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Abstract – In conjunction with the trafϔic overload of next‑generation wireless communication and computer networks, 
their resource‑constrained nature calls for effective methods to deal with the fundamental resource allocation problem. In this 
context, the Minimum Collisions Assignment (MCA) problem in an interdependent networked system refers to the assignment 
of a ϔinite set of resources over the nodes of the network, such that the number of collisions, i.e., the number of interdependent 
nodes receiving the same resource, is minimized. Given the interdependent networked system’s organization in the form of 
a graph, there already exists a randomized algorithm that converges with high probability to an assignment of resources 
having zero collisions when the number of resources is larger than the maximum degree of the underlying graph. In this 
article, differing from the prevailing literature, we investigate the case of a resource‑constrained networked system, where 
the number of resources is less than or equal to the maximum degree of the underlying graph. We introduce two distributed, 
randomized algorithms that converge in a logarithmic number of rounds to an assignment of resources over the network for 
which every node has at most a certain number of collisions. The proposed algorithms apply to settings where the available 
resources at each node are equal to three and two, respectively, while they are executed in a fully‑distributed manner 
without requiring information exchange between the networked nodes.
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1. INTRODUCTION

Next‑generation communication and computer networks
comprise an ecosystem of interconnected entities where
multiple stakeholders and devices evolve in a physical,
digital, or virtual space with others, resulting in interde‑
pendent interactions between them. Particular realiza‑
tions of such systems include 6G subnetworks, Internet
of Things (IoT) and sensor networks, Multi‑access Edge
Computing (MEC) and caching networks, and the inter‑
section of these technologies with other disciplines, e.g.,
smart cities, industries [1, 2]. Although being part of
a broader network infrastructure, emerging networked
systems should be able to orchestrate and conϐigure au‑
tonomously due to scalability, resilience, and security rea‑
sons, practically implying a loose interrelation between
them regarding the information exchange. At the same
time, though, these systems present competitive environ‑
ments at their basis where the actions are not only inter‑
dependent but also conϐlicting. Therefore, effectivemeth‑
ods to deal with the fundamental problem of resource al‑
location in a distributed manner while relying solely on
local information are required.

In this article, following a graph‑based representation
and reasoning, we consider such an interdependent net‑
worked system and study the constrained resource al‑
location problem with resource conϐlicts. The consid‑

ered system is represented in the form of a ϐinite graph,
whose vertices and edges correspond to the networked
nodes and their in‑between dependencies, respectively,
and which will be referred to as the underlying graph of
the system. In this context, we are concerned with the
problem of assigning a ϐinite set of resources to the nodes
of the network in such a way that the number of colli‑
sions, i.e., the number of pairs of interdependent nodes
that are assigned the same resource, is minimized. The
respective optimization problem is known as the Mini‑
mum Collisions Assignment (MCA) problem. Targeting
a solution that is applicable in a wide array of contexts,
we equivalently consider the problem of assigning colors
to the vertices of the underlying graph instead of assign‑
ing resources to the nodes of the network. Then, the MCA
problem is translated as the problem of assigning a given
number of colors over the vertices of the graph in such
a way that the number of monochromatic edges is min‑
imal. The aforementioned problem is known to be NP‑
hard (see [3]).

Generally, several applications of the classical Graph Col‑
oring Problem (GCP) exist in interdependent networked
systems, while themost well‑known is channel allocation
and sharing in wireless networks [4, 5, 6, 7, 8, 9]. The
problem is translated into coloring an interference graph
where the colors are the channels. Distributed greedy and
randomized algorithms that target interference mitiga‑
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tion and throughput maximization have been introduced
therein [4]. Building upon these algorithms, channel al‑
location solutions to more specialized network settings,
e.g., Wireless Body Area Networks (WBANs) [5], 6G sub‑
networks [6], and cognitive radio networks [7], can also
be found. Going one step further in the complexity of
the considered resource allocation problem regarding the
number of resources to be allocated, more recent work
in [8, 9] study the joint Resource Block (RB) allocation
and power control in Full Duplex (FD) wireless networks
using centralized greedy dual graph coloring algorithms.
Other applications of graph coloring algorithms regard
content placement and caching in modern small‑cell net‑
works [9, 10]. The vertices of the underlying graph cor‑
respond to the base stations where the ϐiles are cached,
and, eventually, the colors represent the ϐiles. The goal is
to optimize the content retrieval by the users and reduce
the transmission time through the backhaul.

Nevertheless, the overwhelming majority of literature so
far (e.g., [4, 5, 6, 7, 8, 9]) has focused onMCA problems for
which the number of available colors (resources) is larger
than the maximum degree of the underlying graph, and
several algorithms have been proposed therein, both cen‑
tralized and distributed, that result in colorings of zero
collisions. It appears that instances of the MCA problem
with “few”, i.e., less than or equal to the maximum degree
of the underlying graph, colors aremuch less investigated
and, in this article, we aim to exactly ϐill this gap. Respect‑
ing the need for distributed resource allocation, we capi‑
talize on eachnetworkednode’s local awareness concern‑
ing its neighbors’ allocated resources and propose a dis‑
tributed approach to theMCAproblem in the case of there
being ”few” available colors. In more detail, our main
result builds upon a game‑theoretic model for defective
graph coloring, forwhichwe propose the Greedy and Fru‑
gal, symmetric, randomized strategies for the networked
nodes. This in turn results in two distributed randomized
algorithms for the MCA problem. In the following, we re‑
fer to the entities/nodes of an interdependent networked
system as players, and the set of resources as colors.

The remainder of this article is organized as follows. Sec‑
tion 2 provides the basic deϐinitions along with the prob‑
lem formulation, which is stated in graph‑theoretic termi‑
nology to attain generality. Section 3 includes a review of
the literature relevant to the problem. In Section 4, we
state our main results and ϐindings, along with the de‑
signed game‑theoretic strategies and their pseudocodes.
The detailedmathematical analysis and proof of ourmain
result are included in Section 5. In Section 6, numeri‑
cal results obtained via modeling and simulation are pre‑
sented to support our theoretical analysis, and Section 7
concludes the paper.

