
A KUBERNETES DATASET FORMISUSE DETECTION

Yigit Sever1 and Adnan Harun Dogan1
1Middle East Technical University

NOTE: Corresponding author: Yigit Sever, yigit@ceng.metu.edu.tr

Abstract – Container security involves a broad spectrum of concerns, including the security of the operating system, au‑
diting the supply chain and the application security of the running containers. This wide attack surface will also include the
security of the container orchestration system and its components once a container orchestration system is introduced to
manage the ϔleet of containers in an environment. In order to advance the research in this ϔield, prior work should be com‑
parable and reproducible. However, we identiϔied a research gap for this aspect; publicly available datasets for container
security is sparse and reproducibility of the research output so far is arduous. In this study, we share a dataset consisting of
network ϔlows, collected from a Kubernetes cluster. Furthermore, we performed a preliminary analysis on the data as a sanity
check to evaluate its quality. By sharing this dataset publicly, we hope to help further studies and establish benchmarks in
the ϔield of container networking security.

Keywords – Container security, cybersecurity, intrusion detection

1. INTRODUCTION

Container technology is on the rise, mainly due to the de‑ 
mand of portable software units that natively solve com‑ 
patibility issues. Containers include the executable of any 
application they serve, alongside any dependencies that 
the application may require. Furthermore, containers iso‑ 
late the computation environment, as well as put con‑ 
straints in place, making them well suited for multi‑tenant 
environments. Hence, the industry has been experienc‑ 
ing a shift towards container‑based software deployment 
from bare‑metal installations [1]. Containers also lends 
themselves well to the microservice‑based development, 
which is an architecture we have been observing more 
in recent software deployment trends from large compa‑ 
nies [2].
Deployments on the cloud have been using microservice 
design patterns and architecture to answer the draw‑ 
backs of traditional monolithic software architecture [3]. 
These microservices are decoupled and functionally dis‑ 
tinct functions are deϐined in software. Since a typical 
monolithic application will need to be broken down into 
multiple microservices for functional parity, microser‑ 
vices are usually deployed using containers to eliminate 
the overhead of a fully present operating system [4]. Oth‑ 
erwise, each and every container would have to carry an 
operating system layer below the application logic. How‑ 
ever, breaking down the functionality of an application 
into smaller functions also increases the complexity of the 
overall system even when the individual pieces have be‑ 
come more manageable and understandable. One partic‑ 
ular interest of ours is the security of the network of con‑ 
tainerized microservices. Security of container orches‑ 
tration (e.g. Kubernetes) is especially in need of investi‑ 
gation [5] to understand the intricacies introduced by the 
additional layers in the whole setup.

Containers are used as building blocks of software de‑ 
velopment, for both in testing and deployment [6]. In 
order to ease and automate the building, management, 
inter‑container networking and cleanup of containers, 
container orchestration technologies have been devel‑ 
oped [7]. Effective attack detection and prevention in the 
cloud faces many challenges, even in the presence of fast‑ 
streaming data analytics. Therefore, machine learning al‑ 
gorithms and tools have also been developed speciϐically 
for cloud environments, mostly for virtual machine‑based 
deployments, and have achieved successful results in de‑ 
tecting anomalies for certain scenarios including classical 
enterprise networks [8], Industrial IoT (IIoT) systems [9], 
and sensor data publish‑subscribe systems [10].
Despite the existence of many approaches in the ϐield of 
intrusion detection including both Host‑Based Intrusion 
Detection System (HIDS) and Network‑Based Intrusion 
Detection System (NIDS) solutions [11, 12, 13, 14, 15], 
IDSs for containerized environments are still at a prema‑ 
ture state, with limited attention having been paid to them 
so far.
In this paper, we document the steps we have used to 
create a dataset of Kubernetes network trafϐic with ma‑ 
licious and benign data points which we have published 
publicly at https://github.com/yigitsever/kubernetes‑ 
dataset. The dataset is generated on a Kubernetes 
cluster that is running real‑world container images. 
The attack scenarios we used come from the Common 
Vulnerabilities and Exposures (CVE) listings with distinct 
Common Weakness Enumeration (CWE) classes, making 
the dataset diverse.

