
DESIGNING GRAPH NEURAL NETWORKS TRAINING DATAWITH LIMITED SAMPLES AND
SMALL NETWORK SIZES

Junior Momo Ziazet1, Charles Boudreau1, Oscar Delgado1, Brigitte Jaumard1
1Computer Science and Software Engineering, Concordia University, Montreal, Canada

NOTE: Corresponding author: Brigitte Jaumard, brigitte.jaumard@concordia.ca

Abstract – Machine learning is a data‑driven domain, which means a learning model’s performance depends on the avail‑
ability of large volumes of data to train it. However, by improving data quality, we can train effective machine learning
models with little data. This paper demonstrates this possibility by proposing amethodology to generate high‑quality data in
the networking domain. We designed a dataset to train a given Graph Neural Network (GNN) that not only contains a small
number of samples, but whose samples also feature network graphs of a reduced size (10‑node networks). Our evaluations
indicate that the dataset generated by the proposed pipeline can train a GNNmodel that scales well to larger networks of 50
to 300 nodes. The trained model compares favorably to the baseline, achieving a mean absolute percentage error of 5‑6%,
while being signiϔicantly smaller at 90 samples total (vs. thousands of samples for the baseline).

Keywords – Data‑centric AI, data generation, graph neural networks, network modeling, RouteNet‑Fermi

2. PROBLEM DESCRIPTION
This work covers our submission to the 2022 edition of
the Graph Neural Networking Challenge. In the com‑
petition, we are given a state‑of‑the‑art GNN model for
network simulation (RouteNet‑Fermi, [6]), and a packet‑
level simulator based on OMNET++ to generate datasets.
The task consists of using data‑centric AI principles [7] to
produce a training dataset for the model. As data‑centric
AI emphasizes the quality of the data given to a model, we
must improve the given model’s performance without al‑
tering its architecture or hyper‑parameters.

1. INTRODUCTION
Recently, the data networking community has developed
robust Graph Neural Networks (GNNs) able to accurately
estimate complex network parameters with good accu‑
racy [1]. These models were trained on large datasets,
however, and in many networking scenarios data is not
readily available or is prohibitively expensive to acquire.
Therefore, being able to effectively train deep neural net‑
works using smaller datasets becomes crucial, urging a
shift from model‑centric AI to data‑centric AI.
Data‑centric AI is an emerging ϐield of study that aims to
elaborate techniques for dataset optimization [2]. It pro‑
poses directing more focus towards developing system‑
atic engineering practices to improve data quality, and
away from architecture search and hyperparameter tun‑
ing. Hence, data‑centric AI can reduce development time
while improving model accuracy, promoting collabora‑
tion, and driving revenue [3].
To the best of our knowledge, in the networking domain,
there is no public research work on how to produce good
quality small datasets for training machine learning mod‑
els. Inspired by the ϐirst ”Data‑Centric AI” competition
that was organized by Andrew Ng et al. [4], the third
edition of the ”Graph Neural Network Challenge” [5] pro‑
poses to explore a data‑centric AI approach for building
accurate network digital twins. This paper summarizes
our winning submission to the ”Graph Neural Network
Challenge 2022”. It describes our methodology, presents
the numerical results, and compares our solution with the
other top solutions submitted to the competition.
The paper is structured as follows: Section 2 provides the
problem description, followed by the state‑of‑the‑art re‑
view in Section 3. Section 4 details the given GNN model,
followed by Section 5 that describes our proposed solu‑
tion. Section 6 explains our experiments and numerical
results, and finally, we provide a summary of our
conclusions in Section 7.

Fig. 1 – Components of a sample in the dataset

As described in [8], and represented in Fig. 1, one sample
in the dataset consists of a tuple containing the following:
a topology object, which holds data on the physical com‑
ponents (nodes and links) of the network, a routing ma‑
trix, which holds the unique path linking each node pair in
the topology, and a trafϐic matrix, which contains informa‑
tion on the ϐlows between each pair of nodes. The model
takes these components as input features and output la‑
bels for the sample corresponding to the per‑ϐlow delay.
All samples must be generated with the provided network
simulator, and the provided neural network model. All
the parameters for the learning process, i.e., model ar‑
chitecture (RouteNet-Fermi), learning rate (0.005), optimizer
(Adam), loss function (mean absolute percentage error),

ITU Journal on Future and Evolving Technologies, Volume 4, Issue 3, September 2023

© International Telecommunication Union, 2023
Some rights reserved. This work is available under the CC BY-NC-ND 3.0 IGO license: https://creativecommons.org/licenses/by-nc-nd/3.0/igo/.

More information regarding the license and suggested citation, additional permissions and disclaimers is available at:
https://www.itu.int/en/journal/j-fet/Pages/default.aspx

number of epoch (20 maximum), seed (69420), and
the others training hyperparameters are ϐixed and
given by the challenge organizers. This means that par‑
ticipants must not modify the learning parameters, and
must concentrate solely on generating the dataset.

Data generated for the competition must meet certain re‑
quirements, which are summarized as follows. Created
datasets are restricted to a small amount of samples (up
to 100 samples) in order to emphasize the quality of the
samples retained. Furthermore, the samples must consist
of topologies much smaller (up to 10 nodes per topology)
than the ones in the test set, to simulate that it is impracti‑
cal to have production‑scale training data, as depicted in
Fig. 2. All links must be bidirectional, with a link band‑
width ranging from 10 000 to 400 000 bits and divisible
by 1000. Each node may be assigned one of four schedul‑
ing policies, and its buffer size must lie between 8000
and 64000 bits. Each pair of source‑destination nodes
can have only one routing path, although it may differ de‑
pending on the direction. We generate trafϐic ϐlows be‑
tween node pairs, with an average bandwidth between 10
and 10000 bps, following a time distribution, of which we
have three choices, and a size distribution, where we can
assign a probability for any size from 256 to 2000 bits, as
long as all probabilities sum to 1. Each node pair is asso‑
ciated with a single trafϐic ϐlow, although node pairs A‑B
and B‑A can have different ϐlow values. Each trafϐic ϐlow
may also be assigned one of three possible types of ser‑
vice, which factors into interactions with node scheduling
policies. A comprehensive list of all the constraints that
the training dataset must satisfy can be found in [9].

