
EFFECTS OF SECURED DNS TRANSPORT ON RESOLVER PERFORMANCE

Etienne Le Louët1,2, Antoine Blin2, Julien Sopena2, Kamel Haddadou1, Ahmed Amaou1
1GANDI, Paris, France, 2Sorbonne Université, CNRS, LIP6, F‑75005 Paris, France

NOTE: Corresponding author: Etienne Le Louët, etienne.lelouet@gandi.net

Abstract – Designed 40 years ago, DNS is still a core component of the Internet: billions of DNS queries are
processed each day to resolve domain names to IP addresses. Originally designed for performance and scalability,
its transport protocol is unencrypted, leading to security ϔlaws. Recently, secure protocols have emerged, but the
question of their scalability and sustainability remains open. In this paper, we study the cost of switching from the
legacy DNS transport to the newer ones, by ϔirst characterising the shape of the trafϔic between clients and secured
public resolvers. Then we replicate said trafϔic, to measure the added cost of each protocol. We found that, while
connections usually stayed open, many closures and openings were made in some cases. Comparing these proϔiles
over different DNS transports, we observe that switching from the legacy protocol to a more secure one can lead
to an important performance penalty.

Keywords – DNS, DOH, DOT, HTTP/2, resolver, TLS

1. INTRODUCTION

Introduced in 1983, the dns is a core component
of the Internet, as nearly every communication on
it is preceded by at least one DNS query, to trans‑
form a human‑readable domain name into an Inter‑
net Protocol (IP) address. Nowadays, DNS is used for
much more than name‑to‑IP address translation: it
can hold mailbox data, x.509 certiϐicates, or conϐigu‑
ration information for various services. It had orig‑
inally been developed with a focus on performance
and scalability by using the udp as its transport pro‑
tocol to achieve both the lowest latency and server
load, but concerns regarding conϐidentiality and in‑
tegrity have since emerged. New standards, dot [1]
and doh [2], have been proposed within the ietf to
secure it, by encrypting queries and responses us‑
ing the tls protocol. While these new standards pro‑
vide both conϐidentiality and integrity, the question
of their cost remains open, as there is no informa‑
tion on the energy or environmental sustainability
of transitioning all DNS trafϐic from the old, unse‑
cured protocol to the new ones. In this paper, we
propose an estimation of the additional server re‑
sources required to transition fromanon‑encrypted,
non‑connected, DNS protocol to a secure but costly
protocol, by ϐirst observing how existing secured
DNS clients use the service, and then measuring the
added cost of theseprotocols in a controlled environ‑
ment.

First, we conducted a characterization of the be‑
haviour of DoH clients and public resolvers, in order
to gather the different patterns and settings applied
by both entities in their use of the secured protocols
(number of connection openings, connection dura‑
tion, number of queries allowed per connection...).
We noticed that, while they tend to try and keep
a single connection alive, browsers can, in certain
cases close and re‑open them very frequently.

Then, we realised multiple benchmarks using two
secured resolver implementations in order to, ϐirst,
compute their performance baseline when using the
unconnected legacy UDP protocol, then to measure
the hardware resources consumption of each of the
steps (connection establishment and upkeep, as well
as message processing) added by the new DNS pro‑
tocols. We observe that while the additional mem‑
ory consumption generated by the use of the new
secured protocols is noticeable, the rate of increase
is not important enough to be a problem in terms of
scalability. In terms of Central Processing Unit (CPU)
overhead, transitioning from UDP to DoH can lead to
a 70% decrease in performance, for relatively long‑
lived Transmission Control Protocol (TCP) connec‑
tions. The cost of encryption is in large part added
by the tls key exchange. For DoH (the most popular
protocol) the cost of implementing the http2 layers
lead to a performance penalty.

ITU Journal on Future and Evolving Technologies, Volume 5, Issue 1, March 2024

© International Telecommunication Union, 2024
Some rights reserved. This work is available under the CC BY-NC-ND 3.0 IGO license: https://creativecommons.org/licenses/by-nc-nd/3.0/igo/.

More information regarding the license and suggested citation, additional permissions and disclaimers is available at:
https://www.itu.int/en/journal/j-fet/Pages/default.aspx

The rest of the paper is organised as follows:
Sections 2 and 3 describe the technical background
and related work, Section 4 proposes a
characterization of client and resolver behaviour in
order to understand the shape of the trafϐic
near the resolvers, Section 5 proposes a
benchmark and an analysis of server side
performance and in Section 6, we conclude.

2. TECHNICAL BACKGROUND
Client Resolver

DNS Response
UDP

DNS Query
UDP

2

1

TCP (SYN+ACK)

TCP (SYN)

4

DNS Query
TCP (ACK)

DNS Response
TCP

3

TCP (FIN)

TCP (ACK)

TCP (FIN+ACK)

CloseNotify
TLS

TCP

TCP (FIN)

TCP (ACK)

TCP (FIN+ACK)

1

2
TCP (SYN+ACK)

TCP (SYN)

ServerHello
TLS

TCP

ClientHello
TLS

TCP ACK

4

3

7

DNS response
TLS

TCP

DNS query
TLS

TCP5

6

CloseNotify
TLS

TCP

TCP (FIN)

TCP (ACK)

TCP (FIN+ACK)

Client Resolver Client Resolver Client Resolver

(a) UDP (b) TCP (c) TLS (d) HTTP/2

TCP (SYN)

TCP (SYN+ACK)

1

2

TLS
ServerHello

TCP

ClientHello
TLS

TCP ACK

4

3

TCP

TLS
HTTP/2 HEADERS

TCP

TLS

DNS query
HTTP/2 DATA

6

TCP

TLS
HTTP/2 HEADERS

TCP

TLS

DNS response
HTTP/2 DATA

75

8

7

Fig. 1 – Comparison of DNS over UDP, TCP,
TLS (DoT) and HTTP/2 (DoH)

From a high‑level point of view, DNS is a registry
service queried by a client to resolve the IP address
corresponding to a domain name. It has been im‑
plemented as a tree‑like database, in which multi‑
ple servers hold only a fraction of the information;
looking for information on it is therefore a depth‑
ϐirst search starting from the root. However, if every
client looking to translate a domain name to an IP ad‑
dress were to realise such a process, it would result
in prohibitive latency and an overload on the servers
closest to the root; that is why iterating through the
tree is delegated to resolvers, servers which, upon
receiving a query from a client, can answer it ei‑
ther from their cache, that will have a higher hit rate
since it likely received the same request from an‑
other client earlier, or by doing the resolution them‑
selves.

In contrast to the other, historically text‑based, web
protocols, the DNS message protocol has been im‑
plemented using binary message format in order to
target the highest performances. Both UDP and TCP
have been selected as transports. The ϐirst one, UDP,

is connection‑less (Fig. 1a), and provides high per‑
formance at the cost of reliability and message pay‑
load size. As such, it is the recommended protocol to
transport standard DNS queries (which represents
most of the DNS trafϐic). The second one, TCP, re‑
quires the exchange of three messages (arrows 1 to
3 on ϐigures 1b c d) to establish a connection, before
sending any DNS messages. It has been mostly used
to transport special DNS messages (zone transfers)
that do not ϐit into a UDP datagram. As these legacy
DNS transport protocols are unsecured, DNS is vul‑
nerable to a variety of attacks, detailed in
Section 3. Several secured protocols have been
proposed to deal with the aforementioned security
ϐlaws.

