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Abstract – Futurewireless networks require high throughput and energy efϔiciency. This paper studies using Reinforcement
Learning (RL) to do transmission rate and power control for maximizing a joint reward function consisting of both through‑
put and energy consumption. We design the system state to include factors that reϔlect packet queue length, interference from
other nodes, quality of the wireless channel, battery status, etc. The reward function is normalized and does not involve unit
conversion. It can be used to train three different types of agents: throughput‑critical, energy‑critical, and throughput and
energy balanced. Using the NS‑3 network simulation software, we implement and train these agents in an 802.11ac network
with the presence of a jammer. We then test the agents with two jamming nodes interfering with the packets received at the
receiver. We compare the performance of our RL optimal policies with the popular Minstrel rate adaptation algorithm: our
approach can achieve (i) higher throughput when using the throughput‑critical reward function; (ii) lower energy consump‑
tion when using the energy‑critical reward function; and (iii) higher throughput and slightly higher energy when using the
throughput and energy balanced reward function. Although our discussion is focused on 802.11ac networks, our method is
readily applicable to other types of wireless networks.
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1. INTRODUCTION
Future communication networks need to provide high
data rates to users in an energy efϐicient way. Wi‑Fi is
a very popular type of wireless network, and there were
22.2 billion Wi‑Fi devices in 2021 [1]. Therefore, a slight
future improvement on Wi‑Fi can signiϐicantly improve
productivity and make a positive impact to the environ‑
ment. IEEE 802.11, the protocol that enables Wi‑Fi, de‑
ϐines physical layers that can transmit data at a vari‑
ety of rates. Various channel access techniques, such as
Orthogonal Frequency Division Multiplexing (OFDM) or
Direct Sequence Spread Spectrum (DSSS), and modula‑
tion schemes, such as Binary Phase Shift Keying (BPSK)
or variants of Quadrature Amplitude Modulation (QAM),
may be used at different rates. Because effects like multi‑
path fading, shadowing, signal attenuation, and interfer‑
ence from other radio sources are tolerated differently by
each of these, using the fastest rate regardless of the chan‑
nel circumstances is not the optimal solution.
For this reason, various rate control algorithms (either
proprietary or open‑source ones) that dynamically adjust
the transmission rate in response to changing channel cir‑
cumstances have been designed to improve the perfor‑
mance of wireless networks. In particular, these rate con‑
trol algorithms [2, 3, 4, 5, 6] are primarily designed to
identify the best rate and modulation scheme that yield
the highest throughput. Because reliable data transmis‑
sion rates and interference levels are fundamentally con‑
nected in wireless networks, transmission power control
[7, 8] has also been used to reduce undesirable interfer‑

ence and to conserve energy for wireless devices, espe‑
cially the battery‑powered ones. Joint transmission rate
and power control has been explored to take into account
the trade‑off between the throughput and the energy con‑
sumed [9]. In principle, decreasing the power or rais‑
ing the carrier sense threshold may help to enhance spa‑
tial reuse. By differentiating congestion from interference
losses, [10] proposes a hybrid transmit power and car‑
rier sense adaptation approach. When the interference
occurs before the data signal, this work shows that ϐine‑
tuning the carrier detection thresholdmay completely re‑
move interference‑related losses. In addition, power con‑
trol avoids data signal loss due to interference that oc‑
curs when the data signal is sent. [11] explores the trade‑
off between energy and latency and uses a real‑time con‑
troller for the dynamic regulation of task delivery in order
to minimize energy consumption while meeting a dead‑
line for each individual task. In particular, the authors
make use of the generalized critical task decomposition
algorithm to identify critical tasks on an optimal sample
path.
In addition to power and carrier sense management,
when rate control is taken into consideration, it intro‑
duces a trade‑off between spatial reuse and the transmis‑
sion rate that can be sustained [12]. A new idea, spa‑
tial back‑off, was introduced in [13], which allows for dy‑
namic tweaking of the carrier sensing threshold in con‑
junction with the Auto‑Rate Fallback (ARF) algorithm in
order to achieve high throughput. In particular, ARF shifts
to a lower transmission rate if themeasured losses exceed
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a threshold, then switches to a higher transmission rate
after a speciϐied number of consecutive frames are suc‑
cessfully sent. According to [14], when dealing with dis‑
crete data rates and when there are a sufϐicient number
of power levels, controlling the power gives several bene‑
ϐits over carrier sensing control as compared to a contin‑
uous data rate. According to the authors, power and rate
control is a technique that regulates the power and rate
of a transmitter depending on the perceived degree of in‑
terference at the receiving end. It is necessary for the re‑
ceiver to return this information to the transmitter, which
maybe accomplishedby IEEE802.11k [15], but is not cur‑
rently supported by any of the device driver versions.
An adaptive rate and power control technique that is con‑
sistent with IEEE 802.11 operations is proposed in [16]
where Acknowledgments (ACKs) received from the re‑
ceiver are used to communicate the optimization of the
transmission speed, which continues to operate utilizing
two basic adaptive strategies: themaximumpossible rate
is assisted with the least potential power; and the low‑
est possible power is chosen ϐirst, then the highest rate
conceivable at this power is chosen. In a related manner,
Power‑controlled Auto Rate Fallback (PARF) and Power‑
Enabled Rate Fallback (PERF) were suggested in [17], in
which the authors extend ARF and Estimated Rate Fall‑
back (ERF) to work with transmission power control. It
is important to note that ERF is the SNR‑based variant
of ARF, in which each packet carries the power level, the
path loss, and noise estimate from the previous packet
that has been received. ERF senders estimate the SNR
based on this information and establish the highest trans‑
mission rate compatible with the estimated SNR. The au‑
thors of [17] discovered that PARF did not work effec‑
tively when the receiver reduced the power used for ACK
messages, as they predicted. In essence, this resulted
in inaccurate power reduction choices at the transmit‑
ter when these ACK packets were not received. They
getmore reliable performance using PERF,making power
and rate choices based on the SNR values. These ϐindings
are consistent with [18], which demonstrates that SNR‑
based treatments are more resilient when compared to
loss‑basedprotocols [15]. Despite this, they conclude that
in order to achieve such resilience, SNR‑based methods
necessitate real‑time training.

