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Abstract – Designed 40 years ago, DNS is still a core component of the Internet: billions of DNS queries are
processed each day to resolve domain names to IP addresses. Originally designed for performance and scalability,
its transport protocol is unencrypted, leading to security ϔlaws. Recently, secure protocols have emerged, but the
question of their scalability and sustainability remains open. In this paper, we study the cost of switching from the
legacy DNS transport to the newer ones, by ϔirst characterising the shape of the trafϔic between clients and secured
public resolvers. Then we replicate said trafϔic, to measure the added cost of each protocol. We found that, while
connections usually stayed open, many closures and openings were made in some cases. Comparing these proϔiles
over different DNS transports, we observe that switching from the legacy protocol to a more secure one can lead
to an important performance penalty.

Keywords – DNS, DOH, DOT, HTTP/2, resolver, TLS

1. INTRODUCTION

Introduced in 1983, the dns is a core component
of the Internet, as nearly every communication on
it is preceded by at least one DNS query, to trans‑
form a human‑readable domain name into an Inter‑
net Protocol (IP) address. Nowadays, DNS is used for
much more than name‑to‑IP address translation: it
can hold mailbox data, x.509 certiϐicates, or conϐigu‑
ration information for various services. It had orig‑
inally been developed with a focus on performance
and scalability by using the udp as its transport pro‑
tocol to achieve both the lowest latency and server
load, but concerns regarding conϐidentiality and in‑
tegrity have since emerged. New standards, dot [1]
and doh [2], have been proposed within the ietf to
secure it, by encrypting queries and responses us‑
ing the tls protocol. While these new standards pro‑
vide both conϐidentiality and integrity, the question
of their cost remains open, as there is no informa‑
tion on the energy or environmental sustainability
of transitioning all DNS trafϐic from the old, unse‑
cured protocol to the new ones. In this paper, we
propose an estimation of the additional server re‑
sources required to transition fromanon‑encrypted,
non‑connected, DNS protocol to a secure but costly
protocol, by ϐirst observing how existing secured
DNS clients use the service, and then measuring the
added cost of theseprotocols in a controlled environ‑
ment.

First, we conducted a characterization of the be‑ 
haviour of DoH clients and public resolvers, in order 
to gather the different patterns and settings applied 
by both entities in their use of the secured protocols 
(number of connection openings, connection dura‑ 
tion, number of queries allowed per connection...). 
We noticed that, while they tend to try and keep 
a single connection alive, browsers can, in certain 
cases close and re‑open them very frequently.

Then, we realised multiple benchmarks using two 
secured resolver implementations in order to, ϐirst, 
compute their performance baseline when using the 
unconnected legacy UDP protocol, then to measure 
the hardware resources consumption of each of the 
steps (connection establishment and upkeep, as well 
as message processing) added by the new DNS pro‑ 
tocols. We observe that while the additional mem‑ 
ory consumption generated by the use of the new 
secured protocols is noticeable, the rate of increase 
is not important enough to be a problem in terms of 
scalability. In terms of Central Processing Unit (CPU) 
overhead, transitioning from UDP to DoH can lead to 
a 70% decrease in performance, for relatively long‑ 
lived Transmission Control Protocol (TCP) connec‑ 
tions. The cost of encryption is in large part added 
by the tls key exchange. For DoH (the most popular 
protocol) the cost of implementing the http2 layers 
lead to a performance penalty.
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The rest of the paper is organised as follows: 
Sections 2 and 3 describe the technical background 
and related work, Section 4 proposes a 
characterization of client and resolver behaviour in 
order to understand the shape of the trafϐic 
near the resolvers, Section 5 proposes a 
benchmark and an analysis of server side 
performance and in Section 6, we conclude.

2. TECHNICAL BACKGROUND
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Fig. 1 – Comparison of DNS over UDP, TCP, 
TLS (DoT) and HTTP/2 (DoH)

From a high‑level point of view, DNS is a registry 
service queried by a client to resolve the IP address 
corresponding to a domain name. It has been im‑ 
plemented as a tree‑like database, in which multi‑ 
ple servers hold only a fraction of the information; 
looking for information on it is therefore a depth‑ 
ϐirst search starting from the root. However, if every 
client looking to translate a domain name to an IP ad‑ 
dress were to realise such a process, it would result 
in prohibitive latency and an overload on the servers 
closest to the root; that is why iterating through the 
tree is delegated to resolvers, servers which, upon 
receiving a query from a client, can answer it ei‑ 
ther from their cache, that will have a higher hit rate 
since it likely received the same request from an‑ 
other client earlier, or by doing the resolution them‑ 
selves.

In contrast to the other, historically text‑based, web 
protocols, the DNS message protocol has been im‑ 
plemented using binary message format in order to 
target the highest performances. Both UDP and TCP 
have been selected as transports. The ϐirst one, UDP,

is connection‑less (Fig. 1a), and provides high per‑ 
formance at the cost of reliability and message pay‑ 
load size. As such, it is the recommended protocol to 
transport standard DNS queries (which represents 
most of the DNS trafϐic). The second one, TCP, re‑ 
quires the exchange of three messages (arrows 1 to 
3 on ϐigures 1b c d) to establish a connection, before 
sending any DNS messages. It has been mostly used 
to transport special DNS messages (zone transfers) 
that do not ϐit into a UDP datagram. As these legacy 
DNS transport protocols are unsecured, DNS is vul‑ 
nerable to a variety of attacks, detailed in 
Section 3. Several secured protocols have been 
proposed to deal with the aforementioned security 
ϐlaws.

The ϐirst one, DoT [1], uses a TLS connection [3] to 
provide both integrity and conϐidentiality. It relies 
on a TCP connection to establish a TLS session be‑ 
tween the client and the server. Two messages (ar‑ 
rows 3 and 4 in Fig. 1c) are exchanged between both 
endpoints to derive, from their respective pairs of 
asymmetric keys, a symmetric key used to encrypt 
the DNS binary messages. During this process, the 
client also validates the identity of the resolver by us‑ 
ing the latter’s digital certiϐicate.

