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Abstract – Automatic Modulation Classiϔication (AMC) is a well‑known problem in the Radio Frequency (RF) domain. Solv‑
ing this problem requires determining the modulation of an RF signal. Once the modulation is determined, the signal could
be demodulated making it possible to analyse the signal for various purposes. Deep Neural Networks (DNNs) have recently
proven to be successful in solving this problem efϔiciently. However, since deep networks consist of several layers resulting
in a high number of trainable parameters, the hardware implementations of these solutions are resource‑demanding. In or‑
der to address this challenge, we propose an efϔicient deep neural network referred to as RFNet to tackle the AMC problem
efϔiciently. This network introduces the novel Multiscale Convolutional (MSC) layer to extract robust features in different
resolutions. In addition, the network takes advantage of several Separable Convolution Blocks (SCB). These blocks employ
pointwise and depth‑wise convolutions to reduce network complexity. We further introduce RFNet+ and RFNet++ as exten‑
sions of RFNet with fewer number of parameters. These variants include fewer ϔloating‑point operations and hence a lower
hardware implementation cost. Experimental results using the challenging RadioML 2018 dataset show that RFNet‑32++
achieves an average classiϔication accuracy of 56.09% over all Signal‑to‑Noise Ratios (SNRs) and an accuracy of 92.21% in
+20dB SNR using only 3.1K parameters. The small number of parameters makes the RFNet family a promising solution for
future AMC systems.

Keywords – Automaticmodulation classiϐication, deep learning, depth‑wise convolution, pointwise convolution, pruning,
quantization, quantization aware training, resource efϐicient deep learning

1. INTRODUCTION

Wireless communication is a very important part of our
daily lives. In order to make wireless systems efϐicient,
the data transmission rate needs to be under control. One
of the methods to control data rates in wireless radio en‑
vironments is to apply different modulation methods to
the Radio Frequency (RF) signal. Prior to the demodu‑
lation of signal at the receiver’s end, Automatic Modula‑
tion Classiϐication (AMC) is used to identify the modula‑
tion method in various applications e.g., electronic coun‑
termeasures [1, 2] and spectrummonitoringmethods [3].
There are different methods to implement AMC. One im‑
portant category of such methods includes conventional
solutions, which are based on maximum‑likelihood and
hand‑crafted feature extraction [4]. An alternative and ef‑
ϐicient method is to employ Deep Learning (DL) [5, 6].

DL takes advantage of deep structures to create a repre‑
sentationof the inputdata. This representation is used for
building computational models. During recent years, DL
models have become mature enough to effectively make
meaningful contributions to the wireless communication
domain. Recent research shows that DL not only enables
cognitive radio applications, but also serves as a useful
method for providing algorithms for different applica‑
tions of spectrum sensing including signal classiϐication,
estimation, and detection [7].

DL solutions are based on Deep Neural Networks (DNNs)
which extract rich features from the input signal using
several consecutive layers. These methods, however,
come with high computational complexity. This is due to
the high number of ϐloating point operations and the acti‑
vation functions of the neural layers in the network. This
in turn increases the associated power and area cost [8].

In this work, we propose RFNet, a specialized DNN for
the Radio Frequency (RF) domain. This network builds
on a novel architecture to extract robust features effec‑
tively. We propose a new layer referred to as the Multi‑
scale Convolutional (MSC) layer, to extract the low‑level
features from the input signal in different scales. In addi‑
tion, we use Separable Convolution Blocks (SCBs) which
contain pointwise and depth‑wise convolutions. RFNet
comes indifferent conϐigurations, dependingon thedepth
of the network (e.g. RFNet‑32, RFNet‑48, etc). Gener‑
ally, deeper variants have better accuracy and a higher
implementation cost. Making a network deeper adds to
the complexity of the network which in turn leads to ob‑
taining a more robust representation of the input data.
However as the network gets deeper, more parameters
are requiredwhich requiresmorememory, area and com‑
putation, thus, increasing the implementation costs. We
further use different network compression techniques to
carefully reduce the complexity of RFNet. Accordingly,
we introduce RFNet+ and RFNet++, each of which com‑
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presses RFNet to a certain degree. In summary, we make
the following contributions:

• We design RFNet as an efϐicient network with a
classiϐication accuracy of 56.09% (on average for
all signal‑to‑noise ratios) using the RadioML 2018
dataset. We carefully design the MSC layer to ex‑
tract features effectively. Moreover we build a deep
network equipped with high generalization power
by employing SCB blocks. The designed network
creates a robust representation of the input signal,
which in turn leads to a high accuracy.