2. RELATEDWORK
Reinforcement Learning (RL) has been researched ac‑
tively for the control of transmission power and the data
rates for 802.11 standards. [19] presented a power al‑
location technique based on multi‑agent reinforcement
learning. The paper reduces the loss function through
stochastic gradient descent using a Deep Q‑Network with
many agents learning in parallel. The state description
for each agent is the previous transmit power which de‑
scribes agent 𝑖’s potential contribution to the network as
well as the interfering neighbors’ contributions to the net‑
work based on observations from a set of 𝑛 transmitters

with an SNR greater than a predeϐined threshold and a re‑
ceiver with an SNR greater than the threshold. The ac‑
tions are described as discretized steps of power within a
speciϐied power range shared by all actors (i.e., all agents
have the same action space). The reward function is in‑
tended to reϐlect each agent’s direct interference contri‑
bution to the network and its penalty for interfering with
all other agents, deϐined and interpreted as how action of
agent 𝑖 through time slot 𝑡, i.e., 𝑝(𝑡)

𝑖 , affects the weighted
sum‑rate of its own and future interfered neighbors.
The authors of [20] builds on [19] and uses an actor‑
critic algorithm to learn the optimal policy of a distributed
power control. In actor‑critic algorithms, two neural
networks are designed to learn and update each other’s
weight regarding the experiences and state‑action pairs
encountered in each episode. Each transmitter is de‑
signed to be a learning agent in the system exploration,
so the actors are a number of learning agents whose next
state is conditioned upon the joint actions of all agents
that existed as an actor. The critic is a single network
described as the 𝑄𝑡𝑎𝑟𝑔𝑒𝑡 used to update each learning
agent’s parameters after every episode. The presented
work is a power allocation scheme for conventional wire‑
less mobile networks that considers interference from
other networks and distributes learning of the optimal
policy through an actor‑critic agent.
Rate adaptation simulation using the standard 802.11g
with a ϐinite state (< 100) was investigated in [21] using
the SARSA algorithmwith learned Q‑values stored in a ta‑
ble. The states were deϐined to simulate a standard Ro‑
bust Rate Adaptation Algorithm (RRAA)whichminimizes
the loss rate, 𝑅𝑙𝑜𝑠𝑠, to achieve the desirable transmitting
rate. This approach falls short since it considers stan‑
dardWi‑Fi with a lower data rate than the latest advance‑
ment of the 802.11 such as the 802.11ac and 802.11ax,
which has a lot more data rates encoded as the Modula‑
tion Coding Schemes (MCS). Another rate adaptation al‑
gorithm simulated in [22] represents the state’s obser‑
vation to the agent as Contention Window (CW) size of
the CSMA/CS on an 802.11a standard, which has 8 MCS
level: {6, 9, 12, 18, 24, 36, 48, 54}Mbps as the action
space. Locally, the sender node has access to the observa‑
tion. Each CSMA/CA node operating in Distributed Coor‑
dinated Function (DCF) mode chooses the random back‑
off time depending on the current CW size, ensuring that
packets transmitted by other nodes do not overlap in the
same manner. When a node transmits a packet for the
ϐirst time in a typical CSMA/CS 802.11 protocol, it decides
the minimum size of the CW, which is 15 in IEEE 802.11a.
If the packets do not arrive at the receiver, the sender re‑
sends the packet at twice the CWsize. This algorithmuses
the CW size concept to discretize its states‑action pairs
stored in a Q‑values table which is not enough represen‑
tation of the state of the channel, as packets of bits could
be dropped not only due to the interference but also due
to the state of the channel.
This paper proposes a new paradigm that combines
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the control of transmission speed and the transmission
power of the 802.11Wi‑Fi protocol using the recently de‑
veloped 802.11ac standard. Speciϐically, we explore the
use of an RL algorithm to observe the channel state and
develop an optimal policy for transmitting packets of in‑
formation in the presence of jamming nodes intended for
deliberately disrupting the delivery of packets to the re‑
ceiver. Compared with other related works in the lit‑
erature, our contributions are three‑fold: (i) Our state
space includesmultiple elements, including packet queue
length, ACK from the receiver, battery level, CW, and back‑
off slots; (ii) We jointly control the transmission power
and data rates of a transmitter under jamming and incor‑
porate both energy and throughput into the reward func‑
tion; and (iii)We show in simulation that ourmethod out‑
performs the widely used Minstrel rate adaptation algo‑
rithm. It is worth noting that differently from the sur‑
veyed literature, our methodology combines two reward
functions and offers a ϐlexible approach to users for se‑
lectingwhich factor is more important (i.e., either tomax‑
imize the throughput of the system or tominimize the en‑
ergy consumption of the device).
The organization of the rest of the paper is as follows:
the methodology is presented in Section 3; Section 4 dis‑
cusses the agents’ training and testing results; the conclu‑
sion and future work are discussed in Section 5.