The ϐirst one, DoT [1], uses a TLS connection [3] to
provide both integrity and conϐidentiality. It relies
on a TCP connection to establish a TLS session be‑
tween the client and the server. Two messages (ar‑
rows 3 and 4 in Fig. 1c) are exchanged between both
endpoints to derive, from their respective pairs of
asymmetric keys, a symmetric key used to encrypt
the DNS binary messages. During this process, the
client also validates the identity of the resolver by us‑
ing the latter’s digital certiϐicate.

DoH has been proposed as an alternative to offer a
secure DNS transport. It relies on HTTP/2 [4] to
carry the DNS messages, and may be seen as an addi‑
tional layer built on top of TLS. Once a session is es‑
tablished (arrows 3 through 4 in Fig. 1), the multiple
streams of the HTTP/2 protocol are used to trans‑
port DNS queries, either directly in their binary for‑
mat as the body of an HTTP POST query (arrows 5,
6, 7 and 8 in Fig. 1d) or as the base64‑encoded url
parameter of a GET query (as it is less common it is
not considered here).

Originally designed for performance, the legacy DNS
protocol doesn’t offer any security guarantees. To
prevent data leaks and corruption, new protocols
based on existing technologies used to guarantee
security on the web have been pushed in order to
secure DNS. Switching from a connection‑less un‑
encrypted protocol to connected ones making exten‑
sive use of cryptography seems to go against the orig‑
inal goals that drove the development of DNS, and
therefore the cost of this transition must be
analysed.

ITU Journal on Future and Evolving Technologies, Volume 5, Issue 1, March 2024

©International Telecommunication Union, 202448

3. RELATED WORK
We classify the work related to DNS security in
three categories: work that focuses on describing
and proposing mitigation for different security ϐlaws,
work that aims to compare the client‑side cost of se‑
cured DNS protocols, and ϐinally, work that focuses
on evaluating their adoption.
Security issues and guarantees: When studying
the security of an information system, three prop‑
erties are to be considered: conϐidentiality, integrity
and availability.
Conϐidentiality: UDP and TCP did not offer any kind
of conϐidentiality to the messages they carry, mean‑
ing that any malicious actor could use captured DNS
messages to breach a user’s privacy [5]. DoT and
DoH circumvent this ϐlaw by using the TLS protocol
to carry their messages, therefore guaranteeing con‑
ϐidentiality. However, several studies have shown
that some characteristics of DNS trafϐic can be ex‑
ploited to, in some cases, de‑anonymize encrypted
DNS trafϐic. In [6], Siby et al. show that, despite
its use of encryption, it is still possible to determine
the content of a DoH ϐlow containing un‑padded
queries and responses, by using trafϐic analysis tech‑
niques. In [7], Bushart and Roshow show that even
state‑of‑the‑art padding strategies are weak against
some trafϐic analysis attacks. However, it is worth
noting that the machine‑learning models used in
these attacks can only de‑anonymize DNS ϐlows they
were previously trained on (usually popular web‑
sites), and that techniques such as arbitrarily delay‑
ing queries and responses, or the use of proxy net‑
works such as tor can be powerful mitigation against
these attacks. Furthermore, these attacks require
both a constant update of the model used to tar‑
get websites in order to cope with their modiϐica‑
tion, and the knowledge of the source of the trafϐic,
as clients have different behaviours regarding inter‑
query timings and message size.
Integrity: The DNS protocol did not initially of‑
fer mechanisms guaranteeing the integrity of data,
meaning that an adversary could edit a DNS re‑
sponse, thus redirecting a client towards fraudulent
services [8]. DNSSEC was later standardized, and
guarantees the integrity of data exchanged between
the resolver and name servers. On the other hand,
the data exchanges between client and resolver still
use the legacy protocol, leaving them vulnerable to
the aforementioned attacks. As TLS guarantees the
integrity of the messages it transports, using DoT or
DoH in combination with a trusted resolver that

validates the integrity of records by using
DNSSEC, can protect against this category of
attacks.

Availability: The two aforementioned properties
are necessary but not sufϐicient to fully protect a
client. DNS is one of the most commonly ϐiltered
protocols (by governments or isp [9]). DoT, which
uses port 853 by default can be easily blocked by
port‑based ϐilters, while DoH is not, as it relies on a
widely used protocol. It is still vulnerable to ϐinger‑
printing techniques, able to detect whether or not an
encrypted ϐlow contains DoH queries and response,
like Vekshin et al. prototyped in [10]. However,
as we said earlier, these techniques require models
trained on a variety of clients, resolver and trafϐic
shape that require constant updating, so it is unre‑
alistic to expect them to be used globally. Despite
the remaining security limitations, the beneϐits pro‑
vided by DoT and DoH complete the efforts ϐirst un‑
dertaken with the introduction of DNSSEC.

Client‑side performance: Various studies focus
on the client‑side cost of DoT or DoH. Hounsel et
al. [11], [12] compare the page load times using
different combinations of DNS transports, network
types and public resolvers. Boettger et al. [13] also
compare the resolution times and protocol overhead
of different secure DNS transports when using per‑
sistent or non‑persistent connections. These stud‑
ies ϐind that connection reuse is beneϐicial for the
client, and that secure DNS adds no noticeable cost
to clients, except on some cellular networks.

Chhabra et al. [14] also study the impact of switch‑
ing to DoH, leveraging several vantage points, which
allows them to correlate the speed‑up or slow‑down
measured when switching from doudp to DoH with
the level of investment in Internet infrastructure by
a country.

Finally, in [15], Kosek et al. compare the perfor‑
mances (in terms of latency) of DoH with those of
DoUDP, but also with those of doq. They found that
the use of DoQ lead to faster page load times than
with DoH, due the faster connection establishment.
However, the improvement over DoH lessens as the
complexity of the loaded page (and therefore the
number of resolutions needed to load it) increases,
since the latency gained by a faster handshake is
amortized by the connection reuse, which in turns
allows both DoH and DoQ (connection‑based
protocols) to catch up with DoUDP (as discussed by
Boettger et al. [13]).

Le Louët et al.: Effects of secured DNS transport on resolver performance

©International Telecommunication Union, 2024 49

Protocol adoption: In [16] Garcıà et al. analyse
both the number of available DNS‑over‑encryption
resolvers, as well as the use of DNS‑over‑encryption
by various users. While the amount of DoH
trafϐic had stayed stationary, representing about
1% of the current DNS trafϐic, the number of
available DoH servers is steadily growing. Such a
growth raises the question of how the energy
sustainability of the generalized use of DNS over
HTTPS

While the work discussed here offers valuable in‑
sights on the more recent DNS transport protocols,
ours is the only work that focuses on the impact
on resolver resource consumption of implementing
such protocols; the existing literature focuses on
client‑side or network‑side metrics such as latency
or packet number or size, while our work focuses on
the memory or CPU consumption of implementing
such protocols, on the server‑side.