2. BASICDEFINITIONSANDPROBLEMFOR‑
MULATION

All graphs considered in this article are ϐinite, without
loops, and undirected. Throughout the article, given a
positive integer 𝑘, we denote by [𝑘] the set {1, … , 𝑘} and,
given a ϐinite set𝐹 , we denote by |𝐹 | its cardinality. Given
a graph 𝐺 = (𝑉 , 𝐸) and a vertex 𝑣 ∈ 𝑉 , we let 𝒩𝐺(𝑣) =
{𝑢 ∈ 𝑉 ∶ (𝑢, 𝑣) ∈ 𝐸} be the neighborhood of 𝑣 in 𝐺.
The degree of 𝑣 equals deg𝐺(𝑣) = |𝒩𝐺(𝑣)| and the maxi‑
mum degree of vertices in 𝐺 is denoted Δ𝐺. A 𝑘‑coloring
of 𝐺 is a function 𝜒 ∶ 𝑉 → [𝑘]. Given a 𝑘‑coloring 𝜒 of
a graph 𝐺 = (𝑉 , 𝐸), and a subset 𝐴 ⊂ 𝑉 , we denote
by 𝜒(𝐴) ∶= ⋃𝑣∈𝐴{𝜒(𝑣)} the set of colors of the vertices
in 𝐴. Moreover, the collision number of 𝜒 is deϐined as
𝒞𝐺(𝜒) = |{𝑒 = (𝑢, 𝑣) ∈ 𝐸 ∶ 𝜒(𝑢) = 𝜒(𝑣)}|, and the colli‑
sion number of a vertex 𝑣 ∈ 𝑉 under a 𝑘‑coloring 𝜒 of 𝐺 is
deϐined as 𝒞𝐺(𝑣; 𝜒) = |{𝑢 ∈ 𝒩𝐺(𝑣) ∶ 𝜒(𝑢) = 𝜒(𝑣)}|. In
other words, 𝒞𝐺(𝜒) equals the cardinality of the set con‑
sisting of all monochromatic edges of 𝐺 under the color‑
ing 𝜒, and 𝒞𝐺(𝑣; 𝜒) is the number of neighbors of 𝑣 that
receive the same color as 𝑣.
A 𝑘‑coloring 𝜒 of 𝐺 = (𝑉 , 𝐸) is called 𝑠‑colliding if
𝒞𝐺(𝜒) ≤ 𝑠; it is called 𝑑‑defective if 𝒞𝐺(𝑣; 𝜒) ≤ 𝑑 holds
true for all 𝑣 ∈ 𝑉 . A 0‑colliding coloring is referred to as a
proper coloring in the literature. In other words, the MCA
problem is a graph coloring problem which is equivalent
to the problem of determining 𝒞𝑘(𝐺) ∶= min𝜒 𝒞𝐺(𝜒),
where the minimum is over all 𝑘‑colorings of 𝐺.

3. MOTIVATION AND CONTRIBUTIONS
By exploring the related literature, it appears that the
classical GCP algorithms ϐind a wide application in re‑
source allocation problems in wireless networks. From
a theoretical viewpoint, in the classical GCP, the objective
is to ϐind theminimumpositive integer 𝑘 forwhich a given
graph𝐺on𝑛 vertices admits a 0‑colliding𝑘‑coloring. This
minimum value of 𝑘 is referred to as the chromatic num‑
ber of 𝐺, and is denoted 𝑐ℎ𝑟(𝐺). The MCA problem is,
in some sense, dual to the GCP. In the setting of the MCA
problem, the parameter 𝑘 is ϐixed and the objective is to
ϐind a 𝑘‑coloring of a given graph 𝐺 on 𝑛 vertices that
has a minimum collision number, among all 𝑘‑colorings
of𝐺. Observe thatwhen 𝑘 ≥ 𝑐ℎ𝑟(𝐺) then the GCP implies
that the MCA problem admits a 0‑colliding 𝑘‑coloring. In
particular, it is well known that when 𝑘 ≥ Δ𝐺 + 1 the
graph 𝐺 admits a 0‑colliding 𝑘‑coloring, and one can ob‑
tain such a coloring using a variety of algorithms, both
centralized and distributed. It is also well known that
when 𝑘 ≥ Δ𝐺 + 1, a 0‑colliding coloring of 𝐺 can be
found in linear time by a centralized algorithm. However,
the problem becomes more delicate when the algorithm
is required to be distributed. In this work, we shall be in‑
terested in distributed algorithms for the MCA problem.
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Distributed algorithms for GCP are extensively analyzed
and discussed in [11], focusing on both deterministic and
randomized instances. A representative example of a dis‑
tributed deterministic algorithm for the GCP is presented
in [12], managing to conclude a graph coloring in linear
𝑂(Δ𝐺) time. In particular, the work in [12] belongs to
the broader category of graph coloring algorithms that
utilize an initial defective coloring to conclude with zero
collisions. Concerning the distributed randomized algo‑
rithms, both works in [13] and [14] achieve to determine
a 0‑colliding coloring of a graph in𝑂(log(𝑛)) roundswhen
the number of available colors is at least Δ + 1. How‑
ever, they are limited in that they require each player to
communicatewith their neighborswhether they have any
conϐlict or not. The state of the art behind distributed ran‑
domized algorithms can be found in [15], where an algo‑
rithmic complexity of𝑂(log3(log(𝑛))) rounds is achieved.
Considering the algorithm instances that do not require
any communication between the players, preliminary
work is provided in [16]. The respective algorithm yields
a 0‑colliding coloring of a graph in𝑂(log(𝑛)) roundswhen
the number of colors available is at least Δ𝐺 + 2. The al‑
gorithm from [16] has been further improved in [3] to a
distributed instance that yields a 0‑colliding coloring of a
graph in at most 𝑂(Δ𝐺 ⋅ log(𝑛)) rounds when the num‑
ber of available colors is at least Δ𝐺 + 1, with the cost of
requiring communication among neighbors. Another im‑
provement of the algorithm in [16], which assumes no co‑
operation/communication among neighbors and which
yields a 0‑colliding coloring in𝑂(log(𝑛)) roundswhen the
number of available colors is at leastΔ𝐺 +1, can be found
in [17]. In other words, when 𝑘 ≥ Δ𝐺 + 1, it holds
𝒞𝐺(𝑘) = 0, for any graph 𝐺.

In this article, we focus on instances of the MCA prob‑
lem for which 𝑘 ≤ Δ𝐺 which, to the best of our knowl‑
edge, appear to be less investigated. One approach to the
problem is to allow the possibility of leaving some ver‑
tices uncolored, and thus employ incomplete 0‑colliding𝑘‑
colorings of theunderlying graph (see [18] and references
therein). Another approach is based on dispersion games
(see [19] and [20]), but only applies to instances of the
MCAproblem forwhich the underlying graph is complete.
Our approach is based on defective colorings (see [21]),
and builds upon ideas from [16]. In particular, in [16],
the authors deϐine the network coloring game, which is
played on a graph 𝐺, and study the dynamics of the game
when the players adopt a particular greedy, randomized,
strategy. It is shown, in [16], that the dynamics of the
network coloring game under the aforementioned greedy
strategy converge to a Nash equilibrium that gives rise to
a 0‑colliding 𝑘‑coloring of 𝐺, provided that 𝑘 ≥ Δ𝐺 + 2.

In a conference version of this article (see [22]), we in‑
troduced the defective coloring game and studied its dy‑
namics when a particular greedy, randomized, strategy
is adopted by the players. We demonstrated that the dy‑
namics of this greedy strategy converge to a Nash equilib‑

rium which also provides a defective coloring of the un‑
derlying graph. In this article, we improve upon the afore‑
mentioned greedy strategy. Our improvement is two‑fold.
On the one hand, we provide an improved version of the
greedy strategy, which is referred to as frugal strategy.
The frugal strategy allows for a reduction of the number
of available colors to each player by one, thus applying
to settings in which the greedy strategy does not apply.
In particular, the frugal strategy applies when the num‑
ber of available colors to each player is equal to 2. On the
other hand, we improve slightly on the upper bound on
the number of collisions, i.e., Corollary 1, from [22].

4. MAIN RESULT: DEFECTIVE COLORING
GAME

In this section, we deϐine the defective coloring game,
which has been introduced in [22] and may be seen as
a variant of the network coloring game from [16]. Fix a
graph 𝐺 = (𝑉 , 𝐸) having 𝑛 = |𝑉 | vertices and max‑
imum degree Δ𝐺, as well as two integers 𝑘, 𝑑 such that
𝑘 ∈ {2, … , Δ𝐺} and 𝑑 ∈ [Δ𝐺 − 1]. The defective coloring
game on the graph 𝐺, denoted 𝐷𝐶𝐺(𝐺; 𝑘, 𝑑), is deϐined
as follows.

