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Abstract – Machine learning models for tasks in communication networks often require large datasets to be trained. This
training is cost intensive, and solutions to reduce these costs are required. It is not clear what the best approach to solve this
problem is. Herewe showan approach that is able to create aminimally‑sized training datasetwhilemaintaining high predic‑
tive power of themodel. We apply our approach to a state‑of‑the‑art graph neural networkmodel for performance prediction
in communication networks. Our approach is limited to a dataset of 100 samples with reduced sizes and achieves an MAPE
of 9.79% on a test dataset containing signi icantly larger problem sizes, compared to a baseline approach which achieved
an MAPE of 37.82%. We think this approach can be useful to create high‑quality datasets of communication networks and
decrease the time needed to train graph neural network models on performance prediction tasks.
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1. INTRODUCTION
Machine learning, and speci ically Graph Neural Net‑ 
works (GNNs), play an important role in network perfor‑ 
mance modeling. One central indicator of network per‑ 
formance is the end‑to‑end latency of lows. Approaches 
such as RouteNet [1, 2, 3] can predict the mean end‑to‑ 
end latency with small error margins. Creating a machine 
learning model requires a lot of computational resources, 
especially when we require it to scale to large problem 
sizes [4]. A large portion of this cost is located in the ge‑ 
neration of the training dataset and training process 
itself. Methodologies that can reduce this cost are 
therefore of interest. The reduction of cost can be 
achieved, e.g., by a trade‑off between training dataset 
size and model quality. Another approach is identifying 
and removing non‑relevant or misleading samples, 
leading to a decrease in dataset size without negatively 
impacting model quality. We introduce such an approach 
consisting of two components and evaluate it on a 
network performance prediction task. We provide the 
following three contributions:

1. A methodology to generate a dataset containing edge
cases and a methodology to reduce its size by ranking
and removing samples;

2. application of this methodology to a state‑of‑the‑
art GNN model for network performance prediction
(RouteNet [2]); and

3. comparison to a baseline approach.

We provide an overview of the background and related
work in Section 2 and Section 3. The methodology is pre‑
sented in Section 4 with an evaluation in Section 5 before
concluding in Section 7. Digital artifacts are provided in
Section 6.

2. BACKGROUND
This section provides an overview of the challenge, its re‑
quirements and restrictions, as well as basic information
on GNNs and distribution types.

2.1 The challenge
This work was developed in the context of the GraphNeu‑
ral Networking Challenge 2022 Improving Network Digi‑
tal Twins through Data‑centric AI [5, 6]. The goal of this
challenge is to create a minimally‑sized training dataset
for a ixed GNN. The GNN is trained solely on this dataset
and evaluated on an unknown, larger test dataset with
signi icantly larger input problems. The quality of the
generated dataset is determined by applying the trained
GNN model on the test dataset and taking the Mean Ab‑
solute Percentage Error (MAPE). Furthermore, an evalu‑
ation dataset, following a similar distribution as the test
dataset, was provided to locally test the solution.

2.2 Requirements and restrictions
The training dataset can contain at most 100 samples.
The topology size is restricted to 10 nodes. A full list
of requirements and restrictions can be found online1.
The evaluation and test datasets contain topologies up
to a size of 300 nodes. It was only possible to check the
trained model against the test dataset for a total of 20
times. Therefore, we cannot rely on a brute‑force ap‑
proach, fuzzing approach, or tuning algorithms, e.g., grid
search or Bayesian optimization [7]. Instead, we need to
select training dataset samples carefully.

1https://github.com/BNN-UPC/GNNetworkingChallenge/blob/
2022_DataCentricAI/training_dataset_constraints.md
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2.3 Graph neural networks
Graph Neural Networks (GNNs) [8] are a machine lear‑ 
ning approach working directly on graph‑structured 
data. It takes advantage of spatial relations in data and 
the permutation invariance property of graphs, i.e., 
differently encoded isomorphous graphs lead to the 
same results. A graph is de ined as a set 𝐺 of vertices and 
edges as shown in Equation (1).

𝐺 = (𝑉 , 𝐸) (1)

Each vertex and edge can have an associated feature vec‑
tor.
During the learning stage, a message passing and aggre‑
gation step is performed for 𝑛 iterations. Each step con‑
sists of exchanging information between adjacent ver‑
tices, which is aggregated into a hidden state at each ver‑
tex by the aggregation function. The aggregation function
is typically an invariant function.

