convolutional Neural Network (DnCNN) is 
a popular deep learning model used for image de‑noising, 
which doesn’t use prior information about image content. 
This is achieved via a learning model to predict Gaussian 
noise rather than image content. The classical DnCNN 
is a residual network, where each block contains a con‑ 
volution layer padded to have the same output size as 
input, batch normalization, and activation function. For 
blind de‑noising, it contains 20 such residual blocks [12]. 
Recently, DnCNN and its variations showed promising 
performance for MIMO channel de‑noising. Such varia‑ 
tions include complex‑valued DnCNN adapted to perform 
on complex numbers [10] [21], combining DnCNN with 
compressed sensing algorithms, which utilizes the chan‑ 
nel sparsity property [22] and ensembles with other de‑ 
noising architectures or feature engineering techniques 
[23].

In our research, as a baseline a complex‑valued DnCNN 
[10] was used, which was additionally adapted to
process input data as a channel tensor ℋ ̃ in the 
spatio‑temporal domain. Such a tensor model is called 
TDnCNN [24] and it utilizes 3D convolutions instead of 
2D ones. The scheme of the model is presented in Fig. 3. 
The motivation for using this model includes the fact that 
a fully convolution neural network can be considered as 
a set of Finite Impulse Response (FIR) filters connected

(24)ℛ−1 ∶ ℋ̄𝑜𝑢𝑡 → ℋ̄

where ℋ�̄�𝑢𝑡 ∈ ℂ𝑁𝑢×𝑁𝑅×𝑁𝐶×𝑁𝜏 and ℋ ̄∈ ℂ𝑁𝑏×𝑁𝑢×𝑁𝜏 .

To increase the receptive ϐield of the model and estimate 
the beams more accurately, the trainable convolutions 
with dilation equal to three were applied after each block 
of classical convolution. The kernel size of each convolu‑ 
tion was set to 3×3×3, and the total number of de‑noising 
layers to 15.

4.2 Training setup
For the training procedure, the Mean Squared Error 
(MSE) loss function was utilized.

ℒ𝑀𝑆𝐸 = 1
𝑁𝑏𝑁𝑢𝑁𝑓

√ ∑
𝑏,𝑢,𝑓

([n]𝑏,𝑢,𝑓 − [n̄]𝑏,𝑢,𝑓)2, (25)

where n and n ̄are actual and estimated noise samples 
respectively.

Although MSE is good for training models via backprop‑ 
agation, it was observed that such metrics as MSE and 
its variations cannot be physically interpreted to deϐine 
and compare the quality of the model implemented in the 
wireless system. Therefore MSE was used for model train‑ 
ing and the SINR metric (7) for its evaluation. The effec‑ 
tive SINR has a strong physical meaning and it can be well 
interpreted.

via a non‑linear function. To utilize the channel sparsity 
in the angular and delay domains we apply the reshaping 
operator ℛ(⋅):

ℛ ∶ ℋ̃ → ℋ̃𝑖𝑛, (23)

where ℋ̃ ∈ ℂ𝑁𝑏×𝑁𝑢×𝑁𝜏 and ℋ̃𝑖𝑛 ∈ ℂ𝑁𝑢×𝑁𝑅×𝑁𝐶×𝑁𝜏 . 
Here 𝑁𝑅 and 𝑁𝐶 denote the beam dimension shape (𝑁𝑅 ⋅ 
𝑁𝐶 = 𝑁𝑏), which describe the azimuth and elevation di‑ 
rections respectively. The role of the TDnCNN model is to 
predict the tensor of noise, which is subtracted from the 
noisy channel estimation to obtain the de‑noised model 
output ℋ̄𝑜𝑢𝑡. The resulting estimation ℋ̄ with an initial 
shape can be obtained via the inverse reshaping operator 
ℛ−1(⋅) applied to ℋ̄𝑜𝑢𝑡:
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Table 1 – Proposed algorithms complexity evaluation

Step \ Algorithm VAR DnCNN
Antenna‑to‑beam transform 𝒪(𝑁𝑢𝑁𝑓 ⋅ 2⌈ log2 𝑁𝐵𝑆⌉ ⋅ (⌈ log2 𝑁𝐵𝑆⌉ − 1))
Frequency‑to‑PDP transform 𝒪(𝑁𝑢𝑁𝑏 ⋅ 2⌈ log2 𝑁𝑓⌉⌈ log2 𝑁𝑓⌉)