2. RELATED WORK
Tien et al. [16] introduced an HIDS on a Kubernetes clus‑ 
ter. Using supervised learning methods, they developed

ITU Journal on Future and Evolving Technologies, Volume 4, Issue 2, June 2023

© International Telecommunication Union, 2023 
Some rights reserved. This work is available under the CC BY-NC-ND 3.0 IGO license: https://creativecommons.org/licenses/by-nc-nd/3.0/igo/. 

More information regarding the license and suggested citation, additional permissions and disclaimers is available at: 
https://www.itu.int/en/journal/j-fet/Pages/default.aspx 

https://github.com/yigitsever/kubernetes-dataset
https://github.com/yigitsever/kubernetes-dataset


an anomaly classiϐication model, a neural network with
four fully‑connected layers. To create a dataset for train‑
ing theirmodels, theyused systemcalls and rootdirectory
access features, which takes place when the container
accesses a ϐile under a root directory like bin, var etc.
During our preliminary analysis, this work was the only
one we came across that evaluated an IDS on a container
orchestration platform. However, the authors have not
disclosed the details of the Kubernetes cluster they per‑
formed their evaluation on, making their results impos‑
sible to reproduce. Flora et al. [17] proposed an HIDS
using a containerized MariaDB database engine. They
evaluated their Bag‑of‑System‑Calls (BoSC) features us‑
ing Sequence TimeDelaying Embedding (STIDE) andHid‑
den Markov Models (HMMs). To compare the perfor‑
mance of an IDS on a containerized environment, they
also performed evaluations on a pseudo‑bare metal in‑
stallation, using a KVM virtual machine. Tunde‑Onadele
et al. [18] combined signature‑based and anomaly‑based
approaches in their HIDS. They evaluated common intru‑
sion detection methods for containerized environments.
Srinivasan et al. [19] offered a real‑time HIDS using sys‑
tem calls. They fed 𝑛‑grams of system calls to Maxi‑
mum Likelihood Estimator (MLE) and Simple Good Tur‑
ing (SMG) to do real‑time classiϐication. Cavalcanti et al.
[20] evaluated the effectiveness of eightmachine learning
algorithms for IDS on containerized environments. They
made use of the BoSC approach to create their dataset
and evaluated these algorithms on this dataset. Chen
et al. [4] proposed a framework named Informer. This
framework is used to detect anomalous Remote Proce‑
dure Calls (RPCs), which are used for communication be‑
tween agents in a microservices architecture.

3. DATASET
To create our dataset, we crafted 10 different attack sce‑
narios. The trafϐic related to the attack scenarios are la‑
belled with non‑zero labels. Benign trafϐic, on the other
hand, is labelled with 0. In order to generate benign traf‑
ϐic, we used the OWASP ZAP’s Ajax Spider to use and nav‑
igate the web applications.

3.1 Environment setup
The Kubernetes cluster used for the data collection pro‑
cess consists of two Ubuntu 22.04 machines. Studying
vulnerabilities requires using old software versions since
vulnerabilities are patched as they are discovered. In or‑
der to have a vulnerable system, we used an old Kuber‑
netes version: 1.20.0. To achieve compatibility and to use
vulnerable versions of lower layer components, we used
containerd version 1.6.0 and docker version 5:20.10.6.
We used kubeovn as the CNI plugin.
Using kubeovn allowed us to capture the whole Kuber‑
netes cluster’s trafϐic from a single point. During the
data collection process, we used the tcpdump program to
capture every packet passing through the ovn0 interface.

This gave us both the internal Kubernetes trafϐic and the
external requests meant for the services running inside
Kubernetes.
We developed a microservice‑based software stack to be
run in the Kubernetes cluster. The software stack in‑
cludes Grafana, InϐluxDB and Node‑RED as the data col‑
lection, aggregation and visualization solutions. Regard‑
ing the stack, four Raspberry Pi images emulate IoT de‑
vices as smart home sensors and supply data for the rest
of the pipeline.