• We reduce the complexity of RFNet by taking advan‑
tage of quantization to reduce the number of bits
used for the trainable parameters. To this end, we
reduce the number of bits from 32 to only 6 bits. We
show that 6 bits is sufϐicient to obtain a high classiϐi‑
cation accuracy.

• We propose a resource‑efϐicient network by com‑
pressing RFNet using unstructured pruning. Using
this method, we remove unnecessary neurons from
RFNet to utilize fewer resources. As Table 1 shows,
the smallest variant is RFNet‑32++ and contains only
3.1K trainable parameters.

• We provide a multi‑target solution by taking into ac‑
count the trade‑off between accuracy and the num‑
ber of parameters in our network design. This is
achieved by investigating the depth parameter for
the network, and using different pruning strategies.
Hence, we offer a wide range of options to the end
user.

The rest of the paper is organized as follows. In Sec‑
tion 2 we present related work. Section 3 presents
the background information formodulation classiϐication
and deep learning in this domain. We explain our pro‑
posed network, RFNet and its variations, in detail in Sec‑
tion 4. Afterwards, we present the experimental results
and report the performance metrics in Section 5. Finally,
we conclude the paper in Section 6.

2. RELATEDWORK
There are several pieces of work that use DNN‑based so‑
lutions to tackle the AMC problem, which either propose
a new neural network, or propose methods to extract ad‑
ditional features to feed to an existing network.

O’Shea et al. adapt the VGG architecture [9] to a one di‑
mensional CNN and represent a simple deep CNN which
can train and become deployed for different signal clas‑
siϐication tasks. This network obtains 95.6% test accu‑
racy on the dataset developed by the authors (which was
later presented as RadioML 2018). This work includes a
detailed analysis of the effects of offset in the carrier fre‑
quency, the symbol rate, and multipath fading in simula‑
tions.

Huynh‑The et al. [10] develop an efϐicient CNN for solv‑
ing the AMC problem. This network consists of dif‑
ferent asymmetric parallel convolutional layers and in‑
cludes two important mechanisms. First, it uses skip‑
connections to avoid the problem of vanishing gradients.
Second, it concatenates features with concentration on
the depth level. This method utilizes the features opti‑
mally. This network obtains a classiϐication accuracy of
85.10%at Signal‑to‑Noise Ratio (SNR) of 10dB for the Ra‑
dioML 2018.01A dataset and contains 151K parameters.

Tunze et al. [11] propose a low‑complexity CNN by lever‑
aging the depthwise and regular grouped sparse layers.
This network uses three main modules: a module to pro‑
vide a trade‑off between speed and accuracy, one for
deep feature extraction and processing, and another one
for generic feature extraction. These blocks use various
special layers, including the depthwise convolutional and
cascaded regular grouped convolutional layers. They also
utilize inter‑layer skip‑connections to reduce the compu‑
tational complexity. This network obtains an accuracy
of 94.39% at an SNR of 20dB for the RadioML 2018.01A
dataset.

Wang et al. [12] use compressive sensing and introduce a
scaling factor for eachneuron in thenetworkwith the goal
of reducing themodel size and speeding up the inference.
This scaling factor induces sparsity in the CNN which
helps with pruning redundant neurons. The datasets
used in this work are created by the authors.

Njoku et al. [13] propose CGDNet as a hybrid and cost ef‑
ϐicient network. CDGNet uses a shallow CNN, a Gated Re‑
current Unit (GRU) and a deep classiϐier. The CNNmodule
uses small ϐilter sizes and includes Gaussian dropout lay‑
ers and skip‑connections. This network obtains an accu‑
racy of 93.5% for an SNR range of 6dB to 18dB for the Ra‑
dioML 2016.01A dataset and contains 124K parameters.

Zheng et al. [14] propose a novel two‑level augmenta‑
tion method based on spectrum interference to improve
the modulation classiϐication. They expand the samples
by adding different amounts of interference to the fre‑
quency spectrum of the radio signals. This helps make a
robust representation of the input signal, as the most im‑
portant difference between various modulation methods
is the variation of frequency over time. The authors use
bidirectional noise masks to add interference to the fre‑
quency spectrum of the signal derived using short‑time
Fourier transform. Thismethod obtains 58.76%accuracy
on average for all SNRs for the RadioML 2016A dataset.

