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Abstract – Due to their lexible deployment and line‑of‑sight channel conditions, using drones as base stations is a promising
technology. Recent developments in Massive MIMO transmission with millimeter‑wave beamforming also enables high data
rates and enables simultaneous transmission to multiple ground users. In this work we consider the problem of deployment
(i.e. positioning) of drone base stations for maximizing proportional fairness, along with analog MIMO beamforming that
maximizes the Signal to Interference plus Noise Ratio (SINR). Simulation results reveal that careful K‑means clustering of
ground users and altitude adjustment performs close to a Particle SwarmOptimization (PSO)‑based solution. Discrete Fourier
Transform (DFT) codebook‑based low‑complexity beamforming also provides a promising performance, when compared to
the Semi‑De inite Programming (SDP)‑based solution, as the number of antennas is increased.
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1. INTRODUCTION

1.1 Motivation
Unmanned Aerial Vehicles (UAVs), also generally known
as drones, have great potential to be used in numerous
applications such as surveillance, shipping/delivery and
search/rescue operations [1]. What makes it appealing
is that besides its small size, it is easily affordable and
quickly deployable anywhere. Because of these features,
UAVs gain great interest from the wireless communica‑
tion community [2].

UAVs also have changed the way we think about cel‑
lular communications by assisting communication in‑
frastructure and disseminating and collecting data as in
the Internet of Things (IoT). Also, using UAV as a base
station is standardized by third Generation Partnership
Project (3GPP) and Google Loon‑enabled emergency LTE
services. This usage shows good coverage but limited
bandwidth [3]. With 5G and mmWave communications
UAVs will gain great importance as Mobile Base Stations
(MBSs) especially when terrestrial base stations become
out of service or for places that become temporarily
crowded such as stadiums or concert halls. They can also
be often used by search and rescue units, police and gen‑
darmerie, which may need temporary coverage.

Drone Base Stations (DBSs) have been a very popular re‑
search topic in recent years. Deployment and optimal 3‑
dimensional positioning of the DBSs is one of the most
popular problems for research studies [4]. However
most of these previous works usually assume a single
directional antenna at the DBS and a conventional (e.g.
< 6GHz) transmission frequency. For conventional cel‑
lular systems the channel model is well‑established but
these models are often not applicable for UAV mmWave
channels [5]. Due to high frequency, Line‑of Sight (LoS)

is needed for reliable transmission with a high data rate.
Thanks to the height of the DBS, a strong Line‑of‑Sight
is possible. Besides, due to the small wavelength at the
mmWave, a large number of antennas can be it into a
small area which makes massive Multiple Input‑Multiple
Output (MIMO) feasible. However, a large number of an‑
tennas brings a challenge in training and channel esti‑
mation. In [6], authors describe that the mmWave chan‑
nel has spatial sparsity in the angle domain and a limited
number of multipath components. Under this condition
several beamforming techniques are developed. Using
mmWave bands provides a large bandwidth and a very
high data rate. However, due tomobility of the DBS there
is a fast variation of path gain and beam Angle of Arrival
(AoA) and Angle of Departure (AoD). In addition to this,
in [3] authors state an additional challenge. The selected
optimal beam can turn out to be suboptimal due to dis‑
placement of a UAV when it is in hover position. Another
challenge for the DBSs is the size, weight and power. Due
to its lower number of RF‑chain requirements and less
power consumption, analog beamforming is preferred in
UAV‑based communications [7], [8]. Due to the mobility,
lexible beamforming techniques are required [9]. To ill
this gap in the literature, we consider the problemof joint
DBS deployment and analog beamforming in millimeter‑
wave MIMO drone base stations.

1.2 Related works
In the literature there are several pieces of work that ad‑
dress the problem of DBS deployment. In [6] the authors
consider a system with single DBS and they utilize ap‑
proximate beam patterns to simplify the beamforming
problem. They use meta‑heuristic methods and exhaus‑
tive searches to solve the joint problem of deployment
and beamforming. The work in [10] considers a single
DBS system with Uniform Linear Array (ULA) antennas
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andutilized learningmethods. In [11], the authors utilize
Mean Field Game (MFG) and reinforcement learning for
ef icient beam steering among the ultra‑dense beams in
multi‑UAV mmWave networks. However, reinforcement
learning takes too much time to converge.

The work in [12] is a successful ield trial of a multi‑
DBS MIMO network with 2 × 8 antennas and 3D beam‑
forming. Because of its structure and high mobility DBSs
can easily be deployed. However, its constraints about
power leaves us with the problem of effective deploy‑
ment of UAVs. A considerable amount of effort has been
devoted to the deployment of DBS‑assisted network in‑
frastructures. In [13] authors handle the UAV deploy‑
ment issue in two stages. First, they derive the downlink
coverage probability for a UAV and then they propose an
ef icient deployment method by using circle packet the‑
ory. In [14] authors convert deployment problem into
Mixed Integer Non‑Linear Problem (MINLP) and solve it
by using a combination of the interior point optimizer
of MOSEK and bisection search. In [4] authors address
the DBS deployment problem in order to maximize the
sum of logarithm of achievable rates of users, which pro‑
vides proportional fairness. To solve this problem, they
useK‑means clustering to groupusers andpropose aPar‑
ticle Swarm Optimization (PSO) algorithm. In [15], the
deployment problem is formulated as twomodels which
are the optimal coverage problem and the optimal con‑
nectivity problem. In the scope of the optimal coverage
problem PSO is presented as a solution. For optimal con‑
nectivity authors propose the local network generation
algorithm. In [16] the authors formulate the problem in
2D and they aim to maximize the number of users with
guaranteed data rates. In [17] authors handle the UAV
deployment problem from a total cost perspective. They
divide total cost in the ixed cost which depends on the
number of DBSs and operation cost which depends on
energy consumed byUAV. Also they divide operation cost
in two as power needed by the UAV to hover and power
consumed in signal transmission. They search for a bal‑
ance between these two types of cost and propose a so‑
lution using PSO. However, none of this work considers
themmWave band andMIMObeamforming. The authors
in [18] consider 3D placement of a single DBS in order to
maximize the coverage in the presence of randomhuman
blockers. However, in [18] theMIMO beamforming prob‑
lem is not addressed. In [19] the authors use stochastic
geometry tools in order to analyze the LoS probability,
interference and achievable capacity in order to ind the
optimal altitude of the DBSs. The work in [20] aims to
provide LoS coverage to all ground users by adjusting the
orientation of the DBS antenna array. This work does
not address the problem of MIMO beamforming. In [6]
the authors consider a systemwith a single DBS and they
utilize approximate beam patterns to simplify the beam‑
forming problem. They use meta‑heuristic methods and
an exhaustive search to solve the joint problemof deploy‑
ment and beamforming. Hence, in a great majority of the

work a single DBS is deployed and the joint problem of
beamforming and DBS deploment is not addressed.