4. BEHAVIOUR OF CLIENTS AND RE‑
SOLVERS

As the newer DNS transports are connection‑based,
new questions arise: while the protocol deϐines how
to query the service, it doesn’t specify how the un‑
derlying connections should bemanaged by both the
client and resolver. The sequence of connections
opening and requests sent is mostly controlled by
the client. But to focus only on the client’s behaviour
is not enough, as the server has the choice to accept,
reject, close or keep said connections opened.

The objective of this experiment is to characterize
the shape, in terms of number of establishments,
closures and messages sent over individual connec‑
tions, of the trafϐic between already existing clients
and publicly available resolvers. We speciϐically
choose existing clients and public resolvers who are
widely used andwhose conϐiguration and behaviour
we do not control, as we want to determine how the
implementations currently deployed use the proto‑
col, so we can generate similar trafϐic when measur‑
ing server‑side performances.

In Section 4.1, we describe the experimental setup
used for the measurements, while Section 4.2 con‑
tains an analysis of the different behaviours ob‑
served from the clients and the resolvers.

4.1 Experimental setup
As DoH gained more traction than DoT and is there‑
fore available in more software and on more pub‑
lic resolvers, the only trafϐic generated in this ex‑
periment is DoH trafϐic. To characterize the shape
of the trafϐic, we make a DoH‑enabled client send
queries at various rates (one every 50 ms, 1000 ms
and 60 000 ms) for 30 minutes, to a DoH‑enabled
public resolver. We run the client in a docker con‑
tainer for two reasons: the isolation provided by the
network name spaces give us a way to isolate its net‑
work trafϐic for capture using Tshark [17], and using
a container allows for easier reproducibility of our
experiment. We enforce no resource restrictions on
the container we use; therefore, the only overhead
is the additional network latency and CPU use due
to the more complex network path induced by the
use of network name spaces. We then further ϐil‑
ter the network trafϐic based on the target’s resolver
IP, the port used by DoH (443), and transport pro‑
tocol (TCP), leaving us with a trace containing only
the DoH trafϐic emitted by the client. We then ex‑
tract the following metrics from the network trace :
the number of TCP connections established between
client and resolver, their duration, the origin (client
or the server) and method (TCP FIN or RST, HTTP/2
GOAWAY) of its closure. Another metric we consider
is the number of queries on each connection. How‑
ever, as trafϐic is encrypted, we make our client dump
the TLS secrets to a ϐile, in the nss Key Log Format,
so that Tshark can decipher the trafϐic, allowing us
to count the exact number of queries and responses
exchanged in every TCP connection.

Part of the reason for DoH’s popularity is its integra‑
tion in popular web browsers. For this reason, we
elected to observe the behaviour of Chromium [18],
as it is the basis for other popular browsers [19],
such as Chrome or Edge. We also chose to observe
Firefox’s [20] behaviour, as it was among the ϐirst
browsers to implement a DoH stub resolver.

Even though web browsers are likely to be one of the
biggest source of DNS trafϐic, there is other software
on an end‑user’s machine that can generate DNS traf‑
ϐic as well, and, in the majority of cases, trafϐic is un‑
secured, as it relies on the stub resolver provided
by the host OS. A new category of software, called
proxies, has emerged to resolve this issue. They run
on the user’s device, listening on a local port, and
are conϐigured as the system’s resolver, meaning that

ITU Journal on Future and Evolving Technologies, Volume 5, Issue 1, March 2024

©International Telecommunication Union, 202450

they capture all DNS queries emitted by software
on the system, and transmit them to a conϐigured
resolver over a secured channel. This means that,
by installing and conϐiguring it, all software trans‑
parently beneϐits from a secured DNS channel to a
trusted resolver, that is shared among all running
applications, which saves both client and server re‑
sources when compared to a model in which each
client individually implements secured DNS trans‑
ports.

As the goal of this experiment is to measure how
both parties use the underlying TCP connections, we
need to measure how current DNS over HTTPS de‑
ployments handle trafϐic. This is why we chose to
observe the behaviour of three widely used, DoH‑
enabled public resolvers : Quad9, Google and Cloud‑
ϐlare. Since we have three different clients, delays
and resolver, this brings the total amount of exper‑
iments we run to test every combination to 27.

We gather the list of domain names to resolve from
a public list of domain names [21], ϐiltered to keep
the ones that still have an A record corresponding
to a server accepting HTTP trafϐic. In order to gen‑
erate the appropriate trafϐic using the browsers, we
conϐigure them to use the selected DoH resolver, and
we loaded a JavaScript script making HTTP HEAD re‑
quests to the domain names in the ϐile. We choose
HTTP HEAD request, as they require the browser
to resolve the domain name to contact the server,
but cause very little data to be returned. To gen‑
erate trafϐic using DNScrypt‑proxy, we use a C pro‑
gram making DNS resolutions for the domain in the
list at the same rates as the ones conϐigured for
the browser, using the system’s conϐigured resolver,
which, in this case is DNSCrypt‑proxy.

Both these scripts, in addition to the conϐiguration
ϐiles for the browsers, DNSCrypt‑proxy, as well as the
scripts used to analyse the trafϐic, are available in a
public git repository [22].

4.2 Results
Figures 2a, 2b, 2c present, for each combination of
software, inter‑query delay and public resolver, the
number and length of connections to the resolver
established by the client. For example, on Fig. 2c,
the top‑left ϐigure presents the number and length of
TCP connections that DNSCrypt established towards
the Cloudϐlare resolver. Each sub‑ϐigure can be seen
as a Gantt diagram : the x‑axis represents the time in

(a) Client : Firefox

(b) Client : Chromium

(c) Client : DNSCrypt‑proxy

Fig. 2 – Connection use by clients (Firefox, Chromium
and DNSCrypt‑proxy) for a set of resolvers (Cloudϐlare, Google
and Quad9) and query delays (50 ms, 1 000 ms, 60 000 ms)

the experiment, and every connection is
represented on a single line as a coloured rectangle,
its leftmost and rightmost edges marking its start
and end date respectively. Connections shorter than
a second are represented by a cross. For
example, by observing the top‑right graph of
Fig. 2c, we can see that, when the inter‑query
delay is 50 ms, DNScrypt‑proxy established only
one connection to the quad9 resolver.

Le Louët et al.: Effects of secured DNS transport on resolver performance

©International Telecommunication Union, 2024 51

Conversely, by observing the top-right graph of
Fig. 2a, we observe that, when faced with the same
inter‑query delay of 50 ms, Firefox established a
lot of short‑lived (less than 1 s) connections to the
quad9 resolver.

DNScrypt‑proxy: DNScrypt‑proxy generates the
least aggressive load towards the server. Indeed,
its main behaviour is to open and keep open a sin‑
gle TCP connection that it will use to perform all re‑
quests, regardless of intensity of the trafϐic gener‑
ated. We can infer this by observing the middle row
two top‑rightmost graphs on Fig. 2c. In addition, an
internal timer is set to trigger the close of the TCP
connection 5 seconds after the last message was sent
over it, freeing both client and server resources. We
infer this by observing the bottom row on Fig. 2b,
or the network trace, in which we see that the TCP
connection closure is always initiated by DNSCrypt‑
proxy, through a TLS alert message with the ”Close
Notify” description.

