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Abstract – With the commercialization of ϔifth‑generation (5G), the rapid popularity of mobile Over‑The‑Top (OTT) voice
applications brings huge impacts on the traditional telecommunication voice call services. Tunnel encryption technology
such as Virtual Private Networks (VPNs) allow OTT users to escape the supervision of network operators easily, which may
cause potential security risks to cyberspace. To monitor harmful OTT applications in the context of 5G, it is critical to identify
encrypted OTT voice trafϔic. However, there is no comprehensive study on typical OTT voice trafϔic identiϔication. This paper
mainly focuses on analyzing OTT voice trafϔic in the 5G network speciϔically. We propose employing Long Short‑Term Mem‑
ory (LSTM) and Convolutional Neural Networks (CNNs) to identify encrypted 5G OTT voice trafϔic, study the identiϔication
performance of used deep learningmethods in three different scenarios. To verify the performance of the proposed approach,
we collect 28 types of typical OTT and non‑OTT voice trafϔic from the experimental 5G network. Experimental results prove
the effectiveness and robustness of the proposed approach in encrypted 5G OTT voice trafϔic identiϔication.
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1. INTRODUCTION
In recent years, most Internet enterprises around the
world have devoted themselves to providing OTT ser‑
vices, which refer to various services developed by these
companies based on the Internet, including voice, video,
and text message services. This paper mainly focuses on
OTT voice applications and the various OTT voice trafϐic
generated by them. These OTT voice applications typ‑
ically use various encryption protocols for data trans‑
fer. 5G is characterized by low latency, high reliability,
and large connections [1] and provides the possibility for
high‑quality OTT voice and video calls anytime and any‑
where on most platforms, fundamentally changing the
consumer experience. Facing the 5G era, OTT voice appli‑
cations have a broad prospect, and their types, quantities
and trafϐic are bound to grow dramatically. OTT voice ap‑
plications commonly have features with data encryption,
deployment ϐlexibility and are not controlled by the op‑
erator. Under the condition of the OTT service provider
which does not open data monitoring interfaces, the traf‑
ϐic is difϐicult to be effectively regulated, leading to OTT
voice applications that may illegally utilized for fraud and
malicious information diffusion. Due to the increasing
awareness of network security and privacy protection,
more and more smartphone users begin to access the In‑
ternet through VPN.
The rapid growth of encryptedmobile trafϐic bringsmany
challenges to the security of the 5G wireless network [2].
In non‑cooperative scenarios, OTT voice applicationsmay
be utilized to cause the following security risks:

• Spread false and harmful information. Criminals
may use end‑to‑end encrypted OTT voice services

provided by QQ, WeChat, Skype, WhatsApp, etc., to 
evade the supervision of traditional telecommunica‑ 
tion network voice services. Thus spreading 
harmful information that endangers national 
stability and unity.

• Engagement in drug trafϐicking, money laundering
and terrorist activities, where encrypted voice
applications can provide customers with
anonymous and free encrypted services.

• Network fraud; the use of artiϐicial intelligence
technology for voice synthesis, face change, with
forged voice or video contact with the victim, causing
severe deception.

• Attack the network by forging the trafϐic on the real
network, posing threats to network security.

Javier et. al [3] investigated potential security risks, 
taking into consideration its functionality layers and the 
operational requirements in order to achieve a more 
complete and useful classiϐication.
For network operators, a clear understanding of trafϐic 
in the network is indispensable to manage the network 
safely and effectively [4]. Understanding trafϐic manage‑ 
ment systems [5] should be taken as a basis for analyzing 
5G uses cases and their requirements.
The monitoring and analysis of network trafϐic have al‑ 
ways been hot topics to researchers. The rule‑based clas‑ 
siϐication methods support searching for speciϐic strings 
or regular expressions in the packets. Papadogiannaki et 
al. [6] used rule‑based language expressions to identify 
OTT application events, such as sending messages, audio, 
and video calls through encrypted trafϐic. But they used
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only the metadata of the data packet and ignored the 
information provided by the payload. Meanwhile, 
detecting the content of data packets may involve 
privacy protection issues. Machine learning approaches 
do not require inspecting the content of data packets 
but identify encrypted trafϐic based on expert 
knowledge directly, which overcome the rule‑based 
method’s shortcomings of frequent updates of regular 
expressions and the risks of user privacy leaking. ISLAM 
[7] still used statistical features extracted artiϐicially as
the analysis object when identifying VPN and Tor VoIP
trafϐic, thus losing the advantages of deep learning to
automatically extract features. In addition to the above
problems, one challenging problem of classifying
network trafϐic is the imbalanced property of network
data [8]. It is often difϐicult for researchers to obtain
ground truth trafϐic, and the inherent characteristics of
the Internet will also lead to an imbalanced distribution of
data categories [9].  This paper is an extension of our
previous work [10], which only considered OTT VPN
voice trafϐic. This pa‑ per mainly focuses on the
classiϐication of OTT voice trafϐic under complex 5G
network trafϐic. Since the service providers do not
provide trafϐic monitoring interfaces, we build a 5G
Non‑Standalone (NSA) network to obtain 28 types of
typical 5G OTT voice and non‑OTT voice trafϐic. Without
using features extracted artiϐicially, we deploy
lightweight LSTM, 1‑Dimension CNN (1D‑CNN) [11], and
2‑Dimension CNN (2D‑CNN) [12] networks to perform
temporal and spatial analysis of 5G OTT VPN voice trafϐic,
respectively. We input the original bytes stream informa‑ 
tion into the network directly, which guarantees the
authenticity and integrity of the data to the greatest
extent. It is convenient for network administrators to
legally supervise service providers and maintain
network security with these methods. The main
contributions of our paper can be summarized as follows:

• We set up a 5G NSA experimental network, and
collect 28 types of trafϐic including OTT voice trafϐic
and non‑OTT voice trafϐic in the network. We
establish a dataset with OTT voice trafϐic and
non‑OTT voice trafϐic, among which 10 types are
OTT voice trafϐic encrypted through VPN, six types
are ordinary OTT voice and video trafϐic, and the
remaining 12 types are non‑OTT voice trafϐic.

• We verify that VPN voice trafϐic and non‑VPN voice
trafϐic are different by using the ISCX VPN‑non VPN
dataset. In the experimental results, binary classiϐi‑ 
cation accuracy exceeds 99.9% and the accuracy of
eight classiϐications exceeds 97.1%.