DoH has been proposed as an alternative to offer a 
secure DNS transport. It relies on HTTP/2 [4] to 
carry the DNS messages, and may be seen as an addi‑ 
tional layer built on top of TLS. Once a session is es‑ 
tablished (arrows 3 through 4 in Fig. 1), the multiple 
streams of the HTTP/2 protocol are used to trans‑ 
port DNS queries, either directly in their binary for‑ 
mat as the body of an HTTP POST query (arrows 5, 
6, 7 and 8 in Fig. 1d) or as the base64‑encoded url 
parameter of a GET query (as it is less common it is 
not considered here).

Originally designed for performance, the legacy DNS 
protocol doesn’t offer any security guarantees. To 
prevent data leaks and corruption, new protocols 
based on existing technologies used to guarantee 
security on the web have been pushed in order to 
secure DNS. Switching from a connection‑less un‑ 
encrypted protocol to connected ones making exten‑ 
sive use of cryptography seems to go against the orig‑ 
inal goals that drove the development of DNS, and 
therefore the cost of this transition must be 
analysed.
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3. RELATED WORK
We classify the work related to DNS security in 
three categories: work that focuses on describing 
and proposing mitigation for different security ϐlaws, 
work that aims to compare the client‑side cost of se‑ 
cured DNS protocols, and ϐinally, work that focuses 
on evaluating their adoption.
Security issues and guarantees: When studying 
the security of an information system, three prop‑ 
erties are to be considered: conϐidentiality, integrity 
and availability.
Conϐidentiality: UDP and TCP did not offer any kind 
of conϐidentiality to the messages they carry, mean‑ 
ing that any malicious actor could use captured DNS 
messages to breach a user’s privacy [5]. DoT and 
DoH circumvent this ϐlaw by using the TLS protocol 
to carry their messages, therefore guaranteeing con‑ 
ϐidentiality. However, several studies have shown 
that some characteristics of DNS trafϐic can be ex‑ 
ploited to, in some cases, de‑anonymize encrypted 
DNS trafϐic. In [6], Siby et al. show that, despite 
its use of encryption, it is still possible to determine 
the content of a DoH ϐlow containing un‑padded 
queries and responses, by using trafϐic analysis tech‑ 
niques. In [7], Bushart and Roshow show that even 
state‑of‑the‑art padding strategies are weak against 
some trafϐic analysis attacks. However, it is worth 
noting that the machine‑learning models used in 
these attacks can only de‑anonymize DNS ϐlows they 
were previously trained on (usually popular web‑ 
sites), and that techniques such as arbitrarily delay‑ 
ing queries and responses, or the use of proxy net‑ 
works such as tor can be powerful mitigation against 
these attacks. Furthermore, these attacks require 
both a constant update of the model used to tar‑ 
get websites in order to cope with their modiϐica‑ 
tion, and the knowledge of the source of the trafϐic, 
as clients have different behaviours regarding inter‑ 
query timings and message size.
Integrity: The DNS protocol did not initially of‑ 
fer mechanisms guaranteeing the integrity of data, 
meaning that an adversary could edit a DNS re‑ 
sponse, thus redirecting a client towards fraudulent 
services [8]. DNSSEC was later standardized, and 
guarantees the integrity of data exchanged between 
the resolver and name servers. On the other hand, 
the data exchanges between client and resolver still 
use the legacy protocol, leaving them vulnerable to 
the aforementioned attacks. As TLS guarantees the 
integrity of the messages it transports, using DoT or 
DoH in combination with a trusted resolver that 

validates the integrity of records by using 
DNSSEC, can protect against this category of 
attacks.

Availability: The two aforementioned properties 
are necessary but not sufϐicient to fully protect a 
client. DNS is one of the most commonly ϐiltered 
protocols (by governments or isp [9]). DoT, which 
uses port 853 by default can be easily blocked by 
port‑based ϐilters, while DoH is not, as it relies on a 
widely used protocol. It is still vulnerable to ϐinger‑ 
printing techniques, able to detect whether or not an 
encrypted ϐlow contains DoH queries and response, 
like Vekshin et al. prototyped in [10]. However, 
as we said earlier, these techniques require models 
trained on a variety of clients, resolver and trafϐic 
shape that require constant updating, so it is unre‑ 
alistic to expect them to be used globally. Despite 
the remaining security limitations, the beneϐits pro‑ 
vided by DoT and DoH complete the efforts ϐirst un‑ 
dertaken with the introduction of DNSSEC.

Client‑side performance: Various studies focus 
on the client‑side cost of DoT or DoH. Hounsel et 
al. [11], [12] compare the page load times using 
different combinations of DNS transports, network 
types and public resolvers. Boettger et al. [13] also 
compare the resolution times and protocol overhead 
of different secure DNS transports when using per‑ 
sistent or non‑persistent connections. These stud‑ 
ies ϐind that connection reuse is beneϐicial for the 
client, and that secure DNS adds no noticeable cost 
to clients, except on some cellular networks.

Chhabra et al. [14] also study the impact of switch‑ 
ing to DoH, leveraging several vantage points, which 
allows them to correlate the speed‑up or slow‑down 
measured when switching from doudp to DoH with 
the level of investment in Internet infrastructure by 
a country.

Finally, in [15], Kosek et al. compare the perfor‑ 
mances (in terms of latency) of DoH with those of 
DoUDP, but also with those of doq. They found that 
the use of DoQ lead to faster page load times than 
with DoH, due the faster connection establishment. 
However, the improvement over DoH lessens as the 
complexity of the loaded page (and therefore the 
number of resolutions needed to load it) increases, 
since the latency gained by a faster handshake is 
amortized by the connection reuse, which in turns 
allows both DoH and DoQ (connection‑based 
protocols) to catch up with DoUDP (as discussed by 
Boettger et al. [13]).
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Protocol adoption: In [16] Garcıà et al. analyse 
both the number of available DNS‑over‑encryption 
resolvers, as well as the use of DNS‑over‑encryption 
by various users. While the amount of DoH 
trafϐic had stayed stationary, representing about 
1% of the current DNS trafϐic, the number of 
available DoH servers is steadily growing. Such a 
growth raises the question of how the energy 
sustainability of the generalized use of DNS over 
HTTPS

While the work discussed here offers valuable in‑ 
sights on the more recent DNS transport protocols, 
ours is the only work that focuses on the impact 
on resolver resource consumption of implementing 
such protocols; the existing literature focuses on 
client‑side or network‑side metrics such as latency 
or packet number or size, while our work focuses on 
the memory or CPU consumption of implementing 
such protocols, on the server‑side.