3.2 Attack scenarios
CVE‑2019‑20933
CVE‑2019‑20933 is found in InϐluxDB versions prior to
1.7.6 [21]. The vulnerability has been assigned to CWE‑
287: Improper Authentication. It is a software bug that
lets InϐluxDB accept queries that should have been au‑
thenticated with a proper JWT. Instead, JWTs with empty
shared secrets have been able to bypass the authentica‑
tion.
During our data collection scenario, we exploited this vul‑
nerability by sending queries with crafted JWTs that had
empty secret keys.
In our dataset, network ϐlows that belong to this attack
have been labelled as 6.
CVE‑2019‑5736
CVE‑2019‑5736 is a vulnerability discovered in
2019 [22]. It is a vulnerability concerning the runc
program. This vulnerability has been ϐiled under CWE‑
78: Improper Neutralization of Special Elements used in
an OS Command (’OS Command Injection’).
CVE‑2019‑5736 causes attackers to overwrite the runc
binary present in the host machine. This can be ac‑
complished by either running a malicious container im‑
age crafted by the attacker or an existing container
which the attacker had write access to. We used the
ϐirst case during our attacker scenario, following the
steps outlined in https://github.com/Frichetten/
CVE-2019-5736-PoC.
This attack is labelled with 10 in our dataset.
CVE‑2020‑13379
CVE‑2020‑13379 is a vulnerability concerning Grafana
versions between 3.0.1 to 7.0.1 [23]. The vulnerabil‑
ity has been listed under CWE‑918: Server‑Side Request
Forgery (SSRF).
In order to exploit this vulnerability on the Grafana ser‑
vice running in our Kubernetes cluster, we sent a mali‑
cious request, crafted in accordance with the CVE‑2020‑
13379 requirements through the URL of the Grafana ser‑
vice. The Grafana service crashes after sending this re‑
quest.
This attack has the label 1 in our dataset.
CVE‑2021‑25741
CVE‑2021‑25741 is a vulnerability found in kubelet, a
component of Kubernetes [24]. Itwas discovered in 2021,
and it is listed under CWE‑20: Improper Input Validation

ITU Journal on Future and Evolving Technologies, Volume 4, Issue 2, June 2023

©International Telecommunication Union, 2023384

https://github.com/Frichetten/CVE-2019-5736-PoC
https://github.com/Frichetten/CVE-2019-5736-PoC


and CWE‑552: Files or Directories Accessible to External
Parties.
In order to exploit this vulnerability, we followed
the proof‑of‑concept outlined in https://github.com/
Betep0k/CVE-2021-25741 to create two malicious con‑
tainers inside a single pod. These two containers initiate
a race condition tomount a ϐile path from the host ϐile sys‑
tem inside the container, performing a container escape.
Network ϐlows collected during CVE‑2021‑25741 sce‑
nario are labelled with 8 in our dataset.
CVE‑2021‑30465
CVE‑2021‑30465 is a runc vulnerability that affects ver‑
sions prior to runc 1.0.0‑rc95 [25]. It has been assigned
under CWE‑362: Concurrent Execution using Shared Re‑
source with Improper Synchronization. Vulnerabilities
under this CWE class are also called race condition vul‑
nerabilities.
In order to exploit this vulnerability in our Ku‑
bernetes cluster, we used the steps outlined in
https://github.com/champtar/blog/blob/main/
runc-symlink-CVE-2021-30465/README.md.
We labelled data points for this attack with 7.
CVE‑2021‑43798
The CVE‑2021‑43798 vulnerability was discovered in
Grafana [26]. It is a straightforward path traversal vulner‑
ability, classiϐied under CWE‑22: Improper Limitation of
a Pathname to a Restricted Directory. In order to exploit
this vulnerability in the Grafana service running in our ex‑
periment environment, we sent a request to the Grafana
service with added .. directives to navigate out of the
working directory of the Grafana service.
This attack is labelled with 5 in our dataset.
CVE‑2022‑23648
CVE‑2022‑23648 is a vulnerability found in containerd.
It is listed under two CWE classes: CWE‑200: Exposure of
Sensitive Information to anUnauthorizedActor andCWE‑
287: Improper Authentication.
To exploit this vulnerability in our Kubernetes cluster, we
crafted a malicious Kubernetes pod using a .yaml ϐile and
added a VOLUME directive to mount and expose a sensi‑
tive host directory inside the container.
Network ϐlows collected during the CVE‑2022‑23648 sce‑
nario has been labelled with 9.
Attacker scenarios
In order to study the vulnerabilities and the consequences
of their exploitation, we used the Node‑RED program
present in our cluster’s software stack to create a sce‑
nario consisting of three steps. During these scenarios,
we wanted to create the traces of how a real‑world at‑
tacker would inϐiltrate a Kubernetes cluster and show
them in our dataset, as well as give a proof‑of‑concept of
how the rest of the attackswehavementioned so far could
have happened to our cluster.
During the ϐirst scenario, we wanted to formulate how an
attacker would ϐirst approach a web service. We used the
OWASP ZAP tool to scan the Node‑RED service ϐirst pas‑
sively and then actively. During this step, we collected in‑
formation regarding the Node‑RED service. This is the re‑