Theplayers of𝐷𝐶𝐺(𝐺; 𝑘, 𝑑) are the vertices of𝐺 andpar‑
ticipate in a game that is played over a number of rounds.
In every round, all players simultaneously and individu‑
ally choose a color from their set of available colors, which
is assumed to be the set [𝑘]. Thus, after round 𝑡, the
choices of the players give rise to a 𝑘‑coloring of 𝐺, which
is denoted 𝜒𝑡. The players of 𝐷𝐶𝐺(𝐺; 𝑘, 𝑑) have only lo‑
cal information on the graph: they can only observe the
colors chosen by their neighbors and are not allowed to
communicate or cooperate. A player 𝑣 ∈ 𝑉 is said to be
happy after round 𝑡 if their collision number under 𝜒𝑡 is
at most 𝑑; i.e., when 𝒞𝐺(𝑣; 𝜒𝑡) ≤ 𝑑. Otherwise, the player
is unhappy. The payoff to a player in 𝐷𝐶𝐺(𝐺; 𝑘, 𝑑) is 1
when they are happy, and 0 when they are unhappy, and
a conϐiguration of colors for which every player receives
payoff 1 is a Nash equilibrium of the 𝐷𝐶𝐺(𝐺; 𝑘, 𝑑) in that
no player has the incentive to unilaterally change strategy
under such a conϐiguration. Observe that, when the play‑
ers have chosen colors that constitute aNash equilibrium,
the corresponding 𝑘‑coloring of the graph is 𝑑‑defective.

The challenge is to ϐind a symmetric strategy, i.e., a
common strategy for all players in 𝐷𝐶𝐺(𝐺; 𝑘, 𝑑), that
achieves converging to a Nash equilibrium after a ϐinite
number of rounds using the available colors. Such a strat‑
egy has been proposed in [22], and is referred to as the
Greedy strategy. Let 𝜒𝑡(𝑣) denote the color chosen by
player 𝑣 ∈ 𝑉 after round 𝑡, and let 𝜒𝑡(𝒩(𝑣)) be the set
of colors chosen by the neighbors of 𝑣 after round 𝑡. Then,
the greedy strategy is summarized as follows.

Greedy strategy. Suppose that 𝑘 = Δ𝐺 −𝑠 and 𝑑 = 𝑠+2,
for some ϐixed 𝑠 ∈ {0, 1, … , Δ𝐺 −3}. Assume further that
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each player in 𝐷𝐶𝐺(𝐺; 𝑘, 𝑑) adopts the following strat‑
egy: if a player 𝑣 is happy after a certain round 𝑡, then
they stick to their choice in all subsequent rounds, i.e.,
𝜒𝑠(𝑣) = 𝜒𝑡(𝑣), for all 𝑠 > 𝑡. If they are unhappy then in
the next round they change color, and choose uniformly
at random a color from the set [𝑘] � 𝜒𝑡(𝒩(𝑣)).

In other words, under the greedy strategy, a player who is
unhappy after a certain round 𝑡 chooses in the next round
a color uniformly at random from the set consisting of
those colors that are not chosen by their neighbors after
round 𝑡. The corresponding algorithm is summarized in
Algorithm 1.

Remark1. Notice that, when the players of𝐷𝐶𝐺(𝐺; 𝑘, 𝑑),
with 𝑘 = Δ𝐺−𝑠 and 𝑑 = 𝑠+2, adopt the greedy strategy, a
player who is happy after a certain round remains happy in
all subsequent rounds. Furthermore, if player 𝑣 is unhappy
after round 𝑡, then it holds |[𝑘] � 𝜒𝑡(𝒩(𝑣))| ≥ 2. In partic‑
ular, an unhappy player has always at least two available
colors to choose from in the next round.

Now, suppose that all players in 𝐷𝐶𝐺(𝐺; 𝑘, 𝑑) adopt the
greedy strategy. The main result from [22] reads as fol‑
lows.

Theorem 1. Let 𝐺 be a graph on 𝑛 vertices and maximum
degree Δ𝐺 ≥ 3. Let 𝑘, 𝑑 be ϔixed positive integers such that
𝑘 = Δ𝐺 − 𝑠 and 𝑑 = 𝑠 + 2, for some 𝑠 ∈ {0, 1, … , Δ𝐺 −
3}. Suppose that each player in 𝐷𝐶𝐺(𝐺; 𝑘, 𝑑) adopts the
greedy strategy. Then, for any starting assignment of col‑
ors to the vertices, the defective coloring game on 𝐺 con‑
verges after at most 𝑂(log( 𝑛

𝛿 )) rounds with a probability
of at least 1 − 𝛿.

In other words, when 𝑠 does not depend on 𝑛 and the
players in the defective coloring game adopt the greedy
strategy, the game reaches a 𝑑‑defective 𝑘‑coloring of the
graph in 𝑂(log( 𝑛

𝛿 )) rounds with a probability of at least
1 − 𝛿.

Corollary 1. Let 𝐺 be a graph on 𝑛 = |𝑉 | vertices and
maximum degree Δ𝐺 ≥ 3. Suppose that 𝑘 = Δ𝐺 − 𝑠, for
some 𝑠 ∈ {0, 1, … , Δ𝐺−3}. Then, it holds𝒞𝑘(𝐺) ≤ 𝑛(𝑠+2)

2 .

The proofs of Theorem 1 and Corollary 1 are analytically
presented in [22].

In this article, we show that a modiϐication of the above‑
mentioned greedy strategy provides an improved version
of Theorem 1. The “modiϐied greedy strategy” is referred
to as a Frugal strategy, and is formally deϐined as follows.

Frugal strategy. Suppose that 𝑘 = Δ𝐺 − 𝑠 and 𝑑 = 𝑠 + 1,
for some ϐixed 𝑠 ∈ {0, 1, … , Δ𝐺 −2}. Assume further that
each player in 𝐷𝐶𝐺(𝐺; 𝑘, 𝑑) adopts the following strat‑
egy: if a player, say 𝑣, is happy after a certain round, say
𝑡, then they stick to their choice in all subsequent rounds,
i.e., 𝜒𝑠(𝑣) = 𝜒𝑡(𝑣), for all 𝑠 > 𝑡. If they are unhappy then

Algorithm 1 Greedy strategy algorithm
Input 𝐺 = (𝑉 , 𝐸), Δ𝐺, 𝑠 ∈ {0, 1, … , Δ𝐺 − 3}
Output 𝜒𝑡(𝑣), ∀𝑣 ∈ 𝑉

1: 𝑑 ← 𝑠 + 2
2: 𝑘 ← Δ𝐺 − 𝑠
3: for each 𝑣 ∈ 𝑉 do
4: Choose 𝜒1(𝑣) randomly from the set [𝑘]
5: 𝑡 ← 1
6: while 𝒞𝐺(𝑣; 𝜒𝑡) ≥ 𝑑 + 1 do
7: 𝒜𝑡(𝑣) ← [𝑘] � 𝜒𝑡(𝒩(𝑣))
8: Choose a color𝜒𝑡+1(𝑣)uniformly at random from

the set 𝒜𝑡(𝑣)
9: 𝑡 ← 𝑡 + 1

10: end while
11: Return 𝜒𝑡(𝑣)
12: end for

Algorithm 2 Frugal strategy algorithm
Input 𝐺 = (𝑉 , 𝐸), Δ𝐺, 𝑠 ∈ {0, 1, … , Δ𝐺 − 2}
Output 𝜒𝑡(𝑣), ∀𝑣 ∈ 𝑉