4. BEHAVIOUR OF CLIENTS AND RE‑
SOLVERS

As the newer DNS transports are connection‑based,
new questions arise: while the protocol deϐines how
to query the service, it doesn’t specify how the un‑
derlying connections should bemanaged by both the
client and resolver. The sequence of connections
opening and requests sent is mostly controlled by
the client. But to focus only on the client’s behaviour
is not enough, as the server has the choice to accept,
reject, close or keep said connections opened.

The objective of this experiment is to characterize
the shape, in terms of number of establishments,
closures and messages sent over individual connec‑
tions, of the trafϐic between already existing clients
and publicly available resolvers. We speciϐically
choose existing clients and public resolvers who are
widely used andwhose conϐiguration and behaviour
we do not control, as we want to determine how the
implementations currently deployed use the proto‑
col, so we can generate similar trafϐic when measur‑
ing server‑side performances.

In Section 4.1, we describe the experimental setup
used for the measurements, while Section 4.2 con‑
tains an analysis of the different behaviours ob‑
served from the clients and the resolvers.

4.1 Experimental setup
As DoH gained more traction than DoT and is there‑ 
fore available in more software and on more pub‑ 
lic resolvers, the only trafϐic generated in this ex‑ 
periment is DoH trafϐic. To characterize the shape 
of the trafϐic, we make a DoH‑enabled client send 
queries at various rates (one every 50 ms, 1000 ms 
and 60 000 ms) for 30 minutes, to a DoH‑enabled 
public resolver. We run the client in a docker con‑ 
tainer for two reasons: the isolation provided by the 
network name spaces give us a way to isolate its net‑ 
work trafϐic for capture using Tshark [17], and using 
a container allows for easier reproducibility of our 
experiment. We enforce no resource restrictions on 
the container we use; therefore, the only overhead 
is the additional network latency and CPU use due 
to the more complex network path induced by the 
use of network name spaces. We then further ϐil‑ 
ter the network trafϐic based on the target’s resolver 
IP, the port used by DoH (443), and transport pro‑ 
tocol (TCP), leaving us with a trace containing only 
the DoH trafϐic emitted by the client. We then ex‑ 
tract the following metrics from the network trace : 
the number of TCP connections established between 
client and resolver, their duration, the origin (client 
or the server) and method (TCP FIN or RST, HTTP/2 
GOAWAY) of its closure. Another metric we consider 
is the number of queries on each connection. How‑ 
ever, as trafϐic is encrypted, we make our client dump 
the TLS secrets to a ϐile, in the nss Key Log Format, 
so that Tshark can decipher the trafϐic, allowing us 
to count the exact number of queries and responses 
exchanged in every TCP connection.

Part of the reason for DoH’s popularity is its integra‑ 
tion in popular web browsers. For this reason, we 
elected to observe the behaviour of Chromium [18], 
as it is the basis for other popular browsers [19], 
such as Chrome or Edge. We also chose to observe 
Firefox’s [20] behaviour, as it was among the ϐirst 
browsers to implement a DoH stub resolver.

Even though web browsers are likely to be one of the 
biggest source of DNS trafϐic, there is other software 
on an end‑user’s machine that can generate DNS traf‑ 
ϐic as well, and, in the majority of cases, trafϐic is un‑ 
secured, as it relies on the stub resolver provided 
by the host OS. A new category of software, called 
proxies, has emerged to resolve this issue. They run 
on the user’s device, listening on a local port, and 
are conϐigured as the system’s resolver, meaning that
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they capture all DNS queries emitted by software 
on the system, and transmit them to a conϐigured 
resolver over a secured channel. This means that, 
by installing and conϐiguring it, all software trans‑ 
parently beneϐits from a secured DNS channel to a 
trusted resolver, that is shared among all running 
applications, which saves both client and server re‑ 
sources when compared to a model in which each 
client individually implements secured DNS trans‑ 
ports.

As the goal of this experiment is to measure how 
both parties use the underlying TCP connections, we 
need to measure how current DNS over HTTPS de‑ 
ployments handle trafϐic. This is why we chose to 
observe the behaviour of three widely used, DoH‑ 
enabled public resolvers : Quad9, Google and Cloud‑ 
ϐlare. Since we have three different clients, delays 
and resolver, this brings the total amount of exper‑ 
iments we run to test every combination to 27.

We gather the list of domain names to resolve from 
a public list of domain names [21], ϐiltered to keep 
the ones that still have an A record corresponding 
to a server accepting HTTP trafϐic. In order to gen‑ 
erate the appropriate trafϐic using the browsers, we 
conϐigure them to use the selected DoH resolver, and 
we loaded a JavaScript script making HTTP HEAD re‑ 
quests to the domain names in the ϐile. We choose 
HTTP HEAD request, as they require the browser 
to resolve the domain name to contact the server, 
but cause very little data to be returned. To gen‑ 
erate trafϐic using DNScrypt‑proxy, we use a C pro‑ 
gram making DNS resolutions for the domain in the 
list at the same rates as the ones conϐigured for 
the browser, using the system’s conϐigured resolver, 
which, in this case is DNSCrypt‑proxy.

Both these scripts, in addition to the conϐiguration 
ϐiles for the browsers, DNSCrypt‑proxy, as well as the 
scripts used to analyse the trafϐic, are available in a 
public git repository [22].