CE de‑noising 𝒪(𝑁𝑢𝑁𝜏 [𝑁𝑏𝑝 + 2𝑁𝑏𝑝2 + 𝑁2
𝑏 𝑝 + 𝑝3]) 𝒪(𝑁𝑢𝑁𝑏𝑁𝜏𝑘3𝑁𝑙)

PDP‑to‑frequency transform 𝒪(𝑁𝑢𝑁𝑏 ⋅ 2⌈ log2 𝑁𝑓⌉⌈ log2 𝑁𝑓⌉)
Beam‑to‑antenna transform 𝒪(𝑁𝑢𝑁𝑓 ⋅ 2⌈ log2 𝑁𝐵𝑆⌉ ⋅ (⌈ log2 𝑁𝐵𝑆⌉ − 1))

As for the dataset, it was fully generated with a 
QuaDRiGa channel model [25]. The conϐiguration of the 
channel scenario is discussed in Section 6. The generated 
dataset contains a set of UE channels with different 
random seeds, which determine the position of reϐlectors 
in the environment. This dataset was split into three 
subsets: training (100 channels) used only for model 
weight adjustment, validation (20 channels) utilized for 
model selection, and test (20 channels) used for ϐinal 
model evaluation. The model was trained ofϐline for 300 
epochs with 10−3 learning rate of Adam optimizer and a 
batch size of three (channel realizations). The choice of 
ofϐline training mode is motivated by the fact that the 
noise tensor was used as a target value in the loss 
function, which is practically impossible to measure in 
online mode. Moreover, the model architecture is 
assumed to be independent of the signal scenario, since 
it predicts the noise, which is subtracted from initial 
noisy measurements. For better convergence, the 
learning rate was decreased with a decay factor of 10 
after every 100 iterations, when no target metric im‑ 
provement could be observed.

5. COMPLEXITY EVALUATION

In this section, we evaluate the complexity of the pro‑ 
posed algorithms. For both VAR and DNN‑based ap‑ 
proach processing starts with the channel transforma‑ 
tion into the sparse form (9). This procedure implies: (i) 
transforming the antenna domain of the channel matrix 
to the beam domain, and (ii) transforming the frequency 
domain of the channel matrix to PDP.

We consider an antenna array with two polarizations, 
which are processed independently. Thus, the complex‑ 
ity of antenna‑to‑beam 2D‑DFFT is

𝒪(𝑁𝑢𝑁𝑓 ⋅ 2 ⋅ 2⌈ log2
𝑁𝐵𝑆

2 ⌉ ⋅ log2 2⌈ log2
𝑁𝐵𝑆

2 ⌉) =

𝒪(𝑁𝑢𝑁𝑓 ⋅ 2⌈ log2 𝑁𝐵𝑆⌉ ⋅ (⌈ log2 𝑁𝐵𝑆⌉ − 1)).
(26)

To represent the channel in the PDP domain IDFFT is ap‑
plied

𝒪(𝑁𝑢𝑁𝑏 ⋅ 2⌈ log2 𝑁𝑓⌉⌈ log2 𝑁𝑓⌉). (27)

The complexity of the VAR de‑noising algorithm applied
for a single UE is

𝒪(𝑁𝑢𝑁𝜏 [𝑁𝑏𝑝 + 2𝑁𝑏𝑝2 + 𝑁2
𝑏 𝑝 + 𝑝3]). (28)

The complexity of the TDnCNN forward pass for single UE
is

𝒪(𝑁𝑢𝑁𝑏𝑁𝜏𝑘3𝑁𝑙), (29)

where 𝑘 is a convolution kernel size, and𝑁𝑙 is the number
of layers. An additional complexity reduction can be done
via beam selection before passing the neural network de‑
noiser.

After the de‑noising channel is transformed back to the
antenna‑frequency domains. The complexity of these
steps is equivalent to the forward transforms (26) –
(27). The complexity of the proposed MIMO de‑noising
pipelines is summarized in Table 1.