1.3 Our contribution
In this work our contribution is that: 1) we consider the
deployment of multiple drone base stations; 2) we as‑
sume that each drone has a planar array of antennas,
which can serve multiple ground users simultaneously;
3) we address the problem of drone base station de‑
ployment and propose two alternative solutions, such as
a meta‑heuristic and a heuristic algorithm; 4) we take
an optimization approach for the analog beamforming,
and propose a semi‑de inite programming‑based solu‑
tion. Wealsopropose amuch simpler algorithmbasedon
Discrete Fourier Trasform (DFT)‑based precoding vec‑
tors. This work is an extension of the work in [21]. The
current work extends the previous work [21] in many
ways, such as: 1) improvement of DFT‑based precoding
algorithm for a better performance; 2) implementation
of the particle swarm optimization algorithm for DBS de‑
ployment, as the near‑optimal benchmark; 3) targeting
proportional fairness as the performance objective.

The remainder of this paper is organized as follows.
A system model for multiple UAVs, computational 3D
mmWave channel model and problem formulation are
explained in Section 2. In Section 3 beamforming tech‑
niques and complexity issues are addressed. In Section
4 DBS positioning methods and user association are pre‑
sented. Numerical results are analyzed in Section 5. Fi‑
nally, conclusions are given in Section 6.

2. SYSTEMMODEL
We assume that there are a number of ground users that
are uniformly randomly distributed on the coverage area.
Let (𝑥𝑖, 𝑦𝑖, 0) be the coordinate of user 𝑖 ∈ 𝒦. Each
user has a single antenna. There are a set of 𝑈 Drone
Base Stations (DBSs), where (𝑥𝑢, 𝑦𝑢, ℎ𝑢) is the 3D coordi‑
nate of drone 𝑢. We assume quadrotor DBSs, which can
hover at a ixed coordinate and assumed to maintain a
ixed attitude. We assume that the exact locations of the
ground users are known by the DBSs. Each drone has
a panel antenna that is directed perpendicularly to the
coverage area. Let 𝐶𝑢 = (𝑥𝑢, 𝑦𝑢, ℎ𝑢) be the 3D coordi‑
nate of the DBS 𝑢. Let 𝐷𝑖,𝑢 = √(𝑥𝑖 − 𝑥𝑢)2 + (𝑦𝑖 − 𝑦𝑢)2

be the horizontal distance of user 𝑖 from the DBS 𝑢. Let
𝜂𝑖,𝑢 = arctan( ℎ𝑢

𝐷𝑖,𝑢
) be the elevation angle of user 𝑖 with

respect to DBS 𝑢 in degrees. Let 𝑑𝑖,𝑢 = √ℎ2
𝑖,𝑢 + 𝐷2

𝑖,𝑢
be the actual 3D distance from DBS 𝑢 to user 𝑖. A drone
antenna is an array of dimensions 𝑁 × 𝑁 . We assume
that the spacing between rows and columns is half wave‑
length. Let 𝑃 be the transmit power of each of the RF
chains of the DBSs. Analog beamforming is implemented
at the drone, based on the channel feedback. Let wi,u =
[𝑤𝑖,𝑢,1, 𝑤𝑖,𝑢,2, ..., 𝑤𝑖,𝑢,𝑁2 ] ∈ ℂ𝑁2 be the 𝑁2 × 1 beam‑
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forming vector from DBS 𝑢 to user 𝑖. Each element of the
vector w𝑖,𝑢 is enforced to have the same absolute value,
which is |𝑤𝑖,𝑢,𝑛| = 1

𝑁 , ∀𝑛 = 1, ..., 𝑁2. This is called the
constant modulus constraint. We assume that each DBS
antenna has 𝐾𝑚𝑎𝑥 << 𝑁2 RF chains, therefore 𝐾𝑚𝑎𝑥
users can be served simultaneously. Once deployed, a
DBS is assumed to stay ixed. Hovering inaccuracy [22]
due to the rotational motion of the drones is neglected
and beyond the scope of this work.

2.1 Channel model
Achannelmodel consists of path loss andmultipath com‑
ponents.

2.1.1 Path loss
Path loss largely depends on whether the user is ob‑
structed by the surrounding buildings, or not. A user is
in Line‑of‑Sight (LoS) or non‑Line‑of‑Sight (nLoS) prob‑
abilistically depending on its elevation angle. The proba‑
bility of being in LoS is as follows, [23],

𝑝𝐿𝑜𝑆,𝑖(𝜂𝑖,𝑢) = 1
1 + 𝑎 exp(−𝑏(𝜂𝑖,𝑢 − 𝑎)) (1)

Here 𝑎 and 𝑏 are model parameters that are found exper‑
imentally in [23]. Path loss for the cases of LoS and NLoS
are given in the below equation,

𝑔𝑖,𝑢(𝑑𝑖,𝑢, 𝜂𝑖,𝑢) =
⎧{
⎨{⎩

( 𝑐
4𝜋𝑓𝑐

)2 (𝑑𝑖,𝑢)−𝛼 𝑛𝐿𝑜𝑆
( 𝑐

4𝜋𝑓𝑐
)2 (𝑑𝑖,𝑢)−𝛽 𝐿𝑜𝑆

(2)

where 𝛼 𝛽 are the path loss exponents (𝛼 > 𝛽) for the
nLoS and LoS cases, respectively.

We also have to take into account that the antennas have
a pattern and limited beamwidth. The following antenna
pattern is adopted, based on the 3GPP standard. [24]

𝐺(90𝑜 − 𝜂𝑖,𝑢)𝑑𝐵 = −min [12 (90𝑜 − 𝜂𝑖,𝑢
70𝑜 ) , 20] (3)

Here, 3dB beamwidth is assumed as 70 degrees and the
maximum attenuation is 20 dB. 𝐺(90𝑜 − 𝜂𝑖,𝑢) is multi‑
plied with the path loss in order to re lect the difference
between the direction of interest and the boresight of the
DBS antenna panel.