Wang et al. [15] propose a Hierarchical Multi‑feature Fu‑
sion (HMF)methodwhich is based on amultidimensional
Long Short‑Term Memory (LSTM) network. The input
features of the LSTM network are prepared by a multidi‑
mensional CNN module which compensates the features
between those extractedby theone‑dimensional and two‑
dimensional convolutional ϐilters. The LSTM network ex‑
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tracts temporal features. It also employs a Softmax clas‑
siϐier to provide the ϐinal classiϐication results. This work
was tested on the RadioML 2016A and obtained an aver‑
age accuracy of 90.88% over SNRs from 4 to 18dB.

Tu et al. [16] propose a complex‑valued network for the
AMC problem. They design the key building blocks of
a convolutional network including the convolutional lay‑
ers, batch normalization and weight initialization. This
network is twice more expensive than its real counter‑
part. This is because in contrast to the real networks, this
network considers the correlation between the real and
imaginary parts of the signal. However, this considera‑
tion results in obtaining amore robust network. This net‑
work obtains 85% accuracy for SNR of 18dB for the Ra‑
dioML 2016 dataset.

Note that the different pieces of work in the AMC domain
do not usually report the same metrics and provide the
accuracy over a speciϐic range of SNRs. Thus providing a
fair comparison is rather difϐicult. In contrast to the stud‑
ies mentioned above, whichmostly focus on the accuracy,
we primarily focus on network size and complexity. In
addition, we provide a family of networks providing the
user with options to choose from based on the require‑
ments of their application. For example, aswe show in the
results section, RFNet‑32++ is a very tiny network con‑
taining only 3.1K parameters, achieving slightly less than
90% for an SNR range of 10dB to 30dB. RF‑Net128, an‑
other variant of our proposed family of networks, obtains
95% accuracy over the same range, but includes 137.3K
parameters.

3. BACKGROUND

In this section, we present the background information
related to this work. First, we review our network com‑
pression techniques. Afterwards, we explain our evalua‑
tion metrics.

3.1 Network compression

Recently, network compression has been of utter signif‑
icance. Deploying networks with millions or billions of
parameters on the edge devices is practically impossi‑
ble [17]. Large models require high volumes of mem‑
ory and includemany Floating‑point Operations (FLOP)s,
therefore, high energy is required to train and test these
models. To leverage DL beneϐits on the edge devices, ML
practitioners have aimed to make models more efϐicient.
Several model compression techniques such as pruning,
quantization, factorization [18] and knowledge distilla‑
tion [19] have been proposed in the literature. In this
work, we use the ϐirst three methods to compress RFNet.

3.1.1 Pruning
It has been observed that after successfully training a
neural network, a signiϐicant number of the neurons will
not ϐire, effectively acting as dead neurons. Also, some
weights make very little contribution to the ϐinal model
inference. Therefore, it would only be logical to prune re‑
dundant weights (neurons). The pruning process might
lead to losing accuracy if implemented too aggressively.
Pruning is generally divided into two categories: struc‑
tured pruning [20] and unstructured pruning [21, 22].
While the former prunes the whole channels/ϐilters, the
latter only prunes the selected few neurons.

3.1.2 Quantization
Quantization has proven to be a very promising tech‑
nique for compressing neural networks [23]. Often, 32
bits is more than enough to contain the information of
the weights of a neural network. Studies show that quan‑
tizing a neural network, can result in far fewer bits with‑
out compromising accuracy. To make the neural network
even more efϐicient, in addition to weights of the neural
network, the activation maps can also be quantized [24,
25].

Quantization is generally categorized into two groups:
Post‑training‑quantization [26] and Quantization Aware
Training (QAT) [25]. In the former, the network is trained
using full precision. Then and once the network is fully
trained, the weights are quantized. In the latter, the
neural network is quantized during the training process.
Therefore, QAT directly takes into account network accu‑
racy and loss. QAT methods generally result in a higher
accuracy. [23].

3.1.3 Factorization
Conventionally, CNNs combine and ϐilter different seg‑
ments of the input and form the outputs. Usually in order
to create a more robust representation of the input, the
number of channels is increased. However, this results in
an increase in the number of trainable weights. Further‑
more, network accuracy does not scale linearly with the
computational overhead. Therefore, Sifre et al [27, 28]
suggested performing a combination and ϐiltering in two
separate stages. Accordingly, depthwise separable convo‑
lutions factorize a standard convolution into a depthwise
convolution layer (ϐiltering stage) followed by a 1×1 con‑
volution [29] layer (also referred to as pointwise convo‑
lution) (combination stage).