4.2 Results
Figures 2a, 2b, 2c present, for each combination of 
software, inter‑query delay and public resolver, the 
number and length of connections to the resolver 
established by the client. For example, on Fig. 2c, 
the top‑left ϐigure presents the number and length of 
TCP connections that DNSCrypt established towards 
the Cloudϐlare resolver. Each sub‑ϐigure can be seen 
as a Gantt diagram : the x‑axis represents the time in

(a) Client : Firefox

(b) Client : Chromium

(c) Client : DNSCrypt‑proxy

Fig. 2 – Connection use by clients (Firefox, Chromium 
and DNSCrypt‑proxy) for a set of resolvers (Cloudϐlare, Google 
and Quad9) and query delays (50 ms, 1 000 ms, 60 000 ms)

the experiment, and every connection is 
represented on a single line as a coloured rectangle, 
its leftmost and rightmost edges marking its start 
and end date respectively. Connections shorter than 
a second are represented by a cross. For 
example, by observing the top‑right graph of 
Fig. 2c, we can see that, when the inter‑query 
delay is 50 ms, DNScrypt‑proxy established only 
one connection to the quad9 resolver. 
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Conversely, by observing the top-right graph of 
Fig. 2a, we observe that, when faced with the same 
inter‑query delay of 50 ms, Firefox established a 
lot of short‑lived (less than 1 s) connections to the 
quad9 resolver.

DNScrypt‑proxy: DNScrypt‑proxy generates the 
least aggressive load towards the server. Indeed, 
its main behaviour is to open and keep open a sin‑ 
gle TCP connection that it will use to perform all re‑ 
quests, regardless of intensity of the trafϐic gener‑ 
ated. We can infer this by observing the middle row 
two top‑rightmost graphs on Fig. 2c. In addition, an 
internal timer is set to trigger the close of the TCP 
connection 5 seconds after the last message was sent 
over it, freeing both client and server resources. We 
infer this by observing the bottom row on Fig. 2b, 
or the network trace, in which we see that the TCP 
connection closure is always initiated by DNSCrypt‑ 
proxy, through a TLS alert message with the ”Close 
Notify” description.

Web browsers: The browsers have a more aggres‑ 
sive usage of DNS resources. At the beginning of 
the sessions, they try to maximise the probability of 
having a successful connection to the DNS server by 
opening several connections in parallel to the same 
server, likely to speed up the early resolutions that 
browsers usually do, (ϐigures 2a and 2b), leading 
to an increase in server resources usage. The fol‑ 
lowing use of these opened connections depends on 
the intensity of the trafϐic. When the trafϐic has a 
low intensity, with a request frequency lower than 1 
Queries Per Second (QPS), (see the bottom two rows 
of ϐigures 2a and 2b), a single connection is mainly 
used to handle the trafϐic, the remaining connections 
eventually being closed. We sometimes observe con‑ 
nection closures, forcing a re‑opening (1 000 ms 
delay row on ϐigures 2b and 2b), or multiple 
connections at the same time (1 000 ms and 
60 000 ms delay rows on Fig. 2b), but these events 
are not numerous enough during the lifetime of an 
experiment to be signiϐicant. Under a DNS trafϐic 
with a high intensity (above 1 query per second) 
the connection pattern of the web browsers 
changes drastically. Not only does the browser fail 
to generate the trafϐic we ask for, we also observe 
connections being opened and closed in sequence, 
(see top row on ϐigures 2a and 2b). Every 
connection shutdown originates from the client, 
either through an HTTP/2 GOAWAY message for 
Firefox, or directly through a TCP FIN message for 
Chromium. 

Each of these connections is used to carry few to 
no DNS messages. From a server perspective, such 
behaviour represents the worst case, as, with each 
connection opening being costly, this leads to huge 
resource consumption.

Resolvers: Clients are not solely responsible for 
the connection patterns. The resolvers have the 
choice to accept or deny the connections and the traf‑ 
ϐic issued from the clients. We have observed that 
Google has the most permissive resolver conϐigura‑ 
tion of those we tested, as we didn’t observe any limi‑ 
tation in terms of number of connections, their dura‑ 
tion and the number of QPS per connection. Quad9 
closes unused connections through an HTTP/2 GO‑ 
AWAY message after around 30 seconds of inactivity 
(Fig. 2a, bottom‑right). Cloudϐlare does not impose 
any restriction on the connection duration, but limits 
the maximum number of requests per connection to 
10 000 (Fig. 2b, top‑left). When this limit is reached, 
the server notiϐies the client through an HTTP/2 GO‑ 
AWAY message paired with a TLS alert message with 
the ”Close Notify” description.

The intended behaviour of clients and resolvers 
seems to be to keep one TCP/TLS connections alive 
while they are used, as re‑opening a connection 
leads to an increased cost in CPU resources (as 
the TLS handshake is relatively costly), or in latency 
(as each connection establishment requires 
multiple round‑trips).

5. SERVER SIDE PERFORMANCE

Moving from UDP, an unconnected protocol histor‑ 
ically used for communication between clients and 
resolvers, to more complex connected ones can lead 
to an increase in the consumption of hardware re‑ 
sources on the resolver side: the handling, by the 
resolver, of DNS queries transported in a UDP data‑ 
gram simply requires receiving the datagram and 
then sending another one containing the answer 
once the cache‑lookup or resolution is completed. 
On the other hand, the use of session‑based proto‑ 
cols is more complex, as they require multiple round 
trips and additional computations for the establish‑ 
ment of a session, the management of the state asso‑ 
ciated with the said session, the encoding and decod‑ 
ing of messages, in addition to the already‑existing 
cost of handling DNS queries.