Table 1 – Vulnerabilities and CWE listings

Vulnerability CWE Software
CVE‑2019‑20933 CWE‑287 InϐluxDB
CVE‑2019‑5736 CWE‑78 runc
CVE‑2020‑13379 CWE‑918 Grafana
CVE‑2021‑25741 CWE‑20,

CWE‑552
Kubernetes
(kubelet)

CVE‑2021‑30465 CWE‑362 runc
CVE‑2021‑43798 CWE‑22 Grafana
CVE‑2022‑23648 CWE‑200,

CWE‑287
containerd

connaissance step of the Node‑RED scenarios, and it is la‑
belled as 2 in our dataset.
For the second scenario, we wanted to show how an
attacker would exploit a vulnerable web service to
inϐiltrate a Kubernetes cluster. First, we injected a Re‑
mote Code Execution (RCE) vulnerability to Node‑RED.
Vulnerabilities of the RCE class allows attackers to run
arbitrary code on a web service’s host machine. We
used this RCE vulnerability to get a reverse shell on
the host machine running the Node‑RED service. Note
that at this stage, the attacker would not know that
Node‑RED is constrained to a container. However, every
container running under Kubernetes includes the direc‑
tory /run/secrets/kubernetes.io/serviceaccount
that includes kubectl credentials. We downloaded a
kubectl binary from the Internet onto the container
from our reverse shell and supplied the credentials to
kubectl manually. For the end of this scenario, we used
the attacker’s kubectl inside the container to query the
Kubernetes cluster regarding pods, services and secrets
present in the cluster. We labelled this scenario as 3 in
our dataset.
For the ϐinal Node‑RED scenario, we continued from
wherewe left off andattempted toperformacontainer es‑
cape. In order to accomplish this, theNode‑REDcontainer
should have the required privileges deϐined for its service
account to create new containers. This privilege has le‑
gitimate use cases but for the operations of our cluster,
Node‑RED containers do not need this privilege. Hence,
we added this privilege to the service account of Node‑
RED prior to attack scenarios in order to exploit it during
this scenario. We used the malicious kubectl in the Node‑
RED container, accessed through the reverse shell to cre‑
ate a container thatmounts the root ϐile systemof the host
machine inside the /root directory of the container. After
this container is operational, weusedkubectl to get a shell
from themalicious container and performed a chroot op‑
eration. Thus, we have mounted the host machine’s ϐile
system in the container, attaining full privileges in the
host machine. We labelled the trafϐic for this scenario as
4.
This concludes the 10 attack scenarios we crafted for the
data collection process.

Sever et al.: A Kubernetes dataset for misuse detection 

©International Telecommunication Union, 2023 385

https://github.com/Betep0k/CVE-2021-25741
https://github.com/Betep0k/CVE-2021-25741
https://github.com/champtar/blog/blob/main/runc-symlink-CVE-2021-30465/README.md
https://github.com/champtar/blog/blob/main/runc-symlink-CVE-2021-30465/README.md