Depth‑wise separable convolutions have been used in a
multitude of efϐicient networks such asMobileNetV1 [30],
MobileNetV2 [31], Inception [32] and Xception [33]. In
particular, and for MobileNet, depth‑wise convolutions is
applied as a separate ϐilter to each input channel. Accord‑
ingly, a 1×1 convolution (pointwise) is used to combine
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the outputs of depth‑wise convolution. It has been shown
that this factorization approach drastically reduces the
model size and the amount of computations required for
inference in a CNN [30].

3.2 Evaluation metrics

3.2.1 Number of parameters
The number of parameters is the total sum of all of the
trainable weights and biases in a neural network. This
number can serve as an indicator of the size of the model.
Normally, models with more parameters achieve higher
accuracy. However, complex models can heavily attenu‑
ate the hardware efϐiciency. In addition, practical hard‑
ware implementation of such models is a very difϐicult
task. Therefore, it is essential for the network to be light
enough to enhance the practicality of the model from the
hardware perspective. This is particularly critical in edge
devices with a small memory footprint.

3.2.2 Inference cost
In addition to the number of parameters, there are two
important metrics when it comes to hardware implemen‑
tation: computation cost and memory cost. The activa‑
tion, 𝑏𝑖𝑡𝑖, and weights, 𝑏𝑖𝑡𝑤, have a speciϐied number of
bits. These two metrics are evaluated based on the fol‑
lowing equations:

𝑏𝑖𝑡_𝑜𝑝𝑠 =
𝐿𝑎𝑦𝑒𝑟𝑠
∑ (

𝑀𝐴𝐶𝑠
∑ 𝑏𝑖𝑡𝑤 × 𝑏𝑖𝑡𝑖) (1)

𝑏𝑖𝑡_𝑚𝑒𝑚 =
𝐿𝑎𝑦𝑒𝑟𝑠
∑ (

𝑊𝑒𝑖𝑔ℎ𝑡𝑠
∑ 𝑏𝑖𝑡𝑤) (2)

To report the cost of the inference, one can combine the
amount of computations (the computation cost) and the
amount of memory required to store the parameters for
performing the inference (the memory cost) into a single
metric referred to as the inference cost. This metric was
introduced in a recentmodulation classiϐication challenge
issuedbyXilinx topropose a fast and small network 1. The
following shows the equation for the inference cost.

0.5 × 𝑏𝑖𝑡_𝑜𝑝𝑠
𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒_𝑏𝑖𝑡_𝑜𝑝𝑠 + 0.5 × 𝑏𝑖𝑡_𝑚𝑒𝑚

𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒_𝑏𝑖𝑡_𝑚𝑒𝑚 (3)

Hereinafter, we refer to this score as the normalized in‑
ference cost.

4. RFNET
In this section we present RFNet and its building blocks.
Afterwards, we explain the employed network compres‑
sion methods.

1https://aiforgood.itu.int/event/lightning‑fast‑modulation‑
classiϐication‑with‑hardware‑efϐicient‑neural‑networks/

The MSC block is shown in Fig. 1. This block consists of
three scales. Each scale starts with a convolutional layer
employing a relatively large kernel size. Afterwards, there
is a Batch Normalization (BN) layer, the ReLU activation,
and another convolutional layer followed by another BN.
The three scales differ in kernel size and the padding ap‑
plied in the ϐirst layer. The proposed block serves as a ro‑
bust low‑level feature extractor.

Fig. 2 shows the architecture of the SCB block. This block
is similar to each scale of the MSC layer. The difference is
the addition of a max‑pooling layer. Factorizing a convo‑
lutional layer into depth‑wise and pointwise equivalents,
results in signiϐicant parameter reduction, which in turn
helps make the network deeper and yet more economic.

The architechture of RFNet is shown in Fig. 3. As stated
before, the network starts with MSC to extract low‑level
features. Afterwards, we employ ϐive SCB layers to grad‑
ually create a deep representation of the input signal. Fi‑
nally, there are two Fully‑Connected (FC) layers to learn
the non‑linear combination of the high‑level features ex‑
tracted by the network.

The BN layer is used in RFNet several times. This layer
corrects the activations by zero‑mean and unit standard
deviation, and hence enables larger steps in the gradient.
This in turn results in faster convergence of the network
and bypasses sharp local minima.