3. METHODOLOGY
3.1 State observation
The state is represented by a collection of characteris‑
tics derived from local measurements taken at the Trans‑
mitting node (Tx). These characteristics should give suf‑
ϐicient information about the transmitter’s performance
and the wireless channel. In particular, the state is de‑
ϐined as a tuple (𝑁𝑡, 𝐶𝑤, 𝐵𝑓𝑠, 𝑅𝑝, 𝐵𝑙):

• 𝑁𝑡 (packet queue length): the percentage of the
packet queue occupied by packets that are ready
to be transmitted or retransmitted. The maximum
number of packets that can be queued is 5000. The
queue uses a First‑In‑First‑Out (FIFO) policy, and it is
full when the packets in the queue has reached 5000.
To reduce the state space, we divide the queue length
into 10 discrete levels, i.e., 𝑁𝑡 can only be multiples
of 10 between 10 and 100.

• 𝐶𝑤 (CW size): This deϐines a period of time in which
the network is operating in contention mode. The
larger the contention window, the larger the average
back‑off value, and the lower the likelihood of colli‑
sions. For a Best Effort (BE) packet delivery, the con‑
tention window duration doubles its current value
when there is collision; the minimum contention
value, 𝐶𝑤(𝑚𝑖𝑛), is 15, and the maximum contention
value, 𝐶𝑤(𝑚𝑎𝑥), is 1023. That is, there are 7 power of
two values possible for the contention window be‑
tween 15 and 1023.

• 𝐵𝑓𝑠 (back‑off slots): This is the value returned from
the back‑off algorithm for collision resolution used
to alert collision and retransmission of packetswhen
there are collisions during the transmission sched‑
ule. When a station enters the back‑off state, it waits
for an additional and randomly selected number of
time slots (the random number is larger than 0 and
less than the current CWmaximum value). The total
possible value of the slots in the state space is a slot
range from 0 to 1023, inclusive or 1024 values. This
is discretized into 128 categories by the given equa‑
tion below

𝐵𝑓𝑠 ← 𝑖𝑛𝑡(𝐵𝑓/8), (1)

where:

𝐵𝑓 = The returned collision resolution value
𝐵𝑓𝑠 = Discretized value of the back‑off slots

• 𝑅𝑝 (acknowledged packet): This is an indication of
whether last packet transmission has been acknowl‑
edged/successfully received. This value could be ei‑
ther 1 for success or 0 for failure. It is included in the
state because it provides useful information about
the quality of current wireless channel state to the
agent.

• 𝐵𝑙 (battery level): the percentage of the remaining
battery of the transmitter. To reduce the state space,
𝐵𝑙 can only be a multiple of 10 between 10 and 100.
We have this in the state so that the agent can possi‑
bly improve energy efϐiciency and extend the lifetime
of the wireless node.

The size of the state space is 10 x 7 x 128 x 2 x 10 =
179,200.

3.2 Reward function
Generally speaking, RL algorithms face one difϐicult chal‑
lenge: the selection of the reward function. The fact that
reward functions are often hand‑engineered and domain‑
speciϐic is a major disadvantage of RL. Imitation Learn‑
ing (IL) [23], which seeks to retrieve the expert policy
explicitly, and Inverse Reinforcement Learning (IRL)[24],
which offers a means to automatically obtain a cost fea‑
ture from expert presentations, have received a lot of at‑
tention. However, both of these approaches have high
computing costs, and the optimization problem of de‑
terminingwhich compensation function ideally describes
the expert trajectory is basically ill‑posed [25].
Designing a reward function may be done in one of two
ways: dense reward functions offer a reward in all states
during exploration while sparse reward functions only
provide a reward at the terminal state andno reward else‑
where. A dense reward is utilized in this application be‑
cause it helps in providing feedback for each action per‑
formed so far by the agent, even if it has not yet converged
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to the optimal policy. The reward is intended to be the
number of packets successfully transmitted and the total
amount of energy consumed given the current change in
transmission power andMCS. However, although the sent
packets in a state may be an integer number, the energy
used during a state transition ‑ 5msmay be a value inmil‑
lijoules that has a negligible effect on the agent’s choice.
As a result, it is necessary to normalize the throughput
and energy so that the energy and packets received may
be utilized to notify the agent of its choice. Our reward
function is computed using the convex combination in the
reward equation below. The energy consumed is multi‑
plied by ‑1 to ensure that the agent prefers and considers
a data rate and transmission power that uses less energy
while still delivering packets at a high rate.