1: 𝑑 ← 𝑠 + 1
2: 𝑘 ← Δ𝐺 − 𝑠
3: for each 𝑣 ∈ 𝑉 do
4: Choose 𝜒1(𝑣) randomly from the set [𝑘]
5: 𝑡 ← 1
6: while 𝒞𝐺(𝑣; 𝜒𝑡) ≥ 𝑑 + 1 do
7: 𝒜𝑡(𝑣) ← [𝑘] � 𝜒𝑡(𝒩(𝑣))
8: ℬ𝑡(𝑣) ← {𝜒𝑡(𝑣)} ∪ 𝒜𝑡(𝑣)
9: Choose a color𝜒𝑡+1(𝑣)uniformly at random from

the set 𝒜𝑡(𝑣)
10: 𝑡 ← 𝑡 + 1
11: end while
12: Return 𝜒𝑡(𝑣)
13: end for

in the next round they change color, and choose uniformly
at random a color from the set {𝜒𝑡(𝑣)} ∪ ([𝑘] � 𝜒𝑡(𝒩(𝑣))).
In other words, under the frugal strategy, a player who is
unhappy after round 𝑡 ≥ 1 chooses in the next round a
color uniformly at random from the set consisting of their
color choice after round 𝑡 and the set of colors that are not
chosen by their neighbors after round 𝑡. The correspond‑
ing algorithm is summarized in Algorithm 2.

Remark2. Notice that, when the players of𝐷𝐶𝐺(𝐺; 𝑘, 𝑑),
with 𝑘 = Δ𝐺 −𝑠 and 𝑑 = 𝑠+1, adopt the frugal strategy, a
player who is happy after a certain round remains happy in
all subsequent rounds. Furthermore, if player 𝑣 is unhappy
after round 𝑡, then it holds |{𝜒𝑡(𝑣)}∪([𝑘] �𝜒𝑡(𝒩(𝑣)))| ≥ 2.
In particular, an unhappy player has always at least two
available colors to choose from in the next round. Notice
also that, in contrast to the greedy strategy, under the fru‑
gal strategy, an unhappy player may not change color in
the next round. Finally, observe that the frugal strategy
works when 𝑘 ≥ 2, in contrast to the greedy strategy which
requires at least three available colors.
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Figure 1 – Overview of the operation of the greedy and frugal strategies under a graph of maximum degree Δ𝐺 = 3 for 𝑠 = 0.

Our main result implies that the conclusion of Theorem 1
remains unchanged when the players adopt the frugal
strategy.

Theorem 2. Let 𝐺 be a graph on 𝑛 vertices and maximum
degree Δ𝐺 ≥ 2. Let 𝑘, 𝑑 be ϔixed positive integers such that
𝑘 = Δ𝐺 −𝑠 and 𝑑 = 𝑠+1, for some 𝑠 ∈ {0, 1, … , Δ𝐺 −2}.
Suppose that each player in 𝐷𝐶𝐺(𝐺; 𝑘, 𝑑) adopts the fru‑
gal strategy. Then, for any starting assignment of colors to
the vertices, the defective coloring game on𝐺 converges af‑
ter at most 𝑂(log( 𝑛

𝛿 )) rounds with a probability of at least
1 − 𝛿.

In other words, when 𝑠 does not depend on 𝑛 and the
players in the defective coloring game adopt the frugal
strategy, the game reaches a 𝑑‑defective 𝑘‑coloring of the
graph in 𝑂(log( 𝑛

𝛿 )) rounds with a probability of at least
1−𝛿. Now, the number ofmonochromatic edges in such a
coloring provides an upper bound on the quantity 𝒞𝐺(𝑘),
in the MCA problem. In particular, Theorem 2 yields the
following.

Corollary 2. Let 𝐺 be a graph on 𝑛 = |𝑉 | vertices and
maximum degree Δ𝐺 ≥ 2. Suppose that 𝑘 = Δ𝐺 − 𝑠, for
some 𝑠 ∈ {0, 1, … , Δ𝐺−2}. Then, it holds𝒞𝑘(𝐺) ≤ 𝑛(𝑠+1)

2 .

Proof. Consider the defective‑coloring game
𝐷𝐶𝐺(𝐺; 𝑘, 𝑑), where 𝑑 = 𝑠 + 1. From Theorem 2
we know that, when the players in 𝐷𝐶𝐺(𝐺; 𝑘, 𝑑) adopt
the frugal strategy, the game reaches a Nash equilibrium
in 𝑂(log(𝑛)) expected number of rounds. Let 𝜒 be the
𝑘‑coloring corresponding to a Nash equilibrium. In such
an equilibrium point, all vertices are happy and the
collision number of each vertex 𝑣 ∈ 𝑉 is at most 𝑑. Let
𝐺𝜒 be the graph induced by the monochromatic edges of
𝐺 under 𝜒. Then, 𝒞𝐺(𝜒) equals the number of edges in
𝐺𝜒, and the result follows from the degree‑sum formula
in 𝐺𝜒.

To visualize the operation and basic steps of the pro‑
posed greedy and frugal strategies, an illustrative exam‑
ple is presented in Fig. 1 for a graph with maximum de‑
gree Δ𝐺 = 3. In the left part of Fig. 1, the initialization
of the graph is depicted, where it is assumed that 𝑠 = 0.
Therefore, the number of available colors of each vertex

is 𝑘 = 3, namely blue, orange, and green, while 𝑑 = 2
and 𝑑 = 1 for the greedy and frugal strategies, respec‑
tively. In the ϐirst iteration of both strategies, the players,
i.e., nodes, randomly select a color from their palette as
shown. The selected colors render all nodes happy except
for node C. The nodes stick to their color choice, contrary
to node C which updates its color palette with the avail‑
able colors. At this point, the difference in the updated
color palette between the two strategies is visualized. In
the second iteration of both strategies, algorithmic con‑
vergence is met.

5. PROOF OF THEOREM 2
In this section, we prove Theorem 2. We ϐix a starting as‑
signment of colors to the vertices, and we assume that
each player in 𝐷𝐶𝐺(𝐺; 𝑘, 𝑑) adopts the frugal strategy.
Recall that we assume that 𝑘 = Δ𝐺 − 𝑠 and 𝑑 = 𝑠 + 1, for
some 𝑠 ∈ {0, 1, … , Δ𝐺 − 2}. We begin with a result that
provides a lower bound on the probability that a player,
who is unhappy after a certain round, receives “enough”
available colors in the next round. This will require some
additional notation.