• We propose LSTM, 1D‑CNN [11], and 2D‑CNN [12] as
feasible strategies, and use Random Forest (RF) and
Logistic Regression (LR) as the baseline models, to
analyze the VPN OTT voice trafϐic. The experiment
results reveal that LSTM classiϐies 5G OTT VPN voice
trafϐic with an accuracy of up to 98.30%.

• We propose LSTM, 1D‑CNN, and 2D‑CNN to identify
the OTT voice and non‑OTT voice trafϐic. The
experimental results of 2 classiϐications show that
both the proposed deep learning methods can
effectively distinguish OTT and non‑OTT voice
trafϐic, and the results of 28 classiϐications show that
the classiϐication performance of lightweight LSTM
is better than that of 1D‑CNN and 2D‑CNN.

In general, compared with previous work, we consider a 
more complex trafϐic scenario and collect more types of 
network trafϐic. The remainder of this paper is organized 
as follows. Section 2 is related work. Section 3 mainly 
introduces the proposed network framework and basic 
knowledge. Section 4 is the experimental evaluation, and 
the conclusion is in Section 5.

2. RELATED WORK
The reason for the continuous growth of encrypted trafϐic 
is the increasing awareness of privacy protection among 
users and the increasing demand for encrypted data 
transmission. The diversity of encryption algorithms and 
encryption methods brings great trouble to the 
identiϐication of network trafϐic. At present, traditional 
classiϐication methods encounter questions in the face 
of encrypted trafϐic, and the identiϐication of encrypted 
trafϐic has become a headache for operators and 
service providers. Traditional trafϐic classiϐication 
methods have been difϐicult to meet the needs of current 
networks’ management requirements. Artiϐicial 
intelligence technology, which has excellent performance 
in image, language, text processing and other aspects, 
seems to be able to solve this problem. From the 
perspective of Artiϐicial Intelligence (AI), network trafϐic 
classiϐication methods mainly fall into the following 
categories: rule‑based, traditional machine 
learning‑based and deep learning‑based methods. AI 
technology will play a fundamental role in effectively 
managing the dynamic ϐlow of information for future 
applications[3].

2.1 Rule‑based methods for trafϐic 
classification

The trafϐic classiϐicationmethods based on port and Deep
Packet Inspection (DPI) belong to the rule‑basedmethod,
which is characterized by matching classiϐication accord‑
ing to ϐixed rules determined manually. The port‑based
approach identiϐies trafϐic by associating ports in the
TCP/UDP header with TCP/UDP port numbers assigned
by Internet Assigned Numbers Authority (IANA). How‑
ever, the random port strategies, port camouϐlage tech‑
nologies, tunneling technologies, and network address
translation protocols make the port‑based method im‑
possible to identify encrypted trafϐic. Papadogiannaki et
al. [6] focused on the identiϐication of OTT application
events using patterns of packet size sequences. They de‑
veloped a DPI engine that matched and reported events
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Fig. 1 – The framework of the proposed method

in encrypted network trafϐic effectively by using an auto‑
matic consumption packet size to match a rule set with
a packet train pattern on traditional substring and port
number patterns.

2.2 Machine learning for encrypted trafϐic
classiϐication

The machine learning‑based approach classiϐies 
encrypted trafϐic based on domain expert knowledge, 
which relies heavily on features extracted manually. For 
a long time, machine learning has been the main 
technology of encrypted trafϐic classiϐication in 
academia. To enhance network trafϐic supervision, Yao 
et al. [13] proposed a new trafϐic classiϐication model 
based on Gaussian mixture models and hidden Markov 
models, MGHMM, which used a K‑means clustering 
algorithm, hidden Markov model, and mixed Gaussians 
to reduce the details of the ϐlow gradually. The 
experiments showed a good result on the performance 
of the proposed scheme. Taylor et al. [14] proposed a 
ϐingerprint scheme for Android applications with 
statistical characteristics of packet length, called 
AppScanner. The system had the function of automatic 
ϐingerprint identiϐication and real‑time identiϐication.

2.3 Deep learning for encrypted trafϐic 
classiϐication

Deep learning selects features through training automati‑
cally, whichmakes it an ideal trafϐic classiϐicationmethod.
Compared with traditional machine learning methods,
deep learning has a relatively high learning ability and can
learn high complex patterns. Nowadays, Internet users
prefer to communicate through encrypted channels. Due
to the great growth of using tunnel and anonymous net‑
works, network management requires new technologies
to monitor and analyze network trafϐic. Islam et al. [7]
analyzed the tunnel (VPN) and anonymous (Tor) network
trafϐic based on deep learning technologies (Multi‑layer
perceptron, 1D‑CNN, and LSTM). First, the captured raw
trafϐic is preprocessed, and a 15‑second FLT is used to
generate a dataset based on FSTFs. The selected FSTFs
are then used to distinguish between VPN VoIP trafϐic
and Tor VoIP trafϐic. Wang et al. [11] proposed an end‑
to‑end encryption trafϐic classiϐication method based on

a one‑dimensional convolutional neural network. The 
method integrates feature extraction, feature selection, 
and classiϐier into a uniϐied end‑to‑end framework, 
aiming to learn the nonlinear relationship between the 
original input and the expected output automatically. 
D’Angelo et al. [15] proposed a deep neural network 
structure based on Autoencoders (AEs) and studied the 
following combinations, CNN, LSTM, CNN‑LSTM, 
ConvLSTM, and Stack‑CNN LSTM. CNN is used for 
spatial feature extraction, and LSTM is used for time 
feature extraction. The introduction of CNN and LSTM 
layers in a Sparse Autoencoder (SAE) can signiϐicantly 
improve the classiϐication performance. Aceto et al. 
[16] proposed a new multi‑ mode framework for
encrypting trafϐic, MIMETIC, which can take full
advantage of the heterogeneity of trafϐic data, overcome
the performance limitations of existing trafϐic
classiϐication schemes based on single‑mode deep learn‑ 
ing, and support challenging mobile scenarios. Vu et al.
[17] proposed a deep network for unsupervised learn‑ 
ing called Auxiliary Classiϐier Generative Adversarial Net‑ 
work to generate synthesized data samples for balancing
between the minor and the major classes.
Inspired by the above deep learning approaches, our
study also uses raw bytes stream data to classify en‑ 
crypted OTT voice trafϐic in an end‑to‑end way. The in‑
ϐluence of sample sizes and the deep learning methods on
classiϐication performance are taken into consideration.
3. ENCRYPTED OTT VOICE TRAFFIC

