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Abstract – Mobile Edge Computing (MEC) has recently emerged as a new communications/computing concept that amends
the limited computing of IoT devices by completely or partially ofϔloading the computational tasks to the MEC servers at the
network edge (typically co‑located with the base stations). Because IoT devices are typically power limited, the potential
of the MEC is further enhanced by its integration with wireless power transfer technology, especially for those IoT devices
with a high duty cycle that requires frequent battery replacement. This paper develops fairness‑aware resource allocation
schemes for a WPT‑assisted MEC system whose Energy Harvesting Users (EHUs) employ either binary or partial ofϔloading.
Speciϔically, the proposed schemes optimize the computational speeds and the energy harvesting and ofϔloading durations
of the EHUs with the aim to maximize the minimum of their computed bits (sum of locally and remotely processed bits of
each EHU), subject to the RF energy harvested from the base station. When EHUs are concentrated closer to the base station,
remote processing is preferred over local processing, as local processing consumesmore energy than the Radio Frequency (RF)
power for ofϔloading data to the MEC server, but this effect diminishes for lower values of the computational effort needed for
the processing of a single bit. Interestingly, in terms of the sum computation rate, the partial ofϔloading scheme only slightly
outperforms the binary ofϔloading scheme, but only when the EHUs are moderately away from the base station.

Keywords – Internet of Things (IoT), mobile edge computing (MEC), wireless powered communication network (WPCN)

1. INTRODUCTION

MEC has appeared as a promising technological concept 
that enables large scale deployment of IoT devices (e.g. 
sensors) with a small power supply and limited process‑ 
ing capabilities. It is achieved by the introduction of MEC 
servers close to the network edge and used for the pro‑ 
cessing of data ofϐloaded from the wireless devices in 
their vicinity. MEC offers storage and processing capa‑ 
bilities at the edge of the mobile network, i.e. Base Sta‑ 
tion (BS), but within the Radio Access Network (RAN) [2]. 
Namely, wireless devices can ofϐload their computational 
tasks (data) to the BS that has integrated MEC server, and 
then the MEC server facilitates the real‑time implemen‑ 
tation of computation‑intensive tasks. Ofϐloading can be 
implemented in two ways, partial ofϐloading and binary 
ofϐloading. In the partial ofϐloading, data is partitioned 
in two parts, one part is computed locally at wireless de‑ 
vices and the other part is ofϐloaded to the MEC server 
and computed there. In the binary ofϐloading case, data 
is not partitioned, and the data is either locally computed 
at wireless devices, or ofϐloaded to the MEC server, as a 
whole. Since the MEC servers are located close to the end 
users, the latency is signiϐicantly reduced, while the band‑ 
width is increased, which makes it applicable in latency‑ 
critical applications and sets it apart as one of the cru‑ 
cial elements of 5G/6G [4]–[7]. As a result of all that has 
been said, MEC is really prone to combining and integrat‑ 
ing with other technologies, such as intelligent reϐlective 
surfaces [8] and Wireless Powered Transfer (WPT) 
[11]‑[14]

To enhance energy efϐiciency even more, Radio Frequency 
(RF)‑based Wireless Powered Transfer (WPT) is found 
as a suitable and promising technology that comple‑ 
ments MEC, providing a feasible solution by deploying 
a dedicated energy transmitter to wirelessly broadcast 
energy [10]. Thus, wireless devices are provided with 
cost‑effective and sustainable energy supply that facili‑ 
tates perpetual operation. WPT‑assisted MEC systems are 
studied in several existing works [11]‑[14]. Authors in
[11] ϐirst considered a wireless powered MEC system
consisting of single user and co‑located MEC BS with the
objective of maximizing the probability of successfully
computing given tasks at the user. The work
presented in studies multi‑user wireless powered MEC
systems under a time division multiple access with the
objective to minimize the overall energy consumption
in the system. Furthermore, authors in [13] propose
maximizing the sum computation rate in a multi‑user
WPT assisted MEC system employing binary ofϐloading,
while authors in [14] propose maximizing the
computational efϐiciency for wireless powered MEC
systems under both binary and partial ofϐloading,
considering a non‑linear energy harvesting model.

Previous work has focused on the maximization of the 
system’s sum rate while disregarding fair resource 
allocation. In [15], we focus on fairness‑aware resource 
allocation of a MEC system using Time Division Multiple 
Access (TDMA), binary ofϐloading and wireless powered 
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Energy Harvesting Users (EHUs). This paper extends 
[15] by developing a novel resource allocation scheme
based on partial ofϐloading. Speciϐically, we maximize
the mini‑ mum computation rate of binary ofϐloading and
partial of‑ ϐloading schemes, and then compare their
performances expressed in terms of the system’s sum
computation rate and fairness index. In the special case
of equal EHUs’ distances from the base station, we derive
analytical expressions for calculating the optimal
values of the resource allocation parameters, the
durations of EH and ofϐload‑ ing phases, and the EHUs’
processing speeds and output powers. To the best of the
authors’ knowledge, this is the ϐirst work that proposes
the design of fairness‑aware re‑ source allocation
schemes of wireless powered MEC sys‑ tems with binary
and partial ofϐloading.

