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Abstract – Machine learning is a data‑driven domain, which means a learning model’s performance depends on the avail‑
ability of large volumes of data to train it. However, by improving data quality, we can train effective machine learning
models with little data. This paper demonstrates this possibility by proposing amethodology to generate high‑quality data in
the networking domain. We designed a dataset to train a given Graph Neural Network (GNN) that not only contains a small
number of samples, but whose samples also feature network graphs of a reduced size (10‑node networks). Our evaluations
indicate that the dataset generated by the proposed pipeline can train a GNNmodel that scales well to larger networks of 50
to 300 nodes. The trained model compares favorably to the baseline, achieving a mean absolute percentage error of 5‑6%,
while being signiϔicantly smaller at 90 samples total (vs. thousands of samples for the baseline).
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2. PROBLEM DESCRIPTION
This work covers our submission to the 2022 edition of 
the Graph Neural Networking Challenge. In the com‑ 
petition, we are given a state‑of‑the‑art GNN model for 
network simulation (RouteNet‑Fermi, [6]), and a packet‑ 
level simulator based on OMNET++ to generate datasets. 
The task consists of using data‑centric AI principles [7] to 
produce a training dataset for the model. As data‑centric 
AI emphasizes the quality of the data given to a model, we 
must improve the given model’s performance without al‑ 
tering its architecture or hyper‑parameters.

1. INTRODUCTION
Recently, the data networking community has developed 
robust Graph Neural Networks (GNNs) able to accurately 
estimate complex network parameters with good accu‑ 
racy [1]. These models were trained on large datasets, 
however, and in many networking scenarios data is not 
readily available or is prohibitively expensive to acquire. 
Therefore, being able to effectively train deep neural net‑ 
works using smaller datasets becomes crucial, urging a 
shift from model‑centric AI to data‑centric AI. 
Data‑centric AI is an emerging ϐield of study that aims to 
elaborate techniques for dataset optimization [2]. It pro‑ 
poses directing more focus towards developing system‑ 
atic engineering practices to improve data quality, and 
away from architecture search and hyperparameter tun‑ 
ing. Hence, data‑centric AI can reduce development time 
while improving model accuracy, promoting collabora‑ 
tion, and driving revenue [3].
To the best of our knowledge, in the networking domain, 
there is no public research work on how to produce good 
quality small datasets for training machine learning mod‑ 
els. Inspired by the ϐirst ”Data‑Centric AI” competition 
that was organized by Andrew Ng et al. [4], the third 
edition of the ”Graph Neural Network Challenge” [5] pro‑ 
poses to explore a data‑centric AI approach for building 
accurate network digital twins. This paper summarizes 
our winning submission to the ”Graph Neural Network 
Challenge 2022”. It describes our methodology, presents 
the numerical results, and compares our solution with the 
other top solutions submitted to the competition.
The paper is structured as follows: Section 2 provides the 
problem description, followed by the state‑of‑the‑art re‑ 
view in Section 3. Section 4 details the given GNN model, 
followed by Section 5 that describes our proposed solu‑ 
tion. Section 6 explains our experiments and numerical 
results, and finally, we provide a summary of our 
conclusions in Section 7.

Fig. 1 – Components of a sample in the dataset

As described in [8], and represented in Fig. 1, one sample 
in the dataset consists of a tuple containing the following: 
a topology object, which holds data on the physical com‑ 
ponents (nodes and links) of the network, a routing ma‑ 
trix, which holds the unique path linking each node pair in 
the topology, and a trafϐic matrix, which contains informa‑ 
tion on the ϐlows between each pair of nodes. The model 
takes these components as input features and output la‑ 
bels for the sample corresponding to the per‑ϐlow delay. 
All samples must be generated with the provided network 
simulator, and the provided neural network model. All 
the parameters for the learning process, i.e., model ar‑
chitecture (RouteNet-Fermi),  learning rate (0.005), optimizer  
(Adam),  loss  function (mean absolute percentage error), 
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number of epoch (20 maximum), seed (69420), and 
the others training hyperparameters are ϐixed and 
given by the challenge organizers. This means that par‑ 
ticipants must not modify the learning parameters, and 
must concentrate solely on generating the dataset.