CLASSIFICATION FRAMEWORK

3.1 The proposed framework
Fig. 1 outlines our encrypted trafϐic identiϐication 
framework, which includes two phases.
Phase 1 consists of data collection and data processing. 
For some reason, we are unable to capture the unen‑ 
crypted VPN trafϐic of some OTT voice applications, for 
example, WhatsApp. In order to explore the impact of 
VPN on voice application trafϐic, we choose to conduct ex‑ 
ploratory experiments with data from a public dataset, 
although this trafϐic is not 5G trafϐic. We ϐirstly choose 
the VPN and non‑VPN voice trafϐic from the ISCX VPN‑ 
non VPN dataset. Then we build an experimental 5G NSA 
network, detailed in Fig. 2, to acquire OTT voice traf‑ 
ϐic and other types of trafϐic. The data processing tool
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USTC‑TK2016 developed by Wang et al. [11] is used 
to process this trafϐic. The process is divided into four 
stages. They are trafϐic split, trafϐic clean, image 
generation, and IDX conversion. It should be noted 
that the IDX3 ϐile processed by this tool contains the 
original bytes stream information of the data, not the 
characteristics of the streams or packets.
Phase 2 is the classiϐication of encrypted OTT voice trafϐic; 
there are mainly three different scenarios. We use a pink 
box to represent the ISCX VPN‑non VPN voice data, which 
is seen as scenario A in this study. Using 1D‑CNN, 2D‑CNN 
and random forest to classify the VPN and non‑VPN voice. 
We use the blue box to represent our own data. Scenario B 
is 10 classiϐications of 5G OTT VPN voice trafϐic, using 
logistic regression and random forest as the baseline 
mod‑ els, and using LSTM, 1D‑CNN, and 2D‑CNN to 
identify this trafϐic. Scenario C is two classiϐications 
and 28 classiϐi‑ cations of 5G OTT and non‑OTT voice 
trafϐic, LSTM, 1D‑ CNN and 2D‑CNN are used to identify 
this trafϐic. LSTM extracts the temporal characteristics 
of the trafϐic automatically, while CNN extracts the 
spatial characteristics and then they give predictions 
based on their learning results respectively.

3.2 5G NSA network
According to the deϐinition of a 5G network by 3GPP, 
Non‑Standalone (NSA) and Standalone (SA) are two 
standard options classiϐied according to different 5G 
network deployment architectures. The NSA network is 
a heterogeneous network formed by adding 5G base 
stations to the 4G core network. SA uses a 5G core 
network and 5G new air technology, which is a more 
advanced communication network. 
Due to the current 5G technology standards are not uni‑ 
ϐied, the existing open source 5G network functions are 
not stable and relatively single. In terms of academic 
research, 5G OAI is a widely used open source project 
at present. Therefore, this paper selects a 5G OAI open 
source project to build the laboratory 5G network 
environment. Until we ϐirst ϐinish this research, 5G OAI 
only has an NSA network, so we choose to build an 
experimental 5G NSA network.
Therefore, when building the experimental network, we 
use the 4G core network as the 5G NSA core network, 
gNodeB, and eNodeB as the 5G and 4G base stations, 
respectively. We deploy two HP‑Z6‑G4 workstations 
with the Ubuntu 18.04 system, one of which is equipped 

with Evolved Packet Core (EPC) and eNodeB as the 
core net‑ work and the other is equipped with gNodeB. 
The work‑ station uses Intel Xeon(R) Silver 4210 CPU 
with 2.20GHz, 40 cores, and 16GB RAM. Besides, two 
Ettus‑USRP B210 are used as RF‑front end of eNodeB 
and gNodeB respectively to transmit data.
The experimental 5G NSA network system is shown in Fig
2. In this paper, as an administrator, we use Wireshark 
to capture experimental data from the SGi interface. The 
following are the components of EPC:

• Mobility Management Entity (MME): responsible for 
management and control.

• Service Gateway (SGW): in charge of handling 
business processes.

• Packet Data Network Gateway (PGW): responsible 
for interfacing with the Internet.

• Home Subscriber Server (HSS): System database, 
responsible for storing key user information.

• SGi: It is the user plane interface of a Packet Data Net‑ 
work (PDN). It realizes functions such as protocol en‑ 
capsulation/decapsulation and address conversion.

3.3 Data collection
In this study, there are three different scenarios, which
require different types of trafϐic.
In scenario A, we select eight types of VPN voice and non‑
VPN voice trafϐic in the ISCX VPN‑non VPN dataset [18] to
make proof experiments, to explore whether VPN has an
impact on voice trafϐic. Details about the dataset can be
seen in Table 1. The size of the dataset used is approxi‑
mately 1.04GB.
Due to the imbalance between the various voice applica‑
tions in the above ISCX dataset, using only a single dataset
hinders the research. So in scenario B, to explore the dif‑
ference between different 5G OTT VPN voice trafϐic in de‑
tail, we use two 5G mobile phones connected to the 5G
base station through VPN. Then, we capture users’ traf‑
ϐic from the SGi interface, which is shown in Fig. 2, as the
operator’s administrator. We collect the OTT voice trafϐic
of 10 OTT applications in total, and the detailed informa‑
tion is shown in Table 2. The reasonwhywe choose these
10 types of typical OTT voice applications is that they are
all very popular OTT voice applications in the world at
present, and it is representative to choose them as the
research objects. The cumulative collection time of each
OTT VPN voice trafϐic ranges from 130 minutes to 523
minutes, and the total data packet size is about 5.15GB.
The limitation of the above two scenarios is that all the
trafϐic are OTT voice trafϐic, and the classiϐication perfor‑
mance under complex trafϐic is not taken into consider‑
ation. So in scenario C, we collect 28 types of trafϐic in‑
cluding OTT voice trafϐic and non‑OTT voice trafϐic in our
experimental 5GNSA network, amongwhich 16 types are
OTTvoice trafϐic, and the remaining 12 types are non‑OTT
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voice trafϐic. The information of 5G OTT and non‑OTT
voice trafϐic data is shown in Table 3, which includes not
only various OTT voice trafϐic, but also various non‑OTT
voice trafϐic such as live stream, video stream, shopping,
and short video.