The rest of the paper is organized as follows. In Section 2, 
we introduce the system model of the wireless powered 
MEC system. Sections 3 and 4 present the optimization 
problems for devising fairness‑aware resource allocation 
schemes for binary and partial ofϐloading, respectively. 
Section 5 presents the numerical analysis for the 
performance comparison between the binary and the 
partial of‑ ϐloading schemes. Finally, we conclude the 
paper in Section 6.

2. SYSTEM MODEL
We consider wireless powered MEC systems consisting 
of a base station and 𝐾 energy harvesting users (Fig. 1). 
All EHUs are equipped with a single antenna. The base 
station integrates the following functionalities:
1. Communication transmitter/receiver (i.e. receives

the uplink information transmissions from the EHUs
and transmits downlink information to the EHUs);

2. RFpower beacon (i.e. broadcasts RF energy viawire‑
less link to the EHUs);

3. MEC server (i.e. processes/compute ofϐloaded data
by the EHUs).

The BS is connected to a stable power supply, and at the
same time broadcasts RF energy to all EHUs. Every end
device has an energy harvesting circuit and rechargeable
battery used to collect the harvested energy to power
its functions. Each device, including the BS and EHUs
go through different communication blocks. In order
to avoid interference, the phases dedicated to WPT and
wireless communication are separated in time, i.e. they
use TDMA frames with duration 𝑇 . Within one TDMA
frame, the channel between the BS and the 𝑖th EHU is de‑
noted by ℎ𝑖 = Ω𝑖, that is assumed to be reciprocal.

2.1 Communication model
Each TDMA frame of duration 𝑇 consists of a energy har‑
vesting phase (WPT phase) of duration 𝜏0, followed by
successive phases for information transmission of dura‑
tion 𝜏1, 𝜏2, ⋯ , 𝜏𝐾 , respectively. During theWPTphase, the

Fig. 1 – Multi‑user MEC assisted WPT network.

base station broadcasts RF signals with power 𝑃0 dedi‑
cated topower all EHUs. During the 𝑖th information trans‑
mission phase, 𝑖th EHU ofϐloads its information to the BS
for further processing in the MEC server. Therefore, the
duration of all information transmission phases should
satisfy following equation:

𝜏0 + 𝜏1 + 𝜏2 + ⋯ 𝜏𝐾 = 𝑇 (1)

If someof theEHUs (e.g. 𝑗th EHU)performonly local com‑
puting, it does not ofϐload any data and correspondingly
the duration of information transmission phase is zero
(e.g. 𝜏𝑗 = 0), while the local computing is performed over
the entire duration of the TDMA frame.

Within each TDMA frame, we assume that each EHU
should perform a speciϐic computation task based on its
local data. The computational task of an EHU station can
be performed on a local processor, which usually has low
computational capacity due to limited power. Alterna‑
tively, the EHU can ofϐload the data to the MEC server/BS
that has much more processing power,so the calculations
can be performed efϐiciently and the result can be sent
back to the EHU. We consider two mechanisms for MEC
calculations:
1. Partial ofϐloading

2. Binary ofϐloading
The partial ofϐloading mechanism means that one part of
the useful data is transferred over the wireless channel
from the EHU to theMEC server, and the other part is kept
for computing by the EHU itself.

When the binary ofϐloading mechanism is used, the wire‑
less station either computes all the data independently
using its own processing resources (the so‑called local
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computingmode), or transmits the data to theMEC server
for further processing.

2.2 Energy‑harvesting model
In WPT phase, the BS transmits RF energy, during which
each EHU harvests energy the amount of which is de‑
creasing with increasing distance from the BS. Thus,
energy harvested by the 𝑗th EHU during its energy‑
harvesting phase is:

𝐸𝐸𝐻
𝑗 = 𝜂𝜏0𝑃0Ω𝑗 (2)

where 𝑃0 is BS transmit power, and 𝜂 ∈ (0, 1) is energy‑
conversion efϐiciency coefϐicient of the EH circuit. This
equation is applicable in case when the circuit that per‑
forms energy harvesting at the EHU ismodeled according
to the linear model, which assumes that the energy har‑
vested at theEHU is directly proportional to theRF energy
before the antenna of the EHU.

If we assume that the wireless channel ℎ𝑗 in (2) is static,
then its value depends only on path loss and can be de‑
termined depending on the distance. We assume a path
loss exponent of 3 and attenuation of 30dB at referent
distance of 1 meter, then channel gain ℎ𝑗 is calculated ac‑
cording to:

ℎ𝑗 = Ω𝑗 = 10−3

𝑟3
𝑗

. (3)

2.3 Data ofϐloading model
In this paper we assume that all EHUs employ a binary
or partial ofϐloading method. In the former method, the
computational data is not partitioned and should be of‑
ϐloaded to the MEC BS (mode‑1) or computed locally at
the EHUs’ side (mode‑0), as whole, while the in latter
method data is partitioned into two parts, one is com‑
puted locally at the EHUs, while the remaining part is of‑
ϐloaded for edge computing to the MEC BS via wireless
links. In the second part of the TDMA framewith duration
𝑇 − 𝜏0, EHUs transfer their data to the BS. To avoid inter‑
ference, it is assumed that EHUs send information succes‑
sively, where the information transmission time of the 𝑖th
EHU is 𝜏𝑖, so that 0 ≤ 𝜏𝑖 ≤ 𝑇 . The operation of the EHU
stations depending on the operation mode (either local
computing or ofϐloading) is explained below.