Data generated for the competition must meet certain re‑ 
quirements, which are summarized as follows. Created 
datasets are restricted to a small amount of samples (up 
to 100 samples) in order to emphasize the quality of the 
samples retained. Furthermore, the samples must consist 
of topologies much smaller (up to 10 nodes per topology) 
than the ones in the test set, to simulate that it is impracti‑ 
cal to have production‑scale training data, as depicted in 
Fig. 2. All links must be bidirectional, with a link band‑ 
width ranging from 10 000 to 400 000 bits and divisible 
by 1000. Each node may be assigned one of four schedul‑ 
ing policies, and its buffer size must lie between 8000 
and 64000 bits. Each pair of source‑destination nodes 
can have only one routing path, although it may differ de‑ 
pending on the direction. We generate trafϐic ϐlows be‑ 
tween node pairs, with an average bandwidth between 10 
and 10000 bps, following a time distribution, of which we 
have three choices, and a size distribution, where we can 
assign a probability for any size from 256 to 2000 bits, as 
long as all probabilities sum to 1. Each node pair is asso‑ 
ciated with a single trafϐic ϐlow, although node pairs A‑B 
and B‑A can have different ϐlow values. Each trafϐic ϐlow 
may also be assigned one of three possible types of ser‑ 
vice, which factors into interactions with node scheduling 
policies. A comprehensive list of all the constraints that 
the training dataset must satisfy can be found in [9].

Fig. 2 – Network size: Train with a small network (<10 nodes), 
Validate/Test with a large network (<300 nodes)

In summary, participants had to generate a training 
dataset satisfying the aforementioned requirements, and 
then train the given neural network with this data (where 
all training hyperparameters are ϐixed by the challenge 
organizers). In order to assess the performance of the 
model after training, which indicates the quality of the 
generated training data, a dataset containing larger net‑ 
work samples, that we will refer to as the validation 
dataset in this paper was provided by the competition or‑ 
ganizers. At the end of the competition, both the gener- 
ated dataset (as well as the script to generate it) and the

trained model weights must be sent to the competition 
organizer. They will test the trained model on another 
dataset, known as the ”test” dataset, which contains sam‑ 
ples with distributions similar to those of the validation 
dataset (participants do not have direct access to the test 
dataset). The team that achieves the lowest MAPE on the 
test dataset will be considered the winner, provided the 
organizers are able to reproduce the solution.

3. LITERATURE REVIEW
The problem statement calls for us to synthesize a small 
dataset for a model that will allow it to generalize to sam‑ 
ples on a scale it has not encountered during training. In 
this section, we review our options for creating datasets, 
measures available to ensure generalization of the model 
to domain shift, and whether there are any special consid‑ 
erations when working with very small datasets.

Data generation: Data generation provides an alterna‑ 
tive to acquiring real data. This can be done through ei‑ 
ther crowdsourcing platforms or through simulators [10]. 
In our case, we must generate our samples through the 
provided OMNET++ simulator, where generating a large 
amount of samples is prohibitively costly. Another option 
for generating data is a generative model, with Generative 
Adversarial Networks (GANs) in particular being a popu‑ 
lar choice. While the constraints prevent us from directly 
creating new samples using a generative model, we can 
use one to generate the inputs (topology, routings, trafϐic 
matrix) to feed to the simulator.
By inferring the generation parameters of samples in the 
distribution of data we want to generate from, such as 
the samples in the validation set, we can train a model 
to generate samples consisting of generator parameters 
presumably from the same distribution we will be val‑ 
idating and testing on, which we can then give to the 
simulator to generate samples. There are some issues 
with that approach, however. First, generative models 
require a lot of data for training, without which the dis‑ 
criminator memorizes the training set and fails to gener‑ 
alize, causing the model to fall apart, as [11] shows when 
a GAN is trained on a small fraction of the CIFAR‑10 im‑ 
age dataset (10‑20% of 60k images). We can increase 
the amount of data we have through data augmentation, 
which is also available for graphs, although the usual aug‑ 
mentation techniques used on images and sequences can‑ 
not be applied, as graph structure is not encoded by posi‑ 
tion [12]. Second, generative models are trained by recon‑ 
structing their training examples, which in our case fea‑ 
ture topologies much larger than what we can have in our 
training set. The output shape of a generative model does 
not have to match the input, as shown by the image degra‑ 
dation and super‑resolution tasks [13], but these need 
ground truth labels, and if we wanted to generate smaller 
graphs, we would need to train the generative model with
a ”ground-truth”  small  graph  corresponding  to   each 
large graph training example.
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Graph model generalization: We next explore what 
means are available to improve the generalization capa‑ 
bilities of a GNN system. As the competition rules prevent 
us from altering the model or training procedure, we will 
focus on means related to data.
Increasing generalizability of GNN models through ma‑ 
nipulating the input data generally means performing 
some form of data augmentation. Data augmentation on 
graph data is more complex than on image data due to 
the non‑Euclidean nature of the space. Augmentation of 
graph data can involve the graph’s structure, as in [12], 
which uses an edge predictor to determine edges to add 
or remove in order to produce new examples. Otherwise, 
it can act on the feature matrix, by, for example, mask‑ 
ing or perturbing some features before passing the matrix 
through a node propagation model to produce augmented 
samples, as in [14]. Both of these approaches can be com‑ 
bined, as well. While augmentation is a viable strategy 
when the problem has no hard upper limit to the number 
of samples to use for training, in our case we need to im‑ 
prove the quality of the samples passed to the model, as 
our number of samples is small.
Data cleaning addresses the quality of the samples given 
to a model for training. The most common approach to 
this is through removing samples judged deleterious to 
performance [15]. This ”ϐiltering” consists of removing 
”out‑of‑distribution” samples from the training, such that 
the training and test dataset distributions match, but in 
our case our training and test sets have topologies of dif‑ 
ferent sizes, which implies we have to work with the fact 
that they come from different distributions. Otherwise, 
early stopping [16] has been shown to help models gen‑ 
eralize better by stopping training before the model 
starts ϐitting the noisy data points. As training length 
is one of the few parameters of the training procedure 
we have control over in the context of the competition, 
we can keep this in mind for our solution.