Fig. 2 – Network size: Train with a small network (<10 nodes),
Validate/Test with a large network (<300 nodes)

In summary, participants had to generate a training
dataset satisfying the aforementioned requirements, and
then train the given neural network with this data (where
all training hyperparameters are ϐixed by the challenge
organizers). In order to assess the performance of the
model after training, which indicates the quality of the
generated training data, a dataset containing larger net‑
work samples, that we will refer to as the validation
dataset in this paper was provided by the competition or‑
ganizers. At the end of the competition, both the gener-
ated dataset (as well as the script to generate it) and the

trained model weights must be sent to the competition
organizer. They will test the trained model on another
dataset, known as the ”test” dataset, which contains sam‑
ples with distributions similar to those of the validation
dataset (participants do not have direct access to the test
dataset). The team that achieves the lowest MAPE on the
test dataset will be considered the winner, provided the
organizers are able to reproduce the solution.

3. LITERATURE REVIEW
The problem statement calls for us to synthesize a small
dataset for a model that will allow it to generalize to sam‑
ples on a scale it has not encountered during training. In
this section, we review our options for creating datasets,
measures available to ensure generalization of the model
to domain shift, and whether there are any special consid‑
erations when working with very small datasets.

Data generation: Data generation provides an alterna‑
tive to acquiring real data. This can be done through ei‑
ther crowdsourcing platforms or through simulators [10].
In our case, we must generate our samples through the
provided OMNET++ simulator, where generating a large
amount of samples is prohibitively costly. Another option
for generating data is a generative model, with Generative
Adversarial Networks (GANs) in particular being a popu‑
lar choice. While the constraints prevent us from directly
creating new samples using a generative model, we can
use one to generate the inputs (topology, routings, trafϐic
matrix) to feed to the simulator.
By inferring the generation parameters of samples in the
distribution of data we want to generate from, such as
the samples in the validation set, we can train a model
to generate samples consisting of generator parameters
presumably from the same distribution we will be val‑
idating and testing on, which we can then give to the
simulator to generate samples. There are some issues
with that approach, however. First, generative models
require a lot of data for training, without which the dis‑
criminator memorizes the training set and fails to gener‑
alize, causing the model to fall apart, as [11] shows when
a GAN is trained on a small fraction of the CIFAR‑10 im‑
age dataset (10‑20% of 60k images). We can increase
the amount of data we have through data augmentation,
which is also available for graphs, although the usual aug‑
mentation techniques used on images and sequences can‑
not be applied, as graph structure is not encoded by posi‑
tion [12]. Second, generative models are trained by recon‑
structing their training examples, which in our case fea‑
ture topologies much larger than what we can have in our
training set. The output shape of a generative model does
not have to match the input, as shown by the image degra‑
dation and super‑resolution tasks [13], but these need
ground truth labels, and if we wanted to generate smaller
graphs, we would need to train the generative model with
a ”ground-truth” small graph corresponding to each
large graph training example.

©International Telecommunication Union, 2023

Ziazet et al.: Designing graph neural networks training data with limited samples and small network sizes

493

Graph model generalization: We next explore what
means are available to improve the generalization capa‑
bilities of a GNN system. As the competition rules prevent
us from altering the model or training procedure, we will
focus on means related to data.
Increasing generalizability of GNN models through ma‑
nipulating the input data generally means performing
some form of data augmentation. Data augmentation on
graph data is more complex than on image data due to
the non‑Euclidean nature of the space. Augmentation of
graph data can involve the graph’s structure, as in [12],
which uses an edge predictor to determine edges to add
or remove in order to produce new examples. Otherwise,
it can act on the feature matrix, by, for example, mask‑
ing or perturbing some features before passing the matrix
through a node propagation model to produce augmented
samples, as in [14]. Both of these approaches can be com‑
bined, as well. While augmentation is a viable strategy
when the problem has no hard upper limit to the number
of samples to use for training, in our case we need to im‑
prove the quality of the samples passed to the model, as
our number of samples is small.
Data cleaning addresses the quality of the samples given
to a model for training. The most common approach to
this is through removing samples judged deleterious to
performance [15]. This ”ϐiltering” consists of removing
”out‑of‑distribution” samples from the training, such that
the training and test dataset distributions match, but in
our case our training and test sets have topologies of dif‑
ferent sizes, which implies we have to work with the fact
that they come from different distributions. Otherwise,
early stopping [16] has been shown to help models gen‑
eralize better by stopping training before the model
starts ϐitting the noisy data points. As training length
is one of the few parameters of the training procedure
we have control over in the context of the competition,
we can keep this in mind for our solution.

Training on small datasets: There is steadily more at‑
tention being paid to training deep learning models on
limited data, a problem encountered in certain ϐields
where data acquisition can be difϐicult, such as medi‑
cal imaging. Solutions put forth to solve this issue stem
mainly from transfer learning, where a model is trained
with data for a different task in the hope that it will aid
with the main task, and data augmentation, discussed
above [17]. Furthermore, altering the model design can
also help with learning with scarce data, as demonstrated
by [18] who improve the performance of a CNN model
on image recognition tasks by changing the loss func‑
tion from the commonly‑used cross‑entropy loss to co‑
sine loss. Smaller models can also outperform the state‑
of‑the‑art when both are subjected to small training sets,
as shown by [19]. Unfortunately, all of the methods sur‑
veyed to deal with limited data entail either changes to
model architecture and training procedures, or artificially

Fig. 3 – Schematic representation of Routenet‑Fermi’s message passing
(adapted from [6])

increasing the number of samples within a small dataset,
all of which violate the constraints we have to operate un‑
der in the context of the GNN competition.
To our knowledge, there is no research on optimizing the
learning of a model with a dataset whose total size is hard‑
capped at a certain maximum number of samples. Ref‑
erences that deal with a limited number of samples usu‑
ally attempt to overcome this by generating more samples
through augmentation. References consulted usually deal
with classiϐication problems and deϐine a ”small” dataset
in terms of the number of examples per class. As the refer‑
ences consulted deal overwhelmingly with classiϐication
problems, this leaves regression problems in GNNs as an
under‑served area of research.