6. NUMERICAL RESULTS
We compare the proposed VAR and DNN de‑noising algo‑
rithms with two baseline approaches. The combinations

Table 2 – Summary of algorithms combination

PDP de‑noising Beam de‑noising
Baseline Windowing 7

Baseline[Ext] Windowing Windowing
VAR 1 7 VAR
VAR 2 Windowing VAR

Fig. 4 – Delay and beam domains window ϐiltration. The colored box 
faces illustrate rectangular ϐilters for delay and beam domains. The 

white boxes deϐine the positions of the selected taps/beams 
in the sparse channel matrix.
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Fig. 5 – CE de‑noising performance: SU‑MIMO 5 km/h.
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Fig. 6 – CE de‑noising performance: SU‑MIMO 15 km/h.
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Fig. 7 – CE de‑noising performance: MU‑MIMO 5 km/h.

of the considered de‑noising algorithms are summarized 
in Table 2. By Baseline we denote the CSI de‑noising by the 
PDP tap window ϐiltration applied for all the beams (se‑ 
lecting taps from the ’green’ range Fig.4), by Baseline[Ext] 
we denote the joint PDP and beam domain window ϐil‑

Table 3 – Main simulation parameters

Parameter type Parameter value

MIMOmode SU‑MIMO
1 UE, 4 layers

MU‑MIMO
4 UE, 1 layer

Channel model type QuaDRiGa
Berlin NLoS UMa [25]

Antenna conϐiguration
[BS/UE] 64/4

Bandwidth, MHz 20
SRS comb type 2

Subcarrier spacing. kHz 30
SRS period, ms 5

Central frequency, GHz 3.5
UL SNR range, dB ‑20 ÷ ‑5
VAR/MA order 4
gNB height, m 25

Distance to UEs, m 50
UEs speed, km/h 5 ÷ 15

Coherence time, ms 15.4 ÷ 5.1
Number of

averaging snapshots 100
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Ideal
No de‑noising
Baseline
Baseline [Ext]
VAR 1
VAR 2
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Fig. 8 – CE de‑noising performance: MU‑MIMO 15 km/h.

tration (selecting taps/beams from the ’green’/’yellow’ 
ranges Fig. 4).

For the PDP taps ϐiltration the predeϐined rectangu‑ 
lar window, optimized to cover ≈ 95% of the delay 
spread energy in the noiseless channel estimation, is uti‑ 
lized. The beam domain windowing procedure implies 
two‑step processing: (i) pre‑SINR estimation from sig‑ 
nal/noisy taps power ratio separately on each of the 
beams; (ii) selection of beams with pre‑SINR metric ex‑ 
ceeding the ϐine‑tuned threshold.

Two MIMO scenarios were considered: SU‑MIMO (1 UE, 4 
layers transmission) and MU‑MIMO (4 UE, 1 layer trans‑ 
mission). For the algorithms’ performance evaluation, 
the MIMO channel was generated in a 3GPP TR 38.901 
[26] compliant QuaDRiGa generator [25]. The “Berlin
UMa NLoS” channel scenario was selected. Its parame‑
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ters were estimated from the ϐield test measurements de‑ 
scribed in [27]. The “Berlin UMa NLoS” has a rich mul‑ 
tipath and a wider angle spread in comparison to other 
channel models, so we consider it as the realistic and com‑ 
plicated scenario for the algorithm’s performance evalu‑ 
ation. Simulations were performed for two UE velocities: 
5 and 15 km/h. Recalling eq. (14) and considering 𝛼 = 4, 
5 km/h velocity corresponds to 𝑇𝑐 = 15.4 ms, which is 
far beyond the pilot transmission period 𝑇𝑝 = 5 ms. 15 
km/h UE velocity corresponds to 𝑇𝑐 = 5.1 ms, which ap‑ 
proaches the coherence interval edge. So, such a scenario 
allows us to analyze the performance of the considered al‑ 
gorithms in the critical regime. The average SINR (7) was 
used as the performance metric. A detailed description of 
the scenario parameters is summarized in Table 3.

Several outcomes can be highlighted from the simulation 
results:
The preliminary PDP rectangular window ϐiltration gives 
a performance boost for the de‑noising algorithms (Base‑ 
line, Baseline[Ext], VAR 2).