Table 1 – Scenario A, details of ISCX VPN‑non VPN voice trafϐic

Trace Type Name Size F_A S_A

non‑VPN Voice

Facebook 225MB 6132 5833
Hangouts 268MB 5501 5202
Skype 113MB 3715 3281

Voipbuster 111MB 1554 846

VPN Voice

Facebook_VPN 5.72MB 278 139
Hangouts_VPN 149MB 549 278
Skype_VPN 93.9MB 993 515

Voipbuster_VPN 90.8MB 94 50
Sum 1.04GB 18816 16144

Table 2 – Scenario B, details of 5G OTT VPN voice trafϐic

Trace Type Name Size F_A S_A

VPN Voice

ICQ 725MB 12396 6274
KakaoTalk 453MB 13300 6802

Line 596MB 13844 7089
QQ 432MB 14243 7167

Skype 661MB 13258 6828
Telegram 289MB 13607 6879
ToTok 138MB 13295 6678
Viber 296MB 12815 6506
WeChat 1.23GB 13877 6971

WhatsApp 419MB 12850 6517
Sum 5.15GB 133485 67711

3.4 Trafϐic representation and visualization
The two most common choices for trafϐic representation
are sessions and ϐlows. A session is a ϐlow unit divided
based on the ϐive‑tuple (source IP, source port, destina‑
tion IP, destination port, and transport layer protocol).
The difference between a ϐlow and a session is that a ϐlow
only contains trafϐic in onedirection, i.e., the source IP and
destination IP ports are not interchangeable. At the same
time, the bytes in each data packet can be divided into
multiple protocol layers. To solve the problem of repre‑
sentation of trafϐic, Wang et al. [11] used layer 7 in the
ISO/OSI model, layer 4 (L7) in the TCP/IP model, or all
protocol layers (ALL) to represent trafϐic. They proposed
four possible representation types: ”Session + L7”, ”Ses‑
sion + ALL”, ”Flow + L7” and ”Flow + ALL”. Inspired by
their work, we use ”Session + ALL” and ”Flow + ALL” to
represent our trafϐic in this paper. In the following parts
of the paper, we abbreviate ”Session + ALL” as ”S_A” and
”Flow + ALL” as ”F_A”. We only use the ϐirst 784 bytes of
each session or ϐlow, the excess part will be trimmed, and

the part less than 784 bytes will be ϐilled with zeros. 
After data packets are split, data extraction, decimal 
conversion and gray image generation are carried out. 
The visualization results represented by ”S_A” are shown 
in Fig. 3, and the size of each gray image is 28*28 = 784 
bytes. Each pixel with a gray value has an integer 
between 0 and 255. It can be seen from Fig. 3(a) that 
ISCX VPN and non‑VPN voice trafϐic in scenario A are 
obviously different from each other. Therefore, we can 
say that VPN has an impact on voice trafϐic. For scenario 
B, as is shown in Fig. 3(b), the visualization results of 
different OTT VPN voice trafϐic are very similar, because 
the trafϐic through VPN may use the same encryption 
technology and have the same ϐive tuples. Fig. 3(c) and 
Fig. 3(d) show that the nature of OTT voice trafϐic 
changes a lot through VPN. Because we can see from the 
gray image that VPN changes the content of the QQ voice 
trafϐic. Fig. 3(e) shows the trafϐic visualization results of 
scenario C, as we can see that OTT voice are also very 
similar, and OTT non‑OTTtrafϐic are different in some 
way. This may imply that we can easily distinguish 
between OTT and non‑OTT voice trafϐic using deep 
learning.
After processing the ISCX VPN‑non VPN voice, OTT VPN 
voice trafϐic and OTT non‑OTT voice trafϐic, the results 
obtained are shown in Table 1, Table 2 and Table 3 
respectively.
From Table 1, we can see that ISCX VPN‑non VPN voice 
trafϐic is very unbalanced, taking the representation of 
”F_A” as an example, ranging from 94 to 6132 for ϐlows. 
Table 2 shows the details of the processed 5G OTT VPN 
voice data. Because the number of samples can be con‑ 
trolled effectively in the laboratory network, a similar 
number of samples are collected for each type of OTT 
voice applications. Each type of OTT VPN voice has 
balanced samples. Table 3 shows the details of 
processed 5G OTT and non‑ OTT voice trafϐic data. Each 
type of trafϐic is very imbalanced too, ranging from 154 
to 3000 for sessions.

3.5 Deep learning models
Deep learning models can learn high‑level features from 
the input raw data automatically and they overcome the 
problems of feature design in traditional machine 
learning. Many recent studies [15] [16] [17] prove 
the effectiveness of deep learning methods for 
classifying encrypted trafϐic.

3.5.1 CNN
A Convolutional Neural Network (CNN) is a kind of 
network that contains convolutional computation with a 
certain depth of network structure; it is one of many 
deep learning networks. CNN can be divided into 
two processes, forward propagation and 
back propagation. Forward propagation includes ϐive 
parts: input layer, convolution layer, activation layer,
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Table 3 – Scenario C, details of 5G OTT and non‑OTT voice trafϐic

Num. Name S_A Category Trace Type Num. Name S_A Category Trace Type
0 Bilibili 327 video stream non‑OTT voice 14 Sohu_News 932 news non‑OTT voice
1 Dingding 1159 voice meeting OTT voice 15 Soul 1723 voice call OTT voice
2 Douyin 154 short video non‑OTT voice 16 Taobao 331 shopping non‑OTT voice
3 Douyu 3000 live stream non‑OTT voice 17 Telegram_VPN 3000 voice call OTT voice
4 Huya 3000 live stream non‑OTT voice 18 Tencent_Meeting 1272 voice meeting OTT voice
5 ICQ_VPN 3000 voice call OTT voice 19 Tencent_Video 616 video stream non‑OTT voice
6 iQiYi_Video 944 video stream non‑OTT voice 20 ToTok VPN 3000 voice call OTT voice
7 JD 3000 shopping non‑OTT voice 21 Viber_VPN 3000 voice call OTT voice
8 KakaoTalk_VPN 3000 voice call OTT voice 22 WeChat_Video 584 voice call OTT voice
9 Kuaishou 1553 short video non‑OTT voice 23 WeChat_VPN 3000 voice call OTT voice
10 Line_VPN 3000 voice call OTT voice 24 WhatsApp_VPN 3000 voice call OTT voice
11 QQ_Voice 828 voice call OTT voice 25 Youku 624 video stream non‑OTT voice
12 QQ_VPN 3000 voice call OTT voice 26 YouTube 1385 video stream non‑OTT voice
13 Skype_VPN 3000 voice call OTT voice 27 Zoom 1052 voice meeting OTT voice

