
AN INFORMATION‑CENTRIC NETWORKING ARCHITECTURE WITH SMALL ROUTING TABLES

J.J. Garcia‑Luna‑Aceves and Maziar Mirzazad Barijough
Computer Science and Engineering Department, University of California, Santa Cruz, CA 95064, USA

NOTE: Corresponding author: J.J. Garcia‑Luna‑Aceves, jj@soe.ucsc.edu

Abstract – The basic design of theNamedDataNetworking (NDN) architecture is shown to incur problems, in that Interests
(content requests) may go unanswered even if content is available in the network, and Pending Interest Tables (PIT) are
shown to provide limited performance beneϔits in the presence of in‑ network caching. A new approach to content‑centric
networking is introduced that eliminates the need to maintain PITs while providing the beneϔits sought by NDN. Content‑
Centric Networking with Data Answer Routing Table (CCN‑DART) replaces PITs with Data Answer Routing Tables (DARTs)
to forward Interests that do not state their sources. The size of a DART is proportional to the number of routes used by
Interests traversing a router, rather than the number of Interests traversing a router. It is shown that undetected Interest
loops cannot occur in CCN‑DART, and that Interests and responses to them are forwarded correctly independently of the state
of the network. The results of simulation experiments comparing CCN‑DARTwith NDNusing the ndnSIM simulation tool show
that CCN‑DART attains similar or better latencies than NDN when no looping problems occur in NDN, while using a similar
number of Interests and storing an order of magnitude fewer forwarding entries.

Keywords – Addressing, content routing, information‑centric networks

1. INTRODUCTION

Several architectures for Information‑Centric Networking
(ICN) have been proposed to improve the performance
and the end‑user experience of the Internet [1, 38]. The
leading approach in ICN is based on the use of content
requests called Interests, and can be characterized as
Interest‑based. This approach consists of: populating For‑
warding Information Bases (FIB) maintained by routers
with routes to name preϐixes denoting content, sending
Interests for speciϐic Content Objects (CO) over paths im‑
plied by the FIBs, and delivering data packets with con‑
tent objects along the reverse paths traversed by Inte‑
rests. The main advantages that Interest‑based content-
centric networking offers compared to the IP Internet
are that: (a) content providers and caching sites do not
know the identity of the consumers requesting content;
(b) content can be obtained by name from those sites that
are closer to consumers; (c) data packets carrying con‑
tent cannot traverse loops, because they are sent over
the reverse paths traversed by Interests; and (d)
content‑oriented security mechanisms can be imple-
mented as part of the content delivery mechanisms.

Today, Named Data Networking (NDN) [28] is arguably
the most prominent Interest‑based ICN approach. Howe‑
ver, several results have been reported regarding the
large PIT sizes required for NDN to operate at Internet
scale [10, 31, 32, 33]. Furthermore, the vulnerability of
NDN (and per‑Interest forwarding state in general) to In‑
terest ϐlooding attacks has been studied by a number of
authors [3, 21, 33, 36, 37]. As a result, a number of ICN
approaches have been advanced aimed at allowing ICN to
be deployable at Internet scale.

One type of approach consists of embedding ICN in the
Internet Protocol (IP) in order to allow the incremental
deployment of ICN. The methods used to attain this
include encapsulation and tunneling. An attractive
representative example of this type of approach is the
hybrid‑ICN (hICN) architecture [44], which supports ICN
while transparently interconnecting hICN routers with
standard IP routers and enabling the forwarding of
hICN packets as normal IP packets. The hICN
architecture accomplishes this by using hICN names
that consist of a name preϐix and a name sufϐix, with
name preϐixes being routable addresses.

Another type of approach consist of implementing ICN
functionality at the application or transport layers, wi‑
thout making any modiϐications to the Internet routing
infrastructure other than the establishment of
overlays. Application‑layer solutions implemented in the
past are exempliϐied by Peer‑to‑Peer (P2P) applications
and over‑lays [46] and Content Delivery Networks
(CDN) [47, 48, 49, 50], which are widely used today.
Named‑Data Trans‑ port (NDT) [51] is a recent example
of enabling ICN functionality at the transport layer. The
advantage of this approach over P2P applications, CDNs,
and other ICN architectures is that NDT does not require
the deployment of overlays of name resolvers or content
routers, or changes to the Internet routing infras-
tructure to operate. However, NDT requires the intro-
duction of a new transport protocol, the Named‑Data
Transport Protocol (NDTP) that replaces TCP, and
modiϐications to the Domain Name System (DNS) that
together map content names to one or multiple locations
where the content is offered, deliver the content

ITU Journal on Future and Evolving Technologies, Volume 3, Issue 3, December 2022

©International Telecommunication Union, 2022
Some rights reserved. This work is available under the CC BY-NC-ND 3.0 IGO license: https://creativecommons.org/licenses/by-nc-nd/3.0/igo/.

More information regarding the license and suggested citation, additional permissions and disclaimers is available at:
https://www.itu.int/en/journal/j-fet/Pages/default.aspx

reliably to consumers from content servers or trans-
parent caches without using end-to-end connections, and
enforce consumer privacy.
This paper focuses on NDN as the representative ap‑
proach of Interest‑based ICN architectures. Since the
introduction of Content‑Centric Networking (CCN) [23],
the following assumptions have been made in several
Interest‑based ICN architectures and NDN in particular
[8, 28, 40]:

• Interest loops can be detected by identifying each In‑
terest by the name of the requested content and a
nonce assigned to the Interest with a very low pro‑
bability of collisions.

• Per‑Interest forwarding state maintained in Pending
Interest Tables (PITs) is required for Interests and re‑
sponses to them to be forwarded without revealing
the identities of the sources of Interests.

• Interests requesting the same content need to be ag‑
gregated in the PITs to attain efϐiciency.

This paper shows that these assumptions need not hold,
which impacts the potential adoption of content‑centric
networking at Internet scale. Section 2 addresses the im‑
pact of Interest aggregation in NDN. First, it shows that
Interest aggregation in NDN can lead to Interests not
being answered when they traverse routing loops, even
if the requested content is available in the network.
Second, it shows that Interest aggregation is ineffective
when in‑network caching is used. This is done by
means of simulation experiments ran using the
implementation of NDN in ndnSIM [2] without
modiϐications. The experiments assume networks with
on‑path caching and average Round‑Trip Times (RTTs)
that are representative of recent IP latency statistics.
The results show that the percentage of Interests that
are aggregated and the performance beneϐits derived
from Interest aggregation are negligible even when the
capacity of in‑network caches is small compared to the
number of published content objects.

There has been recent work aimed at improving the for‑
warding performance of NDN [45] and it has been ar‑
gued that NDN should be used only at the edge of the
Internet. However, the complexity of NDN forwarding
merits the discussion of ICN forwarding approaches that
are inherently more efϐicient or cheaper to implement,
and which could further take advantage of edge deploy‑
ments in which content caching can be implemented in
just a few nodes rather than along forwarding paths [9].
Section 3 introduces Content‑Centric Networking with
Data Answer Routing Table CCN‑DARTs, which replaces
PITs with Data Answer Routing Tables (DARTs). A DART
stores forwarding state regarding the routes traversing
the router, rather than the Interests forwarded by the
router. An Interest in CCN‑DART states the name of the
requested content, a hop count, and a destination‑and‑
return token (dart). The hop count is used to avoid for‑
warding loops. The dart leaves a trace of the path tra‑

versed by the Interest using local identiϐiers of the previ‑
ous hop and the current hop, without revealing the iden‑
tity of the source of the Interest. CCN‑DART is a simpler
approach to CCN based on DARTs we introduced recently
[19, 54] and takes advantage of the loop‑free Interest‑
forwarding mechanisms we have proved to be correct
[17, 18, 20]. CCN‑DART is inherently more efϐicient and
a less vulnerable alternative for content‑centric networ‑
king than NDN because it eliminates the need to maintain
a per‑Interest forwarding state.

Section 4 proves that no forwarding loops can occur in
CCN‑DART and that responses to Interests are forwarded
correctly. Section 5 compares the performance of CCN‑
DART with NDN when routes to name preϐixes are loop‑
free and static, and either on‑path caching or edge caching
is used in a 200‑router network. CCN‑DART attains simi‑
lar or better end‑to‑end latencies and incurs very similar
Interest trafϐic than NDN to retrieve content, even though
Interests are not aggregated in CCN‑DART. However, at
high Interest rates, NDN requires 10 to 20 times the num‑
ber of forwarding entries needed in CCN‑DART.

2. INTEREST AGGREGATION IN NDN

2.1 Elements of NDN operation
Routers in NDN use Interests, data packets, and Nega‑
tive Acknowledgments (NACKs) to exchange content. An
Interest is identiϐied in NDN by the name of the CO re‑
quested and a nonce created by the origin of the Inte‑
rest. A data packet includes the CO name, a security pay‑
load, and the payload itself. A NACK carries the infor‑
mation needed to denote an Interest and a code stating
the reason for the response. We denote the name of CO
𝑗 by 𝑛(𝑗), and the name preϐix stored in a FIB that in‑
cludes that CO name by 𝑛(𝑗)∗. In the context of NDN, we
use 𝐼[𝑛(𝑗), 𝑖𝑑𝑗(𝑠)] to denote an Interest that requests CO
with name 𝑛(𝑗) and that is assigned nonce 𝑖𝑑𝑗(𝑠). A data
packet sent in response to an Interest 𝐼[𝑛(𝑗), 𝑖𝑑𝑗(𝑠)], de‑
noted 𝐷𝑃 [𝑛(𝑗), 𝑖𝑑𝑗(𝑠), 𝑠𝑝(𝑗)], states the name and nonce
of the Interest, a security payload 𝑠𝑝(𝑗) used to validate
the content object, and the object itself.

Three data structures are used by a given router 𝑟 to
process Interests, data packets, and NACKs: A content
store (𝐶𝑆𝑟), a forwarding information base (𝐹 𝐼𝐵𝑟), and
a pending Interest table (𝑃 𝐼𝑇 𝑟).

𝐶𝑆𝑟 is a cache for COs indexed by their names. With on‑
path caching, routers cache the content they receive in re‑
sponse to Interests they forward.

𝐹 𝐼𝐵𝑟 is populated using content routing protocols [16,
22] or static routes and router 𝑟 matches Interest names
stating a speciϐic CO 𝑛(𝑗) to 𝐹 𝐼𝐵𝑟 entries of preϐix names
using longest preϔix match. The FIB entry for a given name
preϐix lists the interfaces that can be used to reach the pre‑
ϐix. In NDN, a FIB entry also contains additional informa‑
tion [28].

Garcia-Luna-Aceves et al.: An information-centric networking architecture with small routing tables

©International Telecommunication Union, 2022 745

PITs are used in NDN to determine the interfaces to which
data packets or NACKs should be sent back in response
to Interests, allow Interests to not disclose their sources,
and enable Interest aggregation. The entry in 𝑃 𝐼𝑇 𝑖 for CO
with name 𝑛(𝑗) is denoted by 𝑃 𝐼 𝑖

𝑛(𝑗) and consists of one
or multiple tuples stating a nonce received in an Interest
for the NDO and the incoming interface where it was re‑
ceived, and a list of the outgoing interfaces over which the
Interest was forwarded.

When a router receives an Interest, it checks whether
there is a match in its CS for the CO requested in the In‑
terest. The Interest matching mechanisms used can vary,
and for simplicity we focus on exact Interest matching
only. If a match to the Interest is found, the router sends
back a data packet over the reverse path traversed by the
Interest. If no match is found in the CS, the router deter‑
mines whether the PIT stores an entry for the same con‑
tent.

In NDN, if the Interest states a nonce that differs from
those stored in the PIT entry for the requested content,
then the router “aggregates” the Interest by adding the
incoming interface from which the Interest was received
and the nonce to the PIT entry without forwarding the In‑
terest. If the same nonce in the Interest is already listed
in the PIT entry for the requested CO, the router sends a
NACK over the reverse path traversed by the Interest.

If a router does not ϐind a match in its CS and PIT, the
router forwards the Interest along a route (or routes)
listed in its FIB for the best preϐix match. In NDN, a router
can select an interface to forward an Interest if it is known
that it can bring content and its performance is ranked
higher than other interfaces that can also bring content.
The ranking of interfaces is done by a router indepen‑
dently of other routers based on information obtained
through probing or the control plane [40].

2.2 Undetected Interest loops in NDN
The key aspect of the current forwarding strategy in NDN
(see NDN Packet Format Speciϐication 0.3) [53] is that
a router determines whether or not an Interest is a du‑
plicate Interest based solely on the content name and a
nonce. Packet forwarding loops may occur even when
routers update their FIBs based on loop‑free routing pro‑
tocols, and hence Interests may loop independently of the
routing protocol used in the control plane. To discuss the
correctness of this approach, we deϐine an Interest loop
as follows.

Interest loop: An Interest loop of ℎ hops for a CO with
name 𝑛(𝑗) occurs when one or more Interests asking for
𝑛(𝑗) are forwarded and aggregated by routers along a cy‑
cle 𝐿 = {𝑣1, 𝑣2, ..., 𝑣ℎ, 𝑣1} such that router 𝑣𝑘 receives
an Interest for CO 𝑛(𝑗) from 𝑣𝑘−1 while waiting for a re‑
sponse to the Interest it has forwarded to 𝑣𝑘+1 for the
same NDO, with 1 ≤ 𝑘 ≤ ℎ, 𝑣ℎ+1 = 𝑣1, and 𝑣0 = 𝑣ℎ.