2.3.1 Local computing mode (mode‑0)
When operating in local computing mode, the computa‑
tion is performed for the entire frame duration 𝑇 . Let
the parameter 𝑓𝑖 denote the computing speed of the 𝑖th
EHU, expressed in number of CPU cycles per unit time. Let
the parameter 𝐿 denote the computational load required
by the CPU to compute one bit of raw data, which is ex‑
pressed in the number of CPU cycles required to process
one bit of data by the corresponding EHU. Let the parame‑
ter 𝛼 indicate the energy efϐiciency coefϐicient of the pro‑

cessor of the EHU, and it depends on its processor’s ar‑
chitecture. In that case, the number of locally computed
bits by the 𝑖th EHU station is calculated according to the
expression (1 ≤ 𝑖 ≤ 𝐾) :

𝑑𝑚𝑜𝑑𝑒−0
𝑖 = 𝑇 𝑓𝑖

𝐿 . (4)

Thereby, the energy consumption for local computing at
the 𝑖th EHU is calculated as:

𝐸𝑚𝑜𝑑𝑒−0
𝑖 = 𝛼𝑇 𝑓3

𝑖 . (5)

2.3.2 Ofϔloading mode (mode‑1)
When operating in mode‑1, an EHU can transfer its com‑
putational task to the MEC server at the BS. Let the num‑
ber of bits that the 𝑖th EHU can ofϐload be denoted by 𝑑𝑘

𝑖 ,
which represents the amount of ”raw” data transmitted
from the 𝑖th EHU to the MEC server. Let 𝑃𝑖 denote the
output power of the 𝑖th EHU. The number of bits that can
be ofϐloaded corresponds to the capacity of the wireless
link between the respective EHU and the BS,

𝑑𝑚𝑜𝑑𝑒−1
𝑖 = 𝐵𝜏𝑖 log2 (1 + 𝑃𝑖Ω𝑖

𝑁0
) , (6)

where𝐵 represents the bandwidth of the communication
channel between the EHU and the BS. Thereby, the energy
consumed for ofϐloading data from the EHU to the BS is
calculated according to the expression:

𝐸𝑚𝑜𝑑𝑒−1
𝑖 = 𝜏𝑖𝑃𝑖. (7)

Since EHUs employ harvest‑then‑transmit scheme [16],
an EHUduring a single TDMA frame spends energy stored
during the precedingWPTphase of that frame, regardless
of whether it uses a partial or binary ofϐloading. There‑
fore, that energy can be consumed: (1) either for ofϐload‑
ing or for local calculation (binary ofϐloading), or (2) part
for ofϐloading and the remaining part for local computing
(partial ofϐloading). Therefore, according to the law on
energy conservation, the 𝑖th EHUmust satisfy the follow‑
ing constraint (1 ≤ 𝑖 ≤ 𝐾):

𝛼𝑇 𝑓3
𝑖 + 𝜏𝑖𝑃𝑖 ≤ 𝜂𝜏0𝑃0Ω𝑖 (8)

3. RESOURCE ALLOCATION WITH PARTIAL
OFFLOADING

The resource allocation schemes for MEC systems are
usually designed to maximize the system’s sum compu‑
tation rate. The criterion for maximizing the sum compu‑
tation rate leads to unfair resource sharing, as EHU sta‑
tions closer to the base station receive a disproportion‑
ately high share of the system’s resources. To deal with
this problem, we propose resource sharing according to
the max‑min criterion [17]. Therefore, for the consid‑
ered system model, we propose the following optimiza‑
tion problem that maximizes the number of computed
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bits at the EHU that has minimal number of computed
bits:

Maximize
𝜏0,𝜏𝑖,𝑃𝑖,𝑓𝑖

min
1≤𝑖≤𝐾

{𝑇 𝑓𝑖
𝐿 + 𝐵𝜏𝑖 log2 (1 + 𝑃𝑖Ω𝑖

𝑁0
)}

subject to:
𝐶1 ∶ ∑𝐾

𝑖=1 𝜏𝑖 + 𝜏0 = 𝑇
𝐶2 ∶ 𝛼𝑇 𝑓3

𝑖 + 𝜏𝑖𝑃𝑖 ≤ 𝜂𝜏0𝑃0Ω𝑖, ∀𝑖
𝐶3 ∶ 𝜏𝑖 ≥ 0, 𝜏0 ≥ 0, 𝑃𝑖 ≥ 0, 𝑓𝑖 ≥ 0, ∀𝑖 (9)

where 𝐶1 refers to the total duration of all phases within
a TDMA frame, 𝐶2 refers to the law of conservation of en‑
ergy, whereas constraint 𝐶3 naturally requires all opti‑
mization variables to have a non‑negative value. The op‑
timization problem is convex and can be solved numeri‑
cally using various software tools, for example, CVX.