Web browsers: The browsers have a more aggres‑
sive usage of DNS resources. At the beginning of
the sessions, they try to maximise the probability of
having a successful connection to the DNS server by
opening several connections in parallel to the same
server, likely to speed up the early resolutions that
browsers usually do, (ϐigures 2a and 2b), leading
to an increase in server resources usage. The fol‑
lowing use of these opened connections depends on
the intensity of the trafϐic. When the trafϐic has a
low intensity, with a request frequency lower than 1
Queries Per Second (QPS), (see the bottom two rows
of ϐigures 2a and 2b), a single connection is mainly
used to handle the trafϐic, the remaining connections
eventually being closed. We sometimes observe con‑
nection closures, forcing a re‑opening (1 000 ms
delay row on ϐigures 2b and 2b), or multiple
connections at the same time (1 000 ms and
60 000 ms delay rows on Fig. 2b), but these events
are not numerous enough during the lifetime of an
experiment to be signiϐicant. Under a DNS trafϐic
with a high intensity (above 1 query per second)
the connection pattern of the web browsers
changes drastically. Not only does the browser fail
to generate the trafϐic we ask for, we also observe
connections being opened and closed in sequence,
(see top row on ϐigures 2a and 2b). Every
connection shutdown originates from the client,
either through an HTTP/2 GOAWAY message for
Firefox, or directly through a TCP FIN message for
Chromium.

Each of these connections is used to carry few to
no DNS messages. From a server perspective, such
behaviour represents the worst case, as, with each
connection opening being costly, this leads to huge
resource consumption.

Resolvers: Clients are not solely responsible for
the connection patterns. The resolvers have the
choice to accept or deny the connections and the traf‑
ϐic issued from the clients. We have observed that
Google has the most permissive resolver conϐigura‑
tion of those we tested, as we didn’t observe any limi‑
tation in terms of number of connections, their dura‑
tion and the number of QPS per connection. Quad9
closes unused connections through an HTTP/2 GO‑
AWAY message after around 30 seconds of inactivity
(Fig. 2a, bottom‑right). Cloudϐlare does not impose
any restriction on the connection duration, but limits
the maximum number of requests per connection to
10 000 (Fig. 2b, top‑left). When this limit is reached,
the server notiϐies the client through an HTTP/2 GO‑
AWAY message paired with a TLS alert message with
the ”Close Notify” description.

The intended behaviour of clients and resolvers
seems to be to keep one TCP/TLS connections alive
while they are used, as re‑opening a connection
leads to an increased cost in CPU resources (as
the TLS handshake is relatively costly), or in latency
(as each connection establishment requires
multiple round‑trips).

5. SERVER SIDE PERFORMANCE

Moving from UDP, an unconnected protocol histor‑
ically used for communication between clients and
resolvers, to more complex connected ones can lead
to an increase in the consumption of hardware re‑
sources on the resolver side: the handling, by the
resolver, of DNS queries transported in a UDP data‑
gram simply requires receiving the datagram and
then sending another one containing the answer
once the cache‑lookup or resolution is completed.
On the other hand, the use of session‑based proto‑
cols is more complex, as they require multiple round
trips and additional computations for the establish‑
ment of a session, the management of the state asso‑
ciated with the said session, the encoding and decod‑
ing of messages, in addition to the already‑existing
cost of handling DNS queries.

Questions about scalability and resource consump‑
tion arise regarding the cost of these additional

ITU Journal on Future and Evolving Technologies, Volume 5, Issue 1, March 2024

©International Telecommunication Union, 202452

steps. In order to properly evaluate their cost, we
realised a series of synthetic benchmarks, ϐirst us‑
ing DNS over UDP (UDP) as a baseline, then DNS
over TCP (TCP), DNS over TLS (DoT), and DNS over
HTTPS (DoH). While it offers no privacy guaran‑
tees, measuring how TCP performs is still interest‑
ing because, as we have seen previously in Section
2, both secured protocols have been built on top of
TCP. Thus, the comparison between UDP and TCP
is a good performance indicator of the cost added
by the TCP connection. Using the same approach,
comparing TCP and DoT allows us to measure the
performance cost of the TLS session establishment
and trafϐic encryption, and comparing DoTwith DoH
gives us insights about the cost of the added HTTP/2
layers.

In Section 5.1, we describe the experimental envi‑
ronment of our benchmarks. Section 5.2 presents
the results of a benchmark of the legacy UDP‑based
protocol, while sections 5.3, 5.4 and 5.5 describe
the multiple synthetic benchmarks we realised to
characterize the costs of the different steps of the
connection‑based protocols.

5.1 Experimental setup
We elected to run our benchmarks on a DNS archi‑
tecture deployed on theGrid5000 [23] platform. Our
testbed is composed of 22 Dell PowerEdge R640,
each of them with an 18‑core CPU with a base clock
of 2.2 GHz and a turbo frequency of 3.9 GHz, 96 GiB
of RAM (RandomAccessMemory) and a 25 Gbps nic,
all connected together through the same switch. We
run our server on one of those machines, use twenty
of them as our clients and the remaining one as the
experiment monitor in charge of deploying and run‑
ning the various actors and measurement tools on
their respective machines.

We selected three secured DNS implementations to
test: Knot‑resolver [24], as it is used by important
industry players (most notably Cloudϐlare), Dnsdist
[25], that is not a serverper se, but acts as aproxy and
load balancer between a client and another server,
it can either answer from its cache, or forward the
query to another server. Since it is compatible with
both DoH and DoT, it can be used to modernise
an existing DNS infrastructure by adding support
for these protocols without having to make exten‑
sive modiϐications to the underlying server(s) soft‑
ware or conϐiguration. The last implementation we

tested is Adguard‑Dnsproxy [26], as it is a relatively
recent implementation that promises support for
newer protocols such as DNS over QUIC or DNS over
HTTP/3. As we need a very high number of clients to
reach 100% load on one core in our setup, we conϐig‑
ure both software to only run on a single core of our
server machine using Linux cgroups.

As we aim to focus on the server‑side cost of tran‑
sitioning from a legacy UDP‑based protocol to a
session‑based protocol for the client to server con‑
nections, we decided to exclude the cost of retrieving
the records from the hierarchy of DNS name servers
from the resolving process, to avoid measurements
noise that could occur when querying external un‑
controlled name servers. At the beginning of each
experiment, we ϐill the cache of our servers with the
DNS records that will be queried during the experi‑
ment, meaning that all subsequent queries from the
clients result in a cache hit. To reduce experimen‑
tal variability as much as possible, all of the names
that are queried for during the rest of the experiment
are composed of a number from 0 to 2 000, padded to
four characters, followed by a non‑existing top‑level
domain.

Trafϐic is generated using Flamethrower [27], a DNS
benchmarking utility compatible with all bench‑
marked protocols. We patched its code so it would be
able to keep the underlying connections opened for
a conϐigurable duration, as its default behaviour was
to open a connection, send a set number of queries,
wait for the answers to these queries (up to a conϐig‑
urable timeout), and then close the connection, only
to re‑open it again for the next batch of queries. As
we wanted to be able to control the length of the con‑
nections, our new implementation opens a connec‑
tion for a set duration, sends batches of queries on
that connection at a conϐigurable frequency (wait‑
ing for their answer or timeout), and only closes the
connection once a conϐigurable timer, separate timer
has run out. A fork of Flamethrower including these
changes is available on GitHub [28]. When bench‑
marking DoH, we send our queries in the body of
an HTTP/2 POST query, as we detected in Section 4
that it was how clients operated. For all these exper‑
iments, we tuned Flamethrower’s parameters (num‑
ber of queries per batch, and delay between each
batch), so that our resolver process would end up
using 100% of the CPU it was pinned on (as mea‑
sured by both htop, ps, and conϐirmed by the output
of linux‑perf).