According to the NDN forwarding strategy, a router can
select a neighbor to forward an Interest if it is known that
it can bring content and its performance is ranked higher
than other neighbors that can also bring content. The
ranking of neighbors is done by a router independently of
other routers, which can result in long‑term routing loops
implied by the FIBs if the routing protocol used in the con‑
trol planedoesnot guarantee instantaneous loop freedom
(e.g., NLSR [22]).

Fig. 1 illustrates Interest looping in NDN. Arrowheads in
the ϐigure indicate the next hops to content advertised by
router 𝑗 according to the FIB entries stored in routers.
Thick lines indicate that the perceived performance of
a neighbor is better than neighbors shown with thinner
lines. Dashed lines indicate the traversal of Interests over
links and paths. The time when an event is processed at a
router is indicated by 𝑡𝑖.

Fig. 1 – Undetected Interest loops in NDN [20]

Fig. 1(a) shows the case of a long‑term Interest loop
caused by multipaths implied in FIBs not being loop‑free,
even though all routing tables are consistent. In this case,
the ranking of interfaces in a FIB can be such that a path
with a larger hop count may be ranked higher than a path
with a smaller hop count, because of the perceived per‑
formance of the interfaces or paths towards preϐixes. Fig.
2(b) shows the case of a temporary Interest loop when
single‑path routing is used and FIBs are inconsistent due
to a topology change at time 𝑡1 (link (𝑎, 𝑝) fails).

In both cases, router 𝑎 aggregates the Interest from 𝑥 and
router 𝑥 aggregates the Interest from 𝑦, and the combined
steps preclude the detection of any Interest looping. In
this example, it would appear that the looping problems
could be avoided by forcing router 𝑏 to use 𝑞 rather than
𝑥 for Interests regarding preϐixes for which router 𝑗 is an
origin. However, the same looping problems would ex‑
ist even if link (𝑏, 𝑞) were removed in the example, and
the ways in which FIBs are populated and interfaces are
ranked are independent of updates made to PITs.

Theorem 1 below proves that the NDN forwarding strat‑
egy speciϐied in [23, 40, 43] cannot ensure that Interest
loops are detected when Interests are aggregated, even
if nonces were to denote Interests uniquely. The theo‑
rem assumes that all messages are sent correctly and that
no routing‑table changes occur to show that the NDN for‑
warding strategy can fail to return any content or NACK

©International Telecommunication Union, 2022

ITU Journal on Future and Evolving Technologies, Volume 3, Issue 3, December 2022

746

in response to Interests independently of network dy‑
namics. Furthermore, Theorem 2 shows that no correct
forwarding strategy can be deϐined that allows Interest
aggregation and attempts Interest‑loop detection by the
matching of Interest‑identiϐication data (e.g., CO names,
nonces, or the path traversed by the Interest). We have
published these results [17, 18] before, together with
simulation results illustrating the negative impact of un‑
detected Interest loops in NDN.

Theorem 1: Interest loops can go undetected in a stable,
error‑free network in which NDN or CCN is used, even if
nonces were to denote Interests uniquely.

Proof Consider the NDN or CCN forwarding strategy
running in a network in which no two nonces cre‑
ated by different nodes for the same content are equal,
all transmissions are received correctly, and no topo‑
logy or routing‑table changes occur after time 𝑡0. Let 𝐿𝑇
𝑣𝑘 (𝐼[𝑛(𝑗), 𝑖𝑑𝑗(𝑠)]) denote the lifetime of 𝐼[𝑛(𝑗), 𝑖𝑑𝑗(𝑠)] at
router 𝑣𝑘.

Assume that Interests may traverse loops when they are
forwarded according to the forwarding strategy, and let a
loop 𝐿 = {𝑣1, 𝑣2, ..., 𝑣ℎ, 𝑣1} exist for NDO 𝑗, and let Inte‑
rest 𝐼[𝑛(𝑗), 𝑖𝑑𝑗(𝑥)] start traversing the chain of nodes {𝑣1,
𝑣2, ..., 𝑣𝑘} ∈ 𝐿 (with 1 < 𝑘 < ℎ) at time 𝑡1 > 𝑡0.

Assume that 𝐼[𝑛(𝑗), 𝑖𝑑𝑗(𝑥)] reaches router 𝑣𝑘 at time 𝑡3 >
𝑡1 and that router 𝑣𝑘 forwards Interest 𝐼[𝑛(𝑗), 𝑖𝑑𝑗(𝑦)] to
its next hop 𝑣𝑘+1 ∈ 𝐿 at time 𝑡2, where 𝑡1 ≤ 𝑡2 < 𝑡3,
𝑖𝑑𝑗(𝑥) ≠ 𝑖𝑑𝑗(𝑦), and 𝑣𝑘+1 may be 𝑣1.

According to the Interest processing strategy in NDN and
CCN, router 𝑣𝑘 creates an entry in its PIT for 𝐼[𝑛(𝑗), 𝑖𝑑𝑗(𝑦)]
at time 𝑡2, and perceives any Interest for name 𝑛(𝑗) and a
nonce different than 𝑖𝑑𝑗(𝑦) received after time 𝑡2, and be‑
fore its PIT entry for 𝐼[𝑛(𝑗), 𝑖𝑑𝑗(𝑦)] is erased, as a subse‑
quent Interest.

Let |𝑡2 − 𝑡3| < 𝐿𝑇 𝑣𝑘 (𝐼[𝑛(𝑗), 𝑖𝑑𝑗(𝑦)]) when router 𝑣𝑘
receives 𝐼[𝑛(𝑗), 𝑖𝑑𝑗(𝑥)] from router 𝑣𝑘−1 ∈ 𝐿 at time
𝑡3, where 1 < 𝑘 − 1. According to the Interest
processing strategy in NDN and CCN, router 𝑣𝑘 must
treat 𝐼[𝑛(𝑗), 𝑖𝑑𝑗(𝑥)] as a subsequent Interest for con‑
tent 𝑛(𝑗) that is aggregated, because 𝑣𝑘 is waiting for
𝐷𝑃 [𝑛(𝑗), 𝑖𝑑𝑗(𝑦), 𝑠𝑝(𝑗)] at time 𝑡3.

Because of the existence of 𝐿, Interest 𝐼[𝑛(𝑗), 𝑖𝑑𝑗(𝑦)] must
be forwarded from 𝑣𝑘 to 𝑣1. Let 𝑡4 denote the time when
𝐼[𝑛(𝑗), 𝑖𝑑𝑗(𝑦)] reaches 𝑣1, where 𝑡4 > 𝑡2 ≥ 𝑡1, and as‑
sume that |𝑡1 − 𝑡4| < 𝐿𝑇 𝑣1 (𝐼[𝑛(𝑗), 𝑖𝑑𝑗(𝑥)]). Accord‑
ing to NDN’s Interest processing strategy, 𝑣1 must treat
𝐼[𝑛(𝑗), 𝑖𝑑𝑗(𝑦)] as a subsequent Interest, because it is wait‑
ing for 𝐷𝑃 [𝑛(𝑗), 𝑖𝑑𝑗(𝑥), 𝑠𝑝(𝑗)] at time 𝑡4.

Given the Interest aggregation carried out by nodes 𝑣𝑘 and
𝑣1, nodes in the chain {𝑣1, 𝑣2, ..., 𝑣𝑘−1} ∈ 𝐿 process only
𝐼[𝑛(𝑗), 𝑖𝑑𝑗(𝑥)], nodes in the chain {𝑣𝑘+1, 𝑣𝑘+2, ..., 𝑣ℎ} ∈ 𝐿
process only 𝐼[𝑛(𝑗), 𝑖𝑑𝑗(𝑦)], and no Interest loop detection

can take place. Therefore, no content can be submitted in
response to 𝐼[𝑛(𝑗), 𝑖𝑑𝑗(𝑥)] and 𝐼[𝑛(𝑗), 𝑖𝑑𝑗(𝑦)].

Similar results to Theorem 1 can be proven for NDN and
the original CCN operating in a network in which routing
tables are inconsistent as a result of network or content
dynamics. In this case, Interest loops can go undetected
even if the control plane supports only single‑path for‑
warding of Interests.

Let Interest‑identiϐication data refer to such information
carried in Interests as nonces, unique identiϐiers, or a
combination of nonces and the path traversed by an In‑
terest.

Theorem 2: No correct forwarding strategy exists with
Interest aggregation and Interest loop detection based on
the matching of Interest‑identiϐication data.

Proof: Assume any forwarding strategy in which a router
remembers an Interest it has forwarded as long as nece‑
ssary to detect Interest loops, and detects the oc‑
currence of an Interest loop by matching the Interest‑
identiϐication data carried in an Interest it receives with
the Interest‑identiϐication data used in the Interest it
forwarded previously asking for the same content. Let
𝐼[𝑛(𝑗), 𝑖𝑑𝑗(𝑠)] denote the Interest asking for 𝑛(𝑗) with
Interest‑identiϐication data 𝑖𝑑𝑗(𝑠) created by router 𝑠.

Assume that an Interest loop 𝐿 = {𝑣1, 𝑣2, ..., 𝑣ℎ, 𝑣1}
for NDO with name 𝑛(𝑗) exists in a network using the
forwarding strategy. Let Interest 𝐼[𝑛(𝑗), 𝑖𝑑𝑗(𝑥)] start
traversing the chain of nodes {𝑣1, 𝑣2, ..., 𝑣𝑘} ∈ 𝐿 (with
1 < 𝑘 < ℎ) at time 𝑡1.

Assume that 𝐼[𝑛(𝑗), 𝑖𝑑𝑗(𝑥)] reaches router 𝑣𝑘 at time 𝑡3 >
𝑡1 and that router 𝑣𝑘 forwards Interest 𝐼[𝑛(𝑗), 𝑖𝑑𝑗(𝑦)] to
its next hop 𝑣𝑘+1 ∈ 𝐿 at time 𝑡2, where 𝑡1 ≤ 𝑡2 < 𝑡3,
𝑖𝑑𝑗(𝑥) ≠ 𝑖𝑑𝑗(𝑦). Let 𝐼[𝑛(𝑗), 𝑖𝑑𝑗(𝑦)] traverse the chain of
nodes {𝑣𝑘, 𝑣𝑘+1, ..., 𝑣1} ∈ 𝐿, reaching 𝑣1 at time 𝑡4, where
𝑡4 > 𝑡2 ≥ 𝑡1.

By assumption, Interest aggregation occurs, and hence
𝑣𝑘 aggregates 𝐼[𝑛(𝑗), 𝑖𝑑𝑗(𝑥)] at time 𝑡3, and 𝑣1 aggregates
𝐼[𝑛(𝑗), 𝑖𝑑𝑗(𝑦)] at time 𝑡4. Therefore, independently of the
amount of information contained in 𝑖𝑑𝑗(𝑥) and 𝑖𝑑𝑗(𝑦), 𝑣1
cannot receive 𝐼[𝑛(𝑗), 𝑖𝑑𝑗(𝑥)] from 𝑣ℎ and 𝑣𝑘 cannot re‑
ceive 𝐼[𝑛(𝑗), 𝑖𝑑𝑗(𝑦)] from 𝑣𝑘−1. It thus follows that no
node in 𝐿 can successfully use the matching of Interest‑
identiϐication data to detect that Interests for 𝑛(𝑗) are
being sent and aggregated along 𝐿 and the theorem is
true.

The results in theorems 1 and 2 can also be proven by
mapping the Interest processing strategy of NDN, and any
forwarding strategy that attempts to detect Interest loops
by matching Interest‑identiϐication data, to the problem
of distributed termination detection over a cycle, where
Interests serve as the tokens of the algorithm [11, 27]. Be‑
cause Interest aggregation erases a token traversing the

Garcia-Luna-Aceves et al.: An information-centric networking architecture with small routing tables

©International Telecommunication Union, 2022 747

ring (Interest loop) when any node in the ring has previ‑
ously created a different token, correct termination detec‑
tion over the ring (i.e., Interest loop detection) cannot be
guaranteed in the presence of Interest aggregation.
Based on the results in theorems 1 and 2, we have pro‑
posed a simple modiϐication to the NDN forwarding stra‑
tegy called CCN‑ELF [20]. However, it has not
been adopted in NDN, and the few alternative solutions to
CCN‑ ELF that have been proposed in the past for NDN
(e.g.,[52]) have not been proven to be correct, rely on
resolving loops, and are still based on the same NDN
forwarding strategy using Interest identiϐication, which
Theorem 2 shows to be insufϐicient to prevent Interest
looping. Ob‑ viously, a loop traversed by an Interest can
be detected easily if each Interest is identiϐied with the
route it should traverse. This is easy to implement but
requires routers in the network to have complete
topology information (e.g.,[22, 30, 34]) or at least path
information or partial topol‑ ogy information (e.g., [5,
30]). However, there is no need for using nonces to
detect Interest loops and, more importantly, a source
route reveals the identity of the source router requesting
content and hence defeats one of the key objectives of
NDN.
Another view of the problem would be to say that In‑
terest aggregation is not common and hence undetected
Interest loops should be too rare to cause major perfor‑
mance problems. However, if Interests need to be aggre‑
gated only rarely, then the very existence of PITs should
be questioned. The following section addresses the need
for Interest aggregation in the presence of in‑network
caching.