Sum 52484

ICQ KaKao Talk Line QQ Skype

Telegram ToTok Viber WeChat WhatsApp

(c) Virtualization results of non
VPN QQ voice traffic

(d) Virtualization results of VPN
QQ voice traffic

(b) Virtualization results of 5G OTT VPN

Facebook Hangouts Skype Voipbuster

VPN
Facebook

VPN
Hangouts

VPN
Skype

VPN
Voipbuster

(a) Virtualization results of ISCX VPN non-VPN

(e) Virtualization results of 28 types traffic

0 1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

non-VPN QQ VPN QQ

Fig. 3 – Visualization results of processed datasets. Number 0‑27 respectively represent 28 types of trafϐic in Table 3.
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pooling layer and full connection layer. The input layer
is responsible for the input of data, and the format of the
input data may be different when different networkmod‑
els are used. The convolutional layer is an important part
in CNN. The main function of the convolutional layer is to
extract features. The shallow convolutional layer is used
to extract basic features of the image, while the deep con‑
volutional layer is used to extract higher‑order features
of the image. The convolution operation is a linear trans‑
lation invariance operation. If the weights of the data are
different, the feature information extracted from the orig‑
inal data will be different. The function of the full connec‑
tion layer is to reduce the dimension of the features out‑
put by the convolution layer and the pooling layer to fur‑
ther reduce the computational complexity. Meanwhile,
the local features learned by the deep network are inte‑
grated to obtain the global features. The Back Propaga‑
tion (BP) algorithm [19] usually uses the gradient descent
method to ϐind the optimal solution of themodel. The gra‑
dient descent methods mainly include batch gradient de‑
scent, stochastic gradient descent and mini‑batch gradi‑
ent descent.
Fig. 4 is a typical LeNet5 network. This model was pro‑
posed by Yann LeCun [20]. It was ϐirst used for handwrit‑
ten digit recognition and is now widely used in computer
science. Similarly, the model is also effective in identify‑
ing encrypted trafϐic. We choose this model as our CNN
classiϐier. The speciϐic parameters are shown in Fig. 4.
Changing the relevant parameters can make the 1D‑CNN
model become a 2D‑CNNmodel.

Input 

Convolution layer 1,  filter=1*25, stride=1, activation=Relu

Max pooling layer 1,size= filters=1*3, stride=3

Convolution layer 2, filters=1*25, stride=1, activation=Relu

Max pooling layer 2, filters=1*3, stride=3

Full connection layer 1

Full connection layer 2

Softmax classifier

size=784*1

size=784*32

size=262*32

size=262*64

size=88*64

size=1024

size=2/8/10/28

size=2/8/10/28

Output 

Fig. 4 – A typical LeNet5(1D‑CNN) model used in [11]

3.5.2 LSTM
LSTM was proposed by Sepp Hochreiter and Jü rgen 
Schmidhuber [21] in 1997. The LSTM unit is generally 
composed of a cell, an input gate, an output gate and a 
forget gate. The cell can remember the value at any time 
interval; three gates control the input and output 

information of the cell.
LSTM relies on the cell state throughout the hidden layer 
to achieve information transfer between hidden units, 
with only a small amount of linear intervention and 
changes. LSTM introduces a ”gate” mechanism to add or 
delete cell state information. The ”gate” mechanism con‑ 
sists of a 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 activation function layer and a vector 
dot product operation. The output of the 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 layer 
controls the ratio of the transfer information.

A A A A
……

th

th2h1h0h

tX2X1X0X
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
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  tanh

tanh
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tf
ti

tC
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N=128

W

U
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Fig. 5 – Structure of LSTMmodel

Remark: 𝑥𝑡 is the input at time 𝑡 , ℎ𝑡 is the output at time
𝑡,𝑈 ,𝑉 and𝑊 are the connectionweights, 𝑏 is the bias, 𝜎 is
the activation function and is usually 𝑇 𝑎𝑛ℎ or 𝑆𝑖𝑔𝑚𝑜𝑖𝑑.
Forget gate: LSTM controls the degree of forgetting of
cell state information through a forget gate and outputs
the current state of forgetting weight, which depends on
ℎ𝑡−1and 𝑥𝑡.

𝑓𝑡 = 𝜎 (𝑈𝑓𝑥𝑡 + 𝑊𝑓ℎ𝑡−1 + 𝑏𝑓) (1)
Input gate: LSTM controls the input receiving the degree
of the cell state through the input gate and output the
weights of the current input information. Input gate de‑
pends on ℎ𝑡−1 and 𝑥𝑡.

𝑖𝑡 = 𝜎 (𝑈𝑖𝑥𝑡 + 𝑊𝑖ℎ𝑡−1 + 𝑏𝑖) (2)
State update:

𝐶𝑡 = tanh (𝑈𝐶𝑥𝑡 + 𝑊𝐶ℎ𝑡−1 + 𝑏𝐶) (3)

𝐶𝑡 = 𝑓𝑡 ⋅ 𝐶𝑡−1 + 𝑖𝑡 ⋅ 𝐶𝑡 (4)
The ”gate” mechanism adds or deletes cell state informa‑
tion, thus achieving long‑term memory.
Output gate: LSTM controls the recognition degree of cell
state output through the output gate. The output gate de‑
pends on ℎ𝑡−1 and 𝑥𝑡.

𝑜𝑡 = 𝜎 (𝑈𝑜𝑥𝑡 + 𝑊𝑜ℎ𝑡−1 + 𝑏𝑜) (5)
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ℎ𝑡 = 𝑜𝑡 ⋅ tanh (𝐶𝑡) (6)

To reduce the training cost asmuch as possible, we deploy
a lightweight LSTM model, of which consists one hidden
layer with 128 LSTM units and a 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 output layer.