2.1.2 Multipath fading
MmWave channels are sparse both in the angle and de‑
lay domains. This property is experimentally veri ied
in previous studies such as [25]. This is caused by the
small number of scattering clusters and narrow angu‑
lar spreads. For the multipath model we assume a lat

mmWave sparse channel model that has a limited num‑
ber ofmultipath components. Leth𝑖,𝑢 be the𝑁2×1 chan‑
nel vector of node 𝑖 from DBS 𝑢.

h𝑖,𝑢 =
𝐿𝑖,𝑢

∑
𝑙=1

𝜆𝑖,𝑢,𝑙a(𝑁, 𝑁, 𝜃𝑖,𝑢,𝑙, 𝜙𝑖,𝑢,𝑙) (4)

where 𝐿𝑖,𝑢 is the number of paths for node 𝑖. Let
𝜆𝑖,𝑢,𝑙 be the channel coef icient of path 𝑙 from DBS 𝑢
to node 𝑖, which is a complex Gaussian. Angles 𝜃𝑖,𝑢,𝑙
and 𝜙𝑖,𝑢,𝑙 denote the azimuth and elevation Angle of De‑
parture (AoD) of the 𝑙𝑡ℎ path from the DBS 𝑢. Finally,
a(𝑁, 𝑁, 𝜃𝑖,𝑢,𝑙, 𝜙𝑖,𝑢,𝑙) denotes the steering vector,

a(𝑁, 𝑁, 𝜃𝑖,𝑢,𝑙, 𝜙𝑖,𝑢,𝑙)
= [1, ..., 𝑒𝑗𝜋 sin 𝜃𝑖,𝑢,𝑙[(𝑛1−1) cos𝜙𝑖,𝑢,𝑙+(𝑛2−1) sin𝜙𝑖,𝑢,𝑙]

, ..., 𝑒𝑗𝜋 sin 𝜃𝑖,𝑢,𝑙[(𝑁−1) cos𝜙𝑖,𝑢,𝑙+(𝑁−1) sin𝜙𝑖,𝑢,𝑙]] (5)

Weassume that out of𝐿𝑖 paths, the irst one can be either
LoS or nLoS, whereas the other paths are de initely nLoS
[6]. That is the channel coef icients are,

𝜆𝑖,𝑢,𝑙 = 𝜎𝑓
( 4𝜋𝑓

𝑐 ) 𝑑𝛽
𝑖

, 𝑙 = 2, ..., 𝐿𝑖 (6)

Here 𝜎𝑓 is a complex Gaussian random variable, 𝑓 is the
carrier frequency, 𝑐 is the speed of light, 𝛽 is the nLoS
path loss exponent. The irst path can be either LoS or
nLoS,

𝜆𝑖,𝑢,1 =
⎧{
⎨{⎩

𝜎𝑓
( 4𝜋𝑓

𝑐 )𝑑𝛽/2
𝑖,𝑢

𝑛𝐿𝑜𝑆
𝜎𝑓

( 4𝜋𝑓
𝑐 )𝑑𝛼/2

𝑖,𝑢
𝐿𝑜𝑆 (7)

where 𝛼 is the LoS pathloss exponent. Typically 𝛼 and 𝛽
are 0.95 and 1.65, respectively.
We assume that the transmitters have the channel state
information.

2.2 Problem formulation
Let 𝑢𝑖 denote the DBS associatedwith ground user 𝑖. The
Signal to Interference plus Noise Ratio (SINR) of user 𝑖 is
as follows.

𝑆𝐼𝑁𝑅𝑖 =
𝑃 |h𝐻

𝑖,𝑢𝑖
w𝑖,𝑢𝑖

|2

𝑁𝑜 + ∑𝐾
𝑘≠𝑖 𝑃 |h𝐻

𝑖,𝑢𝑘
w𝑘,𝑢𝑘

|2
, 𝑖 = 1, ..., 𝐾 (8)

Anachievable rate canbede ined as𝑅𝑖(w𝑖,𝑢𝑖
) = log2(1+

𝑆𝐼𝑁𝑅𝑖). Wewill de ine a joint DBS deployment, user as‑
sociation and beamforming problem, below. Our objec‑
tive is to maximize the sum of logarithms of rates (pro‑
portional fairness) subject to a constraint on the number
of RF chains (i.e. number of connected users) of each
DBS. Let 𝑥𝑖,𝑢 be the binary connection variable, which
takes value one if user 𝑖 is connected to DBS 𝑢 and zero,
otherwise. Then 𝑢𝑖 becomes the index of the DBS such
that 𝑥𝑖,𝑢 = 1.
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max
𝑥𝑖,𝑢,w𝑖,𝑢𝑖 ,𝐶𝑢∀𝑖,𝑢

{
𝐾

∑
𝑖=1

𝑈
∑
𝑢=1

𝑥𝑖,𝑢 log (𝑅𝑖(w𝑖,𝑢𝑖
))} (9)

subject to,

|[w𝑖,𝑢𝑖
]𝑛|2 = 1, ∀𝑛 = 1, ..., 𝑁2, 𝑖 = 1, ..., 𝐾 (10)

𝐾
∑
𝑖=1

𝑥𝑖,𝑢 ≤ 𝐾𝑚𝑎𝑥, ∀𝑢 = 1, .., 𝑈 (11)

𝑈
∑
𝑢=1

𝑥𝑖,𝑢 = 1, ∀𝑖 = 1, ..., 𝐾 (12)

𝑥𝑖,𝑢 ∈ {0, 1}, ∀𝑖 = 1, ..., 𝐾, 𝑢 = 1, ..., 𝑈(13)

Here the objective function aims to maximize the pro‑ 
portional fairness, which is a good trade‑off between to‑ 
tal throughput and max‑min fairness. Constraint ((10)) 
is the constant modulus constraint. Constraint (11) lim‑ 
its the number of users simultaneously served by a DBS, 
due to limited number of RF chains. Constraint (12) en‑ 
forces each user to connect to a single DBS. Finally, Con‑ 
straint (13) enforces the 𝑥𝑖,𝑢 to be a binary variable. This 
optimization problem is a Mixed Integer Nonlinear Pro‑ 
gramming (MINLP) problem, due to the SINR expression 
in (8) that depends on DBS deployment locations and the 
logarithmic rate and objective functions, along with the 
binary variable 𝑥𝑖,𝑢. Finding a globally optimal solution 
is prohibitively complex. Therefore, we will divide the 
problem into two such as 1) DBS deployment (determin‑ 
ing the 3D coordinates and user‑DBS associations), 2) 
beamforming for each DBS.