2.3 Performance beneϐits of Interest aggrega‑
tion

We analyze the impact of interest aggregation on the per‑
formance of NDN using simulations carried out with the
ndnSIM simulation tool [2]. We used the implementa‑
tion of NDN in ndnSIM without modiϐications. Our study
is independent of the Interest retransmission strategy.
For simplicity, we assume that routers use exact Interest
matching to decide whether an Interest can be answered.
We consider the percentage of aggregated Interests in the
network and the average number of PIT entries created
per second per router as the performance metrics.

2.3.1 Scenario parameters and scenarios
The simulation parameters we consider include the
average latencies between routers, the storage capacity
of caches, the Interest request rates from routers, the
popularity of content, and the temporal correlation of
content requests.
The scenarios we use consist of random networks with
200 nodes corresponding to routers distributed uni‑
formly in a 100m×100m area. Routers with 12m or a

shorter distance are connected to each other with a
point‑ to‑point link, which results in a topology with
1786 edges. Each router acts as a producer of content and
also has lo‑ cal consumers generating Interests.
Producers are assumed to publish 1,000,000 different
content objects that are uniformly distributed among
routers. For simplicity, we assume that all routers have
the same storage capacity in their caches, which depen‑
ding on the experiment ranges from 0 to up to
100,000 cache entries per router, or 10% of the published
objects.
The distribution of object requests determines how many
Interests from different users request the same content.
It has been argued [13, 14] that Internet trafϐic follows a
Zipf distribution with a parameter (𝛼) value close to 1. A
smaller Zipf parameter value results in a lower Interest
aggregation amount. Accordingly, we model object po‑
pularity using a Zipf distribution with values of 𝛼 equal to
0.7 and 1.

We considered different values of the total Interest rate
per router, corresponding to the sum of Interests from
all local users. Increasing values of Interest rates can be
viewed as higher request rates from a constant user po‑
pulation of local active users per router, or an
increasing population of active users per router. For
example, 50 to 500 Interests per second per router can
be just 10 Interests per second per active user for a local
population of 5 to 50 concurrently active users per
router. The Interest rates we assume per router are not
large compared to re‑ cent results on the size that PITs
would have in realistic settings [10, 32, 3, 33].

The percentage of Interests that beneϐit from Interest ag‑
gregation is a function of the time elapsed from the time
when a router receives an Interest, until the time the re‑
quested CO or a NACK is received by that router. In turn,
this time is a function of the RTT between the router ori‑
ginating the Interest and the site with the requested con‑
tent, as well as the PIT entry expiration time when the In‑
terest is not answered with a data packet or a NACK.

Recent Internet latency statistics [4, 7] show that Inter‑
net trafϐic latency varies from 11ms for regional European
trafϐic to 160ms for long‑distance trafϐic. Accordingly, we
consider point‑to‑point delays of 10ms between neighbor
routers in many of our simulations, which leads to RTTs of
about 200ms. We also carried our experiments varying
the RTT of the network below and above 200ms.

2.3.2 Simulation results
The following simulation results can be viewed as ap‑
plicable to the steady‑state behavior of a network using
NDN.

Fig. 2 shows the percentage of aggregated Interests for
four different total request rates per router from 50 to 500

©International Telecommunication Union, 2022

ITU Journal on Future and Evolving Technologies, Volume 3, Issue 3, December 2022

748

Interests per second, and seven different storage capaci‑
ties of the caches, ranging from 100 to 10,000 objects (i.e.,
up to 1% of the published objects). The Zipf parameter
value assumed is 𝛼 = 1, which is the best case for Inte‑
rest aggregation.

Fig. 2 – Interest aggregation as a function of the storage capacity per
content store (𝛼 = 1).

The impact of in‑network caching on Interest aggregation
is very clear. Interest aggregation is useful when caches
have insigniϐicant capacities and request rates are high.
However, as the capacity of a cache in each router in‑
creases, the percentage of Interests that are aggregated
drops quickly. The percentage of aggregated Interests
drops to less than 5% for a request rate per router of 500
requests per second when a cache can store only 0.1% of
the published objects.

Fig. 3 shows the effect of the 𝛼 parameter and RTTs when
the total request rate per router is only 50 Interests per
second. The latencies between neighbor routers are set
to 5 and 15 ms, which produce RTTs of 66 to 70 ms and
193 to 200 ms, respectively. It is clear that Interest ag‑
gregation is far less important when consumers are less
likely to request similar content (𝛼 = 0.7). It is also clear
that the beneϐits of Interest aggregation vanish as caches
are allowed to cachemore content. Whencaches can store
up to 1%of the total number of objects published, the per‑
centage of Interests that are aggregated is less than2% for
𝛼 = 1 and less than 0.8% for 𝛼 = 0.7.

Fig. 3 – Interest aggregation as a function of the values of Zipf parameter,
storage capacity, and RTTs

Fig. 4 shows the average number and variance of PIT en-
tries created per second per router with total requests
rates per router varying from 50 Interests per second to
500 Interests per second. Results are presented for six
different values of cache capacity ranging from no caching
to 10% of the published objects. In all cases, the average
number of PIT entries created grows proportionally with
the request rate per router. The large variance indicates
that only some routers beneϐit from Interest aggregation.
Furthermore, orders of magnitude increases in the sto‑
rage capacity of content stores do not produce a similar
reduction in the number of PIT entries created per
second per router, which is a function of the total
request rates after caches are large enough.

In theory, Interest aggregation is most useful when In‑
terests exhibit temporal correlation, such as when popu‑
lar live events take place. Fig. 5 shows the impact of
caching on Interest aggregation when Interests have tem‑
poral correlation and either no caching is used or caches
with capacity for 1000 objects are used (only 0.1% of total
objects published in the network). Localized Interests are
generated using the model proposed by Dabirmoghad‑
dam et al [9] with a Zipf parameter value of 𝛼 = 0.7 a nd
results for three total Interest rates per router and four
temporal localization factors for Interests are shown. A
higher temporal locality factor indicates a higher degree
of popularity of objects in the same time period. The re‑
sults in Fig. 5 show that, without caching, Interest aggre‑
gation is very important for all values of temporal loca‑
lity of Interest popularity, and is more important when
Interest locality is high (large localization factor). How‑
ever, once caching is allowed and even if caches can store
only up to 0.1% of the published objects, the percentage
of aggregated Interests is minuscule and actually
decreases with the temporal correlation of Interests. This
experi‑ ment further illustrates the overlapping nature of
PITs and caches in NDN.

Fig. 4 – Average number of PIT entries created per second at each router

Garcia-Luna-Aceves et al.: An information-centric networking architecture with small routing tables

©International Telecommunication Union, 2022 749

Fig. 5 – Impact of caching on the aggregation of Interests with temporal
locality

3. CCN‑DART

3.1 Design rationale and assumptions
The design of CCN‑DART is based on three observations.
First, the results in Section 2 show that content caching,
which is essential for content‑centric networking, makes
the occurrence of Interest aggregation extremely rare an
obviates the need for PITs as a means of reducing the
number of Interests being forwarded. In‑network caching
tends to make popular content available locally before
subsequent requests for the same content arrive. This is
important, because using PITs comes at a big price. PITs
enable users to mount Interest ϐlooding attacks aimed at
overϐlowing PITs [3, 33, 36, 37], and the storage overhead
they incur is signiϐicant [10, 31, 32].

Second, the number of routers in a network is orders
of magnitude smaller than the number of COs accessed
through them. Hence, maintaining forwarding state
based on the routes going through a router, each used by
many Interests, is by nature orders of magnitude smaller
than forwarding state based on the Interests traversing a
router.

Third, as we have proven in the previous section,
preventing Interests from traversing loops when Interest
aggregation is allowed cannot be attained by identifying
Interests uniquely using names of content objects and
nonces. However, it can be done based on an
ordering of the routers that forward the Interests, and
content routing protocols [16, 22] can provide all the
needed information to attain proper ordering in the
forwarding plane.

We make the following assumptions in the description of
CCN‑DART, none of which should be considered design re‑
quirements for the basic approach we introduce.

Interests are retransmitted only by the users that origi‑
nated them, rather than routers that relay Interests. Of
course, “local repair” mechanisms can be used in CCN‑
DART to react more quickly to congestion or topology
changes.

We assume that routers use exact Interest matching.
Given the name of a CO, a router can determine whether
or not the exact same CO is stored locally.
The COs corresponding to a name preϐix could be stored
in subsets of the preϐix at multiple sites, with each site an‑
nouncing that the entire preϐix is local. However, resol‑
ving an Interest for a given CO in this case would
require contacting all the sites where the preϐix is local.
For simplicity, in our description of CCN‑DART we
assume that a router that announces being an origin of
a name preϐix stores all the COs in that preϐix locally,
and call such a router an anchor of the preϐix. If all the
COs of a preϐix are mirrored at multiple sites, each
router connected to the site storing the COs is an anchor
of the preϐix.
Routers know which interfaces are neighbor routers and
which are local consumers, and forward Interests on a
best‑effort basis. For convenience, a request for content
from a local user is sent to its router in the form of an In‑
terest stating an empty hop count to content and an empty
dart.

3.2 Information exchanged and stored
CCN‑DART uses Interests, NACKs and data packets to
support content exchange among routers. Our
description of these messages addresses only that
information needed to attain correct forwarding, which
consists of the names of COs, the hop counts to preϐixes,
and destination‑and‑return tokens (darts). The terms
neighbor and interface are used interchangeably. The
name of CO 𝑗 is denoted by 𝑛(𝑗), the name preϐix that is
the best match for 𝑛(𝑗) in a FIB is denoted by 𝑛(𝑗)∗, and
𝑆𝑖

𝑛(𝑗)∗ denotes the set of neighbors of router 𝑖 considered
to be next hops to pre‑ ϐix 𝑛(𝑗)∗. Darts are local
identiϐiers used to uniquely denote routes established
between source and destination routers over which
Interests, data packets, and NACKs are sent. Accordingly,
darts can be very small (e.g., 32 bits).
An Interest forwarded by router 𝑘 requesting CO 𝑗 is de‑
noted by 𝐼[𝑛(𝑗), ℎ𝐼 (𝑘), 𝑑𝑎𝑟𝑡𝐼 (𝑘)]. It states the name of
the requested CO (𝑛(𝑗)) , the hop count (ℎ𝐼 (𝑘)) from 𝑘
to preϐix 𝑛(𝑗)∗, and the dart (𝑑𝑎𝑟𝑡𝐼 (𝑘)) used to establish
an anonymous route back to the router that originates
the Interest.
A data packet sent in response to an Interest is denoted
by 𝐷𝑃 [𝑛(𝑗), 𝑠𝑝(𝑗), 𝑑𝑎𝑟𝑡𝐼 (𝑖)], and states the name of the
CO requested in the Interest being answered (𝑛(𝑗)) , a
security payload (𝑠𝑝(𝑗)) used optionally to validate the
con‑ tent object, the dart (𝑑𝑎𝑟𝑡𝐼 (𝑖)) from the Interest
being answered, and the CO itself.
A NACK to an Interest is denoted by 𝑁𝐴[𝑛(𝑗), CODE,
𝑑𝑎𝑟𝑡𝐼 (𝑖)] and states the name of the CO (𝑛(𝑗)) , a code
(CODE) indicating the reason why the NACK is sent, and
the dart (𝑑𝑎𝑟𝑡𝐼 (𝑖)) from the Interest being answered.

©International Telecommunication Union, 2022

ITU Journal on Future and Evolving Technologies, Volume 3, Issue 3, December 2022

750

Reasons for sending a NACK include: an Interest loop is
detected, no route is found towards requested content,
and no content is found.
Router 𝑖 maintains three tables: Forwarding Information
Base (𝐹 𝐼𝐵𝑖) , a Data‑Answer Routing Table (𝐷𝐴𝑅𝑇 𝑖) ,
and an optional Requested‑Content Table(𝑅𝐶𝑇 𝑖) . All
routers must maintain FIBs and DARTs, and only those
routers with local users and routers supporting content
caching need to maintain an RCT.
A predecessor of router 𝑖 for Interests related to name
pre‑ ϐix 𝑛(𝑗)∗ is a router that forwards Interest for COs
with names that are best matched by 𝑛(𝑗)∗. Similarly, a
suc‑ cessor of router 𝑖 for Interests related to 𝑛(𝑗)∗ is a
router to whom router 𝑖 forwards Interest regarding COs
with names that are best matched by name preϐix 𝑛(𝑗)∗.
𝐹 𝐼𝐵𝑖 is indexed using name preϐixes. The entry for
preϐix 𝑛(𝑗)∗ consists of a set of tuples, one for each next
hop to preϐix 𝑛(𝑗)∗. The tuples for preϐix 𝑛(𝑗)∗ are
ranked based on their utility for forwarding. As a
minimum, the tuple for next hop 𝑞 ∈ 𝑆𝑖

𝑛(𝑗)∗ states:
1. ℎ(𝑖, 𝑛(𝑗)∗, 𝑞): The distance to 𝑛(𝑗)∗ through 𝑞.

2. 𝑎(𝑖, 𝑛(𝑗)∗, 𝑞): The nearest anchor of 𝑛(𝑗)∗ through 𝑞.
𝐷𝐴𝑅𝑇 𝑖 stores the mappings of predecessors to succes‑
sors along loop‑free paths to name preϐixes. The entry
created for Interests received fromrouter 𝑝 (predecessor)
and forwarded to router 𝑠 (successor) towards a given an‑
chor 𝑎 of a name preϐix is denoted by 𝐷𝐴𝑅𝑇 𝑖(𝑎, 𝑝) and
speciϐies:

1. 𝑎𝑖(𝑎, 𝑝): The anchor 𝑎 for which the entry is set.