4. NETWORK MODELING

4.1 Background
Network modeling is an important component in the de‑
sign of networks [6]. Two of the most often used mod‑
eling methods are queuing theory and packet‑level sim‑
ulators, which both feature their own limitations. Queu‑
ing theory makes strong assumptions about how packets
arrive, which may not reϐlect reality. Packet‑level simula‑
tors carry a very high computational cost, making them
slow and impractical to use in realistic scenarios with
many nodes. Modern network modeling techniques can
be leveraged to create a ”Digital Twin” of the network. A
digital twin is a virtual copy of a real‑world object (in this
case, a network) that can accurately predict how the ob‑
ject would react to a host of simulated situations. Neural
networks can be used to create these digital twins [20, 21,
22, 23], and several different architectures can be used
for this purpose. The Multilayer Perceptron (MLP), a type
of neural network consisting of several fully‑connected
layers of neurons, can accurately predict trafϐic gener‑
ated from a Poisson distribution, but otherwise has trou‑
ble anticipating yet‑unseen routings [20, 21]. The Re‑
current Neural Network (RNN), a model that specializes
in sequential data, better supports different trafϐic mod‑
els than MLP, but still struggles to cope with routing and
topology changes [22, 23]. Graph neural network models

©International Telecommunication Union, 2023

ITU Journal on Future and Evolving Technologies, Volume 4, Issue 3, September 2023

494

Fig. 4 – Proposed solution overview: A three‑step process

directly process graph data as input, but nevertheless
still ϐind predicting novel routing conϐigurations difϐicult,
as these conϐigurations are not represented in a simple
reproduction of the network topology as graph data.

4.2 RouteNet‑Fermi
The RouteNet‑Fermi model [6] is a state‑of‑the‑art graph
neural network‑based model for network simulation.
The model goes beyond simply reproducing the network
topology as graph data, instead creating a heterogeneous
graph that models the interactions between the trafϐic
ϐlows, queues and links of a network. A ϐlow’s state de‑
pends on the states of links and queues it encounters, a
queue’s state is inϐluenced by the states of ϐlows that pass
through it, and a link’s state is inϐluenced by the state of
queues that may lead network trafϐic into it. These cir‑
cular dependencies are addressed through a three‑part,
custom message‑passing scheme, shown in Fig. 3.
After the states of each of the ϐlows, queues and links
are initialized with the initial features, message‑passing
occurs iteratively, with the queue states being updated
ϐirst, using aggregated states of the ϐlows encountered by
each queue, followed by the link states, using the states
of queues that feed into the links, and ϐlow states, using
information aggregated from the states of all links and
queues that compose a ϐlow. This process repeats for 𝑇 it‑
erations, where 𝑇 is a user‑deϐined parameter before the
ϐlow states are ϐinally used to compute the performance
metric estimations. Furthermore, in a manner similar to
the model in [24], RouteNet‑Fermi also features design
choices such as replacing the numerical ”link capacity”
value with a relative value representing the trafϐic load
of a link based on its capacity, and the delay is inferred
from the queue occupancy rather than predicted directly,

which helps retain accuracy even when testing on net‑
works much larger than those experienced during training.

5. PROPOSED SOLUTION
This section describes the process we employed to gen‑
erate our dataset. The proposed procedure implements a
customized three‑step solution, shown in Fig. 4. The re‑
strictions on sample topology size means that the train‑
ing and target domains will have signiϐicant differences,
so this is partly a domain generalization problem. First,
we generated an initial dataset where we match the input
variables for the simulator that do not scale with topol‑
ogy with those of the given validation set, pushing the do‑
main of our generated set closer to the target. Then, we
refactored the generated dataset limiting the bounds of
some input parameters to constrain the training domain
so it does not drift too far from the target. And ϐinally, we
designed a cleaning framework to keep only high‑quality
data, discarding samples that hinder performance. These
steps are described in detail in the following subsections.

5.1 Initial dataset generation
We started by conducting a detailed analysis of the valida‑
tion set to allow us to form hypotheses about how speciϐic
parameters of the validation sets were generated. For ex‑
ample, we wanted to hypothesize about the assignment
of trafϐic and service type to source and destination node
pairs, the average path length, the link capacity values and
how these capacities are assigned to the links, the node
buffer sizes and how they are assigned, the scheduling
policies, etc. Some of the parameters that we observed
in the validation set are shown in tables 1 and 2. In these
tables, the ”values” column shows the set of possible

©International Telecommunication Union, 2023

Ziazet et al.: Designing graph neural networks training data with limited samples and small network sizes

495

Table 1 – Hypothesis made on graph nodes and edges after validation set analysis

Parameters Values Probabilities
Policies [FIFO, SP, WFQ, DRR] [0.25, 0.25, 0.25, 0.25]

Buffer Sizes [8000, 16000, 32000, 64000] [0.25, 0.25, 0.25, 0.25]
WFQ weights [”70,20,10”,”33.3, 33.3, 33.4”,”60,30,10”,”80,10,10”,”65,25,10”] [0.2, 0.2, 0.2, 0.2, 0.2]
DRR weights [”60,30,10”,”70,25,5”,”33.3,33.3,33.4”,”50,40,10”,”90,5,5”] [0.2, 0.2, 0.2, 0.2, 0.2]
Link capacity [10000, 25000, 40000, 100000, 250000, 400000, 1000000] based on number of nodes

Table 2 – Hypothesis made on ϐlows after validation set analysis

Parameters Values Probabilities
Trafϐic ϐlow Uniform(0,1)×I, I∈[1000,2000,3000,4000] [0.25, 0.25, 0.25, 0.25]

”0,500,0.22,750,0.05,1000,0.06,1250,0.62,1500,0.05” 0.2
”0,500,0.08,750,0.16,1000,0.35,1250,0.21,1500,0.2” 0.2

Packet Size Distribution ”0,500,0.53,750,0.16,1000,0.07,1250,0.1,1500,0.14” 0.2
”0,500,0.1,750,0.16,1000,0.036,1250,0.24,1500,0.14” 0.2
”0,500,0.05,750,0.28,1000,0.25,1250,0.27,1500,0.15” 0.2