Training on small datasets: There is steadily more at‑ 
tention being paid to training deep learning models on 
limited data, a problem encountered in certain ϐields 
where data acquisition can be difϐicult, such as medi‑ 
cal imaging. Solutions put forth to solve this issue stem 
mainly from transfer learning, where a model is trained 
with data for a different task in the hope that it will aid 
with the main task, and data augmentation, discussed 
above [17]. Furthermore, altering the model design can 
also help with learning with scarce data, as demonstrated 
by [18] who improve the performance of a CNN model 
on image recognition tasks by changing the loss func‑ 
tion from the commonly‑used cross‑entropy loss to co‑ 
sine loss. Smaller models can also outperform the state‑ 
of‑the‑art when both are subjected to small training sets, 
as shown by [19]. Unfortunately, all of the methods sur‑ 
veyed to deal with limited data entail either changes to
model architecture and training procedures,  or artificially

Fig. 3 – Schematic representation of Routenet‑Fermi’s message passing 
(adapted from [6])

increasing the number of samples within a small dataset, 
all of which violate the constraints we have to operate un‑ 
der in the context of the GNN competition.
To our knowledge, there is no research on optimizing the 
learning of a model with a dataset whose total size is hard‑ 
capped at a certain maximum number of samples. Ref‑ 
erences that deal with a limited number of samples usu‑ 
ally attempt to overcome this by generating more samples 
through augmentation. References consulted usually deal 
with classiϐication problems and deϐine a ”small” dataset 
in terms of the number of examples per class. As the refer‑ 
ences consulted deal overwhelmingly with classiϐication 
problems, this leaves regression problems in GNNs as an 
under‑served area of research.

4. NETWORK MODELING

4.1 Background
Network modeling is an important component in the de‑ 
sign of networks [6]. Two of the most often used mod‑ 
eling methods are queuing theory and packet‑level sim‑ 
ulators, which both feature their own limitations. Queu‑ 
ing theory makes strong assumptions about how packets 
arrive, which may not reϐlect reality. Packet‑level simula‑ 
tors carry a very high computational cost, making them 
slow and impractical to use in realistic scenarios with 
many nodes. Modern network modeling techniques can 
be leveraged to create a ”Digital Twin” of the network. A 
digital twin is a virtual copy of a real‑world object (in this 
case, a network) that can accurately predict how the ob‑ 
ject would react to a host of simulated situations. Neural 
networks can be used to create these digital twins [20, 21, 
22, 23], and several different architectures can be used 
for this purpose. The Multilayer Perceptron (MLP), a type 
of neural network consisting of several fully‑connected 
layers of neurons, can accurately predict trafϐic gener‑ 
ated from a Poisson distribution, but otherwise has trou‑ 
ble anticipating yet‑unseen routings [20, 21]. The Re‑ 
current Neural Network (RNN), a model that specializes 
in sequential data, better supports different trafϐic mod‑ 
els than MLP, but still struggles to cope with routing and 
topology changes [22, 23]. Graph neural network models
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Fig. 4 – Proposed solution overview: A three‑step process

directly process graph data as input, but nevertheless 
still ϐind predicting novel routing conϐigurations difϐicult, 
as these conϐigurations are not represented in a simple 
reproduction of the network topology as graph data.