𝑅𝑒𝑤𝑎𝑟𝑑 = 𝜆 ⋅ 𝑅𝑝 × 100
𝑁𝑇

+ (1 − 𝜆) ⋅ −1 × 𝐸𝑐 × 100
𝐸𝑇

(2)

where:

𝑅𝑝 = Number of received packet in a state

𝐸𝑐 = Energy consumed in a state

𝑁𝑇 = Total number of packets available for transmis‑
sion

𝐸𝑇 = Total energy available at the transmitter

𝜆 = Weighted multiplier

When 𝜆 is set to a value higher than 0.5, the agent gives
priority to throughput over the consumed energy; when
𝜆 is set to a value less than 0.5, the agent gives priority to
the consumed energy over throughput.
The total throughput during simulation is calculated as

𝑇 ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡(𝑀𝑏𝑝𝑠) = 𝑁𝑝 × 𝑃𝑠 × 8
𝑇𝑠 × 106 , (3)

where 𝑁𝑝 is the total number of packets received during
simulation, 𝑃𝑠 is the carrying payload size of a packet and
𝑇𝑠 is the total simulation time.

3.3 Actions
The primary action of the RL agent is choosing the data
rates and the transmission power. The data rates in the
802.11ac Wi‑Fi protocol, also known as the Very High
Throughput (VHT) rates, are represented as MCS values
between 0 and 9: for one spatial stream, the minimum
throughput is 58.5Mbps at MCS level 0 and themaximum
value is 780 Mbps for MCS level 9. See the whole list in
Fig. 1.
The transmission power has 10 levels, ranging from 1
dBm to 10 dBm. We limited the maximum power to 10
dBm since we are simulating a battery‑powered device.

Fig. 1 – 802.11ac PHY data rates for 1 and 2 spatial streams [26]

3.4 The terminal state
The study of transmission speed and power control
in wireless networks is considered to be a sequential
decision‑making problem, since we will continue to send
packets whenever they are ready for transmission. To‑
day’s wireless devices, on the other hand, mostly rely on
batteries. Thus, wemake the RL system an episodic prob‑
lem with a terminal state, a condition that ends the train‑
ing episode. In order to model the scenario of battery de‑
pletion and let the agent learn how to use the energy efϐi‑
ciently, we utilize the battery level as a primary termina‑
tion state: an episode terminates if the battery level falls
below 10 percent. Additionally, we are concerned with
dropped packets, which are not part of the reward func‑
tion. Therefore, we have a secondary terminal state that
ends training if the number of dropped packets increases
over a predeϐined proportion: 5%s of the total packets ar‑
riving at the packet queue. This secondary terminal state
acts like a penalty: the agent needs to choose actions that
yield less dropped packets in order to maximize the re‑
ward.

3.5 Learning agent
Let us denote the action space by A and the state space
by S. A total of 100 actions is given in a ϐlattened vector
(10 x 10) of the MCS value and the transmission power.
Let 𝑠𝑖 ∈ 𝑆 represent the state of the system at a par‑
ticular time step t. In this condition, the agent will per‑
form the action 𝑎𝑖 ∈ 𝐴 that has the highest Q‑value, i.e.,
𝑎𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎∈𝐴𝑄(𝑠𝑖, 𝑎). The Q values of all state‑action
pairs are maintained in a so‑called look‑up table, which is
updated on a regular basis in accordance with the reward
function.

Table 1 – Storage complexity

Set / Function Cardinality

State Space:
𝑁𝑡 × 𝐶𝑤 × 𝐵𝑓𝑠 × 𝑅𝑝 × 𝐵𝑙 10 × 7 × 128 × 2 × 10

Action Space: 𝐴 = 𝑃𝑤 × 𝑀𝐶𝑆 10 × 10
Q‑value function: 𝑄𝑡(𝑠, 𝑎) 17, 920, 000

We use SARSA, an on‑policy RL algorithm that up‑
dates the Q‑function using the experienced trajectory
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(𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1, 𝑎𝑡+1, 𝑟𝑡+1, … ). The implementation of our
algorithm uses a SARSA update rule for the Q‑value com‑
putationof each state𝑆 in the lookup table. The SARSAal‑
gorithm is considered so that the agent is informed about
how an action can create an interference or can cause a
packet to be dropped in the next state. Mathematically,
the update rule of the Q‑table using the SARSA algorithm
is given as

𝑄𝑛𝑒𝑤
(𝑠𝑖,𝑎𝑖) = (1 − 𝛼) × 𝑄(𝑠𝑖, 𝑎𝑖)+

𝛼(𝑟(𝑠𝑖, 𝑎𝑖) + 𝛾Δ𝑡 ⋅ 𝑄(𝑠𝑖+1, 𝑎𝑖+1) − 𝑄(𝑠𝑖, 𝑎𝑖)) (4)