Time Distribution ”Poisson”,”CBR”,”ON‑OFF (5,5)” [1/3, 1/3, 1/3]
Type of Service 0,1,2 [0.1, 0.3, 0.6]

values a parameter can take. The ”probabilities” column con‑
tains the probability of selecting a given value. For ex‑
ample, the parameter ”scheduling policy”, abbreviated to
”policies”, can be selected from the set of values [FIFO, SP,
WFQ, DRR], each policy can be selected with equal prob‑
ability, represented by [0.25, 0.25, 0.25, 0.25]. The other
parameters in the tables can be interpreted in the same
way, with values selected at random based on probabilities.
From the assumptions made based on tables 1 and 2, we
can see that apart from link capacity whose values
change as the graph size increases, the other
parameters seem to be chosen randomly with
probabilities deϐined as in the tables. We made the
assumption that we should use these values as input
parameters for the simulator in order to generate our
training set as well. So we generated a training set
by choosing the different parameters as deϐined in tables
1 and 2. After training the model with the datasets
generated according to the process deϐined above, the
best MAPE we could obtain on the validation set was
around 27‑29%.

5.2 Refactoring the dataset

We were unable to get satisfactory performance when
trying to match the validation set’s parameters with net‑
works that had no more than 10 nodes. We concluded
that our dataset was insufϐiciently diverse, i.e., that the
parameters were not sufϐiciently variable to account for
all potential use cases encountered during testing. We
thus looked at other characteristics that could have an im‑
pact on the parameters deϐined in Section 5.1, such as de‑
lay ranges, queue utilisation, link utilisation, and average
port occupancy.

5.2.1 Link capacity based on routing
Our exploration of the validation set showed that the av‑
erage link bandwidth in a given topology generally in‑
creased proportionally with the number of nodes. We as‑
sume this is done to accommodate the increasing num‑
ber of ϐlows in larger topologies, as the validation follows
the same rules as the training set, in that each source‑
destination pair of nodes has a single ϐlow assigned to it.
As we can only have one ϐlow per node pair in topologies
of our sample, andwith the restriction that the topologies
in the training set must not exceed 10 nodes, this implies
that the total number of ϐlows will always be much lower
than the total found in the validation set. The link uti‑
lization analysis we performed on the generated datasets
from Section 5.1 showed that our link utilizationwas very
low on average (about 40%). In order to adjust the link
utilization so that it covers a wide range, we set the link
capacity based on the routing, as this gives us greater ϐlex‑
ibility, as explained below. In this strategy, the routing
policy is known in advance and we set the capacity of the
links to be proportional to the trafϐic it encounters. We
can therefore set the capacity so thatweget adesired level
of link utilization. Equation (1) shows how we obtained
the link capacities.

capacityℓ =
∑

𝑓∈𝑁ℓ

𝑡𝑓

𝐿𝑈ℓ
, (1)

where 𝑡𝑓 is the trafϐic of the ϐlow 𝑓 , 𝑁𝑙 is the number
of ϐlows traversing link 𝑙, and 𝐿𝑈ℓ is the link utilization
of link 𝑙 which was chosen from a normal distribution of
mean 𝜇 and standard deviation 𝜎 = 𝜇

2 . We have chosen
the values of the mean 𝜇 such that the links experience
low, medium and high utilization levels, which is simi‑
lar to what we have observed in the validation set. Algo‑

©International Telecommunication Union, 2023

ITU Journal on Future and Evolving Technologies, Volume 4, Issue 3, September 2023

496

rithm 1 details the process for obtaining the link utiliza‑
tion 𝐿𝑈ℓ. Notice that the function ”random(.,.)” chooses
a value from vector ”mean” with probability ”weights”.
Choosing 𝐿𝑈ℓ this way adds variability to the dataset, so
each example yields a more meaningful contribution.

Algorithm 1: get_load()
mean = [0.2, 0.4, 0.6, 0.8]
weights = [0.3, 0.3, 0.3, 0.1]
while True do

𝜇 = random(mean, weights)
𝜎 = 𝜇/2
𝐿𝑈ℓ = 𝒩(𝜇, 𝜎)
if 0 ≤ 𝐿𝑈ℓ ≤ 1 then

break
Return: 𝐿𝑈ℓ

Using this approach, the link capacity values concen‑
trated around 10000, which is minuscule compared to
link capacities in the validation set. Looking at how the
RouteNet_Fermi model [6] estimates the delay of a ϐlow
as follows,

delay𝑓 = ∑
(𝑞,ℓ)∈𝑓

(GNN_𝑞𝑜ℓ
𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦ℓ

+ 𝜇_𝑓𝑝𝑠𝑓
𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦ℓ

) , (2)

we see that the delay is highly dependent on the link ca‑
pacity, as it is used to calculate the queuing and transmis‑
sion delay. Since the GNN readout output (GNN_𝑞𝑜ℓ) may
give similar values in the training and validation set, hav‑
ing a link capacity value in the training set that is very
different from those in the validation set is counterpro‑
ductive. To address this, instead of using the link capac‑
ity directly derived from (1) (hereinafter referred to as
’cap’), we set the link capacity to be the closest candi‑
date to ’cap’ from the set {10000, 25000, 40000, 100000,
250000, 400000}, which is a subset of the link capacity
in the validation set. Algorithm 2 details the process for
setting the link capacities in the network according to the
trafϐic information.