3.1 Special case solution: Equal EHUs’ dis‑
tances from BS

The optimization problem (9) can be solved even analyti‑
cally in an idealized case when all EHU stations are at the
same distance from the base station, where Ω1 = Ω2 =
⋯ = Ω𝐾 , 𝜏1 = 𝜏2 = ⋯ = 𝜏𝐾 , 𝑓1 = 𝑓2 = ⋯ = 𝑓𝐾 and
𝑃1 = 𝑃2 = ⋯ = 𝑃𝐾 whose solutions are given by the fol‑
lowing expressions: The optimal EHU transmit power 𝑃 ∗

1
satisϐies:

𝑃 ∗
1 = 1

Ω [ 𝐾𝜂𝑃0Ω2 − 𝑁0
𝑊 ( 𝐾𝜂𝑃0Ω2−𝑁0

𝑁0𝑒 )
− 𝑁0] (10)

where 𝑊(⋅) is the Lambert 𝑊 function [18].
The optimal local computation speed 𝑓∗

1 is:

𝑓∗
1 = ( ln 2 (𝑁0 + 𝑃 ∗

1 Ω)
3𝐵Ω𝛼𝐿 )

1/2
. (11)

The optimal ofϐloading time denoted by 𝜏∗
1 is:

𝜏∗
1 = 𝑇 𝜂𝑃0Ω − 𝛼(𝑓∗

1)3

𝐾𝜂𝑃0Ω + 𝑃 ∗
1

. (12)

The optimal energy harvesting time 𝜏∗
0 is:

𝜏∗
0 = 𝑇 − 𝐾𝜏∗

1 (13)

The details of how the equations (10)‑(13) are obtained
are given in Appendix A.

4. RESOURCE ALLOCATION WITH BINARY
OFFLOADING

In the case of binary ofϐloading, the optimization prob‑
lem (9) is adjusted to design an appropriate resource allo‑
cation scheme for mobile edge computing and wirelessly
supplying the EHUs. For this purpose, we will use the fol‑
lowing indicator variable:

𝐼𝑖 = {0, 𝑖th EHU in mode‑0
1, 𝑖th EHU in mode‑1 . (14)

We now state the following max‑min optimization prob‑
lem:
Maximize

𝜏0,𝜏𝑖,𝑃𝑖,𝑓𝑖,𝐼𝑖
min

1≤𝑖≤𝐾
{(1 − 𝐼𝑖) 𝑇 𝑓𝑖

𝐿 + 𝐼𝑖𝐵𝜏𝑖 log2 (1 + 𝑃𝑜Ω𝑖
𝑁0

)}

subject to:
𝐶1 ∶ ∑𝐾

𝑖=1 𝐼𝑖𝜏𝑖 + 𝜏0 = 𝑇
𝐶2 ∶ (1 − 𝐼𝑖) 𝛼𝑇 𝑓3

𝑖 + 𝐼𝑖𝜏𝑖𝑃𝑗 ≤ 𝜂𝜏0𝑃0Ω𝑖, ∀𝑖
𝐶3 ∶ 𝐼𝑖 ∈ {0, 1}
𝐶4 ∶ 𝜏0 ≥ 0, 𝜏𝑖 ≥ 0, 𝑃𝑖 ≥ 0, 𝑓𝑖 ≥ 0, ∀𝑖

(15)

The optimization problem (15) is not convex, because ob‑
jective function and constraints contain products of two
optimization variables. However, the optimization prob‑
lem (15) can be solved for any possible combination of
indicator variables {𝐼𝑖}

𝐾
𝑖=1, where there are a total of 2𝐾

possible combinations (starting from the case where all
K EHUs stations are in mode 0, until the case when all K
EHU stations are in mode 1). For each given set of indica‑
tor variables, (𝐼1, 𝐼2, ⋯ , 𝐼𝐾), (15) is a convex optimization
problem and can be solved numerically. Then, from all 2𝐾

possible solutions, the optimal solution (𝜏∗
0 , 𝜏∗

𝑖 , 𝑃 ∗
𝑖 , 𝑓∗

𝑖 ), is
the one that maximizes the objective function.