2. 𝑝𝑖(𝑎, 𝑝): The predecessor 𝑝 of the path to 𝑎𝑖(𝑎, 𝑝).

3. 𝑝𝑑𝑖(𝑎, 𝑝): The predecessor dart, which equals the
dart received in Interests from 𝑝 forwarded towards
𝑎𝑖(𝑎, 𝑝).

4. 𝑠𝑖(𝑎, 𝑝): The successor 𝑠 selected by router 𝑖 to for‑
ward Interests received from 𝑝 towards 𝑎𝑖(𝑎, 𝑝).

5. 𝑠𝑑𝑖(𝑎, 𝑝): The successor dart included in Interests
sent by router 𝑖 towards 𝑎𝑖(𝑎, 𝑝) through the succes‑
sor.

6. ℎ𝑖(𝑎, 𝑝): The hop‑count distance to preϐix 𝑎 through
successor 𝑠 when 𝑖 establishes the DART entry.

DART entries can be removed using a least‑recently used
policy or a maximum lifetime, for example. An entry in
a DART can remain in storage for long periods of time in
the absence of topology changes. The removal of a DART
entry simply causes a router to compute a new entry for
Interests ϐlowing towards an anchor of preϐixes.

𝑅𝐶𝑇 𝑖 serves as an index of local content as well as lo‑
cal requests for remote content. It is indexed by the CO
names that have been requested by the router. The en‑
try for CO name 𝑛(𝑗) states the name of the CO (𝑛(𝑗)),

a pointer to the local storage where the CO (𝑝[𝑛(𝑗)]) is
stored, and a list of zero or more identiϐiers of local con‑
sumers (𝑙𝑐[𝑛(𝑗)]) that have requested the CO. The RCT
could be implemented as two separate indexes, one for
local content and one for requests for remote content.

If router 𝑖 is an anchor of name preϐix 𝑛(𝑗)∗ then it stores
all the COs with names that match the name preϐix. This is
denoted by 𝑛(𝑗)∗ ∈ 𝑅𝐶𝑇 𝑖. If CO 𝑛(𝑗) has been requested
by one ore more local consumers and no copy of the CO
is yet available, then 𝑛(𝑗) ∈ 𝑅𝐶𝑇 𝑖, 𝑝[𝑛(𝑗)] = 𝑛𝑖𝑙, and
𝑙𝑐[𝑛(𝑗)] ≠ 𝜙. On the other hand, if router 𝑖 caches CO 𝑛(𝑗),
then 𝑛(𝑗) ∈ 𝑅𝐶𝑇 𝑖, 𝑝[𝑛(𝑗)] ≠ 𝑛𝑖𝑙, and 𝑙𝑐[𝑛(𝑗)] = 𝜙.

3.3 Preventing forwarding loops
We have shown [17, 18] that undetected Interest loops
can occur in NDN when Interests are aggregated while
traversing routing loops resulting from inconsistencies in
FIB entries or inconsistent rankings of routes at diffe‑
rent routers. CCN‑DART uses the same approach we pro‑
posed for the elimination of undetected Interest loops in
the context of NDN [18, 20] to prevent forwarding loops
when DART entries are created.

Dart Entry Addition Rule (DEAR:
Router 𝑖 accepts 𝐼[𝑛(𝑗), ℎ𝐼 (𝑘), 𝑑𝑎𝑟𝑡𝐼 (𝑘)] from router 𝑘 and
creates a DART entry for preϐix 𝑛(𝑗)∗ with 𝑘 as its prede‑
cessor and a router 𝑣 ≠ 𝑘 as its successor if:

∃ 𝑣 ∈ 𝑆𝑖
𝑛(𝑗)∗ (ℎ𝐼 (𝑘) > ℎ(𝑖, 𝑛(𝑗)∗, 𝑣))

The distance information that must be stored in the FIBs
to implement DEAR can be obtained easily from the
control plane. Such content routing protocols as DCR
[16] and NLSR [22] are able to compute the required
minimum‑hop distances, which can then be copied into
the FIBs.

Figures 6(a) and (b) illustrate how using DEAR prevents
Interests from traversing loops when a multipath routing
protocol is used and FIB entries are consistent but local
rankings of multiple routes available at each router (e.g.,
NLSR) cause routing loops. The pair of numbers next to a
node in Fig. 6(a) indicate the hop count from that router
to 𝑛(𝑗)∗ over an interface and the ranking of the interface
according to the FIB of the router.
Let the triplet (𝑣, ℎ, 𝑟) denote an interface, its hop count
and its ranking. In Fig. 6(a), 𝐹 𝐼𝐵𝑎 states (𝑏, 4, 1), (𝑝, 4, 2),
(𝑥, 6, 3), and (𝑦, 6, 4); 𝐹 𝐼𝐵𝑏 states (𝑥, 6, 1), (𝑎, 5, 2), and
(𝑞, 3, 3); and 𝐹 𝐼𝐵𝑥 states (𝑎, 5, 2) and (𝑏, 5, 1). As Fig.
6(b) shows, router 𝑎 receives 𝐼[𝑛(𝑗), ℎ𝐼 (𝑦) = 5, 𝑑𝑎𝑟𝑡𝐼 (𝑦)]
from router 𝑦 at time 𝑡1 and forwards 𝐼[𝑛(𝑗), ℎ𝐼 (𝑎) = 4,
𝑑𝑎𝑟𝑡𝐼 (𝑎)] to 𝑏 because 5 = ℎ𝐼 (𝑦) > ℎ(𝑎, 𝑛(𝑗)∗, 𝑏) = 4
and 𝑏 is ranked above 𝑝. Similarly, router 𝑏 receives the
Interest at time 𝑡2 and accepts it because 4 = ℎ𝐼 (𝑎) >
ℎ(𝑏, 𝑛(𝑗)∗, 𝑞) = 3. Router 𝑏 uses router 𝑞 as the next hop
for the Interest, because 𝑞 is the highest ranked neighbor
satisfying DEAR. This example illustrates that, indepen‑
dently of local rankings of multiple routes to preϐixes,

Garcia-Luna-Aceves et al.: An information-centric networking architecture with small routing tables

©International Telecommunication Union, 2022 751

Fig. 6 – CCN‑DART avoids forwarding loops [54]

Interests traverse simple paths by requiring each
relaying router to satisfy DEAR.

Figures 6(c) to (e) illustrate how DEAR operates when
FIBs are inconsistent due to topology changes. Routers
𝑎 and 𝑏 update their FIBs at times 𝑡0 and 𝑡1, respectively.
We assume that the routing updates have not been pro‑
cessed at routers 𝑦 and 𝑎 when they forward Interests at
times 𝑡1 and 𝑡2, respectively. As shown in Fig. 6(d), router
𝑏 must send a NACK to router 𝑎 because it does not have
a neighbor with a shorter hop count to preϐix 𝑛(𝑗)∗ than
ℎ𝐼 (𝑎) = 4. In turn, router 𝑎 forwards a NACK to router 𝑦,
and the Interest from 𝑥 also prompts a NACK from 𝑏 be‑
cause DEAR is not satisϐied. Within a ϐinite time after 𝑡1,
the FIBs of routers are updated to show that preϐix 𝑛(𝑗)∗

cannot be reached and Interests from local users for COs
in that preϐix cannot forwarded by routers 𝑎, 𝑏, 𝑥 and 𝑦.

By contrast, assuming NDN in the same example results in
the Interests sent by 𝑦 and 𝑥 to be forwarded along the for‑
warding loop involving 𝑎, 𝑏 and 𝑥. Router 𝑎 aggregates the
Interest from 𝑥, and router 𝑥 aggregates the Interest from
𝑦. Those Interests must then “wait to inϐinity” in the PITs
until their lifetimes expire or they are otherwise evicted
from the PITs. Using nonces in Interests incurs conside‑
rable PIT storage overhead.

Similar rules based on more sophisticated lexicographic
orderings could be deϐined based on the same general
approach stated in DEAR. The requirement for such for‑
warding rules is that more information needs to be main‑
tained in the FIBs, such as distance values to name pre‑
ϐixes that take into account such factors as end‑to‑end de‑
lay, reliability, cost, or bandwidth available.

DEAR is very similar to sufϐicient conditions for loop‑free
routing introduced in the past, in particular sufϐicient con‑
ditions for loop‑free routing based on diffusing computa‑
tions [15, 34, 42]. Indeed, DEAR can be viewed as a case
of termination detection based on diffusing computations
[11]. The difference between DEAR and loop‑free routing
protocols based on diffusing computations is that DEAR
operates in the data plane using existing FIB entries, while

routing protocols operate in the control plane using ϐloo‑
ding to build routing tables and hence FIB entries.

It should be pointed out that, because DEAR is not neces‑
sary to avoid forwarding loops, there are cases in which
DEAR is not satisϐied even though no forwarding loops
exist. However, prior results on multipath routing based
on diffusing computations [41] indicate that this does
not constitute a performance problem. Given the speed
with which FIBs are updated to reϐlect correct distances
computed in the control plane, false loop detection using
DEAR should be rare, and it is preferable by far than
storing PIT entries that expire only after many seconds
without receiving responses.

3.4 Maintaining forwarding state
Algorithms 1 to 4 specify the steps taken by routers to
process and forward Interests, data packets, and NACKs.
The algorithms we present assume that the control plane
updates 𝐹 𝐼𝐵𝑖 to reϐlect any changes in hop counts to
name preϐixes and anchors resulting from the loss of con‑
nectivity to one or more neighbors or link‑cost changes.
In addition, a DART entry is silently deleted when con‑
nectivity with the successor or predecessor of the entry
is lost, or it is not used for a prolonged period of time.

Algorithm 1 shows the steps taken by router 𝑖 to pro‑
cess Interests received from local consumers. For con‑
venience, content requests from local consumers are as‑
sumed to be Interests stating the name of a CO, together
with an empty hop count to content and an empty dart.

Algorithm 1 Processing Interest from user 𝑐
at router 𝑖

function Interest_Source
INPUT: 𝑅𝐶𝑇 𝑖 , 𝐹𝐼𝐵𝑖 , 𝐷𝐴𝑅𝑇 𝑖 , 𝐼[𝑛(𝑗), 𝑛𝑖𝑙, 𝑛𝑖𝑙];
if 𝑛(𝑗) ∈ 𝑅𝐶𝑇 𝑖 then

if 𝑝[𝑛(𝑗)] ≠ 𝑛𝑖𝑙 then
retrieve CO 𝑛(𝑗); send 𝐷𝑃[𝑛(𝑗), 𝑠𝑝(𝑗), 𝑛𝑖𝑙] to 𝑐

else
𝑙𝑐[𝑛(𝑗)] = 𝑙𝑐[𝑛(𝑗)] ∪ 𝑐; 𝑝[𝑛(𝑗)] = 𝑛𝑖𝑙 (% Interest is aggregated)

end if
else

if 𝑛(𝑗)∗ ∈ 𝑅𝐶𝑇 𝑖 then
send 𝑁𝐴[𝑛(𝑗), no content, 𝑛𝑖𝑙] to 𝑐 (% 𝑛(𝑗) does not exist)

else
if 𝑛(𝑗)∗ ∉ 𝐹𝐼𝐵𝑖 then

send 𝑁𝐴[𝑛(𝑗), no route, 𝑛𝑖𝑙] to 𝑐 (% No route to 𝑛(𝑗)∗ exists)
else

create entry for 𝑛(𝑗) in 𝑅𝐶𝑇 𝑖 : (% Interest from 𝑐 is recorded)
𝑙𝑐[𝑛(𝑗)] = 𝑙𝑐[𝑛(𝑗)] ∪ 𝑐; 𝑝[𝑛(𝑗)] = 𝑛𝑖𝑙;
for each 𝑣 ∈ 𝑆𝑖

𝑛(𝑗)∗ by rank in 𝐹𝐼𝐵𝑖 do
𝑎 = 𝑎(𝑖, 𝑛(𝑗)∗, 𝑣);
if ∃𝐷𝐴𝑅𝑇 𝑖(𝑎, 𝑖) (𝑠𝑖(𝑎, 𝑖) = 𝑣) then

ℎ𝐼(𝑖) = ℎ𝑖(𝑎, 𝑖); 𝑑𝑎𝑟𝑡𝐼(𝑖) = 𝑠𝑑𝑖(𝑎, 𝑖);
send 𝐼[𝑛(𝑗), ℎ𝐼(𝑖), 𝑑𝑎𝑟𝑡𝐼(𝑖)] to 𝑣; return

else
create entry 𝐷𝐴𝑅𝑇 𝑖(𝑎, 𝑖):
compute 𝑆𝐷 ≠ 𝑠𝑑𝑖(𝑝, 𝑞) ∀ 𝐷𝐴𝑅𝑇 𝑖(𝑝, 𝑞);
𝑝𝑑𝑖(𝑎, 𝑖) = 𝑆𝐷; 𝑠𝑑𝑖(𝑎, 𝑖) = 𝑆𝐷;
𝑝𝑖(𝑎, 𝑖) = 𝑖; 𝑠𝑖(𝑎, 𝑖) = 𝑣; ℎ𝑖(𝑎, 𝑖) = ℎ(𝑖, 𝑛(𝑗)∗, 𝑣);
ℎ𝐼(𝑖) = ℎ𝑖(𝑎, 𝑖); 𝑑𝑎𝑟𝑡𝐼(𝑖) = 𝑠𝑑𝑖(𝑎, 𝑖);
send 𝐼[𝑛(𝑗), ℎ𝐼(𝑖), 𝑑𝑎𝑟𝑡𝐼(𝑖)] to 𝑣; return

end if
end for

end if
end if

end if

Router 𝑖 ϐirst looks up its RCT to determine if the re‑
quested CO is stored locally or a request for the CO is
pending. If the CO is stored locally, a data packet is sent