4.2 RouteNet‑Fermi
The RouteNet‑Fermi model [6] is a state‑of‑the‑art graph 
neural network‑based model for network simulation. 
The model goes beyond simply reproducing the network 
topology as graph data, instead creating a heterogeneous 
graph that models the interactions between the trafϐic 
ϐlows, queues and links of a network. A ϐlow’s state de‑ 
pends on the states of links and queues it encounters, a 
queue’s state is inϐluenced by the states of ϐlows that pass 
through it, and a link’s state is inϐluenced by the state of 
queues that may lead network trafϐic into it. These cir‑ 
cular dependencies are addressed through a three‑part, 
custom message‑passing scheme, shown in Fig. 3.
After the states of each of the ϐlows, queues and links 
are initialized with the initial features, message‑passing 
occurs iteratively, with the queue states being updated 
ϐirst, using aggregated states of the ϐlows encountered by 
each queue, followed by the link states, using the states 
of queues that feed into the links, and ϐlow states, using 
information aggregated from the states of all links and 
queues that compose a ϐlow. This process repeats for 𝑇 it‑ 
erations, where 𝑇 is a user‑deϐined parameter before the 
ϐlow states are ϐinally used to compute the performance 
metric estimations. Furthermore, in a manner similar to 
the model in [24], RouteNet‑Fermi also features design 
choices such as replacing the numerical ”link capacity” 
value with a relative value representing the trafϐic load 
of a link based on its capacity, and the delay is inferred 
from the queue occupancy rather than predicted directly,

which helps retain accuracy even when testing on net‑ 
works much larger than those experienced during training.

5. PROPOSED SOLUTION
This section describes the process we employed to gen‑ 
erate our dataset. The proposed procedure implements a 
customized three‑step solution, shown in Fig. 4. The re‑ 
strictions on sample topology size means that the train‑ 
ing and target domains will have signiϐicant differences, 
so this is partly a domain generalization problem. First, 
we generated an initial dataset where we match the input 
variables for the simulator that do not scale with topol‑ 
ogy with those of the given validation set, pushing the do‑ 
main of our generated set closer to the target. Then, we 
refactored the generated dataset limiting the bounds of 
some input parameters to constrain the training domain 
so it does not drift too far from the target. And ϐinally, we 
designed a cleaning framework to keep only high‑quality 
data, discarding samples that hinder performance. These 
steps are described in detail in the following subsections.

5.1 Initial dataset generation
We started by conducting a detailed analysis of the valida‑ 
tion set to allow us to form hypotheses about how speciϐic 
parameters of the validation sets were generated. For ex‑ 
ample, we wanted to hypothesize about the assignment 
of trafϐic and service type to source and destination node 
pairs, the average path length, the link capacity values and 
how these capacities are assigned to the links, the node 
buffer sizes and how they are assigned, the scheduling 
policies, etc. Some of the parameters that we observed 
in the validation set are shown in tables 1 and 2. In these 
tables,  the  ”values”  column  shows   the  set   of  possible 
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Table 1 – Hypothesis made on graph nodes and edges after validation set analysis

Parameters Values Probabilities
Policies [FIFO, SP, WFQ, DRR] [0.25, 0.25, 0.25, 0.25]

Buffer Sizes [8000, 16000, 32000, 64000] [0.25, 0.25, 0.25, 0.25]
WFQ weights [”70,20,10”,”33.3, 33.3, 33.4”,”60,30,10”,”80,10,10”,”65,25,10”] [0.2, 0.2, 0.2, 0.2, 0.2]
DRR weights [”60,30,10”,”70,25,5”,”33.3,33.3,33.4”,”50,40,10”,”90,5,5”] [0.2, 0.2, 0.2, 0.2, 0.2]
Link capacity [10000, 25000, 40000, 100000, 250000, 400000, 1000000] based on number of nodes

Table 2 – Hypothesis made on ϐlows after validation set analysis

Parameters Values Probabilities
Trafϐic ϐlow Uniform(0,1)×I, I∈[1000,2000,3000,4000] [0.25, 0.25, 0.25, 0.25]

”0,500,0.22,750,0.05,1000,0.06,1250,0.62,1500,0.05” 0.2
”0,500,0.08,750,0.16,1000,0.35,1250,0.21,1500,0.2” 0.2

Packet Size Distribution ”0,500,0.53,750,0.16,1000,0.07,1250,0.1,1500,0.14” 0.2
”0,500,0.1,750,0.16,1000,0.036,1250,0.24,1500,0.14” 0.2
”0,500,0.05,750,0.28,1000,0.25,1250,0.27,1500,0.15” 0.2

Time Distribution ”Poisson”,”CBR”,”ON‑OFF (5,5)” [1/3, 1/3, 1/3]
Type of Service 0,1,2 [0.1, 0.3, 0.6]

values  a parameter can take. The ”probabilities” column con‑ 
tains the probability of selecting a given value. For ex‑ 
ample, the parameter ”scheduling policy”, abbreviated to 
”policies”, can be selected from the set of values [FIFO, SP, 
WFQ, DRR], each policy can be selected with equal prob‑ 
ability, represented by [0.25, 0.25, 0.25, 0.25]. The other 
parameters in the tables can be interpreted in the same 
way, with values selected at random based on probabilities.
From the assumptions made based on tables 1 and 2, we 
can see that apart from link capacity whose values 
change as the graph size increases, the other 
parameters seem to be chosen randomly with 
probabilities deϐined as in the tables. We made the 
assumption that we should use these values as input 
parameters for the simulator in order to generate our 
training set as well. So we generated a training set 
by choosing the different parameters as deϐined in tables 
1 and 2. After training the model with the datasets 
generated according to the process deϐined above, the 
best MAPE we could obtain on the validation set was 
around 27‑29%.