Algorithm 2: set_link_bandwidth()
Input: G, paths, trafϐic, capacity_set
link_bw = Array of 0
foreach pair (SRC, DST) ∈ 𝐺 do

path = paths(SRC,DST)
foreach e in path do

link_bw(e(SRC), e(DST)) += trafϐic(SRC,DST)
foreach e in G.edges do

𝑙𝑖𝑛𝑘_𝑙𝑜𝑎𝑑 = 𝑔𝑒𝑡_𝑙𝑜𝑎𝑑()
cap = link_bw (𝑒(SRC), 𝑒(DST)) / link_load
𝐼𝑑_𝑐𝑎𝑝 = argmin(|𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦_𝑠𝑒𝑡 − 𝑐𝑎𝑝|)
𝐺(𝑒[SRC], 𝑒[DST]) = 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦_𝑠𝑒𝑡[𝐼𝑑_𝑐𝑎𝑝]

Return: 𝐺

5.2.2 Network topology choice

To get the most ϐlows per sample, we decided to only
generate 10‑node graphs, the maximum permitted. We
found that having one unique network topology per sam‑
ple, so 100 different network topologies in total, was not
beneϐicial, as it could add too much noise to the dataset
(Achieved MAPE ≈ 16% on the validation set with 100
different network topologies) . Therefore, we carefully
designed and selected 10 network topologies to have two
important characteristics found in the validation set: the
presence of nodes of degree 1 and different node degree
conϐigurations, as shown in Fig. 5 and Table 3, to increase
the probability of having a different path length distribu‑
tion using the shortest path algorithm. Indeed, on a 10‑
node graph, the presence of higher‑degree nodes, e.g., 6,
limits thepath lengthusing the shortest‑path algorithm to
around 3. Since we wanted to have different path length
distributions using the shortest path algorithm, generat‑
ing graphs on the basis of node degree gave us greater
ϐlexibility. Each topology was used to generate 10 sam‑
ples where only the node and edge characteristics were
modiϐied. The node attributes were chosen as described
in Table 1 and the edge characteristics were chosen ac‑
cording to Section 5.2.1.

5.2.3 Flows generation

Based on our observations of the validation set, we iden‑
tiϐied four trafϐic ϐlow intensities: 1000, 2000, 3000, and
4000 bps, to use as a base. For each sample, we randomly
chose an intensity and the ϐlows in that sample were se‑
lected from the interval [intensity/2, intensity]. We also
found that deϐining only 10 distinct trafϐic matrices deliv‑
ers better performance than 100 different trafϐicmatrices
when working with 10 network topologies of 10 nodes
each. Thus, we deϐined 10 different trafϐic matrices and
used these same trafϐic matrices for each of the different
network topologies. In addition, updating the probability
distribution values of the ”packet size distribution” and
”time distribution” parameters we deϐined in Section 5.1
from [0. 2, 0.2, 0.2, 0.2, 0.2] to [0.1, 0.2, 0.3, 0.3, 0.1] and
from [1/3, 1/3, 1/3] to [0.8, 0.1, 0.1] respectively, resulted
in ϐlows that produced better results. These new values
were found after several search cycles of our algorithm,
as shown in Fig. 4. We observe improvement when we
generate more ϐlows with a Poisson distribution (proba‑
bility = 0.8) when we have few samples. In order to eas‑
ily visualize the similarities between the training and the
validation dataset in terms of average ϐlow value we plot
Fig. 6, in which we can see that after all the parameter
tuning used to generate the training dataset, both violin
plots look alike, demonstrating the similarity between the
training and validation sets in this particular aspect.
Training the model with the dataset generated after the
different changes described in Sections 5.2.1, 5.2.2 and
5.2.3 resulted in a MAPE reduction from 27‑28% to 8‑
10% on the validation set.

©International Telecommunication Union, 2023

Ziazet et al.: Designing graph neural networks training data with limited samples and small network sizes

497

Fig. 5 – Selected network topologies with corresponding degree histogram (degree on x‑axis, count on y‑axis).

Table 3 – Key topology characteristics.

Topology ID 1 2 3 4 5 6 7 8 9 10
|𝑁| 10 10 10 10 10 10 10 10 10 10
|𝐿| 14 12 14 12 11 13 14 12 12 12

Diameter 4 4 4 4 5 5 3 4 5 5
Avg. degree 2.8 2.4 2.8 2.4 2.2 2.6 2.8 2.4 2.4 2.4
Max. degree 5 4 5 4 4 4 6 5 5 5
Min. degree 1 1 1 1 1 1 1 1 1 1

Avg. betweenness 0.12 0.15 0.13 0.15 0.17 0.16 0.11 0.14 0.16 0.16
Max. betweenness 0.47 0.38 0.47 0.38 0.47 0.42 0.52 0.52 0.68 0.64
Min. betweenness 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Fig. 6 – Trafϐic ϐlow distribution Training vs. Validation set.

5.3 Dataset cleaning
With 100 samples generated, we explored whether clean‑
ing this dataset by removing some samples judged too
noisy can help improve the results. As what was ”Noisy”
was difϐicult to specify, we hypothesized on what can be
considered noise.

5.3.1 Hypothesis 1: Noise based on data distri‑
bution

Our ϐirst hypothesis is: A sample is considered noisy if
it contains certain characteristics (e.g., average port oc‑
cupancy in our case) that are outside the validation set’s
distribution. We suppose this based on our knowledge
of the RouteNet‑Fermi model, which predicts the average
port occupancy, then derives its delay prediction. Thus,
wewanted the average port occupancy distribution of our
generated training samples tomatch that of the validation
set. When we cleaned our dataset following this hypoth‑
esis, we saw no improvement, and could not conϐirm our
ϐirst hypothesis.

5.3.2 Hypothesis 2: Noise based on path length

Aswewere using the shortest path routing algorithm and
that message passing iterated eight times, in order to re‑
duce the over‑smoothing during the training, we made a
second hypothesis. We suppose that a sample is noisy if it
does not contain at least one path of length 4, roughly the
average path length in the validation set. We identiϐied
10 samples and found that all these samples were gener‑
ated with the topology containing a degree 6 node. After
these samples were removed, we trained the neural net‑

©International Telecommunication Union, 2023

ITU Journal on Future and Evolving Technologies, Volume 4, Issue 3, September 2023

498

work and theMAPE dropped to 6‑7% over the entire vali‑
dation set, using only 90 samples. We thus demonstrated
how we use our understanding of the model to optimize
our dataset.
The pseudo‑codes describing how the network topolo‑
gies, the trafϐic matrices and the ϐinal dataset have been
generated are given in Algorithm 3, Algorithm 4 and Al‑
gorithm 5, respectively.