3. BEAMFORMING
Here, we will consider the problem of analog beamform‑ 
ing at each DBS, given the channel conditions (i.e. DBS 
coordinates) and the DBS‑user association. Maximizing 
the total rate (or log sum rate) in the presence of inter‑ 
ference is a challenging non‑convex optimization prob‑ 
lem [26]. The reason is the interference at the denomi‑ 
nator of the SINR expression (i.e. interference leakage). 
An alternative is the zero forcing precoding that enforces
h𝐻

𝑘,𝑢𝑘
w𝑘,𝑢𝑘 

= 0, ∀𝑖 = 1, ..., 𝐾, 𝑘 ≠ 𝑖. However, en‑ 
forcing zero interference may not be optimal in terms of
beamforming gain and throughput. In [26] a method that 
jointly maximizes beamforming gain and minimizes in‑ 
terference leakage, is proposed. This method only de‑ 
pends on the Angles of Departure (AoDs) and the cor‑ 
responding array steering vectors of the dominant (LoS) 
path from a base station to each of its users. In the DBS 
channel model, the irst (i.e. LoS) path is signi icantly 
stronger than the others. Therefore, we only take the 
steering vector of the irst path and de ine the following. 
Let thex” ground users 𝑖 = 1, ..., 𝐾𝑢 be connected to the 
DBS 𝑢. We form the following matrix by collecting the 
dominant path vectors for all users connected to DBS 𝑢,  
except the user 𝑖,

̃I𝑖,𝑢 = [a(𝜃1,𝑢,1, 𝜙1,𝑢,1), ..., a(𝜃𝑖−1,𝑢,1, 𝜙𝑖−1,𝑢,1),
a(𝜃𝑖+1,𝑢,1, 𝜙𝑖+1,𝑢,1), ..., a(𝜃𝐾𝑢,𝑢,1, 𝜙𝐾𝑢,𝑢,1)] (14)

Singular Value Decomposition (SVD) is performed in or‑
der to ind the null space of ̃I𝑖,𝑢,

̃I𝑖,𝑢 = Ũ𝑖,𝑢�̃𝑖,𝑢[Ṽ(1)
𝑖,𝑢Ṽ

(0)
𝑖,𝑢]]𝐻 (15)

Ṽ(1)
𝑖,𝑢 holds the irst 𝐾𝑚𝑎𝑥 − 1 right singular vectors

and Ṽ(0)
𝑖,𝑢 holds the 𝑁2 − 𝐾𝑚𝑎𝑥 + 1 right singular

vectors. There are two objectives. The irst ob‑
jective, minimizing the leakage interference, is equiv‑
alent to maximizing the projection of w𝑖,𝑢 on the
null space Ṽ(0)

𝑖,𝑢. The second objective, maximizing
the beamforming gain is equivalent to maximizing
w𝐻

𝑖,𝑢a(𝜃𝑖−1,𝑢,1, 𝜙𝑖−1,𝑢,1)a(𝜃𝑖−1,𝑢,1, 𝜙𝑖−1,𝑢,1)𝐻w𝑖,𝑢. The
two objectives are combined in a weighted manner
where the leakage and gain objectives are multiplied
with weights 𝜆1 and 𝜆2, where 𝜆1 + 𝜆2 = 1. The problem
becomes convex by converting it into Semi‑De inite Pro‑
gramming (SDP). First, let us de ineW = w𝑖,𝑢w𝐻

𝑖,𝑢, which
is a square, symetric semi‑de inite matrix. The optimiza‑
tion problem becomes,

max
w

𝑇 𝑟((𝜆1Ṽ
(0)
𝑖,𝑢(Ṽ(0)

𝑖,𝑢)𝐻

+ 𝜆2a(𝜃𝑖−1,𝑢,1, 𝜙𝑖−1,𝑢,1)a(𝜃𝑖−1,𝑢,1, 𝜙𝑖−1,𝑢,1)𝐻)W) (16)

such that,

[W]𝑖,𝑖 = 1
𝑁2 (17)

W ⪰ 0 (18)
𝑅𝑎𝑛𝑘(W) = 1 (19)

The last (Rank 1) constraint can be relaxed, whichmakes
the problem convex. This is called semi‑de inite relax‑
ation. Then the problem can be solved using off‑the‑shelf
programs such as cvx. Then, using the resulting optimal
W, the precoding vectorw𝑖,𝑢 canbe foundusingGaussian
randomization.

3.1 Oversampled DFT‑based codebook
In 5GNewRadio (5GNR), Type‑I precoding utilizes over‑
sampled DFT‑based codebooks for precoding [27]. For
a Uniform Linear Array (ULA) of length 𝑁 , the DFT pre‑
coder is,

𝑤1𝐷(𝑘) = [𝑒𝑗2𝜋.0. 𝑘
𝑂𝑁 , 𝑒𝑗2𝜋.1. 𝑘

𝑂𝑁 , … , 𝑒𝑗2𝜋.(𝑁−1). 𝑘
𝑂𝑁 ]

𝑇

, 𝑘 = 0, 1, ..., 𝑂𝑁 − 1 (20)

Here 𝑂 is the integer oversampling factor, which is typi‑
cally taken as𝑂 = 4. A set of precoders for a 2D array, e.g.
Uniform Planar Array (UPA), can be obtained taking the
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Kronecker product 𝑤2𝐷(𝑘, 𝑙) = 𝑤1𝐷(𝑘) ⊗ 𝑤1𝐷(𝑙). This
precoder can be extended for dual polarization, however
we assume single polarization in this work. As a result,
for an 𝑁 × 𝑁 array and 𝑂 = 4 oversampling factor
there is a total of 𝑁2𝑂2 alternatives for a precoding vec‑
tor. This is a type of quantization in the angular domain
and signi icantly reduces the required CSI feedback over‑
head. In the LTE implementation, each ground user feeds
back its optimal precoding vector, without taking into ac‑
count interference from users attached to the same DBS
and other DBSs.

Let 𝒱 = [w2𝐷(1), ...,w2𝐷(𝑣), ...,w2𝐷(𝑂2𝑁2)] be the set
of precoding vectors produced according to ((20)). Let 𝑣𝑖
be the index of the vector chosen for user 𝑖.