Le Louët et al.: Effects of secured DNS transport on resolver performance

©International Telecommunication Union, 2024 53

5.2 Baseline
As it is the legacy most widely used and the most ef‑
ϐicient transport for DNS, measuring how UDP per‑
forms gives us a baseline in terms of performances.
To obtain this baseline, we run several experiments
in which DNS over UDP queries at a set rate, which
increase each experiment. As UDP offers no ϐlow
controlmechanism, at somepoint the clientwill start
sending more trafϐic than the server can answer,
meaning that it will not answer some of them, lead‑
ing to losses. We then take note of the maximum
amount of queries per second handled by the server,
and use it as our baseline.
At best, Knot‑resolver answered 105 000 QPS out
of the 120 000 QPS sent by our clients, while Dns‑
dist answered 223 000 QPS, out of the 240 000 sent.
We investigated these losses and noticed that they
were due to a saturation of the CPU, both servers be‑
ing unable to process queries at such a rate, lead‑
ing to the kernel‑side UDP reception buffer ϐilling
up and packets having to be discarded. Increasing
the size of the reception buffer is useless: since we
send queries at a constant rate, it will just delay the
moment the buffer ϐills up and the kernel starts dis‑
carding packets. We explain the difference in perfor‑
mances of almost 50% between Knot‑resolver and
Dnsdist by the fact that Dnsdist is a proxy and load
balancer whose purpose is to pass queries to an up‑
stream server as efϐiciently as possible, therefore
having very few things to do when receiving a query
other than answering it from its cache or forward‑
ing it, while Knot‑resolvermost likely has to domore
processing, even in the case of a cache hit (query pol‑
icy, response padding).

5.3 Memory usage of keeping connections
alive

Transitioning from UDP, a connection‑less protocol,
to connection‑based ones raises the question of the
maximum number of simultaneous connections a
server can handle. Therefore, we have devised an ex‑
periment aiming to measure the limits (in terms of
memory) of the number of connections that can be
handled by a server.

For each protocol we tested (TCP, DoT and DoH), we
usedFlamethrower to generate asmany connections
towards our server as possible, spread across our 20
machines. We conϐigured both client and server so
that they would not close established connections,

(a) Knot‑resolver

(b) Dnsdist

(c) Adguard‑dnsproxy

Fig. 3 – Memory usage of the servers relative to
the number of connections

and increased the kernel‑side limits on the number
of outgoing or incoming connections. We measure
two separate values: the resident set size (amount
of memory used by a process present in physical
RAM) of the server, and the total amount of memory
used on the machine. By calculating the difference
between these two values, we are able to estimate
the amount of memory used by the kernel, as the
in‑physical RAM memory imprint of the processes
other than the server is negligible. There was an op‑
tion in Dnsdist allowing for the release of memory
associated with idle connections, which we chose
to deactivate as our interest lied in estimating how
much memory an active connection would consume.
Fig. 3 shows, for each server and protocol combina‑
tion, the total physical memory used relative to the
number of connections. At the top (in red) is the res‑

ITU Journal on Future and Evolving Technologies, Volume 5, Issue 1, March 2024

©International Telecommunication Union, 202454

ident set size of the server, in the middle (in black)
is memory used by the kernel, and, at the bottom
(in grey) is the amount of memory used when the
server is idle, presented for reference. The mem‑
ory used by the kernel is the same in every experi‑
ment, which is consistent with the fact that the ker‑
nel only handles TCP connections, the common part
between the three protocols. For all servers, we
observe an increase in memory consumption when
switching from TCP to DoT, as the handling of TLS
sessions requires additional state, handled by the
server. When considering the difference between
DoT and DoH, we can notice, for both Adguard‑
dnsproxy and Knot‑resolver, a clear increase in con‑
sumption induced by the use of DoH, due to the fact
that their DoH stack is built upon their TLS stack.
Therefore the memory consumed by HTTP2’s pro‑
tocol layers are added to the memory consumed by
the TLS layer. For Dnsdist however, we observe that
DoH has a lower memory consumption than DoT.
While this seems counter‑intuitive, it is consistent
with the memory consumption per connection and
protocol announced in its documentation (that ad‑
vertises a higher per‑connection memory consump‑
tion for DoT than for DoH). As the number of simulta‑
neous connections never reaches 400 000 in the fol‑
lowing experiments, we conclude that memory con‑
sumption won’t be the limiting factor in our setup.

Table 1 – Parameters used when measuring the cost
of handling queries

Software Protocol Number of connections

Knot‑resolver
TCP

20 / 40 / 100 / 500 / 1000 / 2000 / 4000 / 8000DoT
DoH

Dnsdist
TCP

20 / 40 / 100 / 500 / 1000 / 2000 / 4000 / 8000DoT
DoH

Adguard‑dnsproxy
TCP

20 / 40 / 100 / 500 / 1000 / 2000 / 4000 / 8000DoT
DoH

5.4 Cost of handling queries
While the use of these new connected protocols
seems to cause no issue regarding memory con‑
sumption, it can induce a CPU overhead due to the
additional steps required when handling messages.
These can be broken down into two parts: ϐirst, the
connection establishment, and then, the handling of
individualmessages (see Section 2). The experiment
described here aimed to estimate the cost of han‑
dling individual queries.
In order to measure the additional cost per request,
we must take into consideration the number of si‑

multaneously opened connections over which re‑
quests are sent. To do this, we sent a ϐixed amount of
trafϐic over a set number of already opened connec‑
tions. We repeat that experiment multiple times for
each protocol / server combination, with a variable
number of connections for each experiment. The
various experimental parameters chosen are pre‑
sented in Table 1. The total ϐixed amount of queries
sent, as well as theminimumnumber of connections
was chosen to ensure that the CPU utilization of the
server process and the frequency of the core it ran
on, were as high as possible.
Each point on Fig. 4 represents the average num‑
ber of queries per second that were successfully an‑
swered by the tested server, with bars presenting the
minimumandmaximumvalue reached, for a speciϐic
protocol and a speciϐic number of connections. We
also represented the max trafϐic handled with UDP
for comparison purposes. For every connected pro‑
tocol there is a performance drop when compared
to UDP. This is partly because, at the kernel level,
handling a message sent over a TCP connection in‑
volves extra steps when compared to UDP, such as
checking the consistency of acknowledgment num‑
bers or calculating the congestion window size. Fur‑
thermore, we observe that, for Dnsdist, there is a no‑
ticeable drop in performance between TCP and DoT,
while for Knot‑resolver andAdguard‑dnsproxy, their
performances are very similar. We explain these dif‑
ferences by the fact that Knot‑resolver or Adguard‑
dnsproxy are less efϐicient at handling DNS queries,
meaning that the cost added by symmetric encryp‑
tion is absorbed by the cost of handling DNS queries.
As Dnsdist is more efϐicient, the per‑message cost
added by symmetric encryption is more noticeable.
When comparing DoH to other protocols, we notice,
for all three servers, a huge drop in performance (by
a factor of two), that we explain by the added cost of
handling theHTTP/2protocol layers, which includes
sending and receiving the control messages, allocat‑
ing the data structures for new streams, and using
the HPACK algorithm to decode message headers.
For every protocol, we observe that performances
tend to drop when the number of connections in‑
creases (up to a 40% decrease when considering
Dnsdist over DoH), except for Dnsdist over TCP.