Questions about scalability and resource consump‑ 
tion arise regarding the cost of these additional

ITU Journal on Future and Evolving Technologies, Volume 5, Issue 1, March 2024 

©International Telecommunication Union, 202452



steps. In order to properly evaluate their cost, we
realised a series of synthetic benchmarks, ϐirst us‑
ing DNS over UDP (UDP) as a baseline, then DNS
over TCP (TCP), DNS over TLS (DoT), and DNS over
HTTPS (DoH). While it offers no privacy guaran‑
tees, measuring how TCP performs is still interest‑
ing because, as we have seen previously in Section
2, both secured protocols have been built on top of
TCP. Thus, the comparison between UDP and TCP
is a good performance indicator of the cost added
by the TCP connection. Using the same approach,
comparing TCP and DoT allows us to measure the
performance cost of the TLS session establishment
and trafϐic encryption, and comparing DoTwith DoH
gives us insights about the cost of the added HTTP/2
layers.

In Section 5.1, we describe the experimental envi‑
ronment of our benchmarks. Section 5.2 presents
the results of a benchmark of the legacy UDP‑based
protocol, while sections 5.3, 5.4 and 5.5 describe
the multiple synthetic benchmarks we realised to
characterize the costs of the different steps of the
connection‑based protocols.

5.1 Experimental setup
We elected to run our benchmarks on a DNS archi‑
tecture deployed on theGrid5000 [23] platform. Our
testbed is composed of 22 Dell PowerEdge R640,
each of them with an 18‑core CPU with a base clock
of 2.2 GHz and a turbo frequency of 3.9 GHz, 96 GiB
of RAM (RandomAccessMemory) and a 25 Gbps nic,
all connected together through the same switch. We
run our server on one of those machines, use twenty
of them as our clients and the remaining one as the
experiment monitor in charge of deploying and run‑
ning the various actors and measurement tools on
their respective machines.

We selected three secured DNS implementations to
test: Knot‑resolver [24], as it is used by important
industry players (most notably Cloudϐlare), Dnsdist
[25], that is not a serverper se, but acts as aproxy and
load balancer between a client and another server,
it can either answer from its cache, or forward the
query to another server. Since it is compatible with
both DoH and DoT, it can be used to modernise
an existing DNS infrastructure by adding support
for these protocols without having to make exten‑
sive modiϐications to the underlying server(s) soft‑
ware or conϐiguration. The last implementation we

tested is Adguard‑Dnsproxy [26], as it is a relatively 
recent implementation that promises support for 
newer protocols such as DNS over QUIC or DNS over 
HTTP/3. As we need a very high number of clients to 
reach 100% load on one core in our setup, we conϐig‑ 
ure both software to only run on a single core of our 
server machine using Linux cgroups.

As we aim to focus on the server‑side cost of tran‑ 
sitioning from a legacy UDP‑based protocol to a 
session‑based protocol for the client to server con‑ 
nections, we decided to exclude the cost of retrieving 
the records from the hierarchy of DNS name servers 
from the resolving process, to avoid measurements 
noise that could occur when querying external un‑ 
controlled name servers. At the beginning of each 
experiment, we ϐill the cache of our servers with the 
DNS records that will be queried during the experi‑ 
ment, meaning that all subsequent queries from the 
clients result in a cache hit. To reduce experimen‑ 
tal variability as much as possible, all of the names 
that are queried for during the rest of the experiment 
are composed of a number from 0 to 2 000, padded to 
four characters, followed by a non‑existing top‑level 
domain.

Trafϐic is generated using Flamethrower [27], a DNS 
benchmarking utility compatible with all bench‑ 
marked protocols. We patched its code so it would be 
able to keep the underlying connections opened for 
a conϐigurable duration, as its default behaviour was 
to open a connection, send a set number of queries, 
wait for the answers to these queries (up to a conϐig‑ 
urable timeout), and then close the connection, only 
to re‑open it again for the next batch of queries. As 
we wanted to be able to control the length of the con‑ 
nections, our new implementation opens a connec‑ 
tion for a set duration, sends batches of queries on 
that connection at a conϐigurable frequency (wait‑ 
ing for their answer or timeout), and only closes the 
connection once a conϐigurable timer, separate timer 
has run out. A fork of Flamethrower including these 
changes is available on GitHub [28]. When bench‑ 
marking DoH, we send our queries in the body of 
an HTTP/2 POST query, as we detected in Section 4 
that it was how clients operated. For all these exper‑ 
iments, we tuned Flamethrower’s parameters (num‑ 
ber of queries per batch, and delay between each 
batch), so that our resolver process would end up 
using 100% of the CPU it was pinned on (as mea‑ 
sured by both htop, ps, and conϐirmed by the output 
of linux‑perf).
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5.2 Baseline
As it is the legacy most widely used and the most ef‑
ϐicient transport for DNS, measuring how UDP per‑
forms gives us a baseline in terms of performances.
To obtain this baseline, we run several experiments
in which DNS over UDP queries at a set rate, which
increase each experiment. As UDP offers no ϐlow
controlmechanism, at somepoint the clientwill start
sending more trafϐic than the server can answer,
meaning that it will not answer some of them, lead‑
ing to losses. We then take note of the maximum
amount of queries per second handled by the server,
and use it as our baseline.
At best, Knot‑resolver answered 105 000 QPS out
of the 120 000 QPS sent by our clients, while Dns‑
dist answered 223 000 QPS, out of the 240 000 sent.
We investigated these losses and noticed that they
were due to a saturation of the CPU, both servers be‑
ing unable to process queries at such a rate, lead‑
ing to the kernel‑side UDP reception buffer ϐilling
up and packets having to be discarded. Increasing
the size of the reception buffer is useless: since we
send queries at a constant rate, it will just delay the
moment the buffer ϐills up and the kernel starts dis‑
carding packets. We explain the difference in perfor‑
mances of almost 50% between Knot‑resolver and
Dnsdist by the fact that Dnsdist is a proxy and load
balancer whose purpose is to pass queries to an up‑
stream server as efϐiciently as possible, therefore
having very few things to do when receiving a query
other than answering it from its cache or forward‑
ing it, while Knot‑resolvermost likely has to domore
processing, even in the case of a cache hit (query pol‑
icy, response padding).