𝑣𝑖 = argmax
𝑣∈𝒱

|h𝐻
𝑖,𝑢𝑖

w2𝐷(𝑣)|2

∑𝐾
𝑘≠𝑖 |h𝐻

𝑘,𝑢𝑖
w2𝐷(𝑣)|2

, 𝑖 = 1, ..., 𝐾 (21)

This is the ratio of gain of user 𝑖 to the interference leak‑
age that is created to all other users. This method re‑
quires the DBS‑user associations and channel conditions
as the input.

3.2 Complexity issues
The SDP‑based solution consists of an interior point
method to solve the relaxed SDP problem and the ran‑
domized algorithm in order to ind a rank‑one solu‑
tion. A Gaussian randomization algorithm consists of re‑
peated applications of Cholesky factorization. A solution
of SDP using interior point methods has a complexity of
𝑂((𝑁2)3) [28], which is the cubic of number of antenna
elements. Cholesky factorization has also a similar com‑
plexity. Therefore, the complexity is roughly in cubics of
the number of antenna elements. On the other hand, a
codebook‑based method chooses the optimal precoding
vector among𝑂(𝑁2) alternatives; therefore it has𝑂(𝑁2)
complexity.

4. DBS POSITIONING AND USER ASSOCIA‑
TION

Let 𝒦𝑢 be the set of users associated with DBS 𝑢. In this
work we assume that 𝐾 = 𝐾𝑚𝑎𝑥 × 𝑈 , and each DBS will
be associated with exactly 𝐾𝑚𝑎𝑥 users in order to serve
all users 1.

4.1 K‑means clustering
Having the channel state information to a ground user
from every point in the 3 dimensional space is not feasi‑
ble. Therefore, horizontal DBS positioning and user‑DBS
association is performed only based on the location of
1The case of 𝐾 > 𝐾𝑚𝑎𝑥 × 𝑈 requires scheduling and time sharing
among groups of users, which is a case of future study.

the ground users. K‑means clustering is an effective tool
to group geographically close users, where a DBS is de‑
ployed at the centroid of each cluster of ground users [4].
Each DBS is located at the center of its cluster of ground
users. However, unlike the regular K‑means algorithm, in
the current scenario each cluster has to have a size limit
of 𝐾𝑚𝑎𝑥 ground users [29]. We describe the K‑means‑1
algorithm in the pseudocode 1.

Algorithm 1 K‑means‑1 Algorithm
1: Initialize cluster centroids (𝑥𝑢, 𝑦𝑢), ∀𝑢 ∈ 𝒰
2: while not converge do
3: 𝒜 = 𝒰, 𝑚𝑖 = 0, 𝑢𝑖 = 0, ∀𝑖 ∈ 𝒦
4: Calculate 𝐷𝑖,𝑢 = √(𝑥𝑖 − 𝑥𝑢)2 + (𝑦𝑖 − 𝑦𝑢)2, ∀𝑖 ∈

𝒦, 𝑢 ∈ 𝒰
5: sort 𝐷𝑖,𝑢, ∀𝑖 ∈ 𝒦 in ascending order
6: 𝑚𝑖 = 𝐷𝑖,𝑢(1) − 𝐷𝑖,𝑢(1) , ∀𝑖 ∈ 𝒦
7: Sort 𝑚𝑖 in descending order
8: for 𝑘 = 1 ∶ 𝐾 do
9: 𝑢∗ = min𝑢∈𝒜{𝐷𝑖(𝑘),𝑢}

10: 𝑢𝑖(𝑘) = 𝑢∗

11: if |𝑖 ∶ ∃𝑖 𝑠.𝑡. 𝑢𝑖 = 𝑢∗| = 𝐾𝑚𝑎𝑥 then
12: 𝒜 = 𝒜/𝑢∗

13: end if
14: end for
15: Update 2D DBS coordinates (𝑥𝑢, 𝑦𝑢) ←

1
𝐾𝑚𝑎𝑥

∑𝑖 𝑠.𝑡. 𝑢𝑖=𝑢(𝑥𝑖, 𝑦𝑖), ∀𝑢 ∈ 𝒰
16: end while
17: Find argmaxℎ𝑢

{𝐶𝑢(ℎ𝑢)}, ∀𝑢 ∈ 𝒰 ((22))
18: Return (𝑥𝑢, 𝑦𝑢, ℎ𝑢), ∀𝑢 ∈ 𝒴

Line 1 initializes the cluster centroids. This can be done
by randomly choosing distinct ground user locations as
the centroids. The main loop of clustering are lines 2‑
16. Each loop starts by initializing the available DBSs
as 𝒰 and resetting the metrics and connections (Line 3).
User‑DBS distances are updated in line 4 (Complexity
𝑂(𝐾𝑈)). For each user line 5 sorts the 2D DBS distances
in ascending order and metric for each user is calculated
as the difference of the irst and second element of the
sorted array (line 6) (Complexity 𝑂(𝐾𝑈)). This re lects
the opportunity cost of not assigning a user to its closest
DBS. Line 7 sorts the user metrics in descending order
(Complexity 𝑂(𝐾 log2(𝐾))). The for loop in lines 8 to 14
goes over the users in descending order ofmetric and as‑
signs the best available DBS (Complexity𝑂(𝐾𝑈)). A DBS
ceases to be available once 𝐾𝑚𝑎𝑥 users are connected to
it. The while loop is repeated until a convergence crite‑
rion is met. The overall complexity of the K‑means‑1 al‑
gorithm is 𝑂(𝐾𝑈 + 𝐾 log2 𝐾).