5.5 Overhead of establishing connections

In the following experiment, we measure the cost
of opening and closing connections for each proto‑

Le Louët et al.: Effects of secured DNS transport on resolver performance

©International Telecommunication Union, 2024 55

Fig. 4 – Queries per second handled by the servers when connections last all experiment

Fig. 5 – Queries per second (qps) handled per server and protocol according to number of connection establishments per second

Table 2 – Parameters used when measuring the cost
of establishing connections

Software Protocol Number of connections Connection duration

Knot‑resolver
TCP

1000

1 query per connection / 1s / 30sDoT
DoH

Dnsdist
TCP

1 query per connection / 1s / 30sDoT
DoH

Adguard‑dnsproxy
TCP

1 query per connection / 1s / 30sDoT
DoH

col. We use the same experimental parameters as
the ones used in the previous experiment (Fig. 4) to
plot the points corresponding to 1000 connections,
but this time taking into account connection estab‑
lishment and tear down. Thus, by comparing this
experiment and the previous one, we can infer the
overhead of connection establishment (TCP connec‑
tion establishment, TLS key exchange). We run two

sets of experiments, one in which our clients close
and re‑establish a connection every 30s, the other in
which clients close and re‑establish connections ev‑
ery second (to match the long and short‑lived con‑
nections we observe in Fig. 4). The parameters
used for this experiment are presented in Table 2.
In order to avoid the case in which the server has
to handle a batch of connection establishment ev‑
ery 1 or 30 seconds, then only queries, and then an‑
other batch of connection establishment, we ensure
that clients are started sequentially, with a set de‑
lay in between them. This, coupled with the fact
that clients are conϐigured to close and re‑open con‑
nections on a strict timer, means that, in each ex‑
periment, the server has to handle a ϐixed amount
of connection establishments every second : in the
ϐirst experiment, the server has to handle 33 connec‑

ITU Journal on Future and Evolving Technologies, Volume 5, Issue 1, March 2024

©International Telecommunication Union, 202456

tion establishments every second, while in the sec‑
ond experiment, it has to handle 1 000 connection es‑
tablishments every second. In addition to being set
by design, these rates were conϐirmed to have been
respected through an analysis of the network trace
generated by each experiment. We run an additional
batch of experiments to reproduce the very short‑
lived connections also observed in Section 4 : dur‑
ing this experiment, the clients are conϐigured to es‑
tablish a connection, send a single query over it, wait
for its answer, close the connection and immediately
start over.

The results of the experiments are presented in
Fig. 5, in the form of the number of queries per
second handled by a server for each combination of
protocol and connection duration. We also plotted
the maximum queries per second we reached in
the previous experiment (Fig. 4) as a baseline for
comparison. For all three servers, we observe the
same performance variations between protocols,
but with different orders of magnitude: when few
connection establishments occur (33 connection
establishments per second), we observe a variable
decrease in performance (of up to 20%) for TCP and
DoT, relative to the experiment in which no
connection establishments occur. However, we do
not observe this performance loss for DoH, as the
CPU cost of query handling is still the bottleneck.
When the frequency of connection es‑
tablishments increases (connections last for 1 sec‑
ond), the performances of TCP decreases less than
that of both encrypted protocols, as they both see a
decrease in performances due to the added cost of
the TLS key exchange. When connections are used
for one query only, the cost of establishing TCP con‑
nections induces a collapse of performances for all
protocols.

5.6 CPU usage of resolver process
We also measured the time spent by the processes
of Knot‑resolver, Dnsdist and Adguard‑dnsproxy in
kernel or user mode. Fig. 6 presents, for these
severs, the percentage of their total scheduled time
they spent in user or kernel mode, depending on
the amount of connections per second they had to
handle. We base our analysis on the fact that, for
these software, TCP and UDP is handled in the ker‑
nel, while TLS and HTTP/2 are handled in userland.

UDP is a very simple protocol implemented entirely
in the kernel. As there is no connection or encryp‑

tion, all of the user time is spent on the DNS resolu‑
tion service, and not on the handling of higher proto‑
col layers, such as TLS or HTTP/2. Therefore, com‑
paring how the servers handle it shows us how they
handle the base DNS protocol. We can infer, from the
fact that Knot‑resolver and adguard spend a higher
fraction of their time in user mode when compared
to Dnsdist, for a lower amount of queries handled,
that they spend more time handling base DNS mes‑
sages than Dnsdist, which is consistent with the fact
that they are less efϐicient than Dnsdist at handling
base DNS queries.

Studying the behaviour of these servers on more
complex protocols, we observe that handling DoT or
DoH results in more time spent in userland. This
phenomenon is less marked for Knot‑resolver when
it is handling few DoH connection establishments
(No open or 33cx/s on Fig. 6(a)), as it makes more
per‑query syscalls then Dnsdist or adguard in order
to handle the HTTP/2 protocol.

For all three servers however, the more TLS connec‑
tion establishment occurs (which is the case when
handling DoT or DoH at 1000cx/s or 1q/cx), the
more time is spent in userland, as this is where the
(costly) TLS handshake is handled.

5.7 Resolver power consumption
We measured the energy consumption of the server,
ϐirst at idle, then during the experiments (when one
core is fully loaded), and the delta between the two
gives us the lower bound of the energy consumed
by the various protocols. This delta is then used to
compute the cost, in KWh, of one request and we use
this cost to obtain the energy consumed, in kWh, of
handling 10k QPS for a day (results in Table 3). As
this cost does not include the idle consumption, if the
cost per query is really low (as is the case with DNS
over UDP), our projection results in low estimated
energy costs. In the opposite case, when the cost per
query is very high, this can result in a very high es‑
timated energy consumption, as handling 10K QPS
in this case, would necessitate running several cores
at 100%, or even running additional machines. If
connection use is fair (30s) the use of secured pro‑
tocols is worth considering, even though it increases
energy consumption by a factor of two for DoT and
four for DoH, but when we consider a higher load,
in which connection openings occur more frequently
the use of such protocols become more costly (up to
15 times for DoH at 1s), or unsustainable in the case

Le Louët et al.: Effects of secured DNS transport on resolver performance

©International Telecommunication Union, 2024 57

%

Fig. 6 – Percentage of its scheduled time the resolver process spent in each mode

Table 3 – Estimation, in kWh of the energy consumed by running 10k QPS for one day using the measured proϐiles

Knot‑resolver Dnsdist Adguard
Protocol 1 q/cx 1000cx/s 33cx/s 1 q/cx 1000cx/s 33cx/s 1 q/cx 1000cx/s 33cx/s
UDP 0.12 0.05 0.19
TCP 3.1 0.34 0.33 3.08 0.08 0.08 1.87 0.29 0.2
DoT 8.97 0.52 0.28 9.46 0.3 0.12 17.48 2.42 0.24
DoH 9.67 0.77 0.46 9.85 0.73 0.19 19 3.27 0.97

of aggressive connection opening (0.05 kWh versus
9.85 kWh).