The storage complexity calculation can be found in Table
1, and the training algorithm is described in Algorithm
1. Exploration and exploitation are the two strategies in
RL. In exploration, an agent seeks additional knowledge
about the environment to verify the presence of better de‑
cisions; in exploitation, the agent adopts the best actions
known so far to maximize the reward function. More ex‑
ploration implies the agent is more likely to choose many
suboptimal actions, lowering its performance. However,
the agent may be completely unaware of alternative ac‑
tions that result in better long‑term results if the agent
only performs exploitation. 𝜖 is a probability of selecting
random actions and is initially set to 1 so that the agents
can navigate and iterate through the actions randomly. 𝜖′

is a multiplier reducing the probability of selecting ran‑
dom actions over time.
Algorithm 1 The SARSA Algorithm
1: Initialize Simulation Environment
2: Initialize Q‑Table and Agent Methods
3: Initialize Number of Episodes
4: Initialize Epsilon
5: for iteration = 1, 2 ..., Episodes do
6: 𝑇 𝑜𝑡𝑎𝑙𝑅𝑒𝑤𝑎𝑟𝑑 ← 0
7: while Transmission is not completed do
8: 𝐴𝑐𝑡𝑖𝑜𝑛 ← 𝐺𝑒𝑡 𝐴𝑐𝑡𝑖𝑜𝑛(𝐴𝑡)
9: Perform Action in Simulation Environment

10: Collect Next State, Reward, Done
11: 𝐴𝑐𝑡𝑖𝑜𝑛(𝑡+1) ← 𝐺𝑒𝑡 𝑁𝑒𝑥𝑡𝑠𝑡𝑎𝑡𝑒𝐴𝑐𝑡𝑖𝑜𝑛(𝐴𝑡+1)
12: Update Q‑Value using (4) and the Q‑Table
13: 𝐸𝑝𝑠𝑖𝑙𝑜𝑛 𝜖 ← 𝜖 ∗ 𝜖′

14: 𝑇 𝑜𝑡𝑎𝑙𝑅𝑒𝑤𝑎𝑟𝑑+ = 𝑅𝑒𝑤𝑎𝑟𝑑
15: end while
16: end for

4. RESULTS AND DISCUSSION
We use RL to optimize a joint reward function of the
throughput and the transmission energy. The experi‑
ment and testing are carried out on wireless nodes us‑
ing the 802.11ac standard, but our results are also ap‑
plicable to other types of wireless networks. The envi‑
ronment where the agent learns the optimal policy is cre‑
ated in the well‑known NS3[27] software, which is a free
and open‑source simulation tool popular for simulating

discrete events of networks and network protocols. It of‑
fers a collection of models that aim to give a precise MAC‑
level and PHY‑level implementation of the 802.11 proto‑
cols. The system environment is created using C++, and
the agent is implemented using Python.

4.1 Simulation testbed
The Transmitter (Tx) and Receiver (Rx) are the primary
nodes in the simulation’s testbed, and it also includes
a third node and a fourth node (for testing purposes
only), known as the interferers or jammers which trans‑
mit using a separate port to randomly interfere with the
transmitter. See Fig. 2 for the network topology. The
transmitter transmits packets to the receiver, which re‑
ceives these packets with a conϐigurable Receiving Signal
Strength (RSS). The interferer does not perform carrier
sensing and can be considered as a hostile jamming node
which randomly transmits packets in order to disrupt the
transmission between the transmitter and the receiver.
This interferer node is added mainly to allow the explo‑
ration of all interference states, which will aid the learn‑
ing agent in exploring evenmore state space. Thephysical
layer (PHY) is conϐigured and evaluated with a spectrum
utilization (i.e., the aggregated throughput of all nodes op‑
erating in the spectrum) as a function of channel width
160MHz in the 5GHz band.
The channel is established using a simulated Friis prop‑
agation model to replicate Line‑Of‑Sight (LOS) path loss
in a free space environment. For the duration of the state
event ‑ 5 milliseconds, the data rate is regulated and con‑
trolled at the MAC layer, which is intended as an ad hoc
Wi‑Fi MAC with a constant rate Wi‑Fi manager for the RL
environment andmay be replacedwith theMinstrel algo‑
rithm or other control algorithms. The mobility of both
transmitter and the receiver, as well as the distance be‑
tween them, are designed to be adjustable, with either
both nodes remaining stationary throughout the simula‑
tion or the destination (Rx) dynamically moving around
a desired distance to the transmitter to simulate a real‑
world environment where a station device or mobile hot
spot may be dynamically moving away or towards the
transmitter. Best effort User Datagram Protocol (UDP)
packets are generated and transmitted from the transmit‑
ter to the receiver in the simulation. We use UDP because
compared with the Transmission Control Protocol (TCP),
UDP is a simpler protocol that does not need connection
setup delays, ϐlow control, or retransmission. The envi‑
ronment parameters is shown in Table 2.