4.1 RFNet variations
RFNet comes in different variations. Such variations
include RFNet32, RFNet48 and RFNet128, wherein the
number following the name is the number of ϐilters used
in the MSC and SCB layers. This family of networks pro‑
vides the end user with a wide variety of choices. Gener‑
ally a higher number of ϐilters per layer results in better
accuracy while requiring a higher number of parameters.

4.2 Compressing RFNet
Wealso aim to further improve RFNet. To this end, we use
different model compression techniques to make the net‑
work even more energy efϐicient. Our study shows that
unstructured pruning and QAT are the most promising
choices in enhancing RFNet. To this end, we propose two
alternatives: RFNet+ (slightly pruned) and RFNet++ (ex‑
tremely pruned). Essentially, we take RFNet and apply
unstructured pruning to obtain RFNet+. Afterwards, we
take RFNet+ as the base network, and apply further prun‑
ing to obtain RFNet++. Note that, theoretically, a higher
level of pruning can result in losing more accuracy. How‑
ever, we limit prunning to a certain level protecting accu‑
racy. Accordingly, we set a lower threshold for accuracy
and stop pruning if accuracy falls below this threshold.

© International Telecommunication Union, 2022

ITU Journal on Future and Evolving Technologies, Volume 3, Issue 2, September 2022

264



Fig. 1 – MSC layer. This layer consists of pointwise and depth‑wise convolutions implemented in three scales, serving as a robust low‑level feature
extractor. 𝑘𝑠 and 𝑝 stand for kernel size and padding respectively.

Fig. 2 – The architecture of SCB block. This block contains depth‑wise and pointwise convolutions in addition to batch normalization and ends with a
max‑pooling layer.
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Fig. 3 – RFNet48 architecture. The network consists of the MSC layer, 5
SCB blocks, and 2 FC layers.

4.3 Pseudo‑codes for unstructured pruning

The pseudo‑code for unstructured pruning can be found
in Algorithm 1. This algorithm requires three hyper‑
parameters: 𝛼, 𝛽 and the vector 𝑋. 𝛼 indicates the num‑
ber of pruning iterations. This hyper‑parameter reports
the number times themodel is pruned and then retrained.
𝛽 is the number of epochs that the model is trained for
in each pruning iteration. This parameter should be cho‑
sen carefully since a high number not only requires more
training, but also promotes the risk of overϐitting. On the
contrary, if a low number is acquired for 𝛽, the lost accu‑
racy might not be recovered. Finally, 𝑋 shows how much
of the weights are pruned at each pruning iteration.
Algorithm 1 Unstructured pruning steps
1: Initialize 𝑥 vector. 𝑥𝑖 is the percentage of weights

which will be pruned in the 𝑖𝑡ℎ iteration
2: Initialize 𝛼 and 𝛽
3: for 𝑖 in 𝛼 do
4: Prune 𝑥𝑖 percent of the model’s weights
5: for 𝑒𝑝𝑜𝑐ℎ in range 𝛽 do
6: Retrain the model to recover the lost accuracy
7: Save model’s weights resulting in highest ac‑

curacy

5. EXPERIMENTS AND RESULTS

In this section, we present experimental results.

5.1 RadioML 2018 dataset

We used the RadioML 2018 dataset [9] to evaluate RFNet
for modulation classiϐication. This dataset consists of 24

modulation categories 2, and includes 2.5M data points
at 26 different Signal‑to‑Noise Ratios (SNRs) per modu‑
lation (‑20dB to +30dB in steps of 2dB). Each data point
consists of 2x1024 samples: 1024 in‑phase and 1024
quadrature samples.

5.2 Experiment setup
We used RTX A6000 GPUs of a LambdaLab Cloud GPU
service with 48 GB of VRAM to perform the experiments.
We used a research library developed in a PyTorch frame‑
work for Quantization‑Aware Training (QAT) which is re‑
ferred to as Brevitas [34].

5.3 Dynamic hyper‑parameter: SNR
As stated, RadioML 2018.01A consists of signals from
‑20dB SNR to +30dB SNR. Generally, in the low‑SNR
regime (from ‑20 dB to ‑10 dB) classifying the modula‑
tion of the signal is practically impossible due to the heavy
distortion created by the noise. In the high‑SNR regime,
however, the noise power is quite low with respect to the
signal, and hence distinguishing signals from one another
is easier.