Table 2 – Results of the preliminary analysis

Benign Flows Accuracy % Precision % Recall % F1 False Positive True Positive

302 56.54 100.00 56.54 72.23 1613.6 2099.4
544 62.52 100.00 62.52 76.94 1391.5 2321.5
981 69.33 100.00 69.33 81.88 1138.8 2574.2
1767 75.26 100.00 75.26 85.88 918.6 2794.4
3184 82.88 100.00 82.88 90.63 635.8 3077.2
5737 88.70 100.00 88.70 94.01 419.5 3293.5
10336 91.12 100.00 91.12 95.36 329.6 3383.4
18622 92.87 100.00 92.87 96.30 264.9 3448.1
33550 95.95 100.00 95.95 97.93 150.4 3562.6
60447 96.57 100.00 96.57 98.25 127.5 3585.5

4. PRELIMINARY ANALYSIS
Employing the Scikit‑learn library in Python, the one‑ 
class Support Vector Machine (SVM) [27] model was used 
to distinguish between normal and attack trafϐic on the 
Kubernetes network (i.e. benign and malicious data) and 
malicious data is intended to be detected as anomalous. 
During preprocessing, all irrelevant labels like packet size 
information and timestamps, as well as source and des‑ 
tination ports and IP addresses were removed. Also, all 
labels with zero variance (whose values are the same in 
every sample) were removed.
The training data includes malicious and benign trafϐic. 
However, their proportions are investigated in this part. 
The main focus was to determine the minimum necessary 
amount of benign trafϐic in the training dataset to accu‑ 
rately detect anomalies, as well as to reduce variance and 
bias in the test dataset. For that purpose, malicious data 
is evenly and randomly split into 10 folds and 10 inde‑ 
pendent experiments were conducted as a ten‑fold cross‑ 
validation procedure. In every experiment, nine folds 
consisted of the test dataset for the model trained on the 
remaining fold. The stratifiedShuffleSplit method 
in the Scikit‑learn library is used to generate folds. The 
averages from those experiment results are shown in 
Table 2.
After that step, the effect of the amount of benign data 
in the training set on the accuracy is analyzed. Since, 
one fold (i.e. randomly sampled one‑tenth) of the mali‑ 
cious dataset is approximately 5% of all benign samples, 
starting from one‑twentieth to the whole of benign sam‑ 
ples, 10 different exponentially‑increasing proportions 
are used as in Table 2 to detect the amount of benign data 
needed to reach an accurate anomaly detection. The be‑ 
nign trafϐic that wasn’t included in the training data were 
dropped off from the pipeline.
The precision scores are always 100% because the test‑ 
ing datasets consisted only of malicious trafϐic. Lastly, the 
amount of malicious data in testing datasets was always

3713, which corresponds to 9 folds of whole malicious
data.
The results in Table 2 are averaged by benign amounts
in the training dataset from a hundred successful exper‑
iments. The scores are calculated using the Scikit‑learn
library’s metrics module in Python.
It can be seen thatmore than thirty‑three hundred benign
and three hundred malicious trafϐic is enough to reach a
95% accuracy over 3713 malicious (abnormal) trafϐic.

5. CONCLUSION
In this study, we have developed and deployed a
microservice‑based application onto a Kubernetes clus‑
ter. We then prepared 10 attack scenarios with varying
weakness enumerations. We played these 10 different at‑
tacks on our Kubernetes cluster and collected the attack
trafϐic, as well as the response from the Kubernetes clus‑
ter. By preparing this dataset, we hope to encourage re‑
producible results in the ϐield of container security.

ACKNOWLEDGEMENT
This research has been supported by the TUǆ BIǚTAK
3501 Career Development Program under grant number
120E537. However, the entire responsibility of the pub‑
lication belongs to the owners of the research. The ϐinan‑
cial support received from TUǆ BIǚTAK does not mean that
the content of the publication is approved in a scientiϐic
sense by TUǆ BIǚTAK.

REFERENCES
[1] Sébastien Vaucher, Rafael Pires, Pascal Felber,

Marcelo Pasin, Valerio Schiavoni, and Christof Fet‑
zer. “SGX‑Aware Container Orchestration for Het‑
erogeneous Clusters”. In: 2018 IEEE 38th Interna‑
tional Conference onDistributedComputing Systems

ITU Journal on Future and Evolving Technologies, Volume 4, Issue 2, June 2023

©International Telecommunication Union, 2023386

https://doi.org/10.1109/ICDCS.2018.00076
https://doi.org/10.1109/ICDCS.2018.00076


(ICDCS). July 2018, pp. 730–741. DOI: 10 . 1109 /
ICDCS.2018.00076.