Despite its worse overall power consumption,
Adguard‑dnsproxy distinguishes itself on TCP
connection establishment, as it shows a 30%
performance gain over the other two.

6. CONCLUSION

DNS is still at the core of today’s Internet. Originally
designed for performance, using an un‑encrypted
connection‑less protocol, growing concerns about
security have led to the standardization of secured
protocols. In this article, we studied the resolver‑
side cost of transitioning to such protocols.

We benchmarked public resolvers using various DoH
clients to gather proϐiles. We found that all enti‑
ties tried to maintain connections opened but that,
when faced with a high load, browsers became un‑
stable and we observed a very high number of small
connections. Then, we measured the additional cost
of each step of the connected protocols (DNS over
TCP, DoT, DoH). We observed that transitioning from
the legacy protocol to a secured one lead to, at min‑
imum, a division of the performances by two, due
to TCP connection establishment, TLS key exchange

and message encryption, and that the performance
loss was evenmore noticeable when considering the
switch to DoH because of the protocol layers added
by HTTP/2 . When considering the fact that the use
of DoH seems to be pushed by the industry, one can
wonder if the complexity added by the HTTP/2 pro‑
tocol is compatible with DNS’s initial goals of efϐi‑
ciency and scalability. Furthermore, in the case in
which connections are short, performances take an
even bigger hit, which can lead to a large increase in
the number of resolvers as well as their energy con‑
sumption, leading in turn to a higher operating and
environmental cost. As it is, we believe that switch‑
ing 100%of the client‑to‑resolver DNS trafϐic to DoH
is not sustainable. To realise this transition, it will
be necessary to ensure that clients can keep their
connections alive as much as possible, and to use
less costly protocols than HTTP/2, that still retain
its ability to go through ϐirewalls. Therefore, it could
be interesting in the future to measure the perfor‑
mances of QUIC‑based protocols, such as DNS over
QUIC or DNS over HTTP/3. or to experiment with
mechanisms to reduce HTTP/2’s complexity in the
context of DNS over HTTPS.

ITU Journal on Future and Evolving Technologies, Volume 5, Issue 1, March 2024

©International Telecommunication Union, 202458

APPENDIX

Table 4 – Table presenting the number of connections, 1st quartile (Q1), median (Q2) and 3rd quartile (Q3) of the distribution of
connections length and messages per connection measured when recording the behaviour of popular DNS clients’ and servers’ imple‑
mentations when faced with varying load.

Cloudϐlare Google Quad9
conns Messages per conn Conn duration # conns Messages per conn Conn duration # conns Messages per conn Conn duration

Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3
50ms 485 1 4 8 0.38 0.72 2.05 1063 1 2 7 0.08 0.20 0.76 1005 0 1 3 0.16 0.36 1.22

1000ms 7 0 0 87 0.07 0.10 75.37 9 0 0 42 0.18 0.19 30.07 11 0 0 143 0.11 0.12 132.27
60000ms 13 0 0 0 1 2.0 2.2 7 0 0 6.5 0.17 0.21 15.02 30 1 1 2.75 30.1 30.25 56.72

(a) Client : Firefox
Cloudϐlare Google Quad9

conns Messages per conn Conn duration # conns Messages per conn Conn duration # conns Messages per conn Conn duration
Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3

50ms 847 1 3 10 0.16 0.41 1.14 1540 1 3 6 0.08 0.20 0.76 693 1 2 6 0.12 0.23 0.68
1000ms 3 2.5 4 905 427.66 455.20 1135.30 3 2.5 4 905 267 295 1047 9 0 1 3 0.40 30.12 30.26
60000ms 3 2.5 4 18.5 427.80 455.25 1135.31 3 2.5 4 18.5 267.69 292.23 1055.29 33 1 1 1 30.1 30.17 30.42

(b) Client : Chromium
Cloudϐlare Google Quad9

conns Messages per conn Conn duration # conns Messages per conn Conn duration # conns Messages per conn Conn duration
Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3

50ms 3 9953 9998 9999 600.3 608.5 612.1 1 29960 1813.5 1 29959 1813.6
1000ms 1 1787 1816 1 1783 1815.7 1 1792 1815.8
60000ms 30 1 5.03 5.09 5.19 30 1 5.04 5.05 5.16 30 1 1 1 5.07 5.09 5.18

(c) Client : DNSCrypt‑proxy

ACRONYMS
CPU Central Processing Unit
DNS Domain Name System
DoH DNS over HTTPS
DoQ DNS over QUIC
DoT DNS over TLS
DoUDP DNS over UDP
HTTP/2 HyperText Transfer Protocol version 2
IETF Internet Engineering Task Force
IP Internet Protocol
ISP Internet Service Provider
NIC Network Interface Controller
NSS Network Security Services
QPS Queries Per Second
TCP Transmission Control Protocol
TLS Transport Layer Security
TOR The Onion Router
UDP User Datagram Protocol
URL Uniform Resource Locator

GLOSSARY
FIN TCP ϐlag
GET HTTP request method
GOAWAY HTTP/2 control message
HEAD HTTP request method
HPACK HTTP/2 header compression algorithm
POST HTTP request method
QUIC Transport‑layer network protocol
RST TCP ϐlag

Le Louët et al.: Effects of secured DNS transport on resolver performance

©International Telecommunication Union, 2024 59

ACKNOWLEDGEMENTS
This work is supported by the ENE5AI project
(DOS0185314 / DOS0185315 / DOS0185931
/ DOS0185932), the FogSLA‑Antillas project
(DOS0168403/00‑DOS0168405/00) and the ANRT
(CIFRE n°2022/0178)

REFERENCES
[1] Zi Hu et al. RFC 7858: Speciϔication for DNS

over Transport Layer Security (TLS). 2016.
[2] Paul E. Hoffman et al. RFC 8484: DNS Queries

over HTTPS (DoH). 2018.
[3] Eric Rescorla. RFC 8446: The Transport Layer

Security (TLS) Protocol Version 1.3. 2018.
[4] Mike Belshe et al. RFC 7540: Hypertext Trans‑

fer Protocol Version 2 (HTTP/2). 2015.
[5] S. Bortzmeyer. RFC 7626: DNS Privacy Consid‑

erations. Tech. rep. 7626. 2015.
[6] S. Siby et al. “Encrypted DNS ==> Privacy?

A Trafϐic Analysis Perspective”. In: The Net‑
work and Distributed System Security Sympo‑
sium (NDSS ’20).

[7] Bushart et al. “Padding Ain’t Enough: Assess‑
ing the Privacy Guarantees of EncryptedDNS”.
In: 10th USENIX Workshop on Free and Open
Communications on the Internet, FOCI 2020.

[8] I. M. M. Dissanayake. “DNS Cache Poisoning:
A Review on its Technique and Countermea‑
sures”. In: National Information Technology
Conference (NITC ’18).

[9] G. Lowe et al. “The great DNSwall of China”. In:
MS, New York University (2007).