Algorithm 3: generate_topology()
Input: num_nodes, prob, policies,

buffer_sizes,wfq_weights, drr_weights
𝐺 = 𝒢𝑛,𝑝(num_ nodes, prob) [25]
for node in G do

node_schedulingPolicy = random(policies)
node_bufferSizes = random(buffer_sizes)
if node_schedulingPolicy == WFQ then

wfqWeight = random(wfq_weights)
if node_schedulingPolicy == DRR then

drrWeights = random(drr_weights)

Algorithm 4: generate_trafϐic()
Input: G, 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦, time_dists,td_weights,

size_dists, sd_weights, tos_list, tos_weights
𝑡𝑟𝑎𝑓𝑓𝑖𝑐 = matrix of zeros of size G
foreach (SRC,DST) pair ∈ 𝐺 do

𝑏𝑎𝑣𝑔 = random([𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦/2, 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦])
𝑡𝑑 = random(time dists, td weights)
𝑠𝑑 = random(size dists, sd weights)
𝑡𝑜𝑠 = random(tos list, tos weights)
𝑡𝑟𝑎𝑓𝑓𝑖𝑐[SRC,DST] = 𝑏𝑎𝑣𝑔

Return: 𝑡𝑟𝑎𝑓𝑓𝑖𝑐

Algorithm 5: generate_dataset()
Input: num_nodes, prob, capacity_set, policies,

buffer_sizes, wfq_weights, drr_weights,
time_dists, td_weights, size_dists,
sd_weights, tos_list, tos_weights,
intensity_set

for 𝑖 ∈ {1,2,…,10} do
for 𝑗 ∈ {1,2,…,10} do

G = generate topology()
𝑝𝑎𝑡ℎ𝑠 = shortest paths routing
𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 = random(intensity_set)
𝑡𝑟𝑎𝑓𝑓_𝑎𝑟 = generate_trafϐic()
set_link_bandwidth()

generate_dataset_simulator() #use omnet++
clean_dataset() # as described in Section 5.3

6. NUMERICAL RESULTS

This section presents the results obtained by ourmethod‑
ology, compares the best solutions (in the challenge rank‑
ing) to our proposed solution, and highlights our ϐindings.

The experiments have been done on a machine running
a Windows system equipped with an AMD processor of
32‑core, 2.95 Ghz with 128 GB of RAM and an NVIDIA
GeForce RTX 2080 Ti. The code of our solution is avail‑
able on GitHub1.

6.1 Results analysis
The improvements obtained with our pipeline at each
stage are shown in Table 4. We present the MAPE ob‑
tained on the entire validation set referred to as (”ALL”),
as well as the MAPE obtained in each subset of the vali‑
dation set grouped according to the number of nodes in
their network topology (”50 nodes”, ”75 nodes”, etc.). As
described in Section 5, we can see that we moved from a
MAPEof about 28%toaround6%for the entire validation
set. We identiϐied somedatasets (e.g., thosewith 170, 200
and 240 nodes) as difϐicult, with a higher MAPE at each
stage. We note that the dataset with the lowest MAPE at
each stage (260 nodes) has a low number of samples (9)
compared to 14 in other sets. As a baseline, the competi‑
tion organizers stated that with thousands of samples of
networks up to 10 nodes, they were able to get a MAPE
of about 5% on the validation set. With our 90 generated
samples, we reached a MAPE of around 6%. This demon‑
strates that it is possible to efϐiciently train a neural net‑
work with smaller datasets if the data is of good quality.

6.2 Comparison against other solutions
When comparing our solution to other ϐinalists at the end
of the challenge, a common characteristic seen in all top
solutions was the detailed analysis of the validation set
to extra insights and generate the initial dataset. Table 5
presents the results obtainedby the top three teamsof the
competition on the test set (our solution ranked ϐirst).

Team Ghost Ducks2: The second‑ranked team generated
around270Ksamples and trained twoOraclemodelswith
about 85K samples from the generated samples. They
extracted a vector representation (embedding) for each
sample in the validation and training samples. This vec‑
tor representation contains the path state, link state and
length of each ϐlow path. They then clustered the valida‑
tion set and assigned each training sample to a cluster. Fi‑
nally, they took the top k samples from each cluster to ar‑
rive at a set of 100 samples to get their ϐinal traning set.
They obtained a MAPE of 8.554 % on the test set.

Team Net: The third‑ranked team proposed a beta
distribution‑based leave‑one‑out sample ranking strat‑
egy. They built their initial dataset by generating differ‑
ent distributions from the beta distribution. They then
assign each sample a score indicating the quality of the
sample by examining the impact of removing that sample
1https://github.com/ITU‑AI‑ML‑in‑5G‑Challenge/ITU‑ML5G‑PS‑002‑
SNOWYOWL‑GNNetworking‑Challenge2022

2https://github.com/ITU‑AI‑ML‑in‑5G‑Challenge/ITU‑ML5G‑PS‑002‑
GhostDucks‑GNNetworking‑Challenge2022

©International Telecommunication Union, 2023

Ziazet et al.: Designing graph neural networks training data with limited samples and small network sizes

499

Table 4 – MAPE (%) obtained on validation sets

Updates 50 75 100 130 170 200 240 260 280 300 ALL
nodes nodes nodes nodes nodes nodes nodes nodes nodes nodes

Section 5.1 27.89 26.66 29.31 32.83 34.43 34.06 31.78 17.32 28.29 25.23 28.26
Section 5.2 7.66 8.19 9.01 10.93 10.94 12.34 10.91 3.85 7.45 6.97 8.57
Section 5.3 6.00 6.22 6.81 7.97 8.47 8.48 8.02 3.16 6.10 5.40 6.50

Table 5 – Top solutions comparison on the test set

Snowyowl Ghost Ducks Net
samples 90 100 100
MAPE (%) 8.55334 8.55446 9.97016

from the set. They then select the top 100 samples to use
as their training set. They obtained a MAPE of 9.79 % on
the test set.
The uniqueness of our solution lies in the fact that we did
not generate thousands of samples before reducing to a
smaller set. Instead, we focused on understanding the
data and the model to refactor and clean the 100 gener‑
ated initial samples. Weachievedourbest resultwithonly
90 samples, further lending credence to the fact that data
quality is more important than volume.