5.2 Refactoring the dataset

We were unable to get satisfactory performance when 
trying to match the validation set’s parameters with net‑ 
works that had no more than 10 nodes. We concluded 
that our dataset was insufϐiciently diverse, i.e., that the 
parameters were not sufϐiciently variable to account for 
all potential use cases encountered during testing. We 
thus looked at other characteristics that could have an im‑ 
pact on the parameters deϐined in Section 5.1, such as de‑ 
lay ranges, queue utilisation, link utilisation, and average 
port occupancy.

5.2.1 Link capacity based on routing
Our exploration of the validation set showed that the av‑
erage link bandwidth in a given topology generally in‑
creased proportionally with the number of nodes. We as‑
sume this is done to accommodate the increasing num‑
ber of ϐlows in larger topologies, as the validation follows
the same rules as the training set, in that each source‑
destination pair of nodes has a single ϐlow assigned to it.
As we can only have one ϐlow per node pair in topologies
of our sample, andwith the restriction that the topologies
in the training set must not exceed 10 nodes, this implies
that the total number of ϐlows will always be much lower
than the total found in the validation set. The link uti‑
lization analysis we performed on the generated datasets
from Section 5.1 showed that our link utilizationwas very
low on average (about 40%). In order to adjust the link
utilization so that it covers a wide range, we set the link
capacity based on the routing, as this gives us greater ϐlex‑
ibility, as explained below. In this strategy, the routing
policy is known in advance and we set the capacity of the
links to be proportional to the trafϐic it encounters. We
can therefore set the capacity so thatweget adesired level
of link utilization. Equation (1) shows how we obtained
the link capacities.

capacityℓ =
∑

𝑓∈𝑁ℓ

𝑡𝑓

𝐿𝑈ℓ
, (1)

where 𝑡𝑓 is the trafϐic of the ϐlow 𝑓 , 𝑁𝑙 is the number
of ϐlows traversing link 𝑙, and 𝐿𝑈ℓ is the link utilization
of link 𝑙 which was chosen from a normal distribution of
mean 𝜇 and standard deviation 𝜎 = 𝜇

2 . We have chosen
the values of the mean 𝜇 such that the links experience
low, medium and high utilization levels, which is simi‑
lar to what we have observed in the validation set. Algo‑
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rithm 1 details the process for obtaining the link utiliza‑
tion 𝐿𝑈ℓ. Notice that the function ”random(.,.)” chooses
a value from vector ”mean” with probability ”weights”.
Choosing 𝐿𝑈ℓ this way adds variability to the dataset, so
each example yields a more meaningful contribution.

Algorithm 1: get_load()
mean = [0.2, 0.4, 0.6, 0.8]
weights = [0.3, 0.3, 0.3, 0.1]
while True do

𝜇 = random(mean, weights)
𝜎 = 𝜇/2
𝐿𝑈ℓ = 𝒩(𝜇, 𝜎)
if 0 ≤ 𝐿𝑈ℓ ≤ 1 then

break
Return: 𝐿𝑈ℓ

Using this approach, the link capacity values concen‑
trated around 10000, which is minuscule compared to
link capacities in the validation set. Looking at how the
RouteNet_Fermi model [6] estimates the delay of a ϐlow
as follows,

delay𝑓 = ∑
(𝑞,ℓ)∈𝑓

( GNN_𝑞𝑜ℓ
𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦ℓ

+ 𝜇_𝑓𝑝𝑠𝑓
𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦ℓ

) , (2)

we see that the delay is highly dependent on the link ca‑
pacity, as it is used to calculate the queuing and transmis‑
sion delay. Since the GNN readout output (GNN_𝑞𝑜ℓ) may
give similar values in the training and validation set, hav‑
ing a link capacity value in the training set that is very
different from those in the validation set is counterpro‑
ductive. To address this, instead of using the link capac‑
ity directly derived from (1) (hereinafter referred to as
’cap’), we set the link capacity to be the closest candi‑
date to ’cap’ from the set {10000, 25000, 40000, 100000,
250000, 400000}, which is a subset of the link capacity
in the validation set. Algorithm 2 details the process for
setting the link capacities in the network according to the
trafϐic information.