Pseudocode 2 shows the K‑means‑2 algorithm. The dif‑
ference of K‑means‑2 from the irst version is that it up‑
dates the user metrics after each user‑DBS association.
The reason is that once a DBS is not available, there is no
point in taking it into account in calculating the usermet‑
rics. However it has higher complexity, which is roughly
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𝑂(𝑈𝐾 log2(𝐾)).
Algorithm 2 K‑means‑2 Algorithm
1: Initialize cluster centroids (𝑥𝑢, 𝑦𝑢), ∀𝑢 ∈ 𝒰
2: while not converge do
3: 𝒜 = 𝒰 ℱ = 𝒦, 𝑚𝑖 = 0, 𝑢𝑖 = 0, ∀𝑖 ∈ 𝒦
4: for 𝑘 = 1 ∶ 𝐾 do
5: Calculate 𝐷𝑖,𝑢 =

√(𝑥𝑖 − 𝑥𝑢)2 + (𝑦𝑖 − 𝑦𝑢)2, ∀𝑖 ∈ ℱ, 𝑢 ∈ 𝒜

6: sort 𝐷𝑖,𝑢, ∀𝑖 ∈ ℱ, 𝑢 ∈ 𝒜 in ascending order
7: 𝑚𝑖 = 𝐷𝑖,𝑢(1) − 𝐷𝑖,𝑢(1) , ∀𝑖 ∈ ℱ
8: 𝑖∗ = max𝑖∈ℱ{𝑚𝑖}
9: 𝑢∗ = min𝑢∈𝒜{𝐷𝑖∗,𝑢}

10: 𝑢𝑖∗ = 𝑢∗

11: if |𝑖 ∶ ∃𝑖 𝑠.𝑡. 𝑢𝑖 = 𝑢∗| = 𝐾𝑚𝑎𝑥 then
12: 𝒜 = 𝒜/𝑢∗

13: end if
14: end for
15: Update 2D DBS coordinates (𝑥𝑢, 𝑦𝑢) ←

1
𝐾𝑚𝑎𝑥

∑𝑖 𝑠.𝑡. 𝑢𝑖=𝑢(𝑥𝑖, 𝑦𝑖), ∀𝑢 ∈ 𝒰
16: end while
17: Find argmaxℎ𝑢

{𝐶𝑢(ℎ𝑢)}, ∀𝑢 ∈ 𝒰 ((22))
18: Return (𝑥𝑢, 𝑦𝑢, ℎ𝑢), ∀𝑢 ∈ 𝒴

After the 2D (horizontal) DBS coordinates and user‑DBS
association is determined, both algorithms K‑means‑1
and K‑means‑2 adjust the height of each base station.
The objective is,

𝐶𝑢(ℎ𝑢) = ∑
𝑖 𝑠.𝑡. 𝑢𝑖=𝑢

log (𝑅′
𝑖(ℎ𝑢𝑖

)) (22)

This objective re lects sum of logarithms of rates of users
connected to a DBS. (𝑅′

𝑖(ℎ𝑢𝑖
) is the rate expression used

in this objective function. It is de ined as inEquation (23),
which is taken from [30] and [31].

4.2 Particle swarm optimization
Finding the optimal locations of multiple base stations
is a nonlinear and non‑convex problem. Particle Swarm
Optimization (PSO) [32] has been proven as a good can‑
didate to solve nonlinear continuous optimization prob‑
lems. In thismethod candidate solutions, denoted as par‑
ticles are randomly generated. Each particle has a itness,
which is a measure of its performance. The particle val‑
ues are iteratively updated based on their itness and its
personal best itness, as well as the global best itness
of all particles. The pseudocode of the PSO algorithm is
shown in Algorithm 3.

There are 𝑁𝑝 particles and they are randomly initialized
in line 1 of the algorithm. Each particle contains 3𝐾 × 1
numbers, which are the 3D coordinates of the DBSs. The
global best particle and its itness, along with the per‑
sonal best value and itness of eachparticle are initialized
in line 2. Line 5 calculates a rate expression for eachDBS‑
user pair according to ((23)). The for loop in lines 7‑16,

similar to the K‑means algorithm, assigns users to DBSs.
Thedifference is themetric, which is based on the rate in‑
stead of distance. Line 18 calculates the itness for each
particle. In lines 19‑24 personal and global best particles
and their itnesses are updated. Finally Line 26 updates
the particle positions. Learning coef icients 𝑐0, 𝑐1 and 𝑐2
are determined according to [32].

Algorithm 3 PSO Algorithm
1: Initialize random particles 𝑝𝑝 = (𝑥𝑝

𝑢, 𝑦𝑝
𝑢, ℎ𝑝

𝑢), ∀𝑢 ∈
𝒰, 𝑝 = 1, ..., 𝑁𝑝

2: Initialize 𝑔𝑏𝑒𝑠𝑡, 𝑔𝑏𝑒𝑠𝑡𝑓 , 𝑙𝑏𝑒𝑠𝑡𝑝
𝑓 , 𝑙𝑏𝑒𝑠𝑡𝑝, ∀𝑝 = 1, ..., 𝑁𝑝

3: while not converge do
4: for 𝑝 = 1 ∶ 𝑁𝑝 do
5: Calculate 𝑅′

𝑖(𝑥𝑝
𝑢, 𝑦𝑝

𝑢, ℎ𝑝
𝑢), ∀𝑖 ∈ 𝒦, 𝑢 ∈ 𝒰

6: 𝒜 = 𝒰 ℱ = 𝒦, 𝑚𝑖 = 0, 𝑢𝑖 = 0, ∀𝑖 ∈ 𝒦
7: for 𝑘 = 1 ∶ 𝐾 do
8: Calculate 𝑅′

𝑖(𝑥𝑝
𝑢, 𝑦𝑝

𝑢, ℎ𝑝
𝑢), ∀𝑖 ∈ 𝒦, 𝑢 ∈ 𝒰

9: sort 𝑅′
𝑖(𝑥𝑝

𝑢, 𝑦𝑝
𝑢, ℎ𝑝

𝑢), ∀𝑖 ∈ ℱ, 𝑢 ∈ 𝒜 in ascend‑
ing order

10: 𝑚𝑖 = 𝑅(1)
𝑖 (𝑥𝑝

𝑢, 𝑦𝑝
𝑢, ℎ𝑝

𝑢)−𝑅(2)
𝑖 (𝑥𝑝

𝑢, 𝑦𝑝
𝑢, ℎ𝑝

𝑢), ∀𝑖 ∈
ℱ

11: 𝑖∗ = max𝑖∈ℱ{𝑚𝑖}
12: 𝑢∗ = min𝑢∈𝒜{𝐷𝑖∗,𝑢}
13: 𝑢𝑝

𝑖∗ = 𝑢∗

14: if |𝑖 ∶ ∃𝑖 𝑠.𝑡. 𝑢𝑖 = 𝑢∗| = 𝐾𝑚𝑎𝑥 then
15: 𝒜 = 𝒜/𝑢∗

16: end if
17: end for
18: 𝑓𝑝 = ∑𝑖∈𝒦 log(𝑅′

𝑖(𝑥𝑝
𝑢𝑖

, 𝑦𝑝
𝑢𝑖

, ℎ𝑝
𝑢𝑖

)), ∀𝑝 =
1, ..., 𝑁𝑝

19: if 𝑓𝑝 > 𝑙𝑏𝑒𝑠𝑡𝑝
𝑓 then

20: Update local best: 𝑙𝑏𝑒𝑠𝑡𝑝
𝑓 = 𝑓𝑝, 𝑙𝑏𝑒𝑠𝑡𝑝 =

(𝑥𝑝
𝑢, 𝑦𝑝

𝑢, ℎ𝑝
𝑢)