[2] Jacopo Soldani, Damian Andrew Tamburri, and
Willem‑Jan Van Den Heuvel. “The Pains and Gains
of Microservices: A Systematic Grey Literature Re‑
view”. In: Journal of Systems and Software 146 (Dec.
2018), pp. 215–232. ISSN: 0164‑1212. DOI: 10 .
1016 / j . jss . 2018 . 09 . 082. (Visited on
01/14/2023).

[3] David S. Linthicum. “Practical Use of Microservices
in Moving Workloads to the Cloud”. In: IEEE Cloud
Computing 3.5 (Sept. 2016), pp. 6–9. ISSN: 2325‑
6095. DOI: 10.1109/MCC.2016.114.

[4] Jiyu Chen, Heqing Huang, and Hao Chen. “In‑
former: Irregular Trafϐic Detection for Container‑
izedMicroservices RPC in theRealWorld”. In:High‑
Conϔidence Computing 2.2 (June 2022), p. 100050.
ISSN: 2667‑2952. DOI: 10 . 1016 / j . hcc . 2022 .
100050. (Visited on 06/05/2022).

[5] Francesco Minna, Agathe Blaise, Filippo Rebec‑
chi, Balakrishnan Chandrasekaran, and Fabio Mas‑
sacci. “Understanding the Security Implications of
Kubernetes Networking”. In: IEEE Security & Pri‑
vacy19.5 (Sept. 2021), pp. 46–56. ISSN: 1540‑7993,
1558‑4046. DOI: 10.1109/MSEC.2021.3094726.
(Visited on 10/28/2021).

[6] Claus Pahl, Antonio Brogi, Jacopo Soldani, and
Pooyan Jamshidi. “Cloud Container Technologies:
A State‑of‑the‑Art Review”. In: IEEE Transactions
on Cloud Computing 7.3 (July 2019), pp. 677–692.
ISSN: 2168‑7161. DOI: 10 . 1109 / TCC . 2017 .
2702586.

[7] René Peinl, Florian Holzschuher, and Florian
Pϐitzer. “Docker Cluster Management for the Cloud
‑ Survey Results and Own Solution”. In: Journal of
Grid Computing 14.2 (June 2016), pp. 265–282.
ISSN: 1572‑9184. DOI: 10 . 1007 / s10723 - 016 -
9366-y. (Visited on 01/14/2023).

[8] Shengjie Xu, Yi Qian, and Rose Qingyang Hu. “Data‑
Driven Network Intelligence for Anomaly Detec‑
tion”. In: IEEENetwork 33.3 (2019), pp. 88–95. DOI:
10.1109/MNET.2019.1800358.

[9] MunaAL‑Hawawreh,NourMoustafa, andElena Sit‑
nikova. “Identiϐication of malicious activities in in‑
dustrial internet of things based on deep learning
models”. In: Journal of Information Security and Ap‑
plications 41 (2018), pp. 1–11. ISSN: 2214‑2126.
DOI: https://doi.org/10.1016/j.jisa.2018.
05.002. URL: https://www.sciencedirect.com/
science/article/pii/S2214212617306002.

[10] Ege Ciklabakkal, Ataberk Donmez, Mert Erdemir,
Emre Süren, Mert Kaan Yilmaz, and Pelin An‑
gin. “ARTEMIS: An Intrusion Detection System for
MQTT Attacks in Internet of Things”. In: 38th
Symposium on Reliable Distributed Systems, SRDS

2019, Lyon, France, October 1‑4, 2019. IEEE, 2019,
pp. 369–371. DOI: 10 . 1109 / SRDS47363 . 2019 .
00053. URL: https : / / doi . org / 10 . 1109 /
SRDS47363.2019.00053.

[11] Yue Guan and Naser Ezzati‑Jivan. “Malware Sys‑
tem Calls Detection Using Hybrid System”. In: Apr.
2021, pp. 1–8. DOI: 10.1109/SysCon48628.2021.
9447094.