5.3 Memory usage of keeping connections
alive

Transitioning from UDP, a connection‑less protocol,
to connection‑based ones raises the question of the
maximum number of simultaneous connections a
server can handle. Therefore, we have devised an ex‑
periment aiming to measure the limits (in terms of
memory) of the number of connections that can be
handled by a server.

For each protocol we tested (TCP, DoT and DoH), we
usedFlamethrower to generate asmany connections
towards our server as possible, spread across our 20
machines. We conϐigured both client and server so
that they would not close established connections,

(a) Knot‑resolver

(b) Dnsdist

(c) Adguard‑dnsproxy

Fig. 3 – Memory usage of the servers relative to 
the number of connections

and increased the kernel‑side limits on the number 
of outgoing or incoming connections. We measure 
two separate values: the resident set size (amount 
of memory used by a process present in physical 
RAM) of the server, and the total amount of memory 
used on the machine. By calculating the difference 
between these two values, we are able to estimate 
the amount of memory used by the kernel, as the 
in‑physical RAM memory imprint of the processes 
other than the server is negligible. There was an op‑ 
tion in Dnsdist allowing for the release of memory 
associated with idle connections, which we chose 
to deactivate as our interest lied in estimating how 
much memory an active connection would consume.
Fig. 3 shows, for each server and protocol combina‑ 
tion, the total physical memory used relative to the 
number of connections. At the top (in red) is the res‑
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ident set size of the server, in the middle (in black) 
is memory used by the kernel, and, at the bottom 
(in grey) is the amount of memory used when the 
server is idle, presented for reference. The mem‑ 
ory used by the kernel is the same in every experi‑ 
ment, which is consistent with the fact that the ker‑ 
nel only handles TCP connections, the common part 
between the three protocols. For all servers, we 
observe an increase in memory consumption when 
switching from TCP to DoT, as the handling of TLS 
sessions requires additional state, handled by the 
server. When considering the difference between 
DoT and DoH, we can notice, for both Adguard‑ 
dnsproxy and Knot‑resolver, a clear increase in con‑ 
sumption induced by the use of DoH, due to the fact 
that their DoH stack is built upon their TLS stack. 
Therefore the memory consumed by HTTP2’s pro‑ 
tocol layers are added to the memory consumed by 
the TLS layer. For Dnsdist however, we observe that 
DoH has a lower memory consumption than DoT. 
While this seems counter‑intuitive, it is consistent 
with the memory consumption per connection and 
protocol announced in its documentation (that ad‑ 
vertises a higher per‑connection memory consump‑ 
tion for DoT than for DoH). As the number of simulta‑ 
neous connections never reaches 400 000 in the fol‑ 
lowing experiments, we conclude that memory con‑ 
sumption won’t be the limiting factor in our setup.

Table 1 – Parameters used when measuring the cost 
of handling queries

Software Protocol Number of connections

Knot‑resolver
TCP

20 / 40 / 100 / 500 / 1000 / 2000 / 4000 / 8000DoT
DoH

Dnsdist
TCP

20 / 40 / 100 / 500 / 1000 / 2000 / 4000 / 8000DoT
DoH

Adguard‑dnsproxy
TCP

20 / 40 / 100 / 500 / 1000 / 2000 / 4000 / 8000DoT
DoH

5.4 Cost of handling queries
While the use of these new connected protocols
seems to cause no issue regarding memory con‑
sumption, it can induce a CPU overhead due to the
additional steps required when handling messages.
These can be broken down into two parts: ϐirst, the
connection establishment, and then, the handling of
individualmessages (see Section 2). The experiment
described here aimed to estimate the cost of han‑
dling individual queries.
In order to measure the additional cost per request,
we must take into consideration the number of si‑

multaneously opened connections over which re‑
quests are sent. To do this, we sent a ϐixed amount of
trafϐic over a set number of already opened connec‑
tions. We repeat that experiment multiple times for
each protocol / server combination, with a variable
number of connections for each experiment. The
various experimental parameters chosen are pre‑
sented in Table 1. The total ϐixed amount of queries
sent, as well as theminimumnumber of connections
was chosen to ensure that the CPU utilization of the
server process and the frequency of the core it ran
on, were as high as possible.
Each point on Fig. 4 represents the average num‑
ber of queries per second that were successfully an‑
swered by the tested server, with bars presenting the
minimumandmaximumvalue reached, for a speciϐic
protocol and a speciϐic number of connections. We
also represented the max trafϐic handled with UDP
for comparison purposes. For every connected pro‑
tocol there is a performance drop when compared
to UDP. This is partly because, at the kernel level,
handling a message sent over a TCP connection in‑
volves extra steps when compared to UDP, such as
checking the consistency of acknowledgment num‑
bers or calculating the congestion window size. Fur‑
thermore, we observe that, for Dnsdist, there is a no‑
ticeable drop in performance between TCP and DoT,
while for Knot‑resolver andAdguard‑dnsproxy, their
performances are very similar. We explain these dif‑
ferences by the fact that Knot‑resolver or Adguard‑
dnsproxy are less efϐicient at handling DNS queries,
meaning that the cost added by symmetric encryp‑
tion is absorbed by the cost of handling DNS queries.
As Dnsdist is more efϐicient, the per‑message cost
added by symmetric encryption is more noticeable.
When comparing DoH to other protocols, we notice,
for all three servers, a huge drop in performance (by
a factor of two), that we explain by the added cost of
handling theHTTP/2protocol layers, which includes
sending and receiving the control messages, allocat‑
ing the data structures for new streams, and using
the HPACK algorithm to decode message headers.
For every protocol, we observe that performances
tend to drop when the number of connections in‑
creases (up to a 40% decrease when considering
Dnsdist over DoH), except for Dnsdist over TCP.