©International Telecommunication Union, 2022

ITU Journal on Future and Evolving Technologies, Volume 3, Issue 3, December 2022

752

back to the user requesting it. If a request for the same
content is pending, the name of the user is added to the
list of customers that have requested the CO. Router 𝑖
sends back a NACK if it is an anchor of name preϐix 𝑛(𝑗)∗

and the speciϐic CO is not found locally, or the CO is
remote and no FIB entry exists for a name preϐix that can
match 𝑛(𝑗).
If possible, router 𝑖 forwards the Interest through the
highest ranked neighbor in its FIB for the name preϐix
matching 𝑛(𝑗). How such a ranking is done is left
unspeci‑ ϐied, and can be based on a distributed or local
algorithm.
If a DART entry exists for the selected successor that
should receive the Interest, the existing route is used;
otherwise, a new DART entry is created before the
Interest is sent. The successor dart assigned to the new
DART entry is a locally unique identiϐier that must be
different from all other successor darts being used by
router 𝑖.
Algorithm 2 outlines the processing of data packets. If
the router has local consumers that requested the con‑
tent, the data packet is sent to those consumers based on
the information stored in 𝑅𝐶𝑇 𝑖. If the data packet is re‑
ceived in response to an Interest that was forwarded
from router 𝑘, router 𝑖 forwards the data packet after
swapping the successor dart received in the data packet
for the pre‑ decessor dart stored in 𝐷𝐴𝑅𝑇 𝑖. Router 𝑖
stores the data object if caching is supported.
Algorithm 2 Processing data packet at router 𝑖

function Data Packet_Handling
INPUT: 𝐷𝐴𝑅𝑇 𝑖 , 𝑅𝐶𝑇 𝑖 , 𝐷𝑃[𝑛(𝑗), 𝑠𝑝(𝑗), 𝑑𝑎𝑟𝑡𝐼(𝑞)];
[o] verify 𝑠𝑝(𝑗);
[o] if veriϐication fails then discard 𝐷𝑃[𝑛(𝑗), 𝑠𝑝(𝑗), 𝑑𝑎𝑟𝑡𝐼(𝑞)]
if ∃𝐷𝐴𝑅𝑇 𝑖(𝑎, 𝑘) (𝑑𝑎𝑟𝑡𝐼(𝑞) = 𝑠𝑑𝑖(𝑎, 𝑘) ∧ 𝑝𝑖(𝑎, 𝑘) = 𝑖)
(% router 𝑖 was the origin of the Interest) then

for each 𝑐 ∈ 𝑙𝑐[𝑛(𝑗)] do
send 𝐷𝑃[𝑛(𝑗), 𝑠𝑝(𝑗), 𝑛𝑖𝑙] to 𝑐; 𝑙𝑐[𝑛(𝑗)] = 𝑙𝑐[𝑛(𝑗)] − {𝑐}

end for
end if
if ∃𝐷𝐴𝑅𝑇 𝑖(𝑎, 𝑘) (𝑑𝑎𝑟𝑡𝐼(𝑞) = 𝑠𝑑𝑖(𝑎, 𝑘) ∧ 𝑝𝑖(𝑎, 𝑘) = 𝑘 ∈ 𝑁𝑖) then

(% Data packet can be forwarded to 𝑘:)
𝑑𝑎𝑟𝑡𝐼(𝑖) = 𝑝𝑑𝑖(𝑎, 𝑘); send 𝐷𝑃[𝑛(𝑗), 𝑠𝑝(𝑗), 𝑑𝑎𝑟𝑡𝐼(𝑖)] to 𝑘

end if
[o] if no entry for 𝑛(𝑗) exists in 𝑅𝐶𝑇 𝑖 then

create 𝑅𝐶𝑇 𝑖 entry for 𝑛(𝑗): 𝑙𝑐[𝑛(𝑗)] = ∅
end if

[o] store CO in local storage; 𝑝[𝑛(𝑗)] = address of CO in local storage

Algorithm 3 states the steps taken to handle NACKs, which
are similar to the forwarding steps taken after receiving
a data packet. Router 𝑖 forwards the NACK to local con‑
sumers if it was the origin of the Interest, or to a neigh‑
bor router 𝑘 if it has a DART entry with a successor dart
matching the dart stated in the NACK.

Algorithm 4 shows the steps taken by router 𝑖 to process
an Interest received from a neighbor router 𝑘. If the re‑
quested content is cached locally, a data packet is sent
back. As in Algorithm 1, router 𝑖 sends back a NACK if
it is an anchor of 𝑛(𝑗)∗ and the CO with name 𝑛(𝑗) is not
found locally, or the CO is remote and no FIB entry exists
for 𝑛(𝑗)∗. In contrast to Algorithm 1, Interests received
from other routers are not aggregated.

If the Interest must be forwarded and an entry exists in
𝐷𝐴𝑅𝑇 𝑖 with router 𝑘 as the predecessor and 𝑑𝑎𝑟𝑡𝐼 (𝑘) as
the predecessor dart, then DEAR has been satisϐied by a
previous Interest from 𝑘 over the existing path that 𝑘 is
requesting to use. Accordingly, router 𝑖 simply swaps
𝑑𝑎𝑟𝑡𝐼 (𝑘) for the successor dart stated in the entry in
𝐷𝐴𝑅𝑇 𝑖 and forwards the Interest.
Alternatively, if no DART entry exists with 𝑘 as a
predeces‑ sor and 𝑑𝑎𝑟𝑡𝐼 (𝑘) as the predecessor dart,
router 𝑖 tries to ϐind a neighbor that satisϐies DEAR. The
highest‑ranked router 𝑣 satisfying DEAR is selected as
the successor for the Interest and router 𝑖 creates a
successor dart diffe‑ rent from any other successor darts
in 𝐷𝐴𝑅𝑇 𝑖, stores an entry with 𝑣 and the new
successor dart, and forwards the Interest to 𝑣. If DEAR
is not satisϐied, then router 𝑖 sends a NACK back to
router 𝑘.
Algorithm 3 Process NACK at router 𝑖

function NACK_Handling
INPUT: 𝐷𝐴𝑅𝑇 𝑖 , 𝑅𝐶𝑇 𝑖 , 𝑁𝐴[𝑛(𝑗), CODE, 𝑑𝑎𝑟𝑡𝐼(𝑞)];
if ∃𝐷𝐴𝑅𝑇 𝑖(𝑎, 𝑘) (𝑑𝑎𝑟𝑡𝐼(𝑞) = 𝑠𝑑𝑖(𝑎, 𝑘) ∧ 𝑝𝑖(𝑎, 𝑘) = 𝑖)
(% router 𝑖 was the origin of the Interest) then

for each 𝑐 ∈ 𝑙𝑐[𝑛(𝑗)] do
send 𝑁𝐴[𝑛(𝑗), CODE, 𝑛𝑖𝑙] to 𝑐; 𝑙𝑐[𝑛(𝑗)] = 𝑙𝑐[𝑛(𝑗)] − {𝑐}

end for
delete entry for 𝑛(𝑗) in 𝑅𝐶𝑇 𝑖

end if
if ∃𝐷𝐴𝑅𝑇 𝑖(𝑎, 𝑘) (𝑑𝑎𝑟𝑡𝐼(𝑞) = 𝑠𝑑𝑖(𝑎, 𝑘) ∧ 𝑝𝑖(𝑎, 𝑘) = 𝑘 ∈ 𝑁𝑖) then

(% NACK can be forwarded to router 𝑘:)
𝑑𝑎𝑟𝑡𝐼(𝑖) = 𝑝𝑑𝑖(𝑎, 𝑘); send 𝑁𝐴[𝑛(𝑗), CODE, 𝑑𝑎𝑟𝑡𝐼(𝑖)] to 𝑘

end if

Algorithm 4 Processing Interest from router 𝑘 at router 𝑖
function Dart_Swapping
INPUT: 𝑅𝐶𝑇 𝑖 , 𝐹𝐼𝐵𝑖 , 𝐷𝐴𝑅𝑇 𝑖 , 𝐼[𝑛(𝑗), ℎ𝐼(𝑘), 𝑑𝑎𝑟𝑡𝐼(𝑘)];
if 𝑛(𝑗) ∈ 𝑅𝐶𝑇 𝑖 ∧ 𝑝[𝑛(𝑗)] ≠ 𝑛𝑖𝑙 then

retrieve CO 𝑛(𝑗); send 𝐷𝑃[𝑛(𝑗), 𝑠𝑝(𝑗), 𝑑𝑎𝑟𝑡𝐼(𝑘)] to 𝑘
else

(% 𝑛(𝑗) ∉ 𝑅𝐶𝑇 𝑖 ∨ 𝑝[𝑛(𝑗)] = 𝑛𝑖𝑙)
if 𝑛(𝑗)∗ ∈ 𝑅𝐶𝑇 𝑖 then

send 𝑁𝐴[𝑛(𝑗), no content, 𝑑𝑎𝑟𝑡𝐼(𝑘)] to 𝑘
else

if 𝑛(𝑗)∗ ∉ 𝐹𝐼𝐵𝑖 then
send 𝑁𝐴[𝑛(𝑗), no route, 𝑑𝑎𝑟𝑡𝐼(𝑘)] to 𝑘

else
if ∃𝐷𝐴𝑅𝑇 𝑖(𝑎, 𝑘) (𝑝𝑑𝑖(𝑎, 𝑘) = 𝑑𝑎𝑟𝑡𝐼(𝑘)) then

ℎ𝐼(𝑖) = ℎ𝑖(𝑎, 𝑘); 𝑑𝑎𝑟𝑡𝐼(𝑖) = 𝑠𝑑𝑖(𝑎, 𝑘);
send 𝐼[𝑛(𝑗), ℎ𝐼(𝑖), 𝑑𝑎𝑟𝑡𝐼(𝑖)] to 𝑠𝑖(𝑎, 𝑘)

else
for each 𝑣 ∈ 𝑆𝑖

𝑛(𝑗)∗ by rank in 𝐹𝐼𝐵𝑖 do

if ℎ𝐼(𝑘) > ℎ(𝑖, 𝑛(𝑗)∗, 𝑣) (% DEAR is satisϐied) then
𝑎 = 𝑎(𝑖, 𝑛(𝑗)∗, 𝑣);
create entry 𝐷𝐴𝑅𝑇 𝑖(𝑎, 𝑘):
compute 𝑆𝐷 ≠ 𝑠𝑑𝑖(𝑝, 𝑞) ∀ 𝐷𝐴𝑅𝑇 𝑖(𝑝, 𝑞);
ℎ𝑖(𝑎, 𝑘) = ℎ(𝑖, 𝑛(𝑗)∗, 𝑣);
𝑝𝑖(𝑎, 𝑘) = 𝑘; 𝑝𝑑𝑖(𝑎, 𝑘) = 𝑑𝑎𝑟𝑡𝐼(𝑘);
𝑠𝑖(𝑎, 𝑘) = 𝑣; 𝑠𝑑𝑖(𝑎, 𝑘) = 𝑆𝐷;
create Interest:
ℎ𝐼(𝑖) = ℎ𝑖(𝑎, 𝑘); 𝑑𝑎𝑟𝑡𝐼(𝑖) = 𝑠𝑑𝑖(𝑎, 𝑘);
send 𝐼[𝑛(𝑗), ℎ𝐼(𝑖), 𝑑𝑎𝑟𝑡𝐼(𝑖)] to 𝑣;
return

end if
end for (% Interest may be traversing a loop)
send 𝑁𝐴[𝑛(𝑗), loop, 𝑑𝑎𝑟𝑡𝐼(𝑘)] to 𝑘

end if
end if

end if
end if

3.5 Supporting multipoint communication
NDN supports multicasting by the Reverse‑Path Forwar‑
ding (RPF) of data packets over paths traversed by
aggregated Interests. Interests serve the dual purpose
of maintaining Multicast Forwarding Trees (MFTs) and
pacing multicast sources. CCN‑DART also supports

Garcia-Luna-Aceves et al.: An information-centric networking architecture with small routing tables

©International Telecommunication Union, 2022 753

multipoint communication using the RPF approach, but
separates the establishment of an MFT from the
mechanisms used to pace a source or disseminate
multicast data over the tree.

CCN‑DART uses RCTs and Multicast Data Answer Routing
Tables (MDARTs) to maintain MFTs. A single dart is used
to denote all the predecessors and successors in the MFT
of a group at each router . This means that a single dart
must be used to label all the branches of the MFT of a mul‑
ticast group. The dart used for multicast group name 𝑔(𝑗)
is denoted by 𝑑[𝑔(𝑗)], and can be made part of the group
name to simplify its dissemination.