The VAR 2 algorithm provides the best de‑noising perfor‑ 
mance among the discussed baselines. In the SU‑MIMO 
scenario, the VAR 1 algorithm outperforms baselines in 
the SNR region higher than −15 dB and provides a per‑ 
formance lower than Baseline[Ext] in the UL SNR region 
below −15 dB. The VAR 1 worse de‑noising performance 
can be explained by the insufϐiciency of beam ϐiltration in 
the low SNR region. Apart from beam selection, the Base‑ 
line[Ext] algorithm performs the PDP de‑noising, while 
VAR 1 implies the VAR beam domain ϐiltration only.

The DNN‑based de‑noising provides a performance com‑ 
parable to the VAR 2 algorithm in the SU‑MIMO 5km/h 
scenario and best results in SU‑MIMO 15 km/h, which is 
achieved by better channel adaptability properties of the 
neural network. In the 15 km/h scenario the VAR model 
struggles to ϐit the outdated CSI samples to the new fast‑ 
varying channel measurements, while the non‑linear na‑ 
ture of TDnCNN allows it to inherit the channel properties 
in a better way.

In the MU‑MIMO regime, the VAR de‑noising approach 
outperforms the DNN‑based method. Due to the non‑ 
linearity of TDnCNN, the residual noise in the DNN output 
tensor ℋ̄′ is colored, which leads to the increase of the 
interlayer interference, induced by the zero‑forcing pro‑ 
cedure.

It is worth noticing that the performance of the Base‑ 
line[Ext] algorithm degrades fast with decreasing UL 
SNR in comparison to the VAR models. This is caused 
by the non‑robust threshold‑based beam ϐiltration ap‑ 
proach. The optimal beam selection threshold may vary 
with changing wireless channel conditions. The VAR 
de‑noising can be interpreted as an adaptive ϐiltering 
with memory since it does not require beam suppression 
threshold tuning.

TheBaseline[Ext] algorithmwithhardbeams suppression
performs better in the SU‑MIMO scenarios (ϐigures 5–6)
rather than in MU‑MIMO (ϐigures 7–8). This is caused by
the diversity of AoA of multiple users. When hard beam
selection is performed, the low‑power beams are com‑
pletely suppressed, which results in interference leakage
during the zero‑forcing procedure in the construction of
the MU‑MIMO precoder (6).

7. CONCLUSION
The de‑noising approaches described in the paper oper‑
ate in the sparse channel representation and allow us to
raise the signal component above the noise level by utiliz‑
ing the signal resolution in the spatio‑temporal domain.
The paper provided comparison and performance evalu‑
ation results of VAR and DNN‑based massive MIMO de‑
noising methods.

VAR de‑noising was applied on the beam domain for the
following reasons:

• The channel power delay proϐile has an almost static
shape. Thus, as it is estimated once, the low‑
complexity PDP ϐiltration can be performed by the
Hadamard product with the rectangular window.

• The angle representation is sparse, but unlike the
PDP, it heavily depends on the UE location. It is not
possible to estimate and reuse the single window ϐil‑
ter for the beam domain.

• The threshold‑based beam de‑noising approach is
not robust, since the optimal threshold value de‑
pends on many parameters: number of propagation
paths, channel angular spread, SNR level, number of
UEs, etc.

When the VAR‑based de‑noising ϐilter is able to detect the
beam dynamic correlation in the subsequent time sam‑
ples, it ϐits the time series coefϐicients, hence keeping the
strong components. In the opposite case, when the beam
dynamic in𝑝 subsequent samples is uncorrelated, theVAR
ϐilter cannot ϐit the time series. The model weights are
distributed uniformly among the observation samples,
which results in the elimination of noisy components.

The TDnCNN model provides results outperforming the
set of baseline algorithms and achieves the best results
among all considered in this paper on the edge of the time
coherence interval.

On one side, TDnCNN has a relatively large complexity
to be implemented in the hardware of communication
devices; on the other side it outperforms VAR in some
cases, which makes it a prospective from a research point
of view and motivates us to continue researching deep
learning models, analyze the source of provided beneϐits
and ϐind ways to reduce the complexity.
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Also, we note, that in recent years a direction of time se‑
ries processing neural network models has been devel‑
oping rapidly [28]. We highlight the application of time‑
series state‑of‑the‑art NN architectures for MIMO CE de‑
noising as the potential research area.
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