4.2 Energy model
The Wi‑Fi radio energy model included in the NS‑3 soft‑
ware is used to model the network device’s energy con‑
sumption, which is expressed as a percentage of the to‑
tal energy consumed. The model includes all the conceiv‑
able states of the PHY layer, including idle, busy, Tx, Rx,
ChannelSwitch, sleep, and off. Each of these states has a
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Fig. 2 – Training simulation setup. Transmitter (TX) continuously trans‑
mits packets to the Receiver(RX). Interference Node (IX) transmits at a
random time, t, to the receiver without carrier sensing.

Table 2 – Simulation settings

Settings Values

# of nodes 4
Wi‑Fi Protocol 802.11AC

Channel Multi Modal Spectrum Channel
Channel width 160MHz

Default Frequency 5200 MHz
Clear Channel Assessment

(CCA) Threshold 82.0 dBm
Guard Interval 800ns
Loss Model Friis Propagation Loss Model
Fading Model Nakagimi Loss Model
Mac Model HT‑MAC

EDCA access Category Best Effort
Channel Delay Model Constant Speed Propagation Model

Ad hoc Mode Ad hoc QOS Supported
Mobility RandomWalk and

Constant Position Mobility
IP Network/Transport IPv4/UDP

Payload Size 1472
Simulation Time 10 Seconds
Packet Queue Size 5000

Queue Maximum Delay 1 Second

corresponding current demand value (measured in am‑
peres). When a Wi‑Fi radio energy model PHY listener
is registered to the Wi‑Fi PHY, it is notiϐied of any Wi‑
Fi PHY state changes. When a state transition happens,
the energy used in the previous state is computed, and
the energy source is notiϐied to update its remaining en‑
ergy. The Wi‑Fi Tx current model enables us to compute
the transmit current demand as a function of the nominal
transmit power (in dBm). As a result, the Wi‑Fi radio en‑
ergy model PHY listener receives information about the
nominal Tx power needed to transmit the current frame
and communicates this information to the Wi‑Fi Tx cur‑
rent model, which is responsible for updating the current
demand during transmission in the Tx state.

Table 3 – Agents’ parameters

Learning Agents 𝜆 𝛾 𝛼

Throughput Optimizing 0.8 0.9 0.2
Energy & Throughput Optimizing 0.5 0.9 0.2

Energy Optimizing 0.2 0.9 0.2

4.3 Training results
The functionality and performance of our RL algorithm
are experimentally validated. As previously stated, a dic‑
tionary data structure is used to implement the Q‑table
in Python. The simulations are divided into two phases:
training and testing. We train three agents using differ‑
ent values of the weighting factor 𝜆, and the agent pa‑
rameters are shown in Table 3. We included only one in‑
terference/jamming node in the training of each agent as
shown in Fig. 2. The training was carried out in episodes,
with each episode running the simulation for maximum
10 seconds or until the terminal state is reached, i.e., ei‑
ther packet loss is more than 5% or the battery level is
less than 10%. In training, packets arrive at a constant
rate of 60 000 packets per second. Each packet has 1472
bytes.
The rewards obtained in training using the SARSA algo‑
rithm is shown in Fig. 3 where the vertical axis is the
normalized reward shown in (2). The reward is low at
the beginning of training (when the agent does not know
the optimal policy) and then converges to the maximum
over episodes after the optimal policy is learned. In Fig.
3(a), The weighted factor 𝜆 is set to 0.8 to emphasize the
importance of optimizing the throughput over the energy
expended at the transmitter. In Fig. 3(b), 𝜆 is set to 0.5,
and throughput and energy consumed have equal weight.
With 𝜆 set to 0.2 in Fig. 3(c), energy consumption has
higher priority than the throughput.
Looking closely at these ϐigures, the reward value in Fig.
3(a) increases and converges to over 80 percentwhile the
reward values in ϐigures 3(b) and 3(c) are much lower.
This is because energy consumption corresponds to a
negative reward in (2). Between episodes 300 and 400 in
Fig. 3(b), there is a signiϐicant amount of dip (i.e., the re‑
wards goesdownafter the initial increase). This dip is due
to the packet loss of 5% terminal state: when 5% packet
loss occurs too soon, the agent attempts to increase the
packet loss by raising the transmission rate and power;
however, increasing the transmission rate and power too
much makes energy consumption become worse. The
agent eventually learns the best policy, resulting in an in‑
crease in the reward.
Fig. 4 shows the increasing throughput over episodes in
training as the agent learns to interact with the environ‑
ment and takes actions that maximize the reward. Fig.
4(a) is the result from the agent with 0.8 𝜆 value. An ex‑
amination of this ϐigure reveals that the model learns di‑
rectly to enhance throughput, as evidenced by the obser‑
vation that it increases over time with far less ϐluctuation
than ϐigures 4(b) and 4(c). Furthermore, as shown in ϐig‑
ures 4(b) and 4(c), the throughput increases until it con‑
verges to600Mbps and250Mbps, less than700Mbps, the
maximum throughput in Fig. 4(a). Since the energy opti‑
mizing agent is more concerned about the energy it uses,
there are far fewer packets delivered when compared to
the other agents that put more focus on optimizing the
throughput.
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(a) Throughput‑optimizing agent