A router with local receivers of a multicast group main‑
tains the mapping of the names of local receivers to the
name of the multicast group in its RCT. The MDART at
router 𝑖 is denoted by 𝑀𝐷𝐴𝑅𝑇 𝑖 and is indexed by the
names of the multicast groups for which the router for‑
wards trafϐic. The entry for a multicast group with name
𝑔(𝑗) in 𝑀𝐷𝐴𝑅𝑇 𝑖 states: the dart of the group (𝑑[𝑔(𝑗)]),
the successor selected by router 𝑖 to join the group, the
set of routers (predecessors) that requested to join 𝑔(𝑗)
through router 𝑖, and the hop‑count distance to the an‑
chor of 𝑔(𝑗) when router 𝑖 established the MDART entry
for the group (ℎ𝑖(𝑔(𝑗))).

If router 𝑖 has local receivers for group 𝑔(𝑗), then it sends
a Join Request (JR), denoted by 𝐽𝑅[𝑔(𝑗), ℎ𝐽 (𝑖), 𝑑𝑎𝑟𝑡𝐽 (𝑖)],
stating the name of the group, ℎ𝐽 (𝑖) = ℎ𝑖(𝑔(𝑗)), and
𝑑𝑎𝑟𝑡𝐽 (𝑖) = 𝑑[𝑔(𝑗)]. The forwarding of JRs is based on FIB
entries and is similar to the forwarding of Interests. A re‑
lay router can forward a JR towards the anchor of 𝑔(𝑗) in
two cases. If no MDART entry exists and DEAR is satisϐied,
an MDART entry is created for the group. If an MDART en‑
try exists, then the router simply adds a new predecessor
for the group in the existing MDART entry. Negative ac‑
knowledgments may be sent if no routes to 𝑔(𝑗) are found,
DEAR is not satisϐied, or MDART entries become invalid
due to topology changes.

The design of algorithms for multicast data dissemina‑
tion or pacing of multicast sources is outside the scope
of this paper. However, similar approaches to those de‑
signed to address the ACK implosion problem in reliable
multicasting [24] can be used to pace sources and pull
or push data over multicast trees. Multicast data packets
have the same format of data packets and are forwarded
from sources towards receivers based on the darts of the
multicast groups.

3.6 CCN‑DART forwarding example
Fig. 7 illustrates how darts are used to label Interests and
associate Interests with data packets and NACKs. In the
example, routers 𝑎 , 𝑏, and 𝑥 have local consumers ori‑
ginating Interests, and those Interests are assumed to re‑
quest COs with names that are best matched with name
preϐixes for which router 𝑑 is an anchor.

The arrowheads in the links of the ϐigure denote the next
hops stored in the FIBs of routers, and 𝑦(𝑖) denotes the 𝑖th
dart in𝐷𝐴𝑅𝑇 𝑦. The ϐigure shows theDART entriesmain‑
tained at all routers for name preϐixes for which router
𝑑 is an anchor, and the RCT entries stored at routers 𝑎,
𝑏, and 𝑥. Consumers A, C, N, and P request the same CO
with name 𝑛(𝑗), and router 𝑎 aggregates their requests
and needs to send only one Interest for 𝑛(𝑗) towards 𝑑.
Similarly, it aggregates the Interests from consumers A, C,
andQ. Similar Interest aggregation of local requests occur
at routers 𝑏 and 𝑥.

Fig. 7 – Interest forwarding in CCN‑DART [54]

Router 𝑎 forwards Interests intended for anchor 𝑑 to
neighbor 𝑟, and routers 𝑏 and 𝑥 forwards their Interests to
neighbors 𝑠 and 𝑐, respectively. Routers 𝑎, 𝑟, and 𝑠 estab‑
lish the following mappings in their DARTs: [𝑎; 𝑎(𝑘)] ↔
[𝑟; 𝑎(𝑘)] at 𝑎, [𝑎; 𝑎(𝑘)] ↔ [𝑠; 𝑟(𝑚)] at 𝑟, and [𝑟; 𝑟(𝑚)] ↔
[𝑑; 𝑠(𝑗)] at 𝑠. These mappings denote the route (𝑎, 𝑟, 𝑠, 𝑑)
uniquely. Similarly, routers establish the DART mappings
shown in the ϐigure that denote the routes (𝑥, 𝑏, 𝑐, 𝑑) and
(𝑏, 𝑐, 𝑑).

All the Interests from consumers local to routers 𝑎, 𝑏, and
𝑥 regarding COs with names in preϐixes for which 𝑑 is an
anchor can be routed towards 𝑑 using the same few darts
shown. Given that a data packet or NACK speciϐies the
successor dart stated the Interest it answers, data packets
and NACKs can be forwarded correctly from 𝑑 (or a router
caching the requested CO along the way to 𝑑) to routers 𝑎,
𝑏, or 𝑥 unambiguously. In turn, routers 𝑎, 𝑏, and 𝑥 can de‑
termine how to deliver the responses to local consumers
based on the the RCT entries mapping each CO requested
with the names of the customers that requested them.

4. CORRECTNESS OF CCN‑DART
The following two theorems show that CCN‑DART oper‑
ates correctly. Theorem 3 shows that CCN‑DART prevents
Interests from being propagated along loops, indepen‑
dently of whether the topology is static or dynamic or the
FIBs are consistent or not.

To discuss the correctness of Interest forwarding in CCN‑
DART, we say that a forwarding loop of ℎ hops for a
CO with name 𝑛(𝑗) occurs when Interests requesting the
CO are forwarded by routers along a cycle

©International Telecommunication Union, 2022

ITU Journal on Future and Evolving Technologies, Volume 3, Issue 3, December 2022

754

𝐿 ={𝑣1, 𝑣2, ..., 𝑣ℎ, 𝑣1}, such that router 𝑣𝑘 receives an
Interest for CO 𝑛(𝑗) from 𝑣𝑘−1 and forwards the Interest
to 𝑣𝑘+1, with 1 ≤ 𝑘 ≤ ℎ, 𝑣ℎ+1 = 𝑣1, and 𝑣0 = 𝑣ℎ.

Theorem 3: Interests cannot traverse forwarding loops
in a network in which CCN‑DART is used.

Proof: Consider a network in which CCN‑DART is used.
Assume for the sake of contradiction that routers in a for‑
warding loop 𝐿 of ℎ hops {𝑣1, 𝑣2, ..., 𝑣ℎ, 𝑣1} send Interests
for 𝑛(𝑗) along 𝐿, with no router in 𝐿 detecting the incor‑
rect forwarding of any of the Interests sent over the loop.

Given that 𝐿 exists by assumption, 𝑣𝑘 ∈ 𝐿 must send
𝐼[𝑛(𝑗), ℎ𝐼 (𝑣𝑘), 𝑑𝑎𝑟𝑡𝐼 (𝑣𝑘)] to router 𝑣𝑘+1 ∈ 𝐿 for 1 ≤ 𝑘 ≤
ℎ − 1, and 𝑣ℎ ∈ 𝐿 must send 𝐼[𝑛(𝑗), ℎ𝐼 (𝑣ℎ), 𝑑𝑎𝑟𝑡𝐼 (𝑣ℎ)] to
router 𝑣1 ∈ 𝐿.

For 1 ≤ 𝑘 ≤ ℎ − 1, let ℎ(𝑣𝑘, 𝑛(𝑗)∗)𝐿 denote the value of
ℎ𝐼 (𝑣𝑘) when router 𝑣𝑘 sends 𝐼[𝑛(𝑗), ℎ𝐼 (𝑣𝑘), 𝑑𝑎𝑟𝑡𝐼 (𝑣𝑘)] to
router 𝑣𝑘+1, with ℎ(𝑣𝑘, 𝑛(𝑗)∗)𝐿 = ℎ(𝑣𝑘, 𝑛(𝑗)∗, 𝑣𝑘+1). Let
ℎ(𝑣ℎ, 𝑛(𝑗)∗)𝐿 denote the value of ℎ𝐼 (𝑣ℎ) when router 𝑣ℎ
sends 𝐼[𝑛(𝑗), ℎ𝐼 (𝑣ℎ), 𝑑𝑎𝑟𝑡𝐼 (𝑣ℎ)] to router 𝑣1 ∈ 𝐿, with
ℎ(𝑣ℎ, 𝑛(𝑗)∗)𝐿 = ℎ(𝑣ℎ, 𝑛(𝑗)∗, 𝑣1).

Because no router in 𝐿 detects the incorrect forwarding
of an Interest and forwarded Interests are not
aggregated in CCN‑DART, each router in 𝐿 must send its
own Inte‑ rest as a result of the Interest it receives from
the previous hop in 𝐿. This implies that router 𝑣𝑘 ∈ 𝐿
must accept 𝐼[𝑛(𝑗), ℎ𝐼 (𝑣𝑘−1), 𝑑𝑎𝑟𝑡𝐼 (𝑣𝑘−1)] for 1 ≤ 𝑘 < ℎ,
and router 𝑣1 ∈ 𝐿 must accept 𝐼[𝑛(𝑗), ℎ𝐼 (𝑣ℎ), 𝑑𝑎𝑟𝑡𝐼 (𝑣ℎ)].
According to DEAR, if router 𝑣𝑘 sends Interest 𝐼[𝑛(𝑗), ℎ𝐼

(𝑣𝑘), 𝑑𝑎𝑟𝑡𝐼 (𝑣𝑘)] to router 𝑣𝑘+1 as a result of receiving
𝐼[𝑛(𝑗), ℎ𝐼 (𝑣𝑘−1), 𝑑𝑎𝑟𝑡𝐼 (𝑣𝑘−1)] from router 𝑣𝑘−1, then it
must be true that ℎ𝐼 (𝑣𝑘−1) > ℎ(𝑣𝑘, 𝑛(𝑗)∗)𝐿 = ℎ𝐼 (𝑣𝑘) for
1 < 𝑘 ≤ ℎ. Similarly, if router 𝑣1 sends 𝐼[𝑛(𝑗), ℎ𝐼 (𝑣1),
𝑑𝑎𝑟𝑡𝐼 (𝑣1)] to router 𝑣2 as a result of receiving 𝐼[𝑛(𝑗),
ℎ𝐼 (𝑣ℎ), 𝑑𝑎𝑟𝑡𝐼 (𝑣ℎ)] from router 𝑣ℎ, then ℎ𝐼 (𝑣ℎ) > ℎ(𝑣1,
𝑛(𝑗)∗)𝐿 = ℎ𝐼 (𝑣1).

It follows from the above argument that, for 𝐿 to exist
and be undetected when each router in the loop uses
DEAR to create DART entries, it must be true that
ℎ𝐼 (𝑣ℎ) > ℎ𝐼 (𝑣1) and ℎ𝐼 (𝑣𝑘−1) > ℎ𝐼 (𝑣𝑘) for 1 < 𝑘 ≤ ℎ.
However, this is a contradiction, because it implies that
ℎ𝐼 (𝑣𝑘) > ℎ𝐼 (𝑣𝑘) for 1 ≤ 𝑘 ≤ ℎ. Therefore, the theorem is
true.
Theorem 4 below addresses the ability for routers to send
data packets and NACKs correctly to the consumers who
issued the corresponding Interests using only the infor‑
mation stated in messages and stored in DARTs and
RCTs. The theorem assumes that transmissions are
sent correctly.

Theorem 4: CCN‑DART ensures that, in the absence of
failures, data packets and NACKs are sent correctly to the
consumers that submitted the corresponding Interests.

Proof: If a router can resolve an Interest from a local
consumer, it follows from Algorithm 1 that the result is
true. Let router 𝑠 be the origin of an Interest and let
router 𝑑 ≠ 𝑠 be the router that replies to the Interest from
𝑠 with a data packet or a NACK.
As Theorem 3 shows, Interests cannot traverse forwar‑
ding loops. Accordingly, if router 𝑑 receives the Interest
originated by 𝑠, then router 𝑑 and all routers in the sim‑
ple path from 𝑠 to 𝑑 must have established forwarding
state according to Algorithm 4. Each router uses a dif‑
ferent successor dart for each path traversing the router
and deϐined by a predecessor name and a predecessor
dart; therefore, each DART entry at a router uniquely de‑
notes a different route traversing the router. Accordingly,
given that router 𝑑 can respond to an Interest only it it
receives the Interest correctly, the proof can assume that
the routers along the path from the source 𝑠 to router 𝑑
have established correct forwarding state in their
DARTs. The rest of the proof must show that each router
from 𝑑 to 𝑠 is able to demultiplex correctly the data
packets and NACKs that traverse the reverse path
established by Interests delivered from 𝑠 to 𝑑.
Let ℎ be the number of hops in the path traversed by a
data packet or a NACK in response to an Interest
originated at router 𝑠 and answered by router 𝑑, and let
𝑓𝑖 denote the router at the 𝑖t h hop in such a path.
Basis Case: Let ℎ = 1, then 𝑠 = 𝑓1. Router 𝑠 labels its In‑
terest with a dart assigned uniquely for its one‑hop route
to 𝑑, and remembers the user(s) that requested any CO
in its RCT. According to Algorithm 4, router 𝑑 responds to
the Interest from 𝑠 directly and includes the dart from
the Interest in its response. According to algorithms 2
and 3, router 𝑠 associates the CO name in the response
with the local consumer(s) that submitted requests for
that CO. It follows that the basis case is true.
Inductive Step: Assume that each router up to 𝑘 − 1 hops
away from router 𝑑 in the path from router 𝑑 to router 𝑠
receives and forwards a data packet or NACK from
router 𝑑 correctly over the path to 𝑠. We need to show
hat the result is true for the router that is 𝑘 hops away
from router 𝑑 in the path to router 𝑠, with 1 ≤ 𝑘 ≤ ℎ.
When router 𝑓𝑘 r eceives a data packet or NACK from
router 𝑓𝑘−1 c ontaining 𝑑𝑎𝑟𝑡𝐼 (𝑓𝑘−1), it uses Algorithm 2
or Algorithm 3, respectively. Given that routers have
established correct forwarding state in their DARTs,
𝑓𝑘−1 and 𝑑𝑎𝑟𝑡𝐼 (𝑓𝑘−1)) must be the successor and
successor dart in an entry in 𝐷𝐴𝑅𝑇 𝑓𝑘 , respectively.
Furthermore, the predecessor of the entry in 𝐷𝐴𝑅𝑇 𝑓𝑘
must equal either 𝑓𝑘 or 𝑓𝑘+1. In the ϐirst case (𝑘 = ℎ and
𝑠 = 𝑓𝑘) , router 𝑓𝑘 was the origin of the Interest being
answered. In the second case (𝑘 < ℎ) , router 𝑓𝑘 forwards
the response to router 𝑓𝑘+1 swapping 𝑑𝑎𝑟𝑡𝐼 (𝑓𝑘−1) for the
predecessor dart listed in the DART entry, which is the
dart that router 𝑓𝑘+1 included in the Interest it sent to
router 𝑓𝑘. Hence, router 𝑓𝑘 must forward its

Garcia-Luna-Aceves et al.: An information-centric networking architecture with small routing tables

©International Telecommunication Union, 2022 755

response correctly to either the previous hop in the path
from 𝑑 to 𝑠 or the origin of the Interest.