21: end if
22: if 𝑓𝑝 > 𝑔𝑏𝑒𝑠𝑡𝑓 then
23: Update global best: 𝑔𝑏𝑒𝑠𝑡𝑓 = 𝑓𝑝, 𝑔𝑏𝑒𝑠𝑡𝑝 =

(𝑥𝑝
𝑢, 𝑦𝑝

𝑢, ℎ𝑝
𝑢)

24: end if
25: end for
26: Update particles 𝑝𝑝+ = 𝑐0 × rand + 𝑐1 × (𝑙𝑏𝑒𝑠𝑡𝑝 −

𝑝𝑝) + 𝑐2 × (𝑔𝑏𝑒𝑠𝑡 − 𝑝𝑝)
27: end while

5. NUMERICAL RESULTS
In this section, we will compare the performances of 5
schemes:

• PSO + SDP: Uses particle swarmoptimization for the
DBS deployment and SDP for the precoding opti‑
mization.

• K‑means‑1+SDP: Uses Option 1 in K‑means cluster‑
ing and SDP‑based precoding optimization.

• K‑means‑2+SDP: Uses Option 2 in K‑means cluster‑
ing and SDP‑based precoding optimization.
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𝑅′
𝑖(ℎ𝑢𝑖

) = 𝑝𝐿𝑜𝑆,𝑖(𝜂𝑖,𝑢) log2 (1 + 𝑁2 − 𝐾𝑚𝑎𝑥 + 1
𝐾𝑚𝑎𝑥

𝑃𝑔𝐿𝑜𝑆
𝑖,𝑢𝑖

(𝑑𝑖,𝑢𝑖
, 𝜂𝑖,𝑢𝑖

)
𝑁𝑜

)

+ 𝑝𝑁𝐿𝑜𝑆,𝑖(𝜂𝑖,𝑢) log2 (1 + 𝑁2 − 𝐾𝑚𝑎𝑥 + 1
𝐾𝑚𝑎𝑥

𝑃𝑔𝑁𝐿𝑜𝑆
𝑖,𝑢𝑖

(𝑑𝑖,𝑢𝑖
, 𝜂𝑖,𝑢𝑖

)
𝑁𝑜

) (23)

• K‑means‑1+DFT: Uses Option 1 in K‑means cluster‑
ing and DFT‑based precoding codebook.

• K‑means‑2+DFT: Uses Option 2 in K‑means cluster‑
ing and DFT‑based precoding codebook.

24 ground users are randomly located in a circular area
of radius of 1000 meters. The carrier frequency is 28
GHz. There are 𝐾 = 4 DBSs, where each DBS has a uni‑
form panel antenna with 8 × 8 elements (unless other‑
wise stated) with half wavelength spacing. Each DBS has
𝐾𝑚𝑎𝑥 = 6 RF chains. The transmit power per RF chain
is 10 Watts and noise power is 𝑁𝑜 = 1 × 10−13 Watt. LoS
probability parameters are 𝑎 = 11.95 and 𝑏 = 0.14, re‑
spectively (i.e. ”Urban” scenario). The channel from each
DBS to each ground user has𝐿𝑖 = 4 paths. Each point on
a graph is the average of 100 independent runs.

In Fig. 1we evaluate the effects of changing𝜆2 (hence𝜆1)
on the throughput performance. Parameters𝜆1 and𝜆2 =
1 − 𝜆1 are the weights of interference and beamforming
gain, respectively. All simulations are done for 𝐾 = 24
users distributedona circular area of radius1000meters.
There are 3 subplots, which are for different con igura‑
tions, namely 𝑈 = 4, 𝐾𝑚𝑎𝑥 = 6, 𝑈 = 6, 𝐾𝑚𝑎𝑥 = 4 and
𝑈 = 8, 𝐾𝑚𝑎𝑥 = 3. Results reveal that 𝜆2 should be small
for optimal performance. This is because𝜆2 is theweight
of beamforming gain for the transmitted user (which is
supposed to be high), while 𝜆1 is theweight of projection
on null‑space (i.e. interference leakage), which is sup‑
posed to be small. Results show that 𝜆2 = 0.001 (i.e.
𝜆1 = 0.999) is a good choice. As the number of DBSs
is increased, optimal 𝜆2 gets smaller. The reason is that
when there aremoreDBSs, each covers less users. There‑
fore, they can decrease their altitude, which decreases
the inter‑DBS interference, hence its weight (𝜆1) should
be higher.

Table 1 shows the average total, minimum and log‑sum
average throughput performance of the ive schemes,
which are compared with respect to different numbers
of DBSs and RF chains. The number of DBSs are taken
as 𝑈 = 4, 6 and 8. The product of the number of DBSs
and RF chains are kept ixed at 24, which is the num‑
ber of users. The minimum rate is a metric for fairness
and log‑sum throughput is a metric of proportional fair‑
ness, which is a trade‑off between throughput and fair‑
ness. 𝜆1 is taken as 0.999. Results reveal that as the
number of DBSs increases, the performance gets better.
This is an expected result, because, as the number of

Fig. 1 – Log‑sum throughput vs. 𝜆2 (interference weight). The through‑ 
put makes a peak, if 𝜆1 is close to one (i.e. 𝜆2 is close to zero.)

DBSs are increased, each DBS has to cover less number 
of users. The DBS height can be decreased and the path 
loss decreases. Results also reveal that the clustering al‑ 
gorithms K‑means‑1 and 2 have similar performances in 
terms of log‑sum throughput. For fewer DBSs, K‑means‑ 
2 is slightly better, while for 8 DBSs K‑means‑1 is better. 
Considering the complexity of both algorithms and their 
performance, K‑means‑1 is more preferable.

A comparison between K‑means and PSO shows that PSO 
is 10% better in terms of throughput and proportional 
fairness, for 4 DBSs. PSO requires signi icantly more time 
to converge. Besides, it requires centralized implementa‑ 
tion. Considering these disadvantages, we can say that K‑ 
means strikes a good balance between performance and 
complexity.