4. EXPERIMENTAL EVALUATION

4.1 Evaluation metrics
The evaluation metrics used in this paper include accu‑
racy, precision, recall, and F1‑score. The metrics are de‑
ϐined as follows:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇 𝑃 + 𝑇 𝑁
𝑇 𝑃 + 𝑇 𝑁 + 𝐹𝑃 + 𝐹𝑁 (7)

𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇 𝑃
𝑇 𝑃 + 𝐹𝑃 (8)

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇 𝑃
𝑇 𝑃 + 𝐹𝑁 (9)

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 (10)

In (7) ‑ (10), 𝑇 𝑃 stands for true positive, i.e., the samples
of identifying 𝑋 as 𝑋. 𝐹𝑃 is false positive, i.e., the sam‑
ples of identifying not 𝑋 as 𝑋. 𝑇 𝑁 is true negative, i.e.,
the samples of identifying not 𝑋 as not 𝑋. 𝐹𝑁 is false
negative, i.e., the samples of identifying 𝑋 as not 𝑋.

4.2 Experiment design
Our paper designs three application scenarios, namely,
scenario A, scenario B and scenario C.
Scenario A is based on the ISCX VPN‑non VPN dataset,
from which we chose eight types of VPN and non‑VPN
voice trafϐic as research objects. Although this scenario
is not unfolded in the 5G context, it provides a theoretical
basis for our subsequent research. Scenario A consists of
Exp. I and Exp. II.
Exp. I: Based on the binary classiϐication problems of the
ISCXVPN‑nonVPNvoice dataset, themain purpose of this
experiment is to verifywhether VPNvoice trafϐic andnon‑
VPN voice trafϐic have different internal performances.
Exp. II: After obtaining the result of Exp. I, we explore
eight classiϐications on ISCX VPN‑non VPN voice trafϐic
further. The main purpose of Exp. II is to verify whether
there are differences in VPN voice trafϐic generated by dif‑
ferent applications.
Scenario B is based on our own dataset, which consists of
10 types of OTT voice trafϐic encrypted through VPN. We
select 10 typical OTT voice applications in the world as
the research objects. Scenario B consists of Exp. III and
Exp. IV.
Exp. III: The CNN models in Exp. I and Exp. II are ex‑
tended to the OTT VPN voice classiϐicationmodel directly,
and then the LSTM model is introduced. In Exp. III, we

conduct experiments on both ”S_A” and ”F_A” trafϐic 
representation methods. There are three 
sub‑experiments under each representation method. 
Each OTT application uses all the trafϐic samples 
(Sessions‑All, Flows‑All), 6000 samples of data 
(Sessions‑6K, Flows‑6K), and 3000 samples of data 
(Sessions‑3K, Flows‑3K) to explore the impact of sample 
sizes on trafϐic recognition performance. Exp. IV: We 
choose Sessions‑3K as the research object to explore 
the classiϐication performance of three deep learning 
algorithms (LSTM, 1D‑CNN, 2D‑CNN) in the case of a 
small number of samples (44.31% of the total 
sessions).
Scenario C is based on our own dataset too, it includes 
both OTT voice trafϐic and non‑OTT voice trafϐic, among 
which 16 types are OTT voice trafϐic, and the remaining 
12 types are non‑OTT voice trafϐic. Scenario C consists of 
Exp. V and Exp. VI. For each category of trafϐic, a 
maximum 3000 samples are selected as experimental 
data. For trafϐic with less than 3000 samples, all data of 
the category are selected for the experiment.
Exp. V: We choose at most of 3000 samples for each type 
of trafϐic as the research object to explore the 
classiϐication performance of LSTM, 1D‑CNN and 
2D‑CNN in the context of binary classiϐication of OTT and 
non‑OTT voice trafϐic. Exp. VI: As in Exp. V, we also 
select 3000 samples as the study object, where the task 
is to identify different OTT voices through the complex 
trafϐic environment. LSTM, 1D‑CNN and 2D‑CNN have 
been used as the deep learning methods.
The above six experiments are based on the open‑source 
library TensorFlow, the learning rate is 0.001, the training 
epoch is 100, 20% of the data is randomly selected as the 
test set, and the remaining 80% is used as the training set.

4.3 Experimental results
All the averages in the table are micro‑averages.

4.3.1 Experimental results of scenario A
Firstly, we conduct experiments with the public dataset 
ISCX VPN‑non VPN voice trafϐic as the research objects. 
Table 4 shows that the classiϐication test accuracy of 
Exp. I and Exp. II are quite high. Taking 2D‑CNN as an 
example, the lowest test accuracy of eight 
classiϐications also reaches 97.08% (for ”F_A”).

Table 4 – Scenario A, test accuracy of EXP. I and EXP. II

Task 2 Class (Exp. I) 8 Class (Exp. II)
Sample Type F_A S_A F_A S_A

1D‑CNN 0.9997 1.0000 0.9819 0.9848
2D‑CNN 0.9995 0.9991 0.9708 0.9793

RF 0.9981 0.9985 0.9421 0.9780

Exp. I proves that VPN voice trafϐic and non‑VPN voice
trafϐic are different in some way. This result means that
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Fig. 6 – Scenario B, Exp. III, test accuracy of using all samples, 6k samples 
and 3k samples of each method

VPN does have impact on trafϐic. Exp. II proves that VPN 
voice trafϐic generated by different applications is differ‑ 
ent. These are interesting results because we can start 
the classiϐication research of 5G OTT voice trafϐic based 
on these results.

4.3.2 Experimental results of scenario B
As for Exp. III, we do 30 experiments, and each experi‑ 
ment is repeated ϐive times to get the best experimental 
results to explore the impact of sample sizes on classiϐica‑ 
tion performance. All the experimental results of Exp. III 
are shown in Table 5 in the appendix.
It can be seen from Fig. 6 that when the quantity of sam‑ 
ples is reduced, the classiϐication test accuracy of ”F_A” 
trafϐic representation has a clear descending trend, and 
the performance of 2D‑CNN decreases the most (about 
5.24%). LSTM, 1D‑CNN, and RF also show somewhat of a 
decline, and the performance of LR just reϐlects the lim‑ 
itations of traditional machine learning methods in the 
face of encrypted trafϐic. In the trafϐic representation 
of ”S_A”, test accuracy decreases as the number of sam‑ 
ples decreases, but the maximum decrease is only 1.59%
(1D‑CNN). From this point of view, the number of sam‑ 
ples does affect the performance of trafϐic classiϐication. 
Therefore, the sample size for each application should 
also be taken into account when performing trafϐic clas‑ 
siϐication.
The results of Exp. III show that ”S_A” is a more effec‑ 
tive way of identifying trafϐic than ”F_A”, so in Exp. IV, 
Sessions‑3K is selected as a sample to examine the recog‑ 
nition performance of different deep learning models for 
each type of OTT VPN voice trafϐic. We use precision, re‑ 
call, and F1‑score to evaluate them, and the speciϐic re‑ 
sults obtained are shown in Table 6 in the appendix.
As shown in Fig. 7, the identiϐication effect of LSTM in 
Exp. IV is the best. The average accuracy, average re‑ 
call, and average F1‑score are the highest among the three