Recall that 𝜒𝑡(𝑣) denotes the color chosen by player 𝑣 af‑
ter round 𝑡, and that 𝜒𝑡(𝒩(𝑣)) is the set of colors cho‑
sen by its neighbors after round 𝑡. For each 𝑡 ≥ 1, let
ℋ𝑡 be the set of happy players after round 𝑡, and 𝒰𝑡 =
𝑉 � ℋ𝑡 the set of unhappy players after round 𝑡; hence,
𝑣 ∈ 𝒰𝑡 means that 𝒞𝐺(𝑣; 𝜒𝑡) ≥ 𝑑 + 1. Given 𝑣 ∈ 𝒰𝑡,
let 𝒜𝑡(𝑣) ∶= [𝑘] � 𝜒𝑡(𝒩(𝑣)) be the set consisting of those
colors that are not chosen by any neighbors after round
𝑡, while ℬ𝑡(𝑣) ∶= {𝜒𝑡(𝑣)} ∪ 𝒜𝑡(𝑣) be the set of available
colors to 𝑣 after round t; hence, under the frugal strategy,
player 𝑣 chooses in the next round a color uniformly at
random from the set ℬ𝑡(𝑣). Let 𝑝𝑡(𝑣) = 1

|ℬ𝑡(𝑣)| be the
probability with which the unhappy player 𝑣 chooses a
color in the next round. For 𝑣 ∈ ℋ𝑡, set ℬ𝑡(𝑣) = {𝜒𝑡(𝑣)}
and 𝑝𝑡(𝑣) = 1. Similarly, given a vertex 𝑣 ∈ 𝑉 , let
ℋ𝑡(𝑣) ∶= ℋ𝑡 ∩ 𝒩(𝑣) denote the set of happy neighbors
of 𝑣 after round 𝑡, and let ℱ𝑡(𝑣) ∶= 𝜒𝑡(ℋ𝑡(𝑣)) be the set
of colors chosen by the happy neighbors of 𝑣 after round
𝑡. Let also 𝒰𝑡(𝑣) = 𝒩(𝑣) � ℋ𝑡(𝑣) denote the set con‑
sisting of the unhappy neighbors of 𝑣 after round 𝑡. Ob‑

Diamanti et al.: Minimum collisions assignment in interdependent networked systems via defective colorings

©International Telecommunication Union, 2024 5



serve that every color from the set [𝑘] � ℱ𝑡(𝑣) has a pos‑
itive chance of not being chosen by the unhappy neigh‑
bors and therefore has a positive chance of belonging to
the set 𝒜𝑡+1(𝑣). Finally, let 𝑓𝑡(𝑣) = |ℱ𝑡(𝑣)|, and observe
that, since happy players do not change their color, the
sequence {𝑓𝑡(𝑣)}𝑡≥1 is non‑decreasing. In particular, this
implies that for 𝑧 ≥ 1, |𝒜𝑡+𝑧(𝑣)| is less than or equal to
𝑘 − 𝑓𝑡(𝑣). The next lemma establishes a lower estimate
on the probability that the number of colors that are not
chosen by any unhappy neighbor of player 𝑣 ∈ 𝒰𝑡 after
round 𝑡 + 1 is at least 𝑘−𝑓𝑡(𝑣)

5𝑑 .
Lemma 1. For each 𝑡 ≥ 1 and each 𝑣 ∈ 𝒰𝑡, it holds

ℙ (|𝒜𝑡+1(𝑣)| ≥ 𝑘 − 𝑓𝑡(𝑣)
5𝑑 ) ≥ 1 − 1 − 1/4𝑑

1 − 1/5𝑑 . (1)

Proof. Let 𝑣 ∈ 𝒰𝑡 be ϐixed and, for simplicity in notation,
let us set 𝑓 ∶= 𝑓𝑡(𝑣). Since 𝑣 is unhappy, there are at least
𝑑 + 1 vertices 𝑢 ∈ 𝒩(𝑣) such that 𝜒𝑡(𝑢) = 𝜒𝑡(𝑣). We
now proceed with estimating 𝔼(|𝒜𝑡+1(𝑣)|) from below;
theproof is then completedbyapplyingMarkov’s inequal‑
ity. Asmentioned already, any color from the set [𝑘]�ℱ𝑡(𝑣)
has a positive chance of belonging to 𝒜𝑡+1(𝑣). In particu‑
lar, color 𝑖 ∈ [𝑘] � ℱ𝑡(𝑣) belongs to 𝒜𝑡+1(𝑣) if it is not cho‑
sen by any neighbor 𝑢 ∈ 𝒰𝑡(𝑣) for which 𝑖 ∈ ℬ𝑡(𝑢); this
happens with probability ∏{𝑢∈𝒰𝑡(𝑣)∶𝑖∈ℬ𝑡(𝑢)}(1 − 𝑝𝑡(𝑢)).
Therefore, denoting 𝐸 ∶= 𝔼(|𝒜𝑡+1(𝑣)|), the arithmetic‑
geometric means inequality implies that

𝐸 = ∑
𝑖∈[𝑘]�ℱ𝑡(𝑣)

∏
{𝑢∈𝒰𝑡(𝑣)∶𝑖∈ℬ𝑡(𝑢)}

(1 − 𝑝𝑡(𝑢))

≥(𝑘 − 𝑓) ⋅ ⎛⎜
⎝

∏
𝑖∈[𝑘]�ℱ𝑡(𝑣)

∏
{𝑢∈𝒰𝑡(𝑣)∶𝑖∈ℬ𝑡(𝑢)}

(1 − 𝑝𝑡(𝑢))⎞⎟
⎠

1
𝑘−𝑓

≥(𝑘 − 𝑓) ⋅ ⎛⎜
⎝

∏
𝑢∈𝒰𝑡(𝑣)

∏
𝑖∈ℬ𝑡(𝑢)

(1 − 𝑝𝑡(𝑢))⎞⎟
⎠

1
𝑘−𝑓

=(𝑘 − 𝑓) ⋅ ⎛⎜
⎝

∏
𝑢∈𝒰𝑡(𝑣)

(1 − 1
|ℬ𝑡(𝑢)|)

|ℬ𝑡(𝑢)|
⎞⎟
⎠

1
𝑘−𝑓

.

(2)

Recall that |ℬ𝑡(𝑢)| ≥ 2, for every 𝑢 ∈ 𝒰𝑡(𝑣). Since
the sequence {(1 − 1

𝑚 )𝑚}𝑚≥2 is non‑decreasing, it holds
(1 − 1

|ℬ𝑡(𝑢)| )
|ℬ𝑡(𝑢)| ≥ (1 − 1

2 )2 = 1
4 . Summarizing the

above, we have shown that 𝔼(|𝒜𝑡+1(𝑣)|) ≥ (𝑘 − 𝑓) ⋅
( 1

4 )
|𝒰𝑡(𝑣)|

𝑘−𝑓 .

Now, since 𝑘 = Δ𝐺 − 𝑑 + 1, it holds |𝒰𝑡(𝑣)| ≤ Δ𝐺 −
𝑓 = 𝑘 + 𝑑 − 1 − 𝑓 , and hence, we have |𝒰𝑡(𝑣)|

𝑘−𝑓 ≤ 𝑑.
This implies that ( 1

4 )
|𝒰𝑡(𝑣)|

𝑘−𝑓 ≥ ( 1
4 )𝑑 and therefore, it holds

𝔼(|𝒜𝑡+1(𝑣)|) ≥ 𝑘−𝑓
4𝑑 . To ϐinish the proof, let 𝑋 = 𝑘 −

𝑓 − |𝒜𝑡+1(𝑣)| and apply the previous lower bound on
𝔼(|𝒜𝑡+1(𝑣)|) togetherwithMarkov’s inequality to deduce

ℙ (|𝒜𝑡+1(𝑣)| < 𝑘−𝑓
5𝑑 ) = ℙ (𝑋 > (𝑘 − 𝑓) ⋅ (1 − 1

5𝑑 )) <
𝔼(𝑋)

(𝑘−𝑓)⋅(1− 1
5𝑑 ) ≤ 1− 1

4𝑑
1− 1

5𝑑
, as desired.