[10] D. Vekshin et al. “DoH Insight: Detecting DNS
over HTTPS byMachine Learning”. In: 15th In‑
ternational Conference on Availability, Relia‑
bility and Security (ARES ’20). Virtual Event,
Ireland, 2020.

[11] Austin Hounsel et al. “Comparing the Effects
of DNS, DoT, and DoH on Web Performance”.
In: Web Conference 2020 (WWW ’20). Taipei,
Taiwan, 2020.

[12] Austin Hounsel et al. “Analyzing the Costs
(and Beneϐits) of DNS, DoT, and DoH for the
Modern Web”. In: Proceedings of the Applied
Networking Research Workshop (ANRW ’19).
Montreal, Quebec, Canada, 2019.

[13] TimmBöttger et al. “An Empirical Study of the
Cost of DNS‑over‑HTTPS”. In: Internet Mea‑
surement Conference (IMC ’19). Amsterdam,
Netherlands, 2019.

[14] Rishabh Chhabra et al. “Measuring DNS‑over‑
HTTPS Performance around the World”. In:
Proceedings of the 21st ACM Internet Measure‑
ment Conference (IMC ’21). 2021.

[15] Mike Kosek et al. “DNS Privacy with Speed?
Evaluating DNS over QUIC and Its Impact on
WebPerformance”. In:Proceedings of the 22nd
ACM Internet Measurement Conference (IMC
’22). Nice, France, 2022.

[16] S. Garcia et al. “Large scale measurement on
the adoption of encrypted DNS”. In: arXiv
preprint arXiv:2107.04436 (2021).

[17] Gerald Combs et al. Tshark v3.6.
[18] Google. chromium. Version 101.0.4. URL:

chromium.googlesource.com/chromium/
src.git.

[19] statcounter.BrowserMarket ShareWorldwide.
2022. URL: gs.statcounter.com/browser-
market-share.

[20] Mozilla foundation. ϔirefox. Version 91.5.0esr.
URL: hg.mozilla.org/mozilla-central/.

[21] DNS OARC.DNS sample queries ϔile. 2012. URL:
github . com / DNS - OARC / sample - query -
data.

[22] Etienne Le Louët. doh‑client‑analysis‑scripts.
URL: github.com/etienne-lelouet/doh-
client-analysis-scripts.

[23] D. Balouek et al. “Adding Virtualization Ca‑
pabilities to the Grid’5000 Testbed”. In: Cloud
Computing and Services Science. 2013.

[24] cz.nic. knot‑resolver. Version 5.5. 2022. URL:
www.knot-resolver.cz/.

[25] PowerDNS. Dnsdist. Version 1.7.3. 2022. URL:
dnsdist.org/.

[26] adguard. dnsproxy. Version 0.54. 2023. URL:
github.com/AdguardTeam/dnsproxy.

[27] ns1labs. ϔlamethrower. URL: github . com /
DNS-OARC/flamethrower.

[28] Etienne Le Louët ns1labs. ϔlamethrower. URL:
github . com / etienne - lelouet /
flamethrower.

ITU Journal on Future and Evolving Technologies, Volume 5, Issue 1, March 2024

©International Telecommunication Union, 202460

chromium.googlesource.com/chromium/src.git
chromium.googlesource.com/chromium/src.git
gs.statcounter.com/browser-market-share
gs.statcounter.com/browser-market-share
hg.mozilla.org/mozilla-central/
github.com/DNS-OARC/sample-query-data
github.com/DNS-OARC/sample-query-data
github.com/etienne-lelouet/doh-client-analysis-scripts
github.com/etienne-lelouet/doh-client-analysis-scripts
www.knot-resolver.cz/
dnsdist.org/
github.com/AdguardTeam/dnsproxy
github.com/DNS-OARC/flamethrower
github.com/DNS-OARC/flamethrower
github.com/etienne-lelouet/flamethrower
github.com/etienne-lelouet/flamethrower

AUTHORS
Etienne Le Louët graduated from Sorbonne Univer‑
site in 2021 with a master’s degree in computer sci‑
ence from Sorbonne Universite (Paris, France). He
is currently working as a PhD student in the re‑
search anddevelopment department of Gandi (Paris,
France), co‑supervised by both Antoine Blin at Gandi
and Julien Sopena in the DELYS team at LIP6 (Sor‑
bonne Universite, Paris, France).

Antoine Blin obtained his PhD from Sorbonne Uni‑
versite (Paris, France) in 2017. He is currently
head of research and development at Gandi (Paris,
France). He has authored multiple papers in the do‑
main of operating systems kernels.

Julien Sopena received a PhD in computer science
in 2008, at Sorbonne Universite. He is currently as‑
sociate professor in computer science at Sorbonne
Universite, and carries out his research within the
LIP6 lab, in the DELYS teammore speciϐically. His re‑
search interests include large scale distributed sys‑
tems such as computing grids, cloud computing and
multicore architectures.

Kamel Haddadou received an engineering degree
in computer science from INI in 2000, an MS degree
in data processing methods for industrial systems
from the University of Versailles in 2002, and a Ph.D.
in computer networks from Pierre and Marie Curie
University in 2007.

In 2001, he was a research assistant at the Advanced
Technology Development Centre (CDTA), Algiers, Al‑
geria. He is currently Chief Revenue Ofϐicer at Gandi
SAS, France. Since 2003, he has been involved in sev‑
eral projects funded by the European Commission
and the French government (RAVIR, ADANETS, Ad‑
minroxy, GITAN, OGRE, ADANETS, MMQoS, SAFARI,
andARCADE). His research interests are focused pri‑
marily on cloud computing and resource manage‑
ment in wired and wireless networks. He is equally
interested in designing new protocols and systems
with theoretical concepts, and in providing practical
implementations that are deployable in real environ‑
ments. He is an author of more than 30 papers pub‑
lished in leading conference proceedings and jour‑
nals. He has served as the TPC member for many in‑
ternational conferences, including IEEE ICC, GLOBE‑
COM, and reviewer on a regular basis for major in‑
ternational journals and conferences in networking.
He is a member of the IEEE.

AhmedAmamou received an Engineering degree in
computer science and anM.S. degree in network and
computer science from the National School of Com‑
puter Science, Tunisia, in 2009 and 2011, and a Ph.D.
in network and computer science from the Sorbonne
Universite, Paris, France, in 2013. He is currently
Chief Technical Ofϐicer at GANDI SAS.His research in‑
terests are cloud computing and virtualization tech‑
nologies.

Le Louët et al.: Effects of secured DNS transport on resolver performance

©International Telecommunication Union, 2024 61

	EFFECTS OF SECURED DNS TRANSPORT ON RESOLVER PERFORMANCE
	1. INTRODUCTION
	2. TECHNICAL BACKGROUND
	3. RELATED WORK
	4. BEHAVIOUR OF CLIENTS AND RESOLVERS
	4.1 Experimental setup
	4.2 Results

	5. SERVER SIDE PERFORMANCE
	5.1 Experimental setup
	5.2 Baseline
	5.3 Memory usage of keeping connections

alive
	5.4 Cost of handling queries
	5.5 Overhead of establishing connections
	5.6 CPU usage of resolver process
	5.7 Resolver power consumption

	6. CONCLUSION
	APPENDIX
	ACKNOWLEDGEMENTS
	REFERENCES
	AUTHORS