4.1 Special case solution: Equal EHUs’ dis‑
tances from BS

If we assume a symmetric‑user case, where all EHUs are
placed on a circle with radius 𝑟, then due to the symme‑
try all EHUs will either ofϐload or compute locally (𝐼1 =
𝐼2 = ⋯ = 𝐼𝐾), compute the same number of bits, over
the same ofϐloading time (𝜏1 = 𝜏2 ⋯ = 𝜏𝐾), with the same
computational speed (𝑓1 = 𝑓2 = ⋯ = 𝑓𝐾) and the same
transmit power (𝑃1 = 𝑃2 = ⋯ = 𝑃𝐾). In this case, (15)
is transformed as follows:

Maximize
𝜏0,𝜏1,𝑃1,𝑓1,𝐼1

(1 − 𝐼1) 𝑇 𝑓1
𝐿 + 𝐼1𝐵𝜏 log2 (1 + 𝑃1Ω1

𝑁0
)

subject to:
𝐶1 ∶ 𝐾𝐼1𝜏1 + 𝜏0 = 𝑇
𝐶2 ∶ (1 − 𝐼1) 𝛼𝑇 𝑓3

1 + 𝐼1𝜏1𝑃1 ≤ 𝜂𝜏0𝑃0Ω1
𝐶3 ∶ 𝐼1 ∈ {0, 1}
𝐶4 ∶ 𝜏0 ≥ 0, 𝜏1 ≥ 0𝑃1 ≥ 0, 𝑓1 ≥ 0

(16)

Since the indicator variable 𝐼1 can take two values, 1 and
0 (all EHUs are performing either ofϐloading or local com‑
puting, respectively), we can represent the optimization
problem given in (16) by two separate optimization prob‑
lems, regarding the value of the indicator variable 𝐼1.
Therefore, two sets of optimal solutions will be derived
and the solution that maximizes the objective function
will be chosen.
1. Case 1: 𝐼1 = 1, meaning all EHUs perform ofϐloading.

Since all EHUs performdata ofϐloading, the optimiza‑
tion variable 𝑓1 will disappear and the optimization
problem will have the following form:

Maximize
𝜏0,𝜏1

𝐵𝜏1 log2 (1 + 𝐴𝜏0
𝜏1

)
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subject to:
𝐶1 ∶ 𝐾𝜏1 + 𝜏0 = 𝑇
𝐶2 ∶ 𝜏0 ≥ 0, 𝜏 ≥ 0, (17)

where 𝐴 is given by:

𝐴 = 𝜂𝑃0Ω2
1

𝑁0
. (18)

2. Case 2: 𝐼1 = 0, meaning all EHUs perform local
computing. Since all EHUs perform local computing,
the optimization variable 𝜏1 will disappear and local
computing will be performed for the whole duration
of the frame (𝜏0 = 𝑇 ), so we will optimize with re‑
spect to the variable 𝑓1.

Maximize
𝑓1

𝑇 𝑓1
𝐿

subject to:
𝐶1 ∶ 𝛼𝑓3

1 + ≤ 𝜂𝑃0Ω1,
𝐶2 ∶ 𝑓1 ≥ 0, (19)

For a symmetric‑user scenario, the optimal allocation
scheme is as follows:

1. Case 1: EHUs operate in mode‑1
The optimal ofϐloading time 𝜏∗

1 is found as a root of
the following transcendental equation:

𝜏∗
1 + 𝐴 (𝑇 − 𝐾𝜏∗

1)
𝐴𝑇 ln(1 + 𝐴𝑇 − 𝐾𝜏∗

1
𝜏∗

1
) = 0 (20)

The optimal energy harvesting time denoted by 𝜏∗
0 is:

𝜏∗
0 = 𝑇 − 𝐾𝜏∗

1 (21)

2. Case 2: EHUs operate in mode‑0
The optimal local computation speed denoted by 𝑓∗

1
is:

𝑓∗
1 = (𝜂𝑃0Ω1

𝛼 )
1/3

. (22)

Equations (20)‑(22) are obtained following similar steps
as in Appendix A.

5. NUMERICAL RESULTS
In addition, the performance of the two proposed re‑
source allocation schemes for allocation of resources in
a mobile edge computing system with wireless powered
EHUs performing binary/partial ofϐloading based on the
max‑min criterion, will be presented. The following two
parameters are considered to evaluate the performance
of the system:

• System’s sum computation rate:

𝐶 =
𝐾

∑
𝑖=1

𝐶𝑖 (23)

where the computation rate of the 𝑖th EHU, 𝐶𝑖, is de‑
termined as the ratio between the amount of pro‑
cessed data of that EHU (i.e., the objective function
of the considered optimization problem) and the du‑
ration of a single TDMA frame, i.e.,

𝐶𝑖 = 𝑓𝑖
𝐿 + 𝐵

𝑇 𝜏𝑖 log2 (1 + 𝑃𝑖Ω𝑖
𝑁0

) . (24)

• System’s fairness index [19]:

𝐽 =
(∑𝐾

𝑖=1 𝐶𝑖)
2

𝐾 ∑𝐾
𝑖=1 𝐶2

𝑖
. (25)

System parameters: The energy harvesting efϐiciency co‑
efϐicient 𝜂 = 1, while the computing efϐiciency coefϐicient
is 𝛼 = 10−28 Js. The duration of one frame is 𝑇 = 1.
The power of the thermal noise at the input of the re‑
ceiver is 𝑁0 = 10−12 Watts/Hertz, while the bandwidth
of the channel from one EHU station to the base station is
𝐵 = 10 MHz. The number of EHU stations is 𝐾 = 10.