(b) Energy and throughput optimizing agent

(c) Energy‑optimizing agent

Fig. 3 – SARSA rewards vs. episodes in training

(a) Throughput‑optimizing agent

(b) Energy and throughput optimizing agent

(c) Energy‑optimizing agent

Fig. 4 – Throughput vs. episodes
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(a) Throughput‑optimizing agent

(b) Energy and throughput optimizing agent

(c) Energy‑optimizing agent

Fig. 5 – Packet loss during training

(a) Throughput‑optimizing agent

(b) Energy and throughput optimizing agent

(c) Energy‑optimizing agent

Fig. 6 – Energy consumed during training
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The loss of packets in the MAC layer is one major factor
that leads to reduced throughput. An intelligent agent
should be able to reduce this loss in order to increase sys‑
tem efϐiciency and boost throughput. Fig. 5 shows the
packet loss as the number of training episodes progres‑
sively increases. In addition, the introduction of a 5% loss
rate as the the terminal state means that an episode will
be ended if the loss ratio is greater than 5% of the total
packets sent, which is a severe penalty. Hence, to maxi‑
mize the global reward, the agent must prioritize keeping
the loss rate below 5%.
In Fig. 5(a), the throughput‑optimizing agent ismostly in‑
formed about the number of packets it delivers to the re‑
ceiver. Since the packet loss directly affects the packets
received, the agent learned to quickly reduce this loss so
that it can deliver more packets. Because the agent of Fig.
5(b) is concerned about the throughput and the energy
consumed equally, there is more ϐluctuation of the packet
loss until it learns to reduce the loss rate well below the
terminal state threshold of 5%. The energy‑aware agent
in Fig. 5(c) is more concerned about energy consumed,
the loss rate ϐluctuates greatly and in general is not re‑
duced below 4.4%.
The results in Fig. 6 show the energy consumption on
the transmitting node while training each agent. The
energy‑aware agent as shown in Fig. 6(c) is able to send
packets with less energy consumption although the max‑
imum achievable throughput of this agent is less than the
other agents. The result of the throughput‑optimizing
agent shown in Fig. 6(a) consumes more energy than the
other agents. Observing the energy consumption on the
throughput and energy‑aware agent in Fig. 6(b), we no‑
tice that the reward function is indeed informed by both
throughput and the energy consumption: the agent re‑
duces the energy consumption, compared with Fig. 6(a),
and achieves higher throughput than in Fig. 6(c).

4.4 Testing results
In testing the optimal policy learned in training, 𝜖 is set to
zero so that the agent only uses its trained policy to select
the best action. In this phase, the Q‑value computation is
neither performed nor updated in the lookup table. We
only match the current state and choose the action with
the highest value as computed in the table.
We conϐigured the simulation testbed to adjust the dis‑
tance and mobility between the transmitter and the re‑
ceiver while the jammers are set to a constant 10 me‑
ter distance to the receiver. As part of this study, we
benchmark and evaluate the agents’ throughput and en‑
ergy consumption under one jamming node and two jam‑
ming nodes and compare them toMinstrel, a very popular
rate adaptation algorithm used by many wireless drivers.
In the test phase, we set up the environment with an in‑
creasing packet arrival rate, as indicated on the X‑axis of
ϐigures 8, 9, 10, 11, 12, and 13. For each arrival rate, we
run 30 episodes for Minstrel and each type of training
agent, but without a terminal state. In essence, each test

environment remains active for precisely 10 seconds or
until the battery is completely depleted. We then aver‑
age the throughput and the energy expended for each ar‑
rival rate. The results for 5, 10, and 20 meters distance
settings between the transmitter and the receiver and a
single jamming node are shown in ϐigures 8, 9, and 10,
respectively. A second jammer as shown in the network
topology in Fig. 7 is introduced in testing, and the learned
policy and the results are presented in ϐigures 11, 12, and
13.

Fig. 7 – Testing simulation setup with two interference nodes. Trans‑
mitter (TX) continuously transmits packets to the Receiver (RX). Inter‑
ference Nodes (IXs) transmit at a random time, t, to the receiver without
carrier sensing.