Fig. 7 – Scenario B, precision, recall and F1‑score of LSTM, 1D‑CNN and
2D‑CNN in Exp. IV

Fig. 8 – Scenario C, precision and recall in Exp. V

methods, reaching 97.68%. Taking the average F1‑score 
as an example, the average F1‑score of LSTM is 1.98%
and 2.79% higher than that of 1D‑CNN and 2D‑CNN. In 
fact, network trafϐic can be regarded as time‑varying data 
streams, which show their own natures in the distribution 
of time. Therefore, the lightweight LSTM model proposed 
in this study outperforms 1D‑CNN and 2D‑CNN in identi‑ 
fying OTT voice trafϐic.

4.3.3 Experimental results of scenario C

As seen in Fig. 8, the precision and recall of both OTT 
and non‑OTT voice trafϐic in Exp. V exceed 98%, and the 
recognition performance of OTT voice trafϐic is slightly 
better than that of non‑OTT voice trafϐic. The speciϐic 
data is in Table 7 in the appendix. The reason for this is 
that OTT voice has a greater similarity in some aspects. 
However, non‑OTT trafϐic is diverse and involves a wide 
range of areas, with large differences between each 
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Fig. 9 – Scenario C, F1‑score of 28 classiϐications using LSTM, 1D‑CNN and 2D‑CNN in Exp. VI

trafϐic. Overall, the identiϐication performance of LSTM 
for two classiϐications is slightly better than that of 
1D‑CNN and 2D‑CNN. Taking the average precision as an 
example, the average precision of LSTM is 99.80%, 0.84% 
and 0.7%higher than that of 1D‑CNN and 2D‑CNN 
respectively.

For 28 classiϐications in Exp. VI, from Fig. 9 we can clearly 
see that the classiϐication performance of LSTM is 
significantly better than that of 1D‑CNN and 2D‑CNN. 
As can be seen from Table 8 in the appendix, taking 
the aver‑ age F1‑score as an example, the F1‑score of 
LSTM reached 98.58%, respectively 10.92% and 11.55% 
higher than 1D‑ CNN and 2D‑CNN.

In scenario C, Wechat, QQ, Tencent Meeting and Tencent 
Video are all products of Tencent company, so they may 
adopt some similar trafϐic encryption methods, but the 
lightweight LSTM we use can still distinguish them well. 
However, 1D‑CNN and 2D‑CNN encounter bottlenecks in 
the face of complex trafϐic scenarios. As shown in Fig. 9, 
when facing OTT VPN voice trafϐic such as ICQ_VPN, their 
F1‑scores are only about 75%, and the results are far off 
our expectations. Regarding the problem of counterbal‑ 
ance data, take Douyin as an example, its total data quan‑ 
tity is only 154. LSTM’s F1‑score can reach 88.14%, while 
1D‑CNN and 2D‑CNN can only reach 72.13% and 80.00%. 
It can be said that no matter what kind of deep learning 
method is used, the fewer samples used, the worse the 
classiϐication performance is.

LSTM learns the temporal characteristics of the data 
stream, while CNN learns the spatial characteristics of 
the data stream. These results show their nature in the 
distribution of space and time. The performance of our 
lightweight LSTM model is better than that of 1D‑CNN 
[11] and 2D‑CNN [12] in both of the three sets of
scenarios.

5. CONCLUSION AND FUTURE WORK
This paper is extended from [10], mainly studies the 
classiϐication of the encrypted 5G OTT and non‑OTT 
voice trafϐic under complex 5G network context by using 
deep learning methods. This makes up for the problem of 
a single research scenario before.
We propose a two‑phase framework to identify OTT voice 
trafϐic by employing lightweight LSTM, which extracts 
depth features directly from the input raw bytes stream 
information in an end‑to‑end way, thus avoiding the 
trouble caused by manual feature extraction.
In scenario A, we ϐirstly verify the explicit difference 
between ordinary trafϐic and VPN trafϐic using a public 
dataset. Then we set up an experimental 5G NSA 
network and we establish a dataset with OTT voice 
trafϐic and non‑OTT voice trafϐic, among which 10 types 
are OTT voice trafϐic encrypted through VPN, six types 
are ordinary OTT voice and video trafϐic, and the 
remaining 12 types are non‑OTT voice trafϐic. In 
scenario B, we evaluate the performance of different 
sample sizes and the performance of different deep 
learning methods on 10 types of OTT VPN voice trafϐic 
classiϐication. Experiment results show that LSTM is a 
promising approach for encrypted OTT voice trafϐic 
classiϐication. Taking the aver‑ age F1‑score as an 
example, the average F1‑score of LSTM of 10 
classiϐications of OTT VPN voice trafϐic is 1.98% and 
2.79% higher than that of 1D‑CNN and 2D‑CNN, 
respectively. In scenario C, we complete the research of 
OTT and non‑OTT voice trafϐic classiϐication in complex 
trafϐic scenario. The average F1‑score of LSTM of 28 
classiϐications is 10.92% and 11.55% higher than that 
of 1D‑CNN and 2D‑CNN, respectively.
The experimental results show that LSTM is a better 
identiϐication method than CNN.
Meanwhile, these supervised learning methods used in 
the work cannot identify unknown encrypted trafϐic. 
Given that various unknown trafϐic will appear in the real
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network, the unsupervised approaches need to be 
investigated in future work.
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Table 5 – Scenario B, test accuracy of EXP. III

Task 10 Classiϐications of OTT VPN voice trafϐic
Samples Flows‑All Flows‑6K Flows‑3K Sessions‑All Sessions‑6K Sessions‑3K
LSTM 0.9801 0.9771 0.9512 0.9830 0.9798 0.9768