5.1 EHUs placed along a single circle
Let us assume that all EHUstations are located at the same
distance from the base station, i.e. along a circle of radius
𝑟 around the base station. Fig. 2 shows the sum of the
computation rate in the system as a function of radius 𝑟,
while Fig. 3 shows the dependence of the percentage of
ofϐloaded data from EHU to the base station on radius 𝑟.
The BS transmit power is set to 𝑃0 = 10 Watts. Corre‑
sponding curves are shown for two different values of the
computational load: 𝐿 = 100 CPU cycles / bit (solid line)
and 𝐿 = 1000 CPU cycles / bit (dashed line). It is noted
that for smaller values of 𝑟, it is better to transfer data to
the MEC server, because local calculations consumemore
energy compared to wireless communication. For small
values of radius 𝑟, the computational load has only a small
effect on the sum computation rate, and so the curves for
𝐿 = 100 and 𝐿 = 1000 overlap in this region of 𝑟. How‑
ever, as the radius 𝑟 increases, the effect of the computa‑
tional load on the sum computation rate is more signiϐi‑
cant. Speciϐically, for higher values of radius 𝑟, 𝐿 = 100
leads to higher rates compared to the case of 𝐿 = 1000,
because ever more increasing percentage of the raw data
are processed locally, in which case, the amount of pro‑
cessed bits is inversely proportional to 𝐿 (c.f. (24)).

In case of binary ofϐloading, above a given threshold dis‑
tance to the base station, the EHUs perform ofϐloading via
thewireless channel to the base station. This threshold in
Fig. 2 is easily identiϐied at the knee of the curves, while in
Fig. 3 identiϐied at the ”step” of the corresponding curves
(𝑟 ≈ 30 m for 𝐿 = 100 and 𝑟 ≈ 50 m for 𝐿 = 1000).
When the radius exceeds that threshold, all EHUs utilize
only local computing. The partial ofϐloading scheme be‑
haves similarly to the binary ofϐloading scheme, except
that, as the radius increases, the percentage of ofϐloaded
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Fig. 2 – Impact of distance 𝑟 on the number of computed bits (𝑃0 = 10
Watts, 𝐾 = 10 EHUs).
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Fig. 3 – Impact of distance 𝑟 on the number of ofϐloaded bits (𝑃0 = 10
Watts, 𝐾 = 10 EHUs).

bits gradually decreases from100percent to 0 percent. In
this interval, the partial ofϐloading scheme outperforms
the binary ofϐloading scheme, as the partial ofϐloading
scheme allows some optimal percentage of raw data (be‑
tween 0 and 100 percent) to be processed remotely so as
to maximize the system’s sum computation rate.

Fig. 4 shows the dependence of the sum computing rate
on the BS transmit power, 𝑃0, at two different radii of the
circle along which all EHU stations are located, 𝑟 = 25m
and 𝑟 = 35m. Curves for different numbers of EHU sta‑
tions are presented, 𝐾 = 10 (solid line) and 𝐾 = 20
(dashed line). The computational load is ϐixed at 𝐿 =
1000. The number above each marker indicates the per‑
centage of ofϐloaded bits in case of partial ofϐloading. It
is obvious that with the increase of 𝑃0, the amount of
energy harvested by the EHU stations increases, so the
computation rate and the percentage of ofϐloaded data
increase. Also, due to the diffuse nature of the wireless
channel, increasing the number of EHU stations propor‑
tionally increases the total amount of harvested energy,
which leads to an increase in the sum computation rate at
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Fig. 4 – Impact of BS transmit power 𝑃0 on the number of computed
bits (𝐿 = 1000 CPU cycles/bit, solid line: 𝐾 = 10EHUs, dashed line:
𝐾 = 20 EHUs).

Fig. 5 – Asymmetric‑user MEC assisted WPT network.

the same transmit power of the base station. At 𝑟 = 25m, 
both ofϐloading mechanisms reach the same sum compu‑ 
tation rate (the corresponding curves match), while their 
computation rates differ at 𝑟 = 35m. Namely, the par‑ 
tial ofϐloading scheme at 𝑟 = 35m outperforms the bi‑ 
nary ofϐloading scheme, because the number of bits to 
be ofϐloaded is optimally chosen as a fraction of the total 
amount of raw data, contrary to the rigid choice between 
ofϐloading only or local computing only offered by the bi‑ 
nary ofϐloading scheme.

5.2 EHUs placed along two concentric circles
In order to analyze the fairness level of the proposed re‑ 
source allocation schemes, we assume that half of the EHU 
stations (𝐾/2) are located at a distance 𝑟1 = 5m from the 
base stations, while the second half of the EHU stations 
(𝐾/2) are located at distance 𝑟2 from the base station
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Fig. 6 – Impact of distance 𝑟2 on the number of computed bits (𝑟1 = 5, 
𝑃0 = 10 Watts, 𝐾 = 10 EHUs, 𝐿 = 1000 (dashed line), 𝐿 = 100 (solid 
line)).