Algorithm 2: set_link_bandwidth()
Input: G, paths, trafϐic, capacity_set
link_bw = Array of 0
foreach pair (SRC, DST) ∈ 𝐺 do

path = paths(SRC,DST)
foreach e in path do

link_bw(e(SRC), e(DST)) += trafϐic(SRC,DST)
foreach e in G.edges do

𝑙𝑖𝑛𝑘_𝑙𝑜𝑎𝑑 = 𝑔𝑒𝑡_𝑙𝑜𝑎𝑑()
cap = link_bw (𝑒(SRC), 𝑒(DST)) / link_load
𝐼𝑑_𝑐𝑎𝑝 = argmin(|𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦_𝑠𝑒𝑡 − 𝑐𝑎𝑝|)
𝐺(𝑒[SRC], 𝑒[DST]) = 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦_𝑠𝑒𝑡[𝐼𝑑_𝑐𝑎𝑝]

Return: 𝐺

5.2.2 Network topology choice

To get the most ϐlows per sample, we decided to only
generate 10‑node graphs, the maximum permitted. We
found that having one unique network topology per sam‑
ple, so 100 different network topologies in total, was not
beneϐicial, as it could add too much noise to the dataset
(Achieved MAPE ≈ 16% on the validation set with 100
different network topologies) . Therefore, we carefully
designed and selected 10 network topologies to have two
important characteristics found in the validation set: the
presence of nodes of degree 1 and different node degree
conϐigurations, as shown in Fig. 5 and Table 3, to increase
the probability of having a different path length distribu‑
tion using the shortest path algorithm. Indeed, on a 10‑
node graph, the presence of higher‑degree nodes, e.g., 6,
limits thepath lengthusing the shortest‑path algorithm to
around 3. Since we wanted to have different path length
distributions using the shortest path algorithm, generat‑
ing graphs on the basis of node degree gave us greater
ϐlexibility. Each topology was used to generate 10 sam‑
ples where only the node and edge characteristics were
modiϐied. The node attributes were chosen as described
in Table 1 and the edge characteristics were chosen ac‑
cording to Section 5.2.1.

5.2.3 Flows generation

Based on our observations of the validation set, we iden‑
tiϐied four trafϐic ϐlow intensities: 1000, 2000, 3000, and
4000 bps, to use as a base. For each sample, we randomly
chose an intensity and the ϐlows in that sample were se‑
lected from the interval [intensity/2, intensity]. We also
found that deϐining only 10 distinct trafϐic matrices deliv‑
ers better performance than 100 different trafϐicmatrices
when working with 10 network topologies of 10 nodes
each. Thus, we deϐined 10 different trafϐic matrices and
used these same trafϐic matrices for each of the different
network topologies. In addition, updating the probability
distribution values of the ”packet size distribution” and
”time distribution” parameters we deϐined in Section 5.1
from [0. 2, 0.2, 0.2, 0.2, 0.2] to [0.1, 0.2, 0.3, 0.3, 0.1] and
from [1/3, 1/3, 1/3] to [0.8, 0.1, 0.1] respectively, resulted
in ϐlows that produced better results. These new values
were found after several search cycles of our algorithm,
as shown in Fig. 4. We observe improvement when we
generate more ϐlows with a Poisson distribution (proba‑
bility = 0.8) when we have few samples. In order to eas‑
ily visualize the similarities between the training and the
validation dataset in terms of average ϐlow value we plot
Fig. 6, in which we can see that after all the parameter
tuning used to generate the training dataset, both violin
plots look alike, demonstrating the similarity between the
training and validation sets in this particular aspect.
Training the model with the dataset generated after the
different changes described in Sections 5.2.1, 5.2.2 and
5.2.3 resulted in a MAPE reduction from 27‑28% to 8‑
10% on the validation set.
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Fig. 5 – Selected network topologies with corresponding degree histogram (degree on x‑axis, count on y‑axis).

Table 3 – Key topology characteristics.

Topology ID 1 2 3 4 5 6 7 8 9 10
|𝑁| 10 10 10 10 10 10 10 10 10 10
|𝐿| 14 12 14 12 11 13 14 12 12 12

Diameter 4 4 4 4 5 5 3 4 5 5
Avg. degree 2.8 2.4 2.8 2.4 2.2 2.6 2.8 2.4 2.4 2.4
Max. degree 5 4 5 4 4 4 6 5 5 5
Min. degree 1 1 1 1 1 1 1 1 1 1

Avg. betweenness 0.12 0.15 0.13 0.15 0.17 0.16 0.11 0.14 0.16 0.16
Max. betweenness 0.47 0.38 0.47 0.38 0.47 0.42 0.52 0.52 0.68 0.64
Min. betweenness 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Fig. 6 – Trafϐic ϐlow distribution Training vs. Validation set.

5.3 Dataset cleaning
With 100 samples generated, we explored whether clean‑ 
ing this dataset by removing some samples judged too 
noisy can help improve the results. As what was ”Noisy” 
was difϐicult to specify, we hypothesized on what can be 
considered noise.