Lastly, comparing SDP‑based beamforming and DFT‑ 
based beamforming, we can observe that the difference 
is signi icant for fewer DBSs. This is because for fewer 
DBSs, the DBSs’ heights become higher and there may 
be a signi icant amount of interference among different 
DBSs. An SDP‑based solution better manages this inter‑ 
ference. On the other hand, for higher number of DBSs, 
interference is less of a problem and the performance gap 
between the SDP and DFT‑based methods decreases.

Figures 2, 3 and 4 show the logarithmic sum of 
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Table 1 – Different con igurations and performance criteria (24 users)

Total throughput (bps/Hz)
Con iguration 𝑈 = 4, 𝐾𝑚𝑎𝑥 = 6 𝑈 = 6, 𝐾𝑚𝑎𝑥 = 3 𝑈 = 8, 𝐾𝑚𝑎𝑥 = 3
K‑means‑1+SDP 128.91 154.83 177.47
K‑means‑2+SDP 129.78 155.14 173.64
K‑means‑1+DFT 99.20 130.95 158.05
K‑means‑2+DFT 100.55 132.03 155.11

PSO+SDP 139.32 166.84 192.81
Minimum throughput(bps/Hz)

Con iguration 𝑈 = 4, 𝐾𝑚𝑎𝑥 = 6 𝑈 = 6, 𝐾𝑚𝑎𝑥 = 3 𝑈 = 8, 𝐾𝑚𝑎𝑥 = 3
K‑means‑1+SDP 0.27 0.72 1.04
K‑means‑2+SDP 0.46 0.72 0.99
K‑means‑1+DFT 0.14 0.38 0.64
K‑means‑2+DFT 0.17 0.38 0.63

PSO+SDP 0.67 1.01 1.56
Log‑sum throughput (proportional fairness)

Con iguration 𝑈 = 4, 𝐾𝑚𝑎𝑥 = 6 𝑈 = 6, 𝐾𝑚𝑎𝑥 = 3 𝑈 = 8, 𝐾𝑚𝑎𝑥 = 3
K‑means‑1+SDP 30.09 37.60 42.77
K‑means‑2+SDP 30.26 37.05 41.65
K‑means‑1+DFT 23.61 33.11 39.69
K‑means‑2+DFT 24.08 33.16 38.94

PSO+SDP 33.76 40.36 45.72

Fig. 2 – Log‑sum throughput vs. number of antennas for 𝑈 = 4 DBSs 
and 𝐾𝑚𝑎𝑥 = 6 RF chains per DBS

achievable user throughput versus the number of 
antenna elements at the DBS. Simulations are run for 𝜆 
= 0.999.  The observations are as follows:

• First of all, as the number of DBSs is increased, log‑
sum throughput increases, which is expected.

• Secondly, the three igures reveal that the variations
on the K‑means algorithm has a negligible effect on

Fig. 3 – Log‑sum throughput vs. number of antennas for 𝑈 = 6 DBSs
and 𝐾𝑚𝑎𝑥 = 4 RF chains per DBS

the performance.

• Log‑sum throughput is an increasing concave func‑ 
tion of number of antennas. Increasing the number
of antennas provides diminishing returns.

• For 𝑈 = 4, 6, 8 DBSs, the percentage difference be‑ 
tween the SDP and DFT decreases as the number of
antennas is increased. DFT performs within 5% of
SDP for 𝑈 = 6 or 𝑈 = 8 DBSs and 𝑁2 = 144
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Fig. 4 – Log‑sum throughput vs. number of antennas for 𝑈 = 8 DBSs
and 𝐾𝑚𝑎𝑥 = 3 RF chains per DBS

antenna elements. This shows the effectiveness of 
using a simple DFT‑based codebook.

• The percentage difference between the PSO and K‑
means‑based DBS deployment schemes decrease as
the number of antennas is increased.

• Interestingly, for 𝑈 = 4 and 6 DBSs and a very
small number of antennas (e.g. 𝑁2 = 16), a DFT‑
based beamforming scheme performs better than
SDP‑based beamforming. Please note that, this is a
poor performance of SDP, rather than a good per‑
formance of DFT. Especially for 𝑈 = 4 we observe a
negative log‑sum throughput. This points to a close‑
to‑zero throughput for at least one user for most of
the trials. The reason is as follows: For 𝑁2 = 16 an‑
tennas, the degree of freedom (e.g. the null space)
is smaller. Then, the SDP method fails in inding
beamforming vectors that have good projection on
the null space. SDP is clearly performing well for
𝑁2 > 𝐾

In Fig. 5 empirical cumulative distribution of user SINRs
(in dB) are plotted for various methods. The results re‑
veal that the K‑means algorithm performs quite close
to the PSO‑based near‑optimal benchmark. However,
the difference between the SDP‑based beamforming and
DFT codebooks is more signi icant. For example, the
probability of SNR being smaller than 0 dB is 0.1 for
DFT, while it is around 0.05 for the SDP. Finally, the per‑
formance difference between two variations of K‑means
clustering is negligible.

Fig. 5 – Empirical cumulative distribution of user SINR values for𝑁2 =
100 antennas, 𝑈 = 4 DBSs and 𝐾𝑚𝑎𝑥 = 6 RF chains per DBS

6. CONCLUSIONS
In this work we studied the problem of deploying mul‑
tiple mmWave Drone Base Stations (DBS) that perform
MIMO analog beamforming in order to ef iciently serve a
number of ground users. K‑means clustering and height
adjustment is snown to be a promising method in or‑
der to deploy DBSs and associate users to them. How‑
ever, cluster size constraints (due to a limited number of
RF chains) requires clever application of the algorithm.
The proposed method performs close to a benchmark
that is based on Particle Swarm Optimization (PSO). On
the other hand, using a simple DFT‑based codebook per‑
forms quite close to a Semi‑De inite Programming (SDP)‑
based optimal beamforming, especially for large number
of antennas.

In reality, the number of ground users may be way more
than the total number of RF chains. This requires fur‑
ther grouping and scheduling of users in time, which is
a subject of future work. Secondly, the considered SDP‑
based method only minimizes the interference from the
ground users that are attached to the sameDBS.Methods
to address interference fromotherDBSsneed tobe inves‑
tigated. Moreover, methods to optimize DBS power also
need to be researched. Other topics to be investigated in‑
volve different and more realistic channel models, chan‑
nel estimation issues, beam training, and individual rate
constraints.
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