In this work, we train ourmodel using the data with SNRs
higher than ‑10dB. This is very useful for the training pro‑
cess, since the signalswith an SNR below ‑10dB, are heav‑
ily distorted by the noise. Such samples will provide the
model with false gradients. This in turn results in lower
average accuracy over all SNRs.

5.4 Precision bits
In order to achieve best quantization results, we exper‑
imented with different values. After running several ex‑
perimentswe concluded that using 6 bits works best. Our
study shows that a network using 6 bits while being ϐive
times lighter than a full precision network offers compet‑
itive accuracy.

In addition, as we use quantization alongside other opti‑
mization techniques, our choice of the number of bits can
impact the effectiveness of other optimizations. For ex‑
ample, while reducing the number of bits will make the
network more compact, it stops the network from being
pruned as extensively. As we rely on co‑optimization in
order to get the best results, we avoid further quantiza‑
tion.

2The modulations available in RadioML 2018 include OOK, ASK4,
ASK8, BPSK, QPSK, PSK8, PSK16, PSK32, APSK16, APSK32, APSK64,
APSK128, QAM16, QAM32, QAM64, QAM128, QAM256, AMSSBWC,
AMSSBSC, AMDSBWC, AMDSBSC, FM, GMSK and OQPS.
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5.5 Pruning experiments
When pruning the network, we took two approaches:
gradual pruning and greedy pruning. In gradual pruning,
a small portion of the weights are pruned at each itera‑
tion. After each iteration, the network is trained for some
epochs and then the same process is repeated. This pro‑
cess is followed so long further pruning does not result in
signiϐicant accuracy loss.

In greedy pruning, a signiϐicant portion of the weights are
pruned at the ϐirst iteration. Hence, after retraining, a
small portion of theweights are removed. The process re‑
peats until further pruning results in signiϐicant accuracy
loss.

In gradual pruning, 10‑20% of the weights are pruned at
each iteration. In greedy pruning, we start with pruning
60‑70% of weights in the ϐirst iteration. Then we prune
5‑10% of the weights during the following iterations.

5.6 RFNet results
Wecompare ourwork against VGG‑10 network [9]. As Ta‑
ble 1 shows, this network obtains 59.46% average accu‑
racy for the RadioML 2018 dataset. Fig. 6 compares the
computation and memory cost of the different networks
in RF‑Net family with those of the baseline VGG‑10 net‑
work. As the plot shows, the amount of improvement in
terms of the memory usage and the amount of compu‑
tations are very close. Next, we report inference cost to
compare our network to the baseline network. Table 1 re‑
ports the inference score for our proposed network along
with average accuracy over all SNRs. As the table shows,
we obtain a signiϐicantly lower inference cost compared
to the baseline VGG network, while maintaining the accu‑
racy. Different conϐigurations result in small changes in
accuracy while further lowering the inference cost.

Fig. 6 – Comparing the network cost of RF‑Net family with the baseline
VGG network.

Table 1 also compares the number of parameters inRFNet
and its different conϐigurations to that of the baseline VGG
network. RFNet32 and RFNet48 reduce the number of
parameters by 91.6% and 86.7% compared to the base‑

Table 1 – Comparing accuracy, inference cost and the number of param‑
eters for different conϐigurations of RFNet with the baseline VGG net‑
work.

Network Inference cost Accuracy Nummer of parameters

VGG10 1.000000 59.466% 159.1K
RFNet32 0.057224 58.497% 13.3K
RFNet32+ 0.030711 58.312% 6.8K
RFNet32++ 0.015705 56.089% 3.1K
RFNet48 0.096463 59.606% 21.2K
RFNet48+ 0.043207 60.073% 8.7K
RFNet48++ 0.023599 57.046% 4.5K
RFNet128 0.584253 62.612% 137.3K