1D‑CNN 0.9747 0.9748 0.9273 0.9757 0.9763 0.9598
2D‑CNN 0.9639 0.9546 0.9115 0.9564 0.9675 0.9698

RF 0.9084 0.9095 0.8872 0.9440 0.9586 0.9517
LR 0.4601 0.4712 0.4597 0.5285 0.5427 0.5127

Table 6 – Scenario B, precision, recall and F1‑score of LSTM, 1D‑CNN and 2D‑CNN in Exp. IV

Classiϐier LSTM 1D‑CNN 2D‑CNN
Metrics Precision Recall F1‑score Precision Recall F1‑score Precision Recall F1‑score
ICQ 0.9650 0.9539 0.9594 0.9665 0.8667 0.9139 0.9080 0.9217 0.9148

KakaoTalk 0.9783 0.9686 0.9735 0.9640 0.9383 0.9510 0.9208 0.9500 0.9352
Line 0.9900 0.9802 0.9851 0.9800 0.9817 0.9808 0.9682 0.9633 0.9657
QQ 0.9800 0.9916 0.9858 0.9830 0.9617 0.9722 0.9563 0.9483 0.9523

Skype 0.9683 0.9683 0.9683 0.9272 0.9550 0.9409 0.9522 0.9633 0.9577
Telegram 0.9950 0.9819 0.9884 0.9693 0.9983 0.9836 0.9597 0.9917 0.9754
ToTok 0.9983 0.9852 0.9917 0.9900 0.9950 0.9925 0.9868 0.9950 0.9909
Viber 0.9583 0.9664 0.9623 0.9019 0.9350 0.9182 0.9266 0.8833 0.9044
WeChat 0.9733 0.9865 0.9799 0.9165 0.9883 0.9511 0.9334 0.9583 0.9457

WhatsApp 0.9617 0.9863 0.9738 0.9811 0.9517 0.9662 0.9804 0.9150 0.9466
Average 0.9768 0.9769 0.9768 0.9580 0.9572 0.9570 0.9492 0.9490 0.9489

Table 7 – Scenario C, precision and recall of OTT voice and non‑OTT voice trafϐic in Exp. V

Classiϐier LSTM 1D‑CNN 2D‑CNN
Metrics Precision Recall Precision Recall Precision Recall
OTT 0.9988 0.9988 0.9960 0.9926 0.9931 0.9952

non‑OTT 0.9972 0.9972 0.9831 0.9909 0.9889 0.9839
Average 0.9980 0.9980 0.9896 0.9917 0.9910 0.9896
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Table 8 – Scenario C, precision, recall and F1‑score of 28 classiϐications using LSTM, 1D‑CNN and 2D‑CNN in Exp. VI

Classiϐier LSTM 1D‑CNN 2D‑CNN
Metrics Precision Recall F1‑Score Precision Recall F1‑Score Precision Recall F1‑Score
Bilibili 0.9412 0.9846 0.9624 0.9344 0.8769 0.9048 0.9492 0.9492 0.9492

Dingding 1.0000 1.0000 1.0000 0.9957 0.9871 0.9913 0.9823 0.9569 0.9694
Douyin 0.9286 0.8387 0.8814 0.7333 0.7097 0.7213 0.9167 0.7097 0.8000
Douyu 0.9748 0.9667 0.9707 0.9199 0.9383 0.9290 0.9300 0.9300 0.9300
Huya 0.9675 0.9933 0.9803 0.9421 0.9500 0.9461 0.9271 0.9533 0.9400

ICQ_VPN 0.9882 0.9783 0.9832 0.7392 0.7700 0.7543 0.7296 0.7733 0.7508
iQiYi_Video 0.9531 0.9683 0.9606 0.9574 0.9524 0.9549 0.9184 0.9524 0.9351

JD 0.9983 0.9983 0.9983 0.9820 1.0000 0.9909 0.9804 1.0000 0.9901
KakaoTalk_VPN 0.9932 0.9783 0.9857 0.8474 0.7217 0.7795 0.8052 0.7167 0.7584

Kuaishou 0.9810 0.9936 0.9872 0.9748 0.9968 0.9857 0.9839 0.9839 0.9839
Line_VPN 0.9818 0.9900 0.9859 0.8574 0.7017 0.7718 0.8527 0.7333 0.7885
QQ_Voice 0.9750 0.9398 0.9571 0.8947 0.9217 0.9080 0.8639 0.8795 0.8716
QQ_VPN 0.9950 0.9900 0.9925 0.7896 0.8133 0.8013 0.7990 0.8083 0.8036

Skype_VPN 0.9688 0.9833 0.9760 0.6858 0.7567 0.7195 0.7123 0.7550 0.7330
Sohu_News 0.9894 1.0000 0.9947 0.9529 0.9785 0.9655 0.9529 0.9785 0.9655

Soul 1.0000 1.0000 1.0000 0.9914 0.9971 0.9942 0.9577 0.9855 0.9714
Taobao 1.0000 0.9394 0.9688 0.9508 0.8788 0.9134 0.9455 0.7879 0.8595

Telegram_VPN 0.9901 0.9967 0.9934 0.9074 0.9800 0.9423 0.9084 0.9750 0.9405
Tencent_Meeting 1.0000 1.0000 1.0000 0.9918 0.9567 0.9739 0.9595 0.9331 0.9461
Tencent_Video 0.9916 0.9593 0.9752 0.9520 0.9675 0.9597 0.9426 0.9350 0.9388
ToTok VPN 0.9983 0.9950 0.9967 0.9656 0.9833 0.9744 0.9849 0.9817 0.9833
Viber_VPN 0.9799 0.9733 0.9766 0.7117 0.6667 0.6885 0.6960 0.6333 0.6632

WeChat_Video 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9744 0.9744 0.9744
WeChat_VPN 0.9883 0.9883 0.9883 0.8205 0.8533 0.8366 0.8432 0.8517 0.8474

WhatsApp_VPN 0.9816 0.9800 0.9808 0.8106 0.8633 0.8362 0.7840 0.8833 0.8307
Youku 0.9690 1.0000 0.9843 1.0000 0.9520 0.9754 0.9360 0.9360 0.9360

YouTube 1.0000 0.9892 0.9946 0.9744 0.9603 0.9673 0.9375 0.9206 0.9290
Zoom 1.0000 1.0000 1.0000 0.9901 0.9524 0.9709 0.9550 0.9095 0.9317
Average 0.9859 0.9858 0.9858 0.8770 0.8763 0.8766 0.8701 0.8705 0.8703
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