The next lemma concerns a lower estimate of the proba‑
bility that a player, who is unhappy after round 𝑡, becomes
happy after two rounds.

Lemma 2. It holds

ℙ(𝑣 ∈ ℋ𝑡+2 | 𝑣 ∈ 𝒰𝑡) ≥ 1
2 ⋅ (1

4)
5𝑑⋅𝑑

⋅ (1 − 1 − 1/4𝑑

1 − 1/5𝑑 ) .
(3)

Proof. Let 𝑣 ∈ 𝒰𝑡. Player 𝑣will become happy after round
𝑡 + 2 if they pick a color that has been chosen by at most 𝑑
neighbors. However, it could be that the set ℬ𝑡+1(𝑣) con‑
tains a bad color, i.e., a color that has been chosen by at
least 𝑑 + 1 happy neighbors. Note that a bad color can‑
notmake player 𝑣 happy in any subsequent round. There‑
fore, to lower bound the probability that 𝑣 is happy af‑
ter round 𝑡 + 2, we may exclude bad colors from the set
ℬ𝑡+1(𝑣). In the worst case, all unhappy players have a
bad color in their set of available colors. Let 𝑣 be an un‑
happy player with a bad color in their palette. The bad
color is 𝜒𝑡+1(𝑣). Now note that, conditional on 𝒜𝑡+1(𝑣)
and 𝑣 ∈ 𝒰𝑡+1, the probability that player 𝑣 is happy af‑
ter round 𝑡 + 2 is greater than or equal to the probabil‑
ity that a ϐixed color from ℬ𝑡+1(𝑣) � {𝜒𝑡+1(𝑣)} is chosen
by at most 𝑑 unhappy neighbors of 𝑣. Now, the proba‑
bility that a ϐixed color 𝑖 ∈ ℬ𝑡+1(𝑣) � {𝜒𝑡+1(𝑣)} is cho‑
sen by at most 𝑑 players 𝑢 ∈ 𝒰𝑡+1(𝑣) is greater than or
equal to the probability that color 𝑖 is not chosen by any
player from 𝒰𝑡+1(𝑣); the latter probability being equal to
∏{𝑢∈𝒰𝑡+1(𝑣)∶𝑖∈ℬ𝑡+1(𝑢)}(1 − 𝑝𝑡+1(𝑢)). To simplify notation,
let us set 𝜋(𝑢) = 1 − 𝑝𝑡+1(𝑢) and 𝑏𝑢 = |ℬ𝑡+1(𝑢)|, for each
player 𝑢. Further, set 𝑆𝑡+1(𝑣) = ℬ𝑡+1(𝑣) � {𝜒𝑡+1(𝑣)}.

Then, conditional on 𝒜𝑡+1(𝑣) and 𝑣 ∈ 𝒰𝑡+1, the probabil‑
ity that player 𝑣 is happy after round 𝑡 + 2 is at least

𝑃 ∶= 1
𝑏𝑣

∑
𝑖∈𝑆𝑡+1(𝑣)

∏
{𝑢∈𝒰𝑡+1(𝑣)∶𝑖∈ℬ𝑡+1(𝑢)}

𝜋(𝑢)

= 𝑏𝑣 − 1
𝑏𝑣 ⋅ (𝑏𝑣 − 1) ∑

𝑖∈𝑆𝑡+1(𝑣)
∏

{𝑢∈𝒰𝑡+1(𝑣)∶𝑖∈ℬ𝑡+1(𝑢)}
𝜋(𝑢)

≥1
2

⎛⎜
⎝

∏
𝑖∈𝑆𝑡+1(𝑣)

∏
{𝑢∈𝒰𝑡+1(𝑣)∶𝑖∈ℬ𝑡+1(𝑢)}

𝜋(𝑢)⎞⎟
⎠

1
𝑏𝑣−1

≥1
2

⎛⎜
⎝

∏
𝑢∈𝒰𝑡+1(𝑣)

∏
𝑖∈ℬ𝑡+1(𝑢)

𝜋(𝑢)⎞⎟
⎠

1
𝑏𝑣−1

=1
2

⎛⎜
⎝

∏
𝑢∈𝒰𝑡+1(𝑣)

(1 − 1
|ℬ𝑡+1(𝑢)|)

|ℬ𝑡+1(𝑢)|
⎞⎟
⎠

1
|𝒜𝑡+1(𝑣)|

,

(4)
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where the ϐirst estimate follows from the arithmetic‑
geometric means inequality and the last equation follows
from the fact that |ℬ𝑡+1(𝑣)| = |𝒜𝑡+1(𝑣)| + 1. As in the
proof of Lemma 1, it holds (1 − 1

|ℬ𝑡+1(𝑢)| )
|ℬ𝑡+1(𝑢)|

≥ 1
4 .

Therefore, we conclude that 𝑃 ≥ 1
2 ⋅ ( 1

4 )
|𝒰𝑡+1(𝑣)|
|𝒜𝑡+1(𝑣)| . Now,

observe that |𝒰𝑡+1(𝑣)| ≤ Δ𝐺 − |ℋ𝑡+1(𝑣)| = 𝑘 + 𝑑 −
1 − |ℋ𝑡+1(𝑣)| ≤ 𝑘 + 𝑑 − 1 − 𝑓𝑡(𝑣), which implies that,
conditional on the event that |𝒜𝑡+1(𝑣)| ≥ 𝑘−𝑓𝑡(𝑣)

5𝑑 , it holds
|𝒰𝑡+1(𝑣)|
|𝒜𝑡+1(𝑣)| ≤ 5𝑑 ⋅ 𝑘+𝑑−1−𝑓𝑡(𝑣)

𝑘−𝑓𝑡(𝑣) ≤ 5𝑑 ⋅ 𝑑. Hence, conditional
on the event that |𝒜𝑡+1(𝑣)| ≥ 𝑘−𝑓𝑡(𝑣)

5𝑑 , we have 𝑃 ≥ 1
2 ⋅

( 1
4 )5𝑑⋅𝑑, and the result follows from Lemma 1.

We now proceed with the proof of Theorem 2.

Proof of Theorem 2. For a player 𝑣 ∈ 𝑉 , and a round 𝑡, let
𝑌𝑣(𝑡) be random variables deϐined as follows:

𝑌𝑣(𝑡) = { 1 , if 𝒞𝐺(𝑣; 𝜒𝑡) ≥ 𝑑 + 1
0 , otherwise (5)

From Lemma 2, we know that for every player 𝑣 and any
round 𝑡 it holds ℙ (𝑌𝑡+2(𝑣) = 1 ∣ 𝑌𝑡(𝑣) = 1) ≤ 1 − 𝑐𝑑,
where 𝑐𝑑 = 1

2 ⋅ ( 1
4 )5𝑑⋅𝑑 ⋅ (1 − 1−1/4𝑑

1−1/5𝑑 ).