5.3.1 Hypothesis 1: Noise based on data distri‑
bution

Our ϐirst hypothesis is: A sample is considered noisy if
it contains certain characteristics (e.g., average port oc‑
cupancy in our case) that are outside the validation set’s
distribution. We suppose this based on our knowledge
of the RouteNet‑Fermi model, which predicts the average
port occupancy, then derives its delay prediction. Thus,
wewanted the average port occupancy distribution of our
generated training samples tomatch that of the validation
set. When we cleaned our dataset following this hypoth‑
esis, we saw no improvement, and could not conϐirm our
ϐirst hypothesis.

5.3.2 Hypothesis 2: Noise based on path length

Aswewere using the shortest path routing algorithm and
that message passing iterated eight times, in order to re‑
duce the over‑smoothing during the training, we made a
second hypothesis. We suppose that a sample is noisy if it
does not contain at least one path of length 4, roughly the
average path length in the validation set. We identiϐied
10 samples and found that all these samples were gener‑
ated with the topology containing a degree 6 node. After
these samples were removed, we trained the neural net‑
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work and theMAPE dropped to 6‑7% over the entire vali‑
dation set, using only 90 samples. We thus demonstrated
how we use our understanding of the model to optimize
our dataset.
The pseudo‑codes describing how the network topolo‑
gies, the trafϐic matrices and the ϐinal dataset have been
generated are given in Algorithm 3, Algorithm 4 and Al‑
gorithm 5, respectively.

Algorithm 3: generate_topology()
Input: num_nodes, prob, policies,

buffer_sizes,wfq_weights, drr_weights
𝐺 = 𝒢𝑛,𝑝(num_ nodes, prob) [25]
for node in G do

node_schedulingPolicy = random(policies)
node_bufferSizes = random(buffer_sizes)
if node_schedulingPolicy == WFQ then

wfqWeight = random(wfq_weights)
if node_schedulingPolicy == DRR then

drrWeights = random(drr_weights)

Algorithm 4: generate_trafϐic()
Input: G, 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦, time_dists,td_weights,

size_dists, sd_weights, tos_list, tos_weights
𝑡𝑟𝑎𝑓𝑓𝑖𝑐 = matrix of zeros of size G
foreach (SRC,DST) pair ∈ 𝐺 do

𝑏𝑎𝑣𝑔 = random([𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦/2, 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦])
𝑡𝑑 = random(time dists, td weights)
𝑠𝑑 = random(size dists, sd weights)
𝑡𝑜𝑠 = random(tos list, tos weights)
𝑡𝑟𝑎𝑓𝑓𝑖𝑐[SRC,DST] = 𝑏𝑎𝑣𝑔

Return: 𝑡𝑟𝑎𝑓𝑓𝑖𝑐

Algorithm 5: generate_dataset()
Input: num_nodes, prob, capacity_set, policies,

buffer_sizes, wfq_weights, drr_weights,
time_dists, td_weights, size_dists,
sd_weights, tos_list, tos_weights,
intensity_set

for 𝑖 ∈ {1,2,…,10} do
for 𝑗 ∈ {1,2,…,10} do

G = generate topology()
𝑝𝑎𝑡ℎ𝑠 = shortest paths routing
𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 = random(intensity_set)
𝑡𝑟𝑎𝑓𝑓_𝑎𝑟 = generate_trafϐic()
set_link_bandwidth()

generate_dataset_simulator() #use omnet++
clean_dataset() # as described in Section 5.3

6. NUMERICAL RESULTS

This section presents the results obtained by ourmethod‑
ology, compares the best solutions (in the challenge rank‑
ing) to our proposed solution, and highlights our ϐindings.

The experiments have been done on a machine running
a Windows system equipped with an AMD processor of
32‑core, 2.95 Ghz with 128 GB of RAM and an NVIDIA
GeForce RTX 2080 Ti. The code of our solution is avail‑
able on GitHub1.

6.1 Results analysis
The improvements obtained with our pipeline at each
stage are shown in Table 4. We present the MAPE ob‑
tained on the entire validation set referred to as (”ALL”),
as well as the MAPE obtained in each subset of the vali‑
dation set grouped according to the number of nodes in
their network topology (”50 nodes”, ”75 nodes”, etc.). As
described in Section 5, we can see that we moved from a
MAPEof about 28%toaround6%for the entire validation
set. We identiϐied somedatasets (e.g., thosewith 170, 200
and 240 nodes) as difϐicult, with a higher MAPE at each
stage. We note that the dataset with the lowest MAPE at
each stage (260 nodes) has a low number of samples (9)
compared to 14 in other sets. As a baseline, the competi‑
tion organizers stated that with thousands of samples of
networks up to 10 nodes, they were able to get a MAPE
of about 5% on the validation set. With our 90 generated
samples, we reached a MAPE of around 6%. This demon‑
strates that it is possible to efϐiciently train a neural net‑
work with smaller datasets if the data is of good quality.