In Fig. 8, when the packet arrival rate is less than 30
000 packets per second, we observed that the agents at‑
tained roughly the same throughput. However, when
compared to other agents, the energy‑optimizing agent
obtained a relatively low throughput when the packet ar‑
rival rate is 30 000 packets and higher. The Minstrel al‑
gorithm achieved close to 500 Mbps, but it is less than
the throughput‑optimizing and throughput and energy‑
optimizing agents by over 300 Mbps and 200 Mbps, re‑
spectively. In terms of energy consumption, the energy‑
optimizing agent is the best while Minstrel consumes less
than the throughput and energy‑optimizing agent, and
the throughput‑optimizing agent is the worst.
In Fig. 9, we extend the distance between the transmit‑
ter and the receiver to 10 meters. Examining this ϐigure,
the energy‑optimizing agent and the Minstrel algorithm
achieved less throughput when compared to a distance
of 5 meters. However, the throughput‑aware agents with
0.8 𝜆 value and the throughput and energy‑optimizing
agent with 0.5 𝜆 value achieve roughly the same through‑
put as the case of 5 meters distance. The throughput
gap between the Minstrel algorithm and the throughput‑
optimizing and throughput and energy‑optimizing agents
also widens to over 400Mbps and 300Mbps, respectively.
There seems to be no signiϐicant change of energy con‑
sumption.
Fig. 10 shows the result when the distance is set to 20
meters, and we observed a similar trend: the throughput
gap between the Minstrel algorithm and the throughput‑
optimizing and throughput and energy‑optimizing agents
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(a) Throughput achieved

(b) Energy consumed

Fig. 8 – Test result for 5 meter distance with one jamming node

(a) Throughput achieved

(b) Energy consumed

Fig. 9 – Test result for 10 meter distance with one jamming node
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(a) Throughput achieved

(b) Energy consumed

Fig. 10 – Test result for 20 meter distance with one jamming node

(a) Throughput achieved

(b) Energy Consumed

Fig. 11 – Test Result for 5 Meter Distance with two jamming nodes
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(a) Throughput achieved

(b) Energy consumed

Fig. 12 – Test esult for 10 meter distance with two jamming nodes

(a) Throughput achieved

(b) Energy consumed

Fig. 13 – Test result for 20 meter distance with two jamming nodes
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further widens to about 500Mbps and 400Mbps, respec‑
tively.
Figures 11, 12, and 13 are the results when we introduce
a second jammer to the network topology. In Fig. 11,
when the receiver is 5 meters away from the transmitter,
we observed that the throughput for all the agents includ‑
ing the Minstrel algorithm are zero for 5 000 and 10 000
packets per second arrival rate even though the energy
consumption is higher than that in the test environment
with only one jammer. However, the throughput grad‑
ually increases starting from 15 000 packets per second
arrival rate: the throughput‑critical agent has the highest
throughput at about 600Mbps, the agent with 0.5 𝜆 value
increases to roughly500Mbps, theMinstrel algorithmhas
a maximum of 300 Mbps, and the energy‑critical agent
maximizes its throughput up to 200 Mbps.
Fig. 12 is the result when the distance is extended to
10 meters. We observe a similar trend as the case with
5 meters distance but the Minstrel algorithm has much
less throughput. Also, the energy‑optimizing agent has al‑
most zero throughput until the arrival rate reaches40000
packets per second . In terms of energy consumption, the
agents and the Minstrel algorithm consume even higher
energy than when there is only one jamming node. How‑
ever, the energy expanded has a similar trend: less energy
is consumed by the energy‑optimizing agent, and higher
energy is consumed by the throughput‑optimizing agent.
Fig. 13 shows the result when the distance is set to 20
meters with two jamming nodes, and we observe sim‑
ilar trend: the throughput‑optimizing agent maintains
roughly the same throughput as the scenarios with 5 and
10 meters distances while consuming even higher en‑
ergy. The Minstrel algorithm’s throughput is reduced
to roughly 200 Mbps. The energy‑optimizing agent’s
throughput gets drastically reduced to 50Mbps, but it has
less energy consumption than other agents in the same
scenario.

5. CONCLUSIONS AND FUTURE DIRECTION
In this paper, we use RL to control both the transmis‑
sion power and rate of an 802.11ac device under the im‑
pact of a jammer. The goal is to optimize a joint re‑
ward function consisting of throughput and energy con‑
sumption. With this reward function, users can deϐine
their priority to achieve either high throughput, longer
battery life, or a balance of the two. By including sev‑
eral factors in the state of the environment, we are able
to incorporate random factors such as interference and
wireless channel fading into our system model. Exten‑
sive simulation is doneusingNS‑3, andwehave compared
the optimal policies with the popular Minstrel algorithm.
When we prioritize throughput, we are able to obtain
much higher throughput than Minstrel. When the trans‑
mission distance is slightly increased, our approachmain‑
tains roughly the same performance in terms of through‑
put, but Minstrel suffers from signiϐicant decreased per‑
formance. For the throughput and energy‑aware agent,

which learns to optimize both the throughput and the en‑
ergy consumed, we can achieve a higher throughput than
Minstrel while consuming a slightly higher amount of en‑
ergy. Finally, when the energy is prioritized in the reward
function, our approach consumes less energy than Min‑
strel, but at the cost of reduced throughput.
We use tabular RL in the paper. One downside of it is the
space complexity of the table. The agent may also not be
able to take the optimal action if all the state‑action pairs
are not visited. Future direction will focus on introduc‑
ing a Neural Network (NN) architecture which aids train‑
ing the underlying model without having to traverse the
whole state space. With the neural network architecture,
we will not need to discretize the environment variables
such as the packet queue length, the back‑off slots, and
the battery level. The agent will be able to compute the
optimal policies for an unvisited state space.
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