[12] Prachi Deshpande, Subhash Chander Sharma,
Sateesh Kumar Peddoju, and S. Junaid. “HIDS: A
host based intrusion detection system for cloud
computing environment”. In: International Journal
of System Assurance Engineering and Management
9 (2018), pp. 567–576.

[13] Gozde Karatas and Ozgur Koray Sahingoz. “Neural
network based intrusion detection systems with
different training functions”. In: 2018 6th Interna‑
tional Symposium on Digital Forensic and Security
(ISDFS) (2018), pp. 1–6.

[14] Kamaldeep Singh, Sharath Chandra Guntuku, Ab‑
hishek Thakur, and Chittaranjan Hota. “Big Data
Analytics Framework for Peer‑to‑Peer Botnet De‑
tection Using Random Forests”. In: Information Sci‑
ences 278 (Sept. 2014), pp. 488–497. ISSN: 0020‑
0255. DOI: 10.1016/j.ins.2014.03.066. (Visited
on 06/20/2022).

[15] F. J. Mora‑Gimeno, H. Mora‑Mora, B. Volckaert, and
A. Atrey. “Intrusion Detection System Based on In‑
tegrated SystemCalls Graph andNeural Networks”.
In: IEEE Access 9 (2021), pp. 9822–9833. ISSN:
2169‑3536. DOI: 10.1109/ACCESS.2021.3049249.

[16] Chin‑Wei Tien, Tse‑Yung Huang, Chia‑Wei Tien,
Ting‑Chun Huang, and Sy‑Yen Kuo. “KubAnomaly:
Anomaly Detection for the Docker Orchestration
PlatformwithNeural NetworkApproaches”. In:En‑
gineering Reports 1.5 (2019), e12080. ISSN: 2577‑
8196. DOI: 10 . 1002 / eng2 . 12080. (Visited on
05/08/2022).

[17] José Flora, Paulo Gonçalves, and Nuno Antunes.
“Using Attack Injection to Evaluate Intrusion De‑
tection Effectiveness in Container‑based Systems”.
In:2020 IEEE25th Paciϔic Rim International Sympo‑
sium on Dependable Computing (PRDC). Dec. 2020,
pp. 60–69. DOI: 10.1109/PRDC50213.2020.00017.

[18] Olufogorehan Tunde‑Onadele, Jingzhu He, Ting
Dai, and Xiaohui Gu. “A Study on Container Vulner‑
ability Exploit Detection”. In: 2019 IEEE Interna‑
tional Conference on Cloud Engineering (IC2E). June
2019, pp. 121–127. DOI: 10 . 1109 / IC2E . 2019 .
00026.

[19] Siddharth Srinivasan, Akshay Kumar, Manik Maha‑
jan, Dinkar Sitaram, and Sanchika Gupta. “Proba‑
bilistic Real‑Time Intrusion Detection System for
Docker Containers”. In: SSCC. 2018.

Sever et al.: A Kubernetes dataset for misuse detection 

©International Telecommunication Union, 2023 387

https://doi.org/10.1109/ICDCS.2018.00076
https://doi.org/10.1109/ICDCS.2018.00076
https://doi.org/10.1016/j.jss.2018.09.082
https://doi.org/10.1016/j.jss.2018.09.082
https://doi.org/10.1109/MCC.2016.114
https://doi.org/10.1016/j.hcc.2022.100050
https://doi.org/10.1016/j.hcc.2022.100050
https://doi.org/10.1109/MSEC.2021.3094726
https://doi.org/10.1109/TCC.2017.2702586
https://doi.org/10.1109/TCC.2017.2702586
https://doi.org/10.1007/s10723-016-9366-y
https://doi.org/10.1007/s10723-016-9366-y
https://doi.org/10.1109/MNET.2019.1800358
https://doi.org/https://doi.org/10.1016/j.jisa.2018.05.002
https://doi.org/https://doi.org/10.1016/j.jisa.2018.05.002
https://www.sciencedirect.com/science/article/pii/S2214212617306002
https://www.sciencedirect.com/science/article/pii/S2214212617306002
https://doi.org/10.1109/SRDS47363.2019.00053
https://doi.org/10.1109/SRDS47363.2019.00053
https://doi.org/10.1109/SRDS47363.2019.00053
https://doi.org/10.1109/SRDS47363.2019.00053
https://doi.org/10.1109/SysCon48628.2021.9447094
https://doi.org/10.1109/SysCon48628.2021.9447094
https://doi.org/10.1016/j.ins.2014.03.066
https://doi.org/10.1109/ACCESS.2021.3049249
https://doi.org/10.1002/eng2.12080
https://doi.org/10.1109/PRDC50213.2020.00017
https://doi.org/10.1109/IC2E.2019.00026
https://doi.org/10.1109/IC2E.2019.00026