6.2 Comparison against other solutions
When comparing our solution to other ϐinalists at the end
of the challenge, a common characteristic seen in all top
solutions was the detailed analysis of the validation set
to extra insights and generate the initial dataset. Table 5
presents the results obtainedby the top three teamsof the
competition on the test set (our solution ranked ϐirst).

Team Ghost Ducks2: The second‑ranked team generated
around270Ksamples and trained twoOraclemodelswith
about 85K samples from the generated samples. They
extracted a vector representation (embedding) for each
sample in the validation and training samples. This vec‑
tor representation contains the path state, link state and
length of each ϐlow path. They then clustered the valida‑
tion set and assigned each training sample to a cluster. Fi‑
nally, they took the top k samples from each cluster to ar‑
rive at a set of 100 samples to get their ϐinal traning set.
They obtained a MAPE of 8.554 % on the test set.

Team Net: The third‑ranked team proposed a beta
distribution‑based leave‑one‑out sample ranking strat‑
egy. They built their initial dataset by generating differ‑
ent distributions from the beta distribution. They then
assign each sample a score indicating the quality of the
sample by examining the impact of removing that sample
1https://github.com/ITU‑AI‑ML‑in‑5G‑Challenge/ITU‑ML5G‑PS‑002‑
SNOWYOWL‑GNNetworking‑Challenge2022

2https://github.com/ITU‑AI‑ML‑in‑5G‑Challenge/ITU‑ML5G‑PS‑002‑
GhostDucks‑GNNetworking‑Challenge2022
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Table 4 – MAPE (%) obtained on validation sets

Updates 50 75 100 130 170 200 240 260 280 300 ALL
nodes nodes nodes nodes nodes nodes nodes nodes nodes nodes

Section 5.1 27.89 26.66 29.31 32.83 34.43 34.06 31.78 17.32 28.29 25.23 28.26
Section 5.2 7.66 8.19 9.01 10.93 10.94 12.34 10.91 3.85 7.45 6.97 8.57
Section 5.3 6.00 6.22 6.81 7.97 8.47 8.48 8.02 3.16 6.10 5.40 6.50

Table 5 – Top solutions comparison on the test set

Snowyowl Ghost Ducks Net
# samples 90 100 100
MAPE (%) 8.55334 8.55446 9.97016

from the set. They then select the top 100 samples to use
as their training set. They obtained a MAPE of 9.79 % on
the test set.
The uniqueness of our solution lies in the fact that we did
not generate thousands of samples before reducing to a
smaller set. Instead, we focused on understanding the
data and the model to refactor and clean the 100 gener‑
ated initial samples. Weachievedourbest resultwithonly
90 samples, further lending credence to the fact that data
quality is more important than volume.

6.3 Our ϐindings
This challenge was an excellent opportunity to explore
data‑centric AI in the networking domain to formulate a
methodology to generate high‑quality datasets. From our
experiments, we can formulate the following points we
believe can help the community create better datasets.
1. As shown when we derived link congestion level

and capacity, examining derived statistics for clues
to guide setting the bounds on input feature space
(here, limiting the range of ’link capacity’) helps in
elaborating a training set that improves the model’s
generalization.

2. Attempting to improve model generalization through
maximizing the range of possible values for all in‑ 
put features in the training set does not guarantee
performance improvement even when our training
size is drastically reduced, as we’ve shown when we
achieved our best results by limiting the variety of
topologies and trafϐic matrices in our ϐinal training
set.

3. The ϐinal results justify turning towards data to
improve model performance, as we were able to
show that the model can retain good performance
even when training on a drastically reduced train‑ 
ing set(amount of samples reduced to less than 10%
of original conϐiguration), as shown by our result
of 8.55% MAPE on the ϐinal test set, compared to
about 5% according to the organizers when training
on thousands of samples. This result was achieved

7. CONCLUSION
This work presents a method to identify and generate 
relevant training samples, in order to reduce the cost 
of generating datasets in networking. We proposed 
a three‑step approach, consisting of identifying topol‑ 
ogy size‑independent characteristics to reproduce in our 
proposed dataset, deriving appropriate topology size‑ 
dependent characteristics, and identifying deleterious 
samples for removal, resulting in a high‑quality dataset 
that, even with only 90 samples of 10‑node networks, we 
can train a model that scales effectively to samples of large 
networks with 50 to 300 nodes.
Future directions include investigating the quality of the 
samples through angles not explored in our work. The 
”cleaning” step used here operates along the dataset 
topology, seeking to identify samples with detrimental 
properties in the structure of the nodes and links. We 
must pay more attention to the trafϐic ϐlows, and which 
properties in the ϐlows that form the samples may im‑ 
prove model performance. We require a more robust met‑ 
ric for data quality evaluation to accurately quantify the 
contribution of each sample.
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