2.4 Beta distribution
The beta distribution (β‑distribution) is a family of distri‑
butions de ined by two parameters. Depending on the pa‑
rameter values, the distribution can take different shapes,
e.g., approximations of a uniform, normal, exponential,
gamma, or arcsine distribution. [9]
Due to this property, it is commonly used as a prior in
Bayesian statistics. The multivariate generalization is the
Dirichlet distribution. An extension of our approach could
rely on this type of distribution to combine parameters.

3. RELATEDWORK
This section provides an overview of related work in
data‑centric machine learning and applications of deep
learning to performance modeling in communication net‑
works.
Mirzasoleiman et al. [10] developed the method CRAIG to
reduce the training dataset size while maintaining a very
similar accuracy compared to the full training dataset. It
works by selecting a subset of data that approximates the
gradient of the full dataset as closely as possible. They re‑
port training speed‑ups of up to 6×. We chose a different
approach since we did not have access to a large, repre‑
sentative dataset.
Krishnateja et al. [11] provide a library that implements
multiple core set selection methods, including CRAIG.
Hwang et al. [12] propose a solution for adding additional
data to an existing dataset by sampling uniformly from a
dimensionality‑reduced distribution.
Coleman et al. [13] suggest a methodology to reduce
dataset size based on a computationally ef icient proxy
model, decreasing the size by 50% without negative im‑
pact.
Xia et al. [14] propose an approach that should general‑
ize to different complex, real‑world datasets by utilizing
a scoring based on the distance between a sample and its
classes center.

Table 1 – Dataset sizes of different deep learning applications to 
performance estimation of communication networks

Author Reference Year Training Dataset Size

Geyer and Bondorf [18] 2019 100,000
Rusek et al. [1] 2020 260,000
Geyer et al. [19] 2021 54,000
Ferriol‑Galmés et al. [2] 2022 200,000
Afonso and Berton [20] 2022 120,000

Our approach — 2023 100

Cruz et al. [15] apply sample ranking to combat class
imbalances. They differentiate between pointwise, pair‑
wise, and listwise ranking.
Mazumder et al. [4] provide analyses for the importance
of high‑quality datasets, focusing on real‑world impacts.
They provide a tool to assess, among other things, the
quality of datasets.
Eyuboglu et al. [16] propose a benchmark to evaluate
data‑centric machine learning approaches. They focus
on three areas: cleaning training data on a budget, dis‑
cover underperforming evaluation slices, and training
data pruning (equivalent to core set selection).
Our approach differs from related work since we are able
to synthetically create new data samples. Therefore, we
present a combined approach consisting of both training
data generation and core set selection.
For a more detailed survey on core set selection methods,
the reader is referred to Guo et al. [17].
Performance modeling in communication networks with
deep learning methods can be achieved using different
approaches. There are approaches that combine network
calculus with GNNs [18, 19], approaches that use GNNs to
regress on mean delays [1, 2], and approaches that com‑
bine queuing theory and GNNs [20]. These approaches
typically employ large training datasets to obtain good
results. Table 1 shows a comparison of their respective
dataset sizes compared to our approach.

4. METHODOLOGY
This section provides an overview of our approach, di‑
vided into three stages. Fig. 1 shows the three stages of
dataset generation, sample ranking, and sample selection.

4.1 Initial dataset generation
The initial dataset generation consists of identifying
which parameter value ranges can be derived from the
evaluation dataset and which cannot be derived this way.
An overview of the parameters and their chosen parame‑
ter ranges is shown in Table 2. Note that we decided on a
ixed number of network nodes, graphs, and traf ic matri‑

ces, i.e., we always have 100 different topologies of size 10
nodes with a unique traf ic matrix each. This was done to
ensure a maximum of training data as well as a maximal
diversity of samples. Node and traf ic parameter value
ranges are taken directly from the values in the validation
dataset, except for (a) one excluded link capacity due to
challenge constraints, and (b) the number of on‑off traf ic
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Fig. 1 – Three stages of the approach

instances which we increase from a ixed value of one to 
between zero and three.
The next step is to generate 100‑sample datasets using 
these parameter value ranges. This is shown in Fig. 1 (a). 
The irst step is to generate a β‑distribution for each 
input parameter. This is done by picking the parameters 
of the β‑distribution uniformly random as shown in 
Equation (2).