5.5 Overhead of establishing connections

In the following experiment, we measure the cost
of opening and closing connections for each proto‑
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Fig. 4 – Queries per second handled by the servers when connections last all experiment

Fig. 5 – Queries per second (qps) handled per server and protocol according to number of connection establishments per second

Table 2 – Parameters used when measuring the cost 
of establishing connections

Software Protocol Number of connections Connection duration

Knot‑resolver
TCP

1000

1 query per connection / 1s / 30sDoT
DoH

Dnsdist
TCP

1 query per connection / 1s / 30sDoT
DoH

Adguard‑dnsproxy
TCP

1 query per connection / 1s / 30sDoT
DoH

col. We use the same experimental parameters as 
the ones used in the previous experiment (Fig. 4) to 
plot the points corresponding to 1000 connections, 
but this time taking into account connection estab‑ 
lishment and tear down. Thus, by comparing this 
experiment and the previous one, we can infer the 
overhead of connection establishment (TCP connec‑ 
tion establishment, TLS key exchange). We run two

sets of experiments, one in which our clients close 
and re‑establish a connection every 30s, the other in 
which clients close and re‑establish connections ev‑ 
ery second (to match the long and short‑lived con‑ 
nections we observe in Fig. 4). The parameters 
used for this experiment are presented in Table 2. 
In order to avoid the case in which the server has 
to handle a batch of connection establishment ev‑ 
ery 1 or 30 seconds, then only queries, and then an‑ 
other batch of connection establishment, we ensure 
that clients are started sequentially, with a set de‑ 
lay in between them. This, coupled with the fact 
that clients are conϐigured to close and re‑open con‑ 
nections on a strict timer, means that, in each ex‑ 
periment, the server has to handle a ϐixed amount 
of connection establishments every second : in the 
ϐirst experiment, the server has to handle 33 connec‑

ITU Journal on Future and Evolving Technologies, Volume 5, Issue 1, March 2024 

©International Telecommunication Union, 202456



tion establishments every second, while in the sec‑ 
ond experiment, it has to handle 1 000 connection es‑ 
tablishments every second. In addition to being set 
by design, these rates were conϐirmed to have been 
respected through an analysis of the network trace 
generated by each experiment. We run an additional 
batch of experiments to reproduce the very short‑ 
lived connections also observed in Section 4 : dur‑ 
ing this experiment, the clients are conϐigured to es‑ 
tablish a connection, send a single query over it, wait 
for its answer, close the connection and immediately 
start over.

The results of the experiments are presented in 
Fig. 5, in the form of the number of queries per 
second handled by a server for each combination of 
protocol and connection duration. We also plotted 
the maximum queries per second we reached in 
the previous experiment (Fig. 4) as a baseline for 
comparison. For all three servers, we observe the 
same performance variations between protocols, 
but with different orders of magnitude: when few 
connection establishments occur (33 connection 
establishments per second), we observe a variable 
decrease in performance (of up to 20%) for TCP and 
DoT, relative to the experiment in which no 
connection establishments occur. However, we do 
not observe this performance loss for DoH, as the 
CPU cost of query handling is still the bottleneck. 
When the frequency of connection es‑ 
tablishments increases (connections last for 1 sec‑ 
ond), the performances of TCP decreases less than 
that of both encrypted protocols, as they both see a 
decrease in performances due to the added cost of 
the TLS key exchange. When connections are used 
for one query only, the cost of establishing TCP con‑ 
nections induces a collapse of performances for all 
protocols.

5.6 CPU usage of resolver process
We also measured the time spent by the processes 
of Knot‑resolver, Dnsdist and Adguard‑dnsproxy in 
kernel or user mode. Fig. 6 presents, for these 
severs, the percentage of their total scheduled time 
they spent in user or kernel mode, depending on 
the amount of connections per second they had to 
handle. We base our analysis on the fact that, for 
these software, TCP and UDP is handled in the ker‑ 
nel, while TLS and HTTP/2 are handled in userland.

UDP is a very simple protocol implemented entirely 
in the kernel. As there is no connection or encryp‑

tion, all of the user time is spent on the DNS resolu‑ 
tion service, and not on the handling of higher proto‑ 
col layers, such as TLS or HTTP/2. Therefore, com‑ 
paring how the servers handle it shows us how they 
handle the base DNS protocol. We can infer, from the 
fact that Knot‑resolver and adguard spend a higher 
fraction of their time in user mode when compared 
to Dnsdist, for a lower amount of queries handled, 
that they spend more time handling base DNS mes‑ 
sages than Dnsdist, which is consistent with the fact 
that they are less efϐicient than Dnsdist at handling 
base DNS queries.

Studying the behaviour of these servers on more 
complex protocols, we observe that handling DoT or 
DoH results in more time spent in userland. This 
phenomenon is less marked for Knot‑resolver when 
it is handling few DoH connection establishments 
(No open or 33cx/s on Fig. 6(a)), as it makes more 
per‑query syscalls then Dnsdist or adguard in order 
to handle the HTTP/2 protocol.

For all three servers however, the more TLS connec‑ 
tion establishment occurs (which is the case when 
handling DoT or DoH at 1000cx/s or 1q/cx), the 
more time is spent in userland, as this is where the 
(costly) TLS handshake is handled.

5.7 Resolver power consumption
We measured the energy consumption of the server, 
ϐirst at idle, then during the experiments (when one 
core is fully loaded), and the delta between the two 
gives us the lower bound of the energy consumed 
by the various protocols. This delta is then used to 
compute the cost, in KWh, of one request and we use 
this cost to obtain the energy consumed, in kWh, of 
handling 10k QPS for a day (results in Table 3). As 
this cost does not include the idle consumption, if the 
cost per query is really low (as is the case with DNS 
over UDP), our projection results in low estimated 
energy costs. In the opposite case, when the cost per 
query is very high, this can result in a very high es‑ 
timated energy consumption, as handling 10K QPS 
in this case, would necessitate running several cores 
at 100%, or even running additional machines. If 
connection use is fair (30s) the use of secured pro‑ 
tocols is worth considering, even though it increases 
energy consumption by a factor of two for DoT and 
four for DoH, but when we consider a higher load, 
in which connection openings occur more frequently 
the use of such protocols become more costly (up to 
15 times for DoH at 1s), or unsustainable in the case
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%

Fig. 6 – Percentage of its scheduled time the resolver process spent in each mode

Table 3 – Estimation, in kWh of the energy consumed by running 10k QPS for one day using the measured proϐiles

Knot‑resolver Dnsdist Adguard
Protocol 1 q/cx 1000cx/s 33cx/s 1 q/cx 1000cx/s 33cx/s 1 q/cx 1000cx/s 33cx/s
UDP 0.12 0.05 0.19
TCP 3.1 0.34 0.33 3.08 0.08 0.08 1.87 0.29 0.2
DoT 8.97 0.52 0.28 9.46 0.3 0.12 17.48 2.42 0.24
DoH 9.67 0.77 0.46 9.85 0.73 0.19 19 3.27 0.97

of aggressive connection opening (0.05 kWh versus 
9.85 kWh).