line. The slightly pruned conϐigurations i.e. RFNet32+
and RFNet48+ further reduce the number of parame‑
ters by 48.8% and 59.0% compared to base networks re‑
spectively (RFNet32 and RFNet48). Finally, extremely
pruning variants i.e. RFNet32++ and RFNet48++ highly
compress the base networks and reduce the number of
parameters compared to the slightly pruned networks
(RFNet32+ and RFNet48+) by 53.6% and 48.8%.
With 98% fewer parameters compared to the base VGG10
network, RFNet32++ is the smallest network we pro‑
vide. We can conclude that unstructured pruning is very
promising. For instance, RFNet32++ prunes more that
10K parameters used by the baseline network. Alsowhen
comparing RFNet48 to RFNet48+, nearly 12.5K parame‑
ters used in the base network (RFNet48) are redundant.
To better compare the inference cost, it is best to visualize
the compression ratio for the evaluated networks.
Fig. 5 shows that although RFNet48 has the same accu‑
racy as the baseline, it is 10.4×more compressed. Fur‑
thermore, it can also be seen that although RFNet32
has a deϐicit of 1% in accuracy, it is 17.47×more com‑
pressed than VGG10. Finally, RFNet128 has a signiϐi‑
cantly higher accuracy compared to VGG10 while being
1.71×more compressed.

5.7 Accuracy over SNRs
In order to provide better insight we also report the net‑
work’s accuracy over different SNRs. To this end, we re‑
port for VGG10, RFNet128 and RFNet32++.
Fig. 4 shows how RFNet128 outperforms the rest. In
the high‑SNR regime, RFNet128 outperforms the base‑
line VGG10 by 3% while being a 2×compressed network.
Furthermore, the highly compressed RFNet32++ under‑
performs VGG10 by as much as 3% at a cost of being
64×lighter. In order to better visualize the performance
of our classiϐier, the confusion matrix for RFNet32++ is
shown in Fig. 7.

5.8 Accuracy vs inference cost
We visualize accuracy vs inference cost of different mod‑
els to provide better analysis (Fig. 8). As we show
both RFNet32 and RFNet48 families follow a similar
trend. RFNet48+ has a slightly better accuracy com‑
pared to RFNet48while having less parameters and being
2.24×lighter. Furthermore, RFNet32+’s overall accuracy
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Fig. 7 – Confusion matrix for RF‑Net32++
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is almost on par with that of RFNet32. However, this is
not the casewhen it comes toRFNet32++ andRFNet48++.
Here, although they have less parameters and have lower
inference scores, their accuracy is noticeably lower that
their successors, RFNet32+ and RFNet48+.

Fig. 8 – The x‑axis reports the inference cost and y‑axis reports the over‑
all accuracy of the network. Also, the blob size signiϐies the number
of parameters. Therefore the larger the blob, the more parameters the
model has. The RFNet48 and RFNet32 family of networks have been
color‑coded to be better distinguished from one another.

6. CONCLUSION
In this work, we proposed RFNET as a light and practi‑
cal DNN‑based solution to the AMC problem. In their ϐirst
layer, our proposed family of networks automatically col‑
lects a robust set of feature maps. Then, by leveraging
pointwise and depth‑wise convolutions, they manage to
achieve accurate results for theRadioML2018.0Adataset.
We further enhance RFNet by using pruning and quan‑
tization techniques, reducing network complexity. The
proposed network requires signiϐicantly less number of
computations, memory space and less parameters. We
also proposed a wide variety of networks providing the
end user with opportunity to choose within the RFNet
family of networks based on application demand and re‑
source availability.
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[28] Laurent SIfre and Stéphane Mallat. Rigid‑Motion
Scattering for Texture Classiϔication. 2014. arXiv:
1403.1687 [cs.CV].

[29] Min Lin, Qiang Chen, and Shuicheng Yan. Network
In Network. 2014. arXiv: 1312.4400 [cs.NE].

[30] Andrew G. Howard, Menglong Zhu, Bo Chen,
Dmitry Kalenichenko, Weijun Wang, Tobias
Weyand, Marco Andreetto, and Hartwig Adam.
MobileNets: Efϔicient Convolutional Neural Net‑
works for Mobile Vision Applications. 2017. arXiv:
1704.04861 [cs.CV].

[31] Mark Sandler, Andrew Howard, Menglong Zhu,
Andrey Zhmoginov, and Liang‑Chieh Chen. Mo‑
bileNetV2: Inverted Residuals and Linear Bottle‑
necks. 2019. arXiv: 1801.04381 [cs.CV].

[32] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre
Sermanet, Scott Reed, Dragomir Anguelov, Du‑
mitru Erhan, Vincent Vanhoucke, and Andrew Ra‑
binovich. Going Deeper with Convolutions. 2014.
arXiv: 1409.4842 [cs.CV].

[33] François Chollet. Xception: Deep Learning with
Depthwise Separable Convolutions. 2017. arXiv:
1610.02357 [cs.CV].