Beta(𝛼 ∼ 𝑈(0.15, 5.0), 𝛽 ∼ 𝑈(0.15, 5.0)) (2)

Next, we create 100 random network con iguration sam‑ 
ples by sampling from the β‑distributions of each para-
meter 100 times. An example of the node degree with 
different β‑distribution parameters and resulting para-
meter value weights is shown in Table 3.
Next, we train the model on these 100 samples for a ixed 
budget of 20 epochs, leading to a validation accuracy for 
these 100 samples. We repeat this step 𝑛 times to receive 
𝑛 datasets with associated validation accuracies. The β‑ 
distribution allows us to sample a diverse set of parame‑ 
ter values, because it can take on the shape of normally‑ 
or heavy‑tailed distributions. Therefore, we not only try 
to replicate the validation dataset on a smaller scale but 
include edge cases of con igurations. Such edge cases can 
be, for example, extremely high traf ic load or 
unbalanced traf ic types.
We use this step to generate 𝑛 datasets of 100 samples 
each.

4.2 Individual sample ranking
The ranking of individual samples is repeated for each of 
the 𝑛 datasets obtained in the previous step. We start 
with 100 samples of a single dataset. We generate 100 
new datasets from this, with 99 samples each, by exclu-
ding one sample from each dataset, such that each sample

Table 2 – Parameters and their chosen value ranges

Parameter Value

Network parameters
Number of network nodes 10
Number of graphs 100
Number of traf ic matrices 100
Node degrees 1,2,3,4,5,6,7

Node parameters
Buffer size val. data
Scheduler val. data
Type of Service val. data
Scheduling weights val. data
Type of Service mapping val. data
Link capacity val. data (except 400k)

Traf ic parameters
Node parameters val. data
Average bandwidth val. data (783k values)
Packet sizes val. data
Type of Service 0,1,2
Traf ic

Poisson —
CBR —
Num. On‑Off instances 0,1,2,3

On period 2,3,4,5
Off period 2,3,4,5

Table 3 – Example node degree parameter value weights derived from 
β‑distributions with different α and β parameter values

Node degree 1 2 3 4

α β Weights

0.1 0.2 0.125 0.997 0.906 0.081
1 1 0.124 0.55 0.541 0.941
1000 100 0.917 0.908 0.902 0.897

is excluded exactly once. For example, we remove sam‑ 
ple 𝑠0 from the irst dataset, sample 𝑠1 from the second 
dataset, and sample 𝑠99 from the last dataset. We train 
the model with each of the newly‑generated datasets, 
obtaining a validation accuracy for each of the datasets. 
Now, we can compute the impact of each sample on the 
original dataset. The impact 𝐼 of one sample is de ined as 
the relative error between the validation accuracy of the 
dataset where this sample was removed and the original 
100 sample dataset as de ined in Equation (3), where 
𝐴(𝑋) is the validation accuracy of training a model with 
dataset 𝑋.  A larger impact means that this sample had a 
positive contribution to the overall model accuracy, 
whereas a negative impact means that the sample had 
a negative in luence on the accuracy.

𝐼(𝑠𝑖) = (𝐴(𝒮\𝑠𝑖) − 𝐴(𝒮))/𝐴(𝒮) (3)

This results in an impact value that is normalized with re‑
spect to the different validation accuracies of each 𝒮𝑖. We
decided on this approach of comparing each sample to 99
samples at once because doing a full point‑wise compari‑
son is not feasible.

©International Telecommunication Union, 2023

Helm et al.: Data-efficient GNN models of communication networks using beta-distribution-based sample ranking 

487



0 5 10 15
Epoch

0

5

10

Tr
ai

ni
ng

 L
os

s

Fig. 2 – Training loss for Model 2 over 20 epochs

4.3 Sample selection
We collect the single samples and their impact scores
from each of the 𝑛 datasets, resulting in 100𝑛 datapoints.
These samples are numerically ranked by their impact
score. The best 100 samples, i.e., samples with the largest
impact, are selected to form a new dataset 𝒮𝑏𝑒𝑠𝑡 as shown
in Equation (4).

𝒮𝑏𝑒𝑠𝑡 = {𝑠 ∈ 𝑆|𝐼(𝑠𝑖) ≥ 𝐼(𝑠𝑝)∀𝑠𝑝 ∈ 𝑆𝑝
∧ |𝑆𝑝| = 100 ⋅ (𝑛 − 1)} (4)