It follows by induction that a data packet or NACK tra‑
verses correctly the path of length ℎ hops from router 𝑑
to router 𝑠. Furthermore, the name of the CO in the data
packet or NACK is the one stated in the Interest
originated by router 𝑠 on behalf of one or multiple local
consumers. Because 𝑠 uses its RCT to associate each CO
name stated in a data packet or NACK with the correct
set of local con‑ sumers that requested the CO, router 𝑠
can forward the response to the correct local consumers.
Therefore, the theorem is true.

5. PERFORMANCE COMPARISON
We compare the performance of CCN‑DART and NDN
using simulation experiments based on implementations
of NDN and CCN‑DART in the ndnSIM simulation tool [2].

The NDN implementation was used without modiϐica‑
tions, and CCN‑DART was implemented based on algo‑
rithms 1 to 4. The performance metrics used to compare
NDN with CCN‑DART are the number of entries needed
in PITs and DARTs, the number of Interests handled by
routers, and the delay incurred in obtaining a data packet
or a NACK in response to an Interest.

The simulation parameters used for this study are the
same as those presented in Section 2.3. We set the data
rates of the links to 1Gbps to minimize the effects that
link congestion or a sub‑optimal implementation of CCN‑
DART or NDN may have on the results, especially for
the case of end‑to‑end delays. The assumption that each
router is locally attached to a content producer and local
users requesting content constitutes the worst‑case sce‑
nario for CCN‑DART compared to NDN, because it results
in many more DART entries. In a realistic deployment,
only a small subset of the total number of routers in the
network are attached to local producers of content. We
consider on‑path caching and edge caching. For the case
of on‑path caching, every router on the path traversed
by a data packet from the producer to the consumer
caches the CO. On the other hand, with edge caching, only
the router directly connected to the requesting consumer
caches the resulting CO.

5.1 Size of PITs and DARTs
Fig. 8 shows the average size and standard deviation of
the number of entries in PITs used in NDN and the num‑
ber of entries in DARTs and RCTs used in CCN‑DART as
a function of the total content‑request rates per router.
The vales shown for RCTs represent only the number of
local pending Interests; the number of COs cached locally
is not shown, given that the number of such entries
would be very large and would be the same for NDN and
CCN‑DART.

As the �figure shows, the size of PITs grows dramatically
as the rate of content requests increases, which is
expected given that PITs maintain per‑Interest
forwarding state. By contrast, the size of DARTs remains
constant with respect to the content‑request rates. The
small average size of RCTs compared to the average
size of PITs indicates that the average size of a PIT is
dominated by the number of Interests a router forwards
from other routers.

Fig. 8 – Size of PITs, DARTs and RCTs [54]

Fig. 9 – Number of Interests received by routers [54]

For low request rates, the average number of entries in a
DART is actually larger than in a PIT. This is a direct con‑
sequence of the fact that a PIT entry is deleted immedi‑
ately after an Interest is satis�ied, while a DART entry is
kept for long periods of time (seconds) in our implemen‑
tation, independently of whether or not it is used to for‑
ward Interests. Given the small sizes of DARTs, the cost
of maintaining DART entries that may not be used at light
loads is more than compensated for by the signi�icant re‑
duction in forwarding state derived from many Interests
being forwarded using existing DART entries at higher re‑
quest rates. This should be the case in real deployments,
where the number of routers that are origins of routes to
pre�ix es is much smaller than the total number of routers.
However, optimizing the length of time that a DART en‑
try lasts as a function of its perceived utility for content
forwarding is an area that deserves further study.

As the total content‑request rate per router increases, the
size of a PIT can be more than 10 to 20 times the size of
a DART, because a given DART entry is used for many In‑
terests in CCN‑DART, while NDN requires a different PIT

©International Telecommunication Union, 2022

ITU Journal on Future and Evolving Technologies, Volume 3, Issue 3, December 2022

756

entry for each Interest. It is also interesting to see the ef‑
fect of on‑path caching compared to edge‑caching. The
average size of DARTs is independent of where content is
being cached, and on‑path caching in NDN does not make
a signiϐicant difference in the size of a PIT compared to
edge‑caching.

5.2 Interest trafϐic and end‑to‑end delays
Fig. 9 shows the average number of interests received
by each router in NDN and CCN‑DART as a function of
the content request rates for on‑path caching and edge
caching. Thenumber of Interests received in CCN‑DART is
larger than the corresponding number for NDN. However,
it is clear from the ϐigure that the average numbers of In‑
terests received by each router in NDN and CCN‑DART are
almost the same for all request rates.

The beneϐit of on‑path caching is apparent for both NDN
and CCN‑DART, but appears slightly more pronounced
for the case of CCN‑DART. This should be expected, be‑
cause CCN‑DART does not aggregate Interests and on‑
path caching results in fewer Interests being forwarded.

Fig. 10 shows the average end‑to‑end delay for NDN and
CCN‑DART as a function of content‑request rates for on‑
path caching and edge caching. As the ϐigure shows, the
average delays for NDN and CCN‑DART are essentially the
same for all content‑request rates. This should be ex‑
pected, given that in the experiments the routes in the
FIBs are static and loop‑free, and the number of Interests
processed by routers is similar.

Fig. 10 – Average end‑to‑end delays [54]

5.3 Impact of Interest ϐlooding attacks
Fig. 11 illustrates the impact of Interest ϐlooding attacks
on the size of PITs and DARTs. Fig. 11 shows the sim‑
ulation results of an experiment illustrating the impact
effect of Interest‑ϐlooding attacks on the size of PITs and
DARTs. The network topology assumed is the same as in
the other experiments. Only 10 of the 200 routers have lo‑
cal attackers generating random Interests corresponding
to valid preϐixes and invalid data objects with a constant

request rate and uniformly distributed among preϐixes.
The other 190 routers have local users generating Inter‑
ests for valid data objects according to a Zipf distribution
with a request rate of 200 interests per second, which cor‑
responds to a large population of local users to highlight
the fact that Interest ϐlooding attacks do not requiremany
attackers.

Fig. 11 – Size of PITs and DARTs under Interest ϐlooding attacks

We ran simulations for three cases. The ϐirst case serves
as the baseline; all routers receive 200 valid Interests per
second from local users. In the second case, each router
with local attackers receives 2000 invalid Interests per
second. The resulting average size of the PITs almost dou‑
bles with respect to the case of no attacks, and the ave‑
rage size of DARTs does not change. In the third case,
each router with local attackers receives 4000 invalid
Interests per second, the average size of the PIT table
increases dramatically, and the size of the DART still
remains the same.
Interest ϐlooding attacks in NDN translate into PITs that
can easily be overwhelmed and much more trafϐic (Inte‑
rests and NACKs). It is important to note that, by the
very nature of Interest ϐlooding attacks, Interest
aggregation is not useful. Given the results from the
other experiments and Section 2, it is clear that using
PITs to maintain for‑ warding state is to the detriment of
the system.
It is clear from the results of this experiment that the
size of DARTs is not affected by the presence of Interest
ϐlooding attacks. The size of RCTs grows for those routers
with local attackers in the presence of Interest ϐlooding at‑
tacks, because RCTs maintain per‑Interest state to enable
the aggregation of local requests. However, limiting the
size of RCTs can be done by limiting the rate at which any
one local consumer is allowed to submit content requests,
which impacts only that speciϐic local user.

CCN‑DART eliminates a major vulnerability of NDN, be‑
cause forwarding tables cannot be attacked. However, an
approach is still needed to address Interest ϐlooding at‑
tacks in CCN‑DART, given that invalid Interests still con‑
sume valuable bandwidth and can overwhelm content
providers. Any viable solution to Interest ϐlooding attacks
requires RCTs (or content stores in the NDN case) to act as

Garcia-Luna-Aceves et al.: An information-centric networking architecture with small routing tables

©International Telecommunication Union, 2022 757

ϐilters of valid requests. The design of such an approach is
beyond the scope of this paper and is the subject of future
work.

5.4 Implementation and deployment
The mappings stored in DARTs are equivalent to the label
mappings ϐirst introduced for packet switching based on
virtual circuits [26] and used today in high‑performance
routers running Multiprotocol Sabel Switching (MPLS).
The small ϐixed‑size darts and the relatively small num‑
ber of DART entries needed for CCN‑DART to operate at
Internet scale are preferable by far to the long variable‑
length names (plus large nonces for the case of NDN) and
the large number of PIT entries needed to maintain for‑
warding state in NDN [10, 32].

Both DARTs and PITs must be updated when the paths
traversed by Interests and their responses must change
due to congestion, topology changes, or mobility of con‑
sumers and providers. Yi et al [40] argue that a state‑
ful forwarding plane enables a fast response to topology
changes and congestion. However, the existence of MPLS
fast rerouting mechanisms demonstrates that maintai‑
ning per‑Interest forwarding state is not necessary to
enable fast restoration of paths in the data plane.
Similar mechanisms can be adopted in CCN‑DART with
much less signaling overhead than attempting to update
forwarding tables with forwarding state for each
Interest. Furthermore, approaches similar to those
introduced in the past for congestion‑oriented multipath
routing and dynamic load balancing [34, 35] can be used
in the context of CCN‑ DART, taking advantage of the fact
that Interests cannot traverse loops.

CCN‑DART provides native support for single‑source mul‑
ticasting. However, it separates the maintenance of mul‑
ticast forwarding trees from the mechanisms used for
source pacing and data dissemination over such trees.
The beneϐit of this separation is that both pull and push‑
based mechanisms for multipoint communication can be
used, and both are important for content‑centric net‑
working [6].

End users cannot mount Interest ϐlooding attacks [3, 21,
33] to overϐlow DARTs in the same way that PITs can be
attacked. A DART entry can be added only for valid an‑
chors of name preϐixes and for routes that satisfy the or‑
dering constraint imposed with DEAR. Given that both
conditions are managed in the control plane, mounting
attacks on DARTs must be much more sophisticated than
simply having users send Interests for COs corresponding
to valid preϐixes.

Countermeasures to different types of attacks on DARTs
that are more sophisticated than Interest ϐlooding attacks
can be implemented based on conϐiguration data or in‑
formation protected in the control plane. For example, a
neighbor router can be designated as an edge router and

be limited to creating one dart per anchor. Similarly, In‑
terests from neighbor routers must satisfy DEAR or be
rejected, and an upper bound on the number of darts al‑
lowed from each neighbor for any preϐix can be set based
on the network size and the maximum number of routes
to an anchor that can ϐlow through that neighbor.

The performance results for edge and on‑path caching we
have presented have important consequences for CCN‑
DART deployments. An efϐicient deployment of CCN‑
DART could consist of using full content routers with FIBs,
DARTs and RCTs only at the edge, and using “dart routers”
elsewhere, which are are dedicated to content forwarding
and maintain only FIBs and DARTs.

6. CONCLUSIONS
We proved that the way in which Interest loops are de‑
tected in NDN does not work correctly when Interests are
aggregated along routing loops resulting from inconsis‑
tencies in FIB rankings or FIB entries. We have previously
shown [17, 18, 20] how sufϐicient conditions like DEAR
can be used in NDN to enable correct Interest loop detec‑
tion when Interests are aggregated. However, as we have
shown in Section 2, Interest aggregation is not needed
in practice when in‑network caches are used. Given the
cost and vulnerabilities associated with using PITs, new
designs are needed to apply content‑centric networking
at Internet scale.

To address the limitations of existing approaches to
content‑centric networking, we introduced CCN‑DART,
the ϐirst approach to Interest‑based content‑centric net‑
working that supports Interest forwarding without re‑
vealing the sources of Interest and with no need to main‑
tain forwarding state on a per‑Interest basis.

CCN‑DART replaces PITs with Data Answer Routing Ta‑
bles (DARTs) that establish forwarding state for each
route traversing the router over which many Interests are
multiplexed, rather than establishing state for each
different Interest using routes traversing the router.