[34] Alessandro Pappalardo. Xilinx/brevitas. 2021. DOI:
10.5281/zenodo.3333552. URL: https://doi.
org/10.5281/zenodo.3333552.

© International Telecommunication Union, 2022 271

Chegini et al.: RFNet: Fast and efficient neural network for modulation classification of radio frequency signals

https://doi.org/10.1109/TVT.2020.3042638
https://doi.org/10.1109/TVT.2020.3042638
https://doi.org/10.1109/TVT.2020.2971001
https://doi.org/10.1109/TVT.2020.2971001
https://doi.org/10.1109/lnet.2021.3057637
https://doi.org/10.1109/lnet.2021.3057637
https://doi.org/10.1007/s00521-020-05514-1
https://doi.org/10.1007/s00521-020-05514-1
https://doi.org/10.1007/s00521-020-05514-1
https://doi.org/10.1007/s00521-020-05514-1
https://doi.org/10.1038/s41928-018-0059-3
https://doi.org/10.1038/s41928-018-0059-3
https://arxiv.org/abs/1510.00149
https://arxiv.org/abs/1503.02531
https://arxiv.org/abs/1608.08710
https://arxiv.org/abs/2001.05050
https://arxiv.org/abs/2001.05050
https://arxiv.org/abs/2102.00554
https://arxiv.org/abs/2102.00554
https://arxiv.org/abs/1806.08342
https://arxiv.org/abs/1709.01134
https://arxiv.org/abs/1805.06085
https://arxiv.org/abs/1810.05723
https://doi.org/10.1109/CVPR.2013.163
https://arxiv.org/abs/1403.1687
https://arxiv.org/abs/1312.4400
https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1801.04381
https://arxiv.org/abs/1409.4842
https://arxiv.org/abs/1610.02357
https://doi.org/10.5281/zenodo.3333552
https://doi.org/10.5281/zenodo.3333552
https://doi.org/10.5281/zenodo.3333552


AUTHORS
Mohammad Chegini is cur‑
rently pursuing a B.Sc. degree
in electrical engineering from
Shahid Beheshti University.
Meanwhile, he has been a
research associate at the Uni‑
versity of Victoria. He has
three publications so far and
his primary research interest

include applied deep learning and 6G.

Pouya Shiri received his B.Sc.
degree in electrical engineering
fromShahidBeheshti University
and his M.Sc. degree in com‑
puter architecture from Univer‑
sity of Tehran in 2015 and 2018
respectively. He is currently
a Ph.D. student studying deep
learning at the University of Vic‑

toria. His research interests include designing and opti‑
mizing neural networks, and high‑performance comput‑
ing.

Amirali Baniasadi received his
B.Sc. degree in electronic en‑
gineering from Tehran Univer‑
sity and his M.Sc. degree in digi‑
tal electronics engineering from
Sharif University of Technology
in 1992, and 1995, respectively.

He received his Ph.D. degree in computer engineering 
from Northwestern University, Illinois, in 2002. He joined 
the Department of Electrical and Computer Engineering, 
University of Victoria (U.Vic.) in 2002 where he is cur‑ 
rently a professor. He was visiting professor at Sharif Uni‑ 
versity of Technology (2007)and Stanford University, Cal‑ 
ifornia (2016, 2017). His ϐields of interest are in computer 
architecture, neural networks and quantum computing. 
His research has been funded by Natural Sciences and En‑ 
gineering Research Council of Canada(NSERC), Consor‑ 
tium for Aerospace Research and Innovation in Canada 
(CARIC) and MITACS (a Canadian network of centres of 
excellence). He has over 100 publications including 
refereed journals, conference papers and technical 
reports.

© International Telecommunication Union, 2022

ITU Journal on Future and Evolving Technologies, Volume 3, Issue 2, September 2022

272


	RFNET: FAST AND EFFICIENT NEURAL NETWORK FOR MODULATION CLASSIFICATION OF

RADIO FREQUENCY SIGNALS
	Introduction
	Related Work
	Background
	Network compression
	Pruning
	Quantization
	Factorization

	Evaluation metrics
	Number of parameters
	Inference cost


	RFNet
	RFNet variations
	Compressing RFNet
	Pseudo-codes for unstructured pruning

	Experiments and Results
	RadioML 2018 dataset
	Experiment setup
	Dynamic hyper-parameter: SNR
	Precision bits
	Pruning experiments
	RFNet results
	Accuracy over SNRs
	Accuracy vs inference cost

	Conclusion