6.3 Our ϐindings
This challenge was an excellent opportunity to explore
data‑centric AI in the networking domain to formulate a
methodology to generate high‑quality datasets. From our
experiments, we can formulate the following points we
believe can help the community create better datasets.
1. As shown when we derived link congestion level

and capacity, examining derived statistics for clues
to guide setting the bounds on input feature space
(here, limiting the range of ’link capacity’) helps in
elaborating a training set that improves the model’s
generalization.

2. Attempting to improve model generalization through
maximizing the range of possible values for all in‑
put features in the training set does not guarantee
performance improvement even when our training
size is drastically reduced, as we’ve shown when we
achieved our best results by limiting the variety of
topologies and trafϐic matrices in our ϐinal training
set.

3. The ϐinal results justify turning towards data to
improve model performance, as we were able to
show that the model can retain good performance
even when training on a drastically reduced train‑
ing set(amount of samples reduced to less than 10%
of original conϐiguration), as shown by our result
of 8.55% MAPE on the ϐinal test set, compared to
about 5% according to the organizers when training
on thousands of samples. This result was achieved

7. CONCLUSION
This work presents a method to identify and generate
relevant training samples, in order to reduce the cost
of generating datasets in networking. We proposed
a three‑step approach, consisting of identifying topol‑
ogy size‑independent characteristics to reproduce in our
proposed dataset, deriving appropriate topology size‑
dependent characteristics, and identifying deleterious
samples for removal, resulting in a high‑quality dataset
that, even with only 90 samples of 10‑node networks, we
can train a model that scales effectively to samples of large
networks with 50 to 300 nodes.
Future directions include investigating the quality of the
samples through angles not explored in our work. The
”cleaning” step used here operates along the dataset
topology, seeking to identify samples with detrimental
properties in the structure of the nodes and links. We
must pay more attention to the trafϐic ϐlows, and which
properties in the ϐlows that form the samples may im‑
prove model performance. We require a more robust met‑
ric for data quality evaluation to accurately quantify the
contribution of each sample.

ACKNOWLEDGEMENTS
This work was supported by two joint Mitacs‑Ciena in‑
ternships (Large‑scale optimization for optical and ϐiber
networks & Self‑Organized Fabric ‑ SOF projects).

REFERENCES
[1] K. Rusek, J. Suárez‑Varela, P. Almasan, P. Barlet‑

Ros, and A. Cabellos‑Aparicio. “RouteNet: Leverag‑
ing Graph Neural Networks for network modeling
and optimization in SDN”. In: IEEE Journal on Se‑
lected Areas in Communications (JSAC) 38.10 (Oct.
2020), pp. 2260–2270.

[2] Eliza Strickland. “Andrew Ng, AI Minimalist: The
Machine‑Learning Pioneer Says Small is the New
Big”. In: IEEE Spectrum 59.4 (2022), pp. 22–50. DOI:
10.1109/MSPEC.2022.9754503.

[3] Andrew Ng, and LandingAI team Data‑Centric AI.
https://landing.ai/data‑centric‑ai/.

without changing the model’s architecture, hyper‑
parameters or training procedure.

[4] AndrewNg, Dillon Laird, and LynnHe Data‑Centric
AI Competition 2021. https://https‑deeplearning‑
ai.github.io/data‑centric‑comp/.

©International Telecommunication Union, 2023

ITU Journal on Future and Evolving Technologies, Volume 4, Issue 3, September 2023

500

https://doi.org/10.1109/MSPEC.2022.9754503

[5] BNN‑UPC Graph Neural Net‑
working challenge 2022.
https://bnn.upc.edu/challenge/gnnet2022/.

[6] Miquel Ferriol‑Galmés, Jordi Paillisse, José Suárez‑
Varela, Krzysztof Rusek, Shihan Xiao, Xiang
Shi, Xiangle Cheng, Pere Barlet‑Ros, and Albert
Cabellos‑Aparicio. “RouteNet‑Fermi: Network
Modeling With Graph Neural Networks”. In:
IEEE/ACM Transactions on Networking (2023),
pp. 1–.

[7] Lester James Miranda. “Towards data‑centric ma‑
chine learning: a short review”. In: github (2021).

[8] DataNet API Documentation. https://github.
com/BNN‑UPC/datanetAPI/tree/challenge2021.

[9] BNN‑UPC Constraints for the training dataset.
https://github.com/BNN‑UPC/GNNetworkingC
hallenge/blob/2022_DataCentricAI/training_da
taset_constraints.md.

[10] Steven Euijong Whang, Yuji Roh, Hwanjun Song,
and Jae‑Gil Lee. “Data collection and quality chal‑
lenges in deep learning: A data‑centric ai perspec‑
tive”. In: The VLDB Journal (2023), pp. 1–23.

[11] Shengyu Zhao, Zhijian Liu, Ji Lin, Jun‑Yan Zhu, and
Song Han. “Differentiable augmentation for data‑
efϐicient gan training”. In: Advances in Neural In‑
formation Processing Systems 33 (2020), pp. 7559–
7570.

[12] Tong Zhao, Yozen Liu, Leonardo Neves, Oliver
Woodford, Meng Jiang, and Neil Shah. “Data aug‑
mentation for graph neural networks”. In: Proceed‑
ings of the aaai conference on artiϔicial intelligence.
Vol. 35. 12. 2021, pp. 11015–11023.

[13] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose
Caballero, Andrew Cunningham, Alejandro Acosta,
Andrew Aitken, Alykhan Tejani, Johannes Totz,
Zehan Wang, et al. “Photo‑realistic single image
super‑resolution using a generative adversarial
network”. In: Proceedings of the IEEE conference
on computer vision and pattern recognition. 2017,
pp. 4681–4690.

[14] Wenzheng Feng, Jie Zhang, Yuxiao Dong, Yu Han,
Huanbo Luan, Qian Xu, Qiang Yang, Evgeny Khar‑
lamov, and Jie Tang. “Graph random neural net‑
works for semi‑supervised learning on graphs”. In:
Advances in neural information processing systems
33 (2020), pp. 22092–22103.

[15] Ihab F Ilyas and Theodoros Rekatsinas. “Machine
Learning and Data Cleaning: Which Serves the
Other?” In: ACM Journal of Data and Information
Quality (JDIQ) 14.3 (2022), pp. 1–11.