Therefore, Lemma 2 implies that for any 𝜏 it holds

Π𝜏 =ℙ (𝑌𝑣(2𝜏) = 1 ∣ 𝑌𝑣(0) = 1)

=ℙ (
𝜏

⋂
𝑖=1

𝑌𝑣(2𝑖) = 1 ∣ 𝑌𝑣(0) = 1)

=
𝜏

∏
𝑖=1

ℙ (𝑌𝑣(2𝑖) = 1 ∣ 𝑌𝑣(2𝑖 − 2) = 1)

≤(1 − 𝑐𝑑)𝜏
(6)

Plugging in 𝜏 = 1
𝑐𝑑

⋅ log( 𝑛
𝛿 ), we deduce that for every

player 𝑣, it holds

ℙ(𝑌𝑣(2𝜏) = 1 ∣ 𝑌𝑣(0) = 1) ≤ 𝛿
𝑛 (7)

Now, set 𝑌𝑡 = ∪𝑣∈𝑉 {𝑌𝑣(𝑡) = 1} for an arbitrary round 𝑡.
The union bound then implies that

ℙ(𝑌𝜏 = 0 ∣ 𝑌0 = 1) ≥ 1 − 𝛿 , (8)

as desired.

6. NUMERICAL EVALUATION
In this section, we evaluate the pure operation and per‑
formance of the greedy and frugal strategies in terms of
the number of collisions at their convergence point and

the required rounds until convergence is reached. To this
end, both randomly generated graphs and graphs derived
from real network topologies are analyzed in the sequel.
First, different scenarios have been generated via model‑
ing and simulation using the Erdős–Rényi random graph
model 𝐺(𝑛, 𝑝) that captures the structure of any interde‑
pendent networked system in communication and com‑
puter networks. The parameter 𝑛 corresponds to the
number of vertices to be included in the randomly gener‑
ated graph, while 𝑝 is the probability with which an edge
𝑒 between different vertices is created. In the following
paragraphs, we consider both different numbers of ver‑
tices 𝑛 and probabilities 𝑝 to provide a holistic view of the
algorithms’ operation. The corresponding numerical re‑
sults have been averaged over 100different randomgraph
realizations under each speciϐic graph setting. To fur‑
ther provide a realistic demonstration of the operation of
the proposed strategies’ performance, three different real
network topologies with varying numbers of nodes (ver‑
tices) and connections (edges) have also been considered,
drawn from the Network Topology Zoo dataset [23]. The
selected topologies span thewhole rangeof small to large‑
scale networks, whose information is listed in the follow‑
ing paragraphs, and the respective numerical results are
presented in Table 1.

First, we consider a ϐixed number of vertices, i.e., 𝑛 = 20,
and evaluate the concluding number of collisions and re‑
quired rounds by varying the value of parameter 𝑠. Nu‑
merical results for both complete (i.e., 𝑝 = 1) and not
complete graphs with probability 𝑝 = 0.5 are generated
and averaged, and are presented in Fig. 2 and Fig. 3. The
meanmaximum degree of Erdős–Rényi graphs𝐺(20, 0.5)
is Δ𝐺 = 13, resulting in 𝑠 ∈ {0, 1, … , 10} and 𝑠 ∈
{0, 1, … , 11} under the greedy and frugal strategies, re‑
spectively. Similarly, considering a mean maximum de‑
gree Δ𝐺 = 19 for the Erdős–Rényi case 𝐺(20, 1), the
parameter 𝑠 takes values from the set 𝑠 ∈ {0, 1, … , 16}
under the greedy and 𝑠 ∈ {0, 1, … , 17} under the frugal
strategy, accordingly.

Fig. 2 depicts the number of collisions concluded in
the aforementioned simulation scenarios. An increasing
value of the parameter 𝑠 implies a lower number of avail‑
able colors at each vertex and, thus, a higher number of
collisions. The important conclusion driven from Fig. 2
though is that, in this article, we have not only managed
todevise a strategy that applieswhen thenumber of avail‑
able colors to each player is decreased to 𝑘 = 2, contrary
to the greedy strategy proposed in [22] that is applicable
when 𝑘 = 3, but also the proposed frugal strategy per‑
forms equally or outperforms the greedy one in the ma‑
jority of simulation scenarios in terms of the concluding
number of collisions. The latter observation is more ev‑
ident in the complete graph case (Fig. 2b) and especially
for large values of the parameter 𝑠. As the value of 𝑠 in‑
creases, the number of available colors 𝑘 = Δ𝐺−𝑠 at each
vertex decreases. Thus, including the color that made a
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Figure 2 – Number of collisions for different values of parameter 𝑠 un‑
der the randomly generated Erdős–Rényi graphs (a)𝐺(20, 0.5) and (b)
𝐺(20, 1).

player unhappy at their strategy set between subsequent
rounds, as suggested by the frugal strategy, is an effective
method that can even reduce the overall number of colli‑
sions in the graph. For the same value of the parameter
𝑠, this simulation scenario practically validates our theo‑
retical ϐindings following Corollary 1 and Corollary 2 in
that the collision number at each vertex under the frugal
strategy is lower than that under the greedy strategy.

Continuing with Fig. 3, the mean number of rounds of the
different players required under both the greedy and fru‑
gal strategies are presented for the (a) 𝐺(20, 0.5) and (b)
𝐺(20, 1) simulation scenarios andunder varying values of
𝑠. We observe that as the value of 𝑠 gets bigger, the num‑
ber of rounds required for the algorithms to converge de‑
creases owing to the vertices’ threshold of acceptable col‑
lisions that becomes looser, i.e., 𝑑 = 𝑠+2under the greedy
strategy and 𝑑 = 𝑠 + 1 under the frugal strategy. Espe‑
cially for small values of 𝑠, i.e., 𝑠 < 4, when the number of
available colors is large, removing the color that made a
player unhappy at the previous round from the available
colors set, as suggested by the greedy strategy, allows for
converging faster. For 𝑠 ≥ 4, i.e., for a highly constrained
color palette, the performance of both strategies is equal,
requiring on average three rounds to converge.

Subsequently, we aim to assess the performance of the
greedy and frugal strategies under the randomly gener‑
ated Erdős–Rényi graphs with probabilities 𝑝 = 0.5 and
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Figure 3 – Number of rounds for different values of parameter 𝑠 un‑
der the randomly generated Erdős–Rényi graphs (a)𝐺(20, 0.5) and (b)
𝐺(20, 1).
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Figure 4 – Number of (a) collisions and (b) rounds for 𝑠 = 0 and a vary‑
ing number of vertices 𝑛 under the randomly generated Erdős–Rényi
graphs with 𝑝 = 0.5 and 𝑝 = 1.
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𝑝 = 1 and varying numbers of vertices 𝑛 = [20, 200].
For this purpose, we ϐix the value of the parameter 𝑠
equal to 𝑠 = 0 (see results in Fig. 4) to examine the al‑
gorithms’ behavior when the number of available colors
𝑘 = Δ𝐺 − 𝑠 at each vertex is the maximum possible.
Fig. 4a further corroborates the fact that the frugal strat‑
egy concludes a lower number of collisions compared to
the greedy one, while the gap between the two strategies
becomes wider as the number of vertices in the gener‑
ated graphs increases under both 𝑝 = 0.5 and 𝑝 = 1
cases. If we signiϐicantly increase the number of vertices
equal to 𝑛 = 200, the performance improvement of the
frugal strategy is almost double, yielding half the num‑
ber of collisions under the greedy strategy. Regarding
the mean number of rounds of the different players re‑
quired for the algorithms to converge, the greedy strat‑
egy proves to be almost one round faster in the different
simulation scenarios (see Fig. 4b). As the number of ver‑
tices increases, a small increase in the required number of
rounds is observed while some minor variations appear,
especially under the frugal strategy, which is attributed to
the randomized nature of the devised algorithms in this
article. Overall, the frugal strategy introduced in this arti‑
cle can be even double times better in the number of col‑
lisions than our previous work, with the cost of only one
extra round when the available colors at each vertex are
equal to themaximumdegree of the underlying graph, i.e.,
for 𝑠 = 0.