We proved that forwarding loops cannot occur in CCN‑
DART, even if routing loops exist in the FIBs maintained by
routers, and that data packets and NACKs are forwarded
over the correct paths to consumers. The results of simu‑
lation experiments based on implementations of NDN and
CCN‑DART in ndnSIM show that CCN‑DART is far more ef‑
ϐicient than NDN. Compared to NDN, CCN‑DART rendered
the same end‑to‑end delays, incurred similar signaling
overhead in the data plane, and resulted in a forwarding
state with a number of entries smaller than one order of
magnitude the number required in NDN.

Our results open up several research avenues for a
far more scalable forwarding plane in content‑centric
networks, including the design of security mechanisms
that prevent cache poisoning without maintaining per‑
Interest forwarding state. Additional research is also

©International Telecommunication Union, 2022

ITU Journal on Future and Evolving Technologies, Volume 3, Issue 3, December 2022

758

needed on the design of routing protocols and control‑
plane mechanisms that support routing to name preϐixes
based on FIBs with sizes that are orders of magnitude
smaller than the growing number of domain names in the
Internet.

REFERENCES
[1] B. Ahlgren et al., “A Survey of Information‑centric

Networking,” IEEE Commun. Magazine, July 2012,
pp. 26–36.

[2] A. Afanasyev et al., “ndnSIM: NDN simulator for ns‑
3”, University of California, Los Angeles, Tech. Rep,
2012.

[3] A. Afanasyev et al., “Interest Flooding Attack and
Countermeasures in Named Data Networking,” Proc.
IFIP Networking ‘13, May 2013.

[4] AT&T, “The Quality of Internet Service: AT&T’s
Global IP Network Performance Measurements,”
2003.
http://ipnetwork.bgtmo.ip.att.net/pws/paper.pdf

[5] J. Behrens and J.J. Garcia‑Luna‑Aceves, “Hierarchi‑
cal Routing Using Link Vectors,” Proc. IEEE INFOCOM
‘98, April 1998.

[6] A. Carzaniga et al., “Content‑Based Pub‑
lish/Subscribe Networking and Information‑
Centric Networking,” PRoc. ACM ICN ‘11, August
2011.

[7] L. Ciavatone et al., “Standardized Active Measure‑
ments on a Tier 1 IP Backbone,” IEEE Comm. Mag‑
azine, June 2003.

[8] Content Centric Networking Project (CCN) [online].
http://www.ccnx.org/releases/latest/doc/technical/

[9] A. Dabirmoghaddam et al., “Understanding Optimal
Caching and Opportunistic Caching at The Edge of
Information Centric Networks,” Proc. ACM ICN ‘14,
Sept. 2014.

[10] H. Dai el al., “On Pending Interest Table in Named
Data Networking,” Proc. ACM ANCS ‘12, Oct. 2012.

[11] E.W. Dijkstra and C.S. Scholten “Termination Detec‑
tion for Diffusing Computations,” Information Pro‑
cessing Letters, Vol. 11, No. 1, 1980.

[12] E.W. Dijkstra, W. Feijen, and A.J.M. van Gasteren,
“Derivation of a Termination Detection Algorithm
for Distributed Computations,” Information Proces-
sing Letters, Vol. 16, No. 5, 1983.

[13] S. Fayazbakhsh et al., “Less Pain, Most of the Gain:
Incrementally Deployable ICN,” Proc. ACM SIGCOMM
‘13, 2013.

[14] C. Fricker et al., “Impact of trafϐic mix on caching per‑
formance in a content‑centric network,” Proc. IEEE
NOMEN Workshop ‘12, 2012.

[15] J.J. Garcia‑Luna‑Aceves, “A Uniϐied Approach to
Loop‑Free Routing Using Distance Vectors or Link
States,” Proc. ACM SIGCOMM ‘89, Aug. 1989.

[16] J.J. Garcia‑Luna‑Aceves, “Name‑Based Content Rou‑
ting in Information Centric Networks Using
Distance Information,” Proc. ACM ICN ‘14, Sept.
2014.

[17] J.J. Garcia‑Luna‑Aceves, “A Fault‑Tolerant Forwar‑
ding Strategy for Interest‑based Information
Centric Networks,” Proc. IFIP Networking ‘15, May
2015.

[18] J.J. Garcia‑Luna‑Aceves and M. Mirzazad‑Barijough,
“Enabling Correct Interest Forwarding and Retrans‑
missions in a Content Centric Network,” Proc. ACM
ANCS ‘15, May 2015.

[19] J.J. Garcia‑Luna‑Aceves, “A More Scalable Approach
to Content Centric Networking,” Proc. IEEE ICCCN
‘15, Aug. 3‑6, 2015.

[20] J.J. Garcia‑Luna‑Aceves, “Eliminating Undetected In‑
terest Looping in Content Centric Networks,” Proc.
IEEE NOF ‘15, Sept. 30‑Oct. 2, 2015.

[21] P. Gasti et al., “DoS and DDoS in Named Data Net‑
working,” Proc. IEEE ICCCN ‘03, 2013.

[22] E. Hemmati and J.J. Garcia‑Luna‑Aceves, “A New
Approach to Name‑Based Link‑State Routing for
Information‑Centric Networks,” Proc. ACM ICN ‘15,
Sep. 30 ‑ Oct. 2, 2015.

[23] V. Jacobson et al., “Networking Named Content,”
Proc. IEEE CoNEXT ‘09, Dec. 2009.

[24] B.N. Levine et al., “The Case for Reliable Concurrent
Multicasting Using Shared ACK Trees,” Proc. ACM
Multimedia ‘96, Nov. 1996.

[25] A.K.M. Mahmudul‑Hoque et al., “NSLR: Named‑Data
Link State Routing Protocol,” Proc. ACM ICN ‘13,
2013.

[26] G. Markowsky and F.H. Moss, “An Evaluation of Lo‑
cal Path ID Swapping in Computer Networks,” IEEE
Trans. Commun., Vol. COM‑29, pp. 329‑336, March
1981.

[27] J. Matocha and T. Camp, “A Taxonomy of Distributed
Termination Detection Algorithms,” Journal of Sys‑
tems and Software, 1998.

[28] NDN Project [online]. http://www.named‑data.net/
[29] W. So et al., “ Toward Fast NDN Software Forward‑

ing Lookup Engine Based on Hash Tables,” Proc. ACM
ANCS ‘12, 2012.

[30] M. Spohn and J.J. Garcia‑Luna‑Aceves, “Scalable
Link‑State Internet Routing,” Proc. IEEE ICNP ‘98,
Oct. 1998.

[31] C. Tsilopoulos et al., “Reducing Forwarding State in
Content‑Centric Networks with Semi‑Stateless For‑
warding,” Proc. IEEE INFOCOM ‘14, April 2014.

Garcia-Luna-Aceves et al.: An information-centric networking architecture with small routing tables

©International Telecommunication Union, 2022 759

[32] M. Varvello et al., “On The Design and Implementa‑
tion of a Wire‑Speed Pending Interest Table,” Proc.
IEEE Infocom NOMENWorkshop ‘13, April 2013.

[33] M. Virgilio et al., “PIT Overload Analysis in Content
Centric Networks,” Proc. ACM ICN ‘13, Aug. 2013.

[34] S. Vutukury and J.J. Garcia‑Luna‑Aceves, “A Simple
Approximation to Minimum‑Delay Routing,” Proc.
ACM SIGCOMM ‘99, Aug. 1999.

[35] S. Vutukury and J.J. Garcia‑Luna‑Aceves, “A Multi‑
path Framework Architecture for Integrated Ser‑
vices,” Proc. IEEE Globecom ‘00, Nov. 2000.

[36] M. Wahlisch et al., “Lessons from the Past: Why
Data‑driven States Harm Future Information‑
Centric Networking,” IFIP Networking ‘13, May
2013.

[37] M. Wahlisch et al., “Backscatter from The Data
Plane ? Threats to Stability and Security in
Information‑Centric Network Infrastructure,” Com‑
puter Networks, Vol. 57, No. 16, Nov. 2013.

[38] G. Xylomenos et al., “A Survey of Information‑centric
NetworkingResearch,” IEEECommunication Surveys
and Tutorials, July 2013.

[39] C. Yi et al., “Adaptive Forwarding in NamedDataNet‑
working,” ACM CCR, Vol. 42, No. 3, July 2012.

[40] C. Yi et al., “A Case for Stateful Forwarding Plane,”
Computer Communications, pp. 779‑791, 2013.

[41] W.T. Zaumen and J.J. Garcia‑Luna‑Aceves, “Dynamics
of Distributed Shortest‑Path Routing Algorithms,”
Proc. ACM SIGCOMM ‘91, Sept. 1991.

[42] W.T. Zaumen and J.J. Garcia‑Luna‑Aceves, “System
for Maintaining Multiple Loop‑free Paths between
Source Node and Destination Node in Computer
Network,” US Patent 5,881,243, 1999.

[43] L. Zhang et al., “Named Data Networking,” ACM SIG‑
COMMComputer Communication Review, Vol. 44, No.
3, July 2014.

[44] G. Caroϐiϐlio et al., “Enabling ICN in the Internet Pro‑
tocol: Analysis and Evaluation of the Hybrid‑ICN Ar‑
chitecture,” Proc. ACM ICN ‘19, Sept. 2019.

[45] A. Drescher et al., “Analyzing the Performance of ICN
Forwarders on the Wire,” Proc. ACM ICN ‘20, Sept.
2020.

[46] E.K. Lua et al., “A Survey and Comparison of Peer‑to‑
Peer Overlay Network Schemes,” IEEE Communica‑
tions Survey and Tutorial, March 2004.

[47] J.J. Garcia‑Luna‑Aceves, “SystemandMethod forDis‑
covering Information Objects and Information Ob‑
ject Repositories in ComputerNetworks,” U.S. Patent
7,162,539, January 2007.

[48] J. Raju, J.J. Garcia‑Luna‑Aceves and B. Smith, “System
andMethod for Information Object Routing in Com‑
puter Networks,” U.S. Patent 7,552,233, June 2009.

[49] J.J. Garcia‑Luna‑Aceves and B. Smith, “System and
Method for Using Uniform Resource Locators To
Map Application Layer Content Names to Network
Layer Anycast Addresses,” U.S. Patent 7,343,422,
March 2008.

[50] B. Zolfaghari et al., “Content Delivery Networks:
State of the Art, Trends, and Future Roadmap,” ACM
Computing Surveys, April 2020.

[51] A. Ali Albalawi, and J.J. Garcia‑Luna‑Aceves, “Named‑
Data Transport: An End‑to‑End Approach for an
Information‑Centric IP Internet,” Proc. ACM ICN ‘20,
Sept. 2020.

[52] K. Schneider et al.„ “Near Loop‑free Routing: In‑
creasing Path Choices with Stateful Forwarding,”
Proc. ACM ICN ‘17, Sept. 2017.

[53] Z. Li et al, “Packet Forwarding in Named Data Net‑
working Requirements and Survey of Solutions,”
IEEE Communications Surveys and Tutorials, 2019.

[54] J.J. Garcia‑Luna‑Aceves and M. Mirzazad‑Barijough,
“A Light‑Weight Forwarding Plane for Content‑
Centric Networks,” Proc. IEEE ICNC 2016, Feb. 2016.

AUTHORS
J.J. Garcia‑Luna‑Aceves is a distinguished professor of
Computer Science and Engineering (CSE)at the University
of California, Santa Cruz (UCSC) and serves as CSE Depart‑
ment Chair and CITRIS Campus Director. He was elected
a corresponding member of the the Mexican Academy of
Sciences in 2013. He is an IEEE life fellow, an ACM fel‑
low, a AAAS fellow, a AAIA fellow, and a NAI fellow. He
received the IEEE Computer Society Technical Achieve‑
ment Award in 2011, the IEEE Communications Society
Ad Hoc and Sensor Networks Technical Committee (AHSN
TC) Technical Recognition Award in 2012, and the IEEE
MILCOM Technical Achievement Award in 2016.

Maziar Mirzazad received his B.S. and M.S. degrees in
computer science and IT engineering from the University
of Tehran in 2008 and 2012, respectively. He received his
Ph.D. degree in computer engineering from the University
of California Santa Cruz in 2016. He is currently a staff
software engineer at Apple AI/ML. His current interests
include networks, distributed systems, and data Infras‑
tructure and platforms.

©International Telecommunication Union, 2022

ITU Journal on Future and Evolving Technologies, Volume 3, Issue 3, December 2022

760

	AN INFORMATION‑CENTRIC NETWORKING ARCHITECTURE WITH SMALL ROUTING TABLES
	1. INTRODUCTION
	2. INTEREST AGGREGATION IN NDN
	2.1 Elements of NDN operation
	2.2 Undetected Interest loops in NDN
	2.3 Performance bene􀏐its of Interest aggregation
	2.3.1 Scenario parameters and scenarios
	2.3.2 Simulation results

	3. CCN‑DART
	3.1 Design rationale and assumptions
	3.2 Information exchanged and stored
	3.3 Preventing forwarding loops
	3.4 Maintaining forwarding state
	3.5 Supporting multipoint communication
	3.6 CCN‑DART forwarding example

	4. CORRECTNESS OF CCN‑DART
	5. PERFORMANCE COMPARISON
	5.1 Size of PITs and DARTs
	5.2 Interest traf􀏐ic and end‑to‑end delays
	5.3 Impact of Interest 􀏐looding attacks
	5.4 Implementation and deployment

	6. CONCLUSIONS
	REFERENCES
	AUTHORS