5. EVALUATION
We compare the evaluation and test accuracy of our 
trained model to a provided baseline (BNN baseline) that 
was trained on 100 samples as well. We compare two of 
our models, Model 1 and Model 2. Model 1 is the best 
performing model generated using the β‑distribution 
parameter value selection approach, without ranking 
indiviual samples. Model 2 is our inal submission, which 
was generated by ranking and selecting single samples. 
Table 4 shows the results. We achieved a test MAPE score 
of 9.79%, decreasing the MAPE score almost four‑fold 
from the baseline MAPE of 37.82%. A comparison 
between our two models shows an MAPE decrease from 
10.20% without ranking to an MAPE of 9.79% with the 
sample ranking and selection strategy. 
Fig. 2 shows the training loss of Model 2 over the full 20 
epochs. We can observe that the best result is achieved 
after only 12 epochs. Training more epochs might reduce 
the loss further as indicated by the negative slope of a 
linear interpolation of the loss values. 
Fig. 3 shows the training loss distribution of all datasets 
before the sample ranking and selection process. 
Taking a closer look at the topologies of the networks 
selected for the dataset used to train Model 2, we can 
observe a heterogeneous set of graphs. Three examples 
of topologically different graphs are shown in Fig. 4. Line‑ 
like topologies provide us with highly utilized bottleneck 
links as well as long low paths. These are important 
since the model needs to generalize to signi icantly longer 
low paths in the test dataset with networks of up to

101 102

Training Loss

0.0

0.5

1.0

CD
F

Fig. 3 – Training loss of all generated 100‑sample datasets before sample 
ranking and selection

(a) Line‑like network

(b) Densely connected network

(c) Double‑ring network

Fig. 4 – Three topologically different networks from the dataset used to 
train Model 2

300 nodes. Densely connected networks provide us with 
many equally utilized links and a multitude of unique mul‑ 
tiplexing points due to the high variance in node degrees. 
This is important to generalize well to larger networks 
since they have larger node degrees. Ring networks pro‑ 
vide us with guaranteed circular dependencies between 
flows.
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Table 4 – Comparison of the BNN baseline and our work on the validation and test dataset, using training dataset sizes of 100

Approach Dataset Size Val. MAPE Test MAPE Reference

BNN Baseline 100 26.52% 37.82% [21]
Model 1 (after β‑distribution sample generation) 100 7.37% 10.20% —
Model 2 (after sample selection using ranking) 100 6.99% 9.79% 3𝑟𝑑 place at [5]

To further assess the in luence of the sample ranking and 
selection, we take a look at graph theoretical properties 
of the generated and selected topologies in Table 5. We 
can see that the sample selection preferred graphs with 
more edges and a larger diameter. This makes sense since 
a larger diameter implies longer paths, which are impor‑ 
tant when scaling up to networks of 300 nodes. Following 
a similar logic, it also prefers networks with lower cluste- 
ring coef icients. The same applies to the edge and 
vertex connectivity.

Table 5 – Comparison of graph metrics between the dataset used to 
train Model 2 and all datasets generated before ranking and selecting 
samples. Notation is as follows: Metric Model 2 (Metric before ranking).

Graphmetric Mean Median

Number of edges 27.05 (18.83) 26.00 (20.00)
Diameter 4.52 (3.39) 4.00 (3.00)
Clustering coef icient 0.23 (0.39) 0.23 (0.41)
Edge connectivity 1.23 (1.77) 1.00 (2.00)
Vertex connectivity 1.20 (1.75) 1.00 (2.00)

For completeness, Table 6 lists all submissions with their 
respective approaches and test MAPE scores.

Table 6 – All submissions, their approaches, and their test MAPE scores

Submission Approach Model Test MAPE

1 β‑distribution — 17.91%
2 β‑distribution — 12.58%
3 β‑distribution — 11.20%
4 β‑distribution — 11.07%
5 β‑distribution — 13.48%
6 β‑distribution — 10.95%
7 β‑distribution — 11.41%
8 β‑distribution — 11.45%
9 β‑distribution — 11.04%
10 β‑distribution Model 1 10.20%
11 β‑distribution — 10.45%
12 β‑distribution — 10.59%
13 β‑distribution — 10.59%
14 β‑distribution — 12.03%
15 β‑distribution — 10.72%
16 Sample ranking — 10.04%
17 Sample ranking Model 2 9.79%

6. REPRODUCIBILITY
We provide access to our trained Model 2, as well as to the 
dataset used to train it2. The dataset 𝑆𝑏𝑒𝑠𝑡 consists of the 
100 best‑ranked samples.

7. CONCLUSION
We showed a method for generating minimally‑sized 
datasets that can be used to train GNN models to a com‑ 
paratively low error rate. Our approach consists of a com‑ 
bination of β‑distribution‑based parameter value selec‑ 
tion and a leave‑one‑out sample ranking process. We 
showed that both parts of the approach have a measu-
rable impact in terms of reduction of error rate. 
Overall, we were able to reduce the MAPE on a test 
dataset from a baseline of 38% to a MAPE of 9.79%. We 
think this approach can be useful to reduce the training 
time needed for GNN models of communication 
networks by removing unnecessary training samples 
from the process while still covering edge cases.
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