Last, it is interesting to investigate the operation of the
two strategies when the amount of colors available at
each vertex takes the lowest possible value, which hap‑
pens when 𝑠 = Δ𝐺 − 3 under the greedy strategy and
𝑠 = Δ𝐺 − 2 under the frugal strategy. The obtained nu‑
merical results are presented in Fig. 5 for a varying num‑
ber of vertices within the range 𝑛 = [20, 200] and Erdős–
Rényi probabilities 𝑝 = 0.5 and 𝑝 = 1, respectively. In
this simulation scenario, the two strategies operate iden‑
tically, resulting in the same number of collisions (see
Fig. 5a) and the same number of rounds (see Fig. 5b) ex‑
cept for the Erdős–Rényi graph case with 𝑝 = 0.5, where
the players can conclude the gameunder lower than three
rounds on average. The latter corroborates the observa‑
tions driven from Fig. 2 and Fig. 3 for large values of the
parameter 𝑠.

The observations derived from the preceding analysis
over randomly generated graphs are further corrobo‑
rated by the evaluation of three different‑scale real net‑
work topologies, namely the Cernet, TW, and Colt net‑
works [23]. These networks range from small to large
scale, with 37, 71, and 146 nodes and 55, 118, and 178
connections, respectively. Additionally, the maximum de‑
gree of their underlying graphs is 12, 12, and 18, accord‑
ingly. Contrary to the already examined and randomly
generated graphs, the real network topologies are char‑
acterized by highly heterogeneous and irregular under‑
lying graphs, leading to a notable variation in the num‑
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Figure 5 – Number of (a) collisions and (b) rounds for 𝑠 = Δ𝐺 − 3/𝑠 =
Δ𝐺 − 2 and a varying number of vertices 𝑛 under the randomly gener‑
ated Erdős–Rényi graphs with 𝑝 = 0.5 and 𝑝 = 1.

ber of edges across the vertices. This means that there
exist point‑to‑point connections between some vertices,
whereas othersmay havemuch higher degrees. To assess
theperformanceof theproposedgreedy and frugal strate‑
gies under such types of underlying graphs, we have ex‑
ecuted the corresponding algorithms and calculated the
concluding number of collisions after algorithmic conver‑
gence. Given the randomized nature of the devised al‑
gorithms, the numerical results have been averaged over
100 different algorithm executions and are listed in Ta‑
ble 1.

Speciϐically, Table 1 is organized into three main sections,
one for each of the examined real network topologies.
In each section, the concluding number of collisions by
the greedy and the frugal strategies is listed along with
the resulting deviation between the two strategies. The
columns of Table 1 correspond to different values of the
parameter 𝑠, which is 𝑠 ∈ {0, ⋯ , 9} and 𝑠 ∈ {0, ⋯ , 10}
for the greedy and frugal strategies under the Cernet and
TW networks given their maximum degree equal to 12.
The respective values of 𝑠 under the Colt network are 𝑠 ∈
{0, ⋯ , 15} and 𝑠 ∈ {0, ⋯ , 16}, respectively. The circled
instances within the table regard indicate cases when the
frugal strategy underperforms compared to the greedy
strategy, yielding more collisions than the latter. It can be
observed that these cases constitute the minority, while
the deviation in the number of collisions between the fru‑
gal and greedy strategies therein is small, i.e., on average
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Table 1 – Number of collisions for different values of parameter 𝑠 under Cernet, TW, and Colt network topologies.

𝑠 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Ce
rn
et Greedy 8 10 10 21 28 28 42 42 42 53 ‑ ‑ ‑ ‑ ‑ ‑ ‑

Frugal 2 8 11 12 22 29 31 44 45 45 53 ‑ ‑ ‑ ‑ ‑ ‑
Deviation 6 2 1 9 6 1 11 2 3 8 ‑ ‑ ‑ ‑ ‑ ‑ ‑

TW

Greedy 12 25 38 53 70 77 82 90 90 100 ‑ ‑ ‑ ‑ ‑ ‑ ‑
Frugal 6 14 28 42 56 71 78 85 92 97 106 ‑ ‑ ‑ ‑ ‑ ‑
Deviation 6 11 10 11 14 6 4 5 2 3 ‑ ‑ ‑ ‑ ‑ ‑ ‑

Co
lt

Greedy 31 63 81 94 106 112 112 121 121 132 132 132 132 132 132 132 ‑
Frugal 5 33 64 82 94 107 112 113 122 122 135 135 135 136 137 140 142
Deviation 26 30 17 12 12 5 0 8 1 10 3 3 3 4 5 8 ‑

one to two collisions for the Cernet andTWnetworks, and
four collisions for the Colt network. Overall, it is evident
that the frugal strategy performs remarkably better, espe‑
cially as the network scale increases and for small values
of the parameter 𝑠 (see Colt network for 𝑠 = [0, 4]). This is
attributed to the fact that the players, i.e., network nodes,
have a wider range of color options available by including
the color that made them unhappy in the previous itera‑
tion. The result is fewer collisions under the frugal strat‑
egy, as explained earlier in this section.

7. CONCLUSIONS

This article provided an extended and improved version
of our previouswork in [22] related to theMinimumColli‑
sions Assignment (MCA) problem in interdependent net‑
worked systems with a constrained number of resources.
We considered networked systems organized in the form
of a graph, where the corresponding resource allocation
problem can be equivalently translated as the assignment
of a ϐinite set of colors over the vertices of the graph such
that the number of collisions of vertices that are assigned
the same color is minimized. Being aligned with the
needs of next‑generation wireless communication and
computer networks, e.g., scalability, resilience, and se‑
curity, we adopted game‑theoretic modeling and intro‑
duced distributed, randomized algorithms that converge
to a Nash equilibrium. The concluded Nash equilibrium,
in turn, gave rise to a defective coloring of the underlying
graph, i.e., a coloring according to which every vertex has
at most a certain number of collisions. The greedy strat‑
egy, which is our initial work, is applied in cases when the
color palette of each vertex contains three colors. In this
article, we built upon and improved the greedy strategy
to apply to cases where each vertex has only two avail‑
able colors. The updated strategy was termed as frugal.
The estimated number of rounds required for the frugal
strategy to converge and the maximum expected number
of collisions at each vertex was theoretically calculated
and compared against the ones derived for the greedy
in [22]. Numerical results obtained viamodeling and sim‑

ulation were also presented that support our theoreti‑
cal analyses. Overall, the frugal strategy performed very
closely to the greedy one, providing an effective method
to treat resource allocation problems with a signiϐicantly
constrained number of resources, i.e., colors, that could
not be addressed otherwise.
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