(Fig. 5). Fig. 6 depicts the sum computation rate
as a function of the distance 𝑟2. We notice that the com‑ 
putation rate decreases with increasing 𝑟2, because the 
max‑min criterion adjusts the system to those EHUs at 
greater distances from the BS . Similar to the case of equal 
EHUs’ distances, when the radius 𝑟2 is less than some limit 
value, the sum computation rate of the MEC system over‑ 
laps for both ofϐloading schemes (independently from the 
computation load 𝐿). Speciϐically, when 𝐿 = 1000, the 
two ofϐloading schemes have the same performance in the 
whole interval of the radius 𝑟2 from 5 meters to 60 meters. 
When 𝐿 = 100, the performance of the two ofϐloading 
schemes also matches in the whole interval of radius 𝑟2
from 5 meters to 60 meters, except up to the interval of 20 
meters to 30 meters, when the partial ofϐloading scheme 
reaches a higher computation rate. Again the reason is the 
choice of the appropriate optimal value of the percentage 
of ofϐloaded data, while the binary ofϐloading scheme em‑ 
ploys either local computing or ofϐloading.
Fig. 7 shows computation rate vs. MEC BS’s transmit
power 𝑃0, where 𝐾 = 10, 𝑟1 = 15m, 𝑟2 = 30m, 𝐿 = 
100 CPU cycles/bit (solid line), and 𝐿 = 1000 CPU cy‑ 
cles/bit (dashed line). Simulation shows that both of‑ 
ϐloading schemes gain from increasing the BS transmit 
power, as the computation rate increases. Additionally, 
the sum computation rate increases with increasing 𝐿 be‑ 
cause more bits can be computed locally. Both partial 
and binary ofϐloading schemes perform similarly when 
𝐿 = 1000 CPU cycles/bit, but when 𝐿 = 100 CPU cy‑ 
cles/bit, the partial ofϐloading scheme outperforms the 
binary ofϐloading scheme for larger BS transmit power 𝑃0
as a result of the ability to harvest more energy which 
increases the amount of ofϐloaded and locally processed 
data.

Fig. 8 illustrates Jain’s fairness index vs. the distance 𝑟2, 
when 𝑟1 = 15 meters. We notice that the fairness in‑
dex decreases with increasing 𝑟2, because the minimum 
computation rate is attained by EHUs at a higher distance
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Fig. 7 – Impact of BS transmit power𝑃0 on the number of computed bits
(𝑟1 = 15, 𝑟2 = 30, 𝐾 = 10 EHUs, 𝐿 = 1000 (dashed line), 𝐿 = 100
(solid line)).
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Fig. 8 – Impact of distance 𝑟2 on the fairness index (𝑟1 = 15, 𝐾 = 10
EHUs, 𝑃0 = 10 Watts, 𝐿 = 1000 (dashed line), 𝐿 = 100 (solid line)).

from the BS, whereas the computation rate of the closer
EHUs are much higher. Namely, when 𝐿 = 1000 the two
ofϐloading schemes achieve the same values for the fair‑
ness index in the whole interval of radius 𝑟2, while when
𝐿 = 100, the partial ofϐloading scheme reaches a higher
fairness index in the interval form20meters to 30meters.
Moreover, both schemes achieve maximum value for the
fairness index, when the radius 𝑟2 is less than some limit
value, as all EHUs perform ofϐloading only.

The dependence of the Jain’s fairness index on the BS
transmit power 𝑃0 is shown in Fig. 9. The number of
EHUs is set to 10, half of which are placed on the cir‑
cle with radius 𝑟1 = 15 meters, and the other half are
placed on the concentric circle with radius 𝑟2 = 30 me‑
ters. When 𝐿 = 1000, both ofϐloading schemes guaran‑
tee an ideal level of fairness (𝐽 = 1). For 𝐿 = 100, both
ofϐloading schemes reach close to the ideal level of fair‑
ness (0.95 < 𝐽 < 1), with partial ofϐloading slightly ex‑
ceeding binary ofϐloading with increasing 𝑃0, which coin‑
cides with the behavior of the sum computation rate (c.f.
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Fig. 7). Note, in order to attain convexity of the resource 
allocation problem (9), the local computing at each EHU 
is assumed to cover the entire frame duration 𝑇 . In this 
case, 𝑖th EHU computing speed, 𝑓𝑖, is unaffected by the 
constraint 𝐶1 and its local computing rate, 𝑓𝑖/𝐿, is thus 
independent of 𝜏0 (c.f. (12)), which yields unequal EHUs’ 
computation rates as the solution of (9).

6. CONCLUSION

MEC is a promising concept that can extend the com‑ 
putational capabilities of resource‑constrained wireless 
devices. The incorporation of the WPT technology fur‑ 
ther strengthens the MEC concept due to practical fea‑ 
sibility of the end devices with prolonged lifespans. We 
have speciϐically focused on the fusion between WPT and 
MEC concepts by proposing an effective resource alloca‑ 
tion scheme with binary and partial ofϐloading, which fa‑ 
cilitates the practical feasibility of end devices without 
conventional batteries and yet sufϐiciently high comput‑ 
ing rates.