Despite its worse overall power consumption, 
Adguard‑dnsproxy distinguishes itself on TCP 
connection establishment, as it shows a 30%
performance gain over the other two.

6. CONCLUSION

DNS is still at the core of today’s Internet. Originally 
designed for performance, using an un‑encrypted 
connection‑less protocol, growing concerns about 
security have led to the standardization of secured 
protocols. In this article, we studied the resolver‑ 
side cost of transitioning to such protocols.

We benchmarked public resolvers using various DoH 
clients to gather proϐiles. We found that all enti‑ 
ties tried to maintain connections opened but that, 
when faced with a high load, browsers became un‑ 
stable and we observed a very high number of small 
connections. Then, we measured the additional cost 
of each step of the connected protocols (DNS over 
TCP, DoT, DoH). We observed that transitioning from 
the legacy protocol to a secured one lead to, at min‑ 
imum, a division of the performances by two, due 
to TCP connection establishment, TLS key exchange

and message encryption, and that the performance
loss was evenmore noticeable when considering the
switch to DoH because of the protocol layers added
by HTTP/2 . When considering the fact that the use
of DoH seems to be pushed by the industry, one can
wonder if the complexity added by the HTTP/2 pro‑
tocol is compatible with DNS’s initial goals of efϐi‑
ciency and scalability. Furthermore, in the case in
which connections are short, performances take an
even bigger hit, which can lead to a large increase in
the number of resolvers as well as their energy con‑
sumption, leading in turn to a higher operating and
environmental cost. As it is, we believe that switch‑
ing 100%of the client‑to‑resolver DNS trafϐic to DoH
is not sustainable. To realise this transition, it will
be necessary to ensure that clients can keep their
connections alive as much as possible, and to use
less costly protocols than HTTP/2, that still retain
its ability to go through ϐirewalls. Therefore, it could
be interesting in the future to measure the perfor‑
mances of QUIC‑based protocols, such as DNS over
QUIC or DNS over HTTP/3. or to experiment with
mechanisms to reduce HTTP/2’s complexity in the
context of DNS over HTTPS.
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APPENDIX

Table 4 – Table presenting the number of connections, 1st quartile (Q1), median (Q2) and 3rd quartile (Q3) of the distribution of 
connections length and messages per connection measured when recording the behaviour of popular DNS clients’ and servers’ imple‑ 
mentations when faced with varying load.

Cloudϐlare Google Quad9
# conns Messages per conn Conn duration # conns Messages per conn Conn duration # conns Messages per conn Conn duration

Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3
50ms 485 1 4 8 0.38 0.72 2.05 1063 1 2 7 0.08 0.20 0.76 1005 0 1 3 0.16 0.36 1.22

1000ms 7 0 0 87 0.07 0.10 75.37 9 0 0 42 0.18 0.19 30.07 11 0 0 143 0.11 0.12 132.27
60000ms 13 0 0 0 1 2.0 2.2 7 0 0 6.5 0.17 0.21 15.02 30 1 1 2.75 30.1 30.25 56.72

(a) Client : Firefox
Cloudϐlare Google Quad9

# conns Messages per conn Conn duration # conns Messages per conn Conn duration # conns Messages per conn Conn duration
Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3

50ms 847 1 3 10 0.16 0.41 1.14 1540 1 3 6 0.08 0.20 0.76 693 1 2 6 0.12 0.23 0.68
1000ms 3 2.5 4 905 427.66 455.20 1135.30 3 2.5 4 905 267 295 1047 9 0 1 3 0.40 30.12 30.26
60000ms 3 2.5 4 18.5 427.80 455.25 1135.31 3 2.5 4 18.5 267.69 292.23 1055.29 33 1 1 1 30.1 30.17 30.42

(b) Client : Chromium
Cloudϐlare Google Quad9

# conns Messages per conn Conn duration # conns Messages per conn Conn duration # conns Messages per conn Conn duration
Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3

50ms 3 9953 9998 9999 600.3 608.5 612.1 1 29960 1813.5 1 29959 1813.6
1000ms 1 1787 1816 1 1783 1815.7 1 1792 1815.8
60000ms 30 1 5.03 5.09 5.19 30 1 5.04 5.05 5.16 30 1 1 1 5.07 5.09 5.18

(c) Client : DNSCrypt‑proxy

ACRONYMS
CPU Central Processing Unit
DNS Domain Name System
DoH DNS over HTTPS
DoQ DNS over QUIC
DoT DNS over TLS
DoUDP DNS over UDP
HTTP/2 HyperText Transfer Protocol version 2 
IETF Internet Engineering Task Force
IP Internet Protocol
ISP Internet Service Provider
NIC Network Interface Controller
NSS Network Security Services
QPS Queries Per Second
TCP Transmission Control Protocol
TLS Transport Layer Security
TOR The Onion Router
UDP User Datagram Protocol
URL Uniform Resource Locator

GLOSSARY
FIN TCP ϐlag
GET HTTP request method
GOAWAY HTTP/2 control message
HEAD HTTP request method
HPACK HTTP/2 header compression algorithm
POST HTTP request method
QUIC Transport‑layer network protocol
RST TCP ϐlag
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