[20] Marcos Cavalcanti, Pedro Inacio, and Mario Freire.
“Performance Evaluation of Container‑Level
Anomaly‑Based Intrusion Detection Systems for
Multi‑Tenant Applications UsingMachine Learning
Algorithms”. In: The 16th International Conference
on Availability, Reliability and Security. ARES 2021.
New York, NY, USA: Association for Computing
Machinery, Aug. 2021, pp. 1–9. ISBN: 978‑1‑4503‑
9051‑4. DOI: 10.1145/3465481.3470066. (Visited
on 05/08/2022).

[21] MITRE. NVD ‑ CVE‑2019‑20933.
https://nvd.nist.gov/vuln/detail/CVE‑2019‑
20933. Nov. 2020. (Visited on 04/07/2023).

[22] MITRE. NVD ‑ CVE‑2019‑5736.
https://nvd.nist.gov/vuln/detail/CVE‑2019‑
5736. Feb. 2019. (Visited on 04/07/2023).

[23] MITRE. NVD ‑ CVE‑2020‑13379.
https://nvd.nist.gov/vuln/detail/CVE‑2020‑
13379. June 2020. (Visited on 04/06/2023).

[24] Kubernetes. NVD ‑ CVE‑2021‑25741.
https://nvd.nist.gov/vuln/detail/CVE‑2021‑
25741. Sept. 2021. (Visited on 04/06/2023).

[25] MITRE. NVD ‑ CVE‑2021‑30465.
https://nvd.nist.gov/vuln/detail/CVE‑2021‑
30465. May 2021. (Visited on 04/06/2023).

[26] GitHub, Inc. NVD ‑ CVE‑2021‑43798.
https://nvd.nist.gov/vuln/detail/CVE‑2021‑
43798. Dec. 2021. (Visited on 04/07/2023).

[27] David M J Tax and Robert P W Duin. “Data Domain
Description Using Support Vectors”. In: (1999).

AUTHORS
Yigit Sever received a B.S. de‑
gree in computer engineering at
TED University, Turkey, in 2016,
and an M.S. degree in computer
engineering at Hacettepe Uni‑
versity, Turkey, in 2019. He is
currently a Ph.D. candidate in
computer engineering at Mid‑
dle East Technical University
(METU), Turkey, where he has

also been working as a research assistant since 2020. His
research interests include cloud security with a strong fo‑
cus on container security, user and Internet privacy and
distributed systems. He is amember ofWireless Systems,
Networks and Cybersecurity Laboratory, METU.

Adnan Harun Dogan received
a B.S. degree in computer engi‑
neering at Middle East Techni‑
cal University (METU), Turkey,
in 2022. He is currently an M.S.
student at METU, where he has
also been working as a research
assistant since 2022. His re‑
search interests include discrete
combinatorial optimization for

adaptive learning methods and uncertainty estimation in
deep learning, with a strong focus on discrete non‑convex
optimization. He is a member of Image Processing Labo‑
ratory, METU.

ITU Journal on Future and Evolving Technologies, Volume 4, Issue 2, June 2023

©International Telecommunication Union, 2023388

https://doi.org/10.1145/3465481.3470066

	A KUBERNETES DATASET FOR MISUSE DETECTION
	1. INTRODUCTION
	2. RELATED WORK
	3. DATASET
	3.1 Environment setup
	3.2 Attack scenarios

	4. PRELIMINARY ANALYSIS
	5. CONCLUSION
	ACKNOWLEDGEMENT
	REFERENCES
	AUTHORS