The proposed system design maximizes the minimum of 
the end device’s computing rate, deϐined as the sum be‑ 
tween the local computing speed and the achievable rate 
of communications between the EHUs and the base sta‑ 
tion (and co‑located MEC server). It has been found that 
if the EHUs are located close to the base station, then it 
is better to transfer the data from the EHU to the MEC 
server, because the local computing consumes more en‑ 
ergy than the energy needed to transmit the raw data 
from the end device to the base station over the wire‑ 
less channel. This perceived effect is even smaller if the 
computational load required to process one bit of infor‑ 
mation in the end users is reduced, which in turn de‑ 
pends on the architecture of their processors. It was also 
concluded that, contrary to expectations, the partial of‑ 
ϐloading mechanism only slightly outperforms the binary 
reloading mechanism in terms of the sum computation 
rate, and only in the case where the end devices are 
moderately away from the base station.

APPENDIX A
By inserting the substitution 𝑈𝑘 = 𝑃𝑘𝜏𝑘 in the optimiza‑ 
tion problem (9), we obtain :

Maximize
𝜏0,𝜏𝑘,𝑈𝑘,𝑓𝑘

min
1≤𝑘≤𝐾

{𝑇 𝑓𝑘
𝐿 + 𝐵𝜏𝑘 log2 (1 + 𝑈𝑘Ω𝑘

𝜏𝑘𝑁0
)}

subject to:
𝐶1 ∶ ∑𝐾

𝑘=1 𝜏𝑘 + 𝜏0 ≤ 𝑇
𝐶2 ∶ 𝛼𝑇 𝑓3

𝑘 + 𝑈𝑘 ≤ 𝜂𝜏0𝑃0Ω𝑘, ∀𝑘
𝐶3 ∶ 𝜏𝑘 ≥ 0, 𝜏0 ≥ 0, 𝑃𝑘 ≥ 0, 𝑓𝑘 ≥ 0, ∀𝑘 (26)

If we assume a symmetric‑user scenario, where all EHUs
are placed on one circle with radius 𝑟, the optimization
problem (26) can be simpliϐied as:

Maximize
𝜏0,𝜏1,𝑈1,𝑓1

𝑇 𝑓1
𝐿 + 𝐵𝜏1 log2 (1 + 𝑈1Ω1

𝜏1𝑁0
)

subject to:
𝐶1 ∶ 𝐾𝜏1 + 𝜏0 = 𝑇
𝐶2 ∶ 𝛼𝑇 𝑓3

1 + 𝑈1 ≤ 𝜂𝜏0𝑃0Ω1
(27)

In order to solve the optimization problem given
in (27), the objective function is transformed intro‑
ducing Lagrange multipliers and Lagrange function
ℒ (𝜏0, 𝜏1, 𝑈1, 𝑓1):

ℒ (𝜏0, 𝜏1, 𝑈1, 𝑓1) = 𝑇 𝑓1
𝐿 + 𝐵𝜏1 log2 (1 + 𝑈1Ω1

𝜏1𝑁0
) −

− 𝜆1 (𝐾𝜏1 + 𝜏0 − 𝑇 ) − 𝜆2 (𝛼𝑇 𝑓3
1 + 𝑈1 − 𝜂𝜏0𝑃0Ω1)

(28)

where 𝜆1 and 𝜆2 are the corresponding Lagrange multi‑
pliers. Taking the partial derivative of (28) with respect
to 𝜏0, 𝜏1, 𝑈1 and 𝑓1 and equating them to zero, we have:

𝜆1 = 𝜆2𝜂𝑃0Ω1, (29)a

𝐾𝜆1 = 𝐵 log2 (1 + 𝑈1Ω
𝜏1𝑁0

) − 𝐵 𝑈1Ω1
ln 2 (𝜏1𝑁0 + 𝑈1Ω),

(29)b

𝜆2 = 𝐵𝜏1
Ω1

ln 2 (𝜏1𝑁0 + 𝑈1Ω), (29)c

𝑓1 = ( 1
3𝜆2𝛼𝐿)

1/2
, (29)d

𝐾𝜏1 + 𝜏0 = 𝑇 , (29)e
𝛼𝑇 𝑓3

1 + 𝑈1 = 𝜂𝜏0𝑃0.Ω1, (29)f

By combining (29)a, (29)b and (29)c, we come up with:

𝐾𝜂𝑃0Ω2
1

ln 2 (𝑁0 + 𝑃 ∗
1 Ω1)+ 𝑃 ∗

1 Ω1
ln 2 (𝑁0 + 𝑃 ∗

1 Ω1)−log2 (1 + 𝑃 ∗
1 Ω1
𝑁0

) = 0.
(30)
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We obtain (10) by applying the deϐinition of Lambert 𝑊
function [18] to (30). By inserting the optimal transmit
power 𝑃 ∗

1 calculated in (10) into (29)c, we can calculate
the optimal value of Lagrangemultiplier𝜆2 and substitute
it in (29)d, so we derive (11). Then, by using the optimal
values 𝑃 ∗

1 and 𝑓∗
1 and by combining (29)e and (29)f, we

arrive at (12).
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