[16] Mingchen Li, Mahdi Soltanolkotabi, and Samet Oy‑
mak. “Gradient descentwith early stopping is prov‑
ably robust to label noise for overparameterized
neural networks”. In: International conference on
artiϔicial intelligence and statistics. PMLR. 2020,
pp. 4313–4324.

[17] Ms Aayushi Bansal, Dr Rewa Sharma, and Dr
Mamta Kathuria. “A systematic review on data
scarcity problem in deep learning: solution and
applications”. In: ACM Computing Surveys (CSUR)
54.10s (2022), pp. 1–29.

[18] Bjorn Barz and Joachim Denzler. “Deep learning on
small datasets without pre‑training using cosine
loss”. In: Proceedings of the IEEE/CVF Winter Con‑
ference on Applications of Computer Vision. 2020,
pp. 1371–1380.

[19] Lorenzo Brigato and Luca Iocchi. “A close look at
deep learning with small data”. In: 2020 25th Inter‑
national Conference on Pattern Recognition (ICPR).
IEEE. 2021, pp. 2490–2497.

[20] Nargess Sadeghzadeh, Ahmad Afshar, and Moham‑
mad Bagher Menhaj. “An MLP neural network for
time delay prediction in networked control sys‑
tems”. In: 2008 Chinese Control andDecision Confer‑
ence. IEEE. 2008, pp. 5314–5318.

[21] MoweiWang, Yong Cui, XinWang, Shihan Xiao, and
Junchen Jiang. “Machine learning for networking:
Workϐlow, advances and opportunities”. In: Ieee
Network 32.2 (2017), pp. 92–99.

[22] Salem Belhaj and Moncef Tagina. “Modeling and
Prediction of the Internet End‑to‑end Delay using
Recurrent Neural Networks.” In: J. Networks 4.6
(2009), pp. 528–535.

[23] AysŞe Rumeysa Mohammed, Shady A Mohammed,
and Shervin Shirmohammadi. “Machine learning
and deep learning based trafϐic classiϐication and
prediction in software deϐined networking”. In:
IEEE International Symposium on Measurements &
Networking (M&N). 2019, pp. 1–6.

[24] Junior Momo Ziazet, Charles Boudreau, Brigitte
Jaumard, and Huy Duong. “Addressing RouteNet
scalability through input and output design”. In:
ITU Journal on Future and Evolving Technologies
(2022).

[25] VladimirBatagelj andUlrikBrandes. “Efϐicient gen‑
eration of large random networks”. In: Physical Re‑
view E 71.3 (2005), p. 036113.

©International Telecommunication Union, 2023

Ziazet et al.: Designing graph neural networks training data with limited samples and small network sizes

501

AUTHORS
Junior Momo Ziazet received
his M.Sc. degree in telecom‑
munications engineering from
the National Polytechnic School
of the University of Douala,
Cameroon in 2017. In 2020,
he received another M.Sc. in
industrial mathematics from
the African Institute for Mathe‑
matical Sciences. He is currently

pursuing a Ph.D. in computer science at Concordia Uni‑
versity, Canada. He was awarded the best paper award
at the IEEE International Symposium on Measurements
& Networking in 2022. His main research interests
focus on large‑scale optimization and the application
of machine learning and deep learning approaches to
communications and network systems.

Charles Boudreau received a B.
Sc. and M. Sc. in computer sci‑
ence from Concordia University,
Canada in 2018 and 2021, re‑
spectively, where he is currently
pursuing a PhD. His research
interests include graph neural
networks, and deep learning ap‑
plications towards optimization
of service function chains in
cloud networks.

Oscar Delgado received an
M.A.Sc. degree in electrical
engineering from Concor‑
dia University, Montreal, QC,
Canada, in 2010, and a Ph.D.
degree in electrical engineering
from McGill University, Mon‑
treal, QC, Canada, in 2016. He
is currently a research associate
with the Department of Systems
Engineering, EƵ cole de Technolo‑

gie Supérieure, Montreal, QC, Canada, where he is the
research coordinator of the Energy Efϐiciency project in
partnership with Ericsson GAIA. His current research
interests include AI applications for 5G wireless mobile
communication technologies, including, network virtual‑
ization, and green wireless systems. His focus is on the
analysis and design of trafϐic management techniques,
service assurance, resource allocation strategies, and
energy efϐiciency algorithms.

Brigitte Jaumard is a professor
in the Computer Science and
Software Engineering (CSE)
Department at Concordia Uni‑
versity. Her research focuses
on mathematical modeling and
algorithm design (large‑scale
optimization and machine
learning) for problems arising

in communication, transportation and logistics networks.
She is also a senior advisor for the Montreal Ericsson
GAIA (Global Artiϐicial Intelligence Accelerator) research
center and the chief scientist of CRIM. Brigitte Jaumard
was ranked among the top 2% of scientists in her ϐield
of research according to a 2021 study based on research
citations. She was awarded several research chairs
(Canada Research Chair and Concordia Research Chair,
both Tier I during the years 2000‑2019). B. Jaumard has
published over 300 papers in international journals in
operations research and in telecommunications.

©International Telecommunication Union, 2023

ITU Journal on Future and Evolving Technologies, Volume 4, Issue 3, September 2023

502

	DESIGNING GRAPH NEURAL NETWORKS TRAINING DATA WITH LIMITED SAMPLES ANDSMALL NETWORK SIZES
	1. INTRODUCTION
	2. PROBLEM DESCRIPTION
	3. LITERATURE REVIEW
	4. NETWORK MODELING
	4.1 Background
	4.2 RouteNet‑Fermi

	5. PROPOSED SOLUTION
	5.1 Initial dataset generation
	5.2 Refactoring the dataset
	5.2.1 Link capacity based on routing
	5.2.2 Network topology choice
	5.2.3 Flows generation

	5.3 Dataset cleaning
	5.3.1 Hypothesis 1: Noise based on data distribution
	5.3.2 Hypothesis 2: Noise based on path length

	6. NUMERICAL RESULTS
	6.1 Results analysis
	6.2 Comparison against other solutions
	6.3 Our 􀏐indings

	7. CONCLUSION
	ACKNOWLEDGEMENTS
	REFERENCES
	AUTHORS

