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Abstract – Deep learningmethods have been shown to be competitive solutions for modulation classiϔication tasks, but suf‑
fer from being computationally expensive, limiting their use on embedded devices. We propose a new deep neural network
architecture which employs known structures, depth‑wise separable convolution and residual connections, as well as a com‑
pressionmethodology, which combined lead to a tiny and fast algorithm formodulation classiϔication. Our compressedmodel
won the ϔirst place in ITU’s AI/ML in 5G Challenge 2021, achieving 61.73× compression over the challenge baseline and being
over 2.6× better than the second best submission. The source code of this work is publicly available at github.com/ITU‑AI‑
ML‑in‑5G‑Challenge/ITU‑ML5G‑PS‑007‑BacalhauNet.
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1. INTRODUCTION

The growing demand for wireless data is driving a need
for improved radio efϐiciency. Being able to rapidly un‑
derstand the Radio Frequency (RF) spectrum in an au‑
tomatic manner will be of utmost importance to address
several open problems such as spectrum interference
monitoring, radio fault detection, dynamic spectrum ac‑
cess and opportunistic mesh networking. A task that is
required in all of these challenges is Automatic Modula‑
tion Classiϐication (AMC), where themain goal is tomoni‑
tor the radio frequency spectrumanddetermine themod‑
ulations in use [1, 2]. The ϐirst approaches to AMC con‑
sisted of handcrafted feature extractors for speciϐic signal
types and properties [1]. Later, the growing success of
Deep Learning (DL) started to play a role in this ϐield [3,
4, 5].

DL comprises a group of Machine Learning (ML) algo‑
rithms that uses multilayered Artiϐicial Neural Network
(ANN) architectures. These models can automatically ex‑
tract the features needed to optimise a given task which
allows these deepneural networks to be fedwith rawdata
and to extract discriminating features with minimal do‑
main knowledge and human effort [6, 7]. With the in‑
crease in the availability of computational power and the
democratised access to huge quantities of data, these al‑
gorithms were shown to achieve high predictive perfor‑
mance in several domains of knowledge [8, 9]. However,
despite their high effectiveness, these complexANNarchi‑
tectures usually have high computational and power re‑
quirements (e.g., many models require several Graphics
Processing Unit (GPU) devices to train and evaluate) [10].
To leverage the potential of DL for AMC in a real‑world

context, one must be able to implement these algorithms
with low latency and high throughput thus enabling real‑
time spectrum analysis. Additionally, many use cases re‑
quire at least the evaluation part to be performed on the
edge, thus directly on site, usingdeviceswith limited com‑
putational capability and power resources.

Despite the efforts of research and industry communi‑
ties towards the migration of ML models from the cloud
to the edge, this is not an easy task due to the already
mentioned complexity of these models. Two approaches
have been typically followed. The ϐirst has been to im‑
plement simpler, more efϐicient ANN models [11, 12].
The secondhas resorted topower efϐicient heterogeneous
computing platforms. One type of computing device that
can be particularly efϐicient is the Field‑Programmable
Gate Array (FPGA), which allows very high power ef‑
ϐiciency when using custom hardware acceleration en‑
gines [13]. This work focuses on both approaches, that
is, designing simpler and more efϐicient DL models for
AMC, while targeting FPGA hardware platforms. Speciϐi‑
cally, this paper presents the methodologies and results
achieved by our team “BacalhauNet” on Problem State‑
ment 7 (PS‑007), “Lightning‑Fast Modulation Classiϐica‑
tionwithHardware‑EfϐicientNeuralNetworks”, of the ITU
AI/ML in 5G Challenge 2021 [14].

In this challenge, the participants were encouraged to de‑
sign an ANN that is computationally efϐicient while re‑
taining a minimum required accuracy of 56% on the Ra‑
dioML 2018.01A dataset from DeepSig [1, 15]. The over‑
all dataset structure is illustrated in Fig. 1. This dataset
comprises 24 types of digital and analog radio modula‑
tions that were synthetically generated and over‑the‑air
captured. For each modulation type, there are samples
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recorded over 26 Signal to Noise Ratio (SNR) levels. For
each SNR level, there are 4096 frames (captured signals).
Each frame has 1024 samples of both in‑phase (I) and
quadrature (Q) components resulting in a frame with a
shape of (1024, 2).

RadioML 2018.01A
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Fig. 1 – DeepSig Inc. RadioML 2018.01A dataset structure

A metric to evaluate the network’s computational efϐi‑
ciency was deϐined by the challenge organizers and is
given by an inference cost score (𝜂) as expressed in Equa‑
tion (1). Two factors are equally considered: the number
of binary operations (𝑏𝑜𝑝𝑠) normalized against a provided
baseline implementation (*𝑏𝑜𝑝𝑠) and the number of bits
used to represent the weights (𝑏𝑚𝑒𝑚), also normalized
against the baseline implementation(*𝑏𝑚𝑒𝑚). It is impor‑
tant to note that bias is not included in the these metrics
but only the parameters for the convolutional and fully‑
connected layers themselves. The exact deϐinition of the
inference cost can be found in [16].

𝜂 = 1
2 × ( 𝑏𝑜𝑝𝑠

*𝑏𝑜𝑝𝑠
+ 𝑏𝑚𝑒𝑚

*𝑏𝑚𝑒𝑚
) (1)

The provided baseline implementation is an 8 bit quan‑
tized version of a Convolutional Neural Network (CNN)
based on the VGG10 topology described in [1]. The base‑
line achieves 59.82% accuracy while consuming ≈ 807.7
million binary operations and its parameters amount to
≈ 1.245 Mbits. The submissions were ranked according
to the inference cost score, where lower is better, as long
as they stay above the 56% accuracy threshold and are
end‑to‑end reproducible.

The remainder of this paper is organized as follows: Sec‑
tion 2 presents methodologies used to build and com‑
press the proposed CNN model; Section 3 describes Ba‑
calhauNet architecture as well as the employed train‑
ing and compression methods; Section 4 presents the
obtained results for both the uncompressed and com‑
pressed model; Section 5 concludes the article and pro‑
vides possible lines of future work.

2. METHODS

High performance ANNs for AMC have been highly inϐlu‑
enced by recent advances in CNN‑based architectures, yet
they still lack the computational efϐiciency required to im‑
plement them in edge devices. Novel approaches leading
to solutions that can effectively be deployed in resource‑
constrained environments must be pursued. This section
describes some well‑known CNN structures and popular
compression techniques that have proven to be effective
when targeting computational efϐicient models.

Depth‑wise Separable Convolutions (DSCs) were in‑
troduced in MobileNetV1 [17] as an efϐicient alternative
to standard convolutions. The depth‑wise separable con‑
volutions factorizes a standard convolution into a depth‑
wise convolution followed by a pointwise convolution.
The depth‑wise convolution handles the ϐiltering of the
Input Feature Map (IFM). The pointwise convolution
then produces the new features by combining all chan‑
nels. In an �̂�‑dimensional depth‑wise convolution each
�̂�‑dimensional IFM channel C is convolved with an �̂�‑
dimensional kernel K. In the pointwise convolution each
channel of the �̂�‑dimensional feature map produced by
the depth‑wise convolution is convolved by D ϐilters with
shape (1, 1). Fig. 2 illustrates a 1‑dimensional depth‑wise
convolution. The IFMwith shape (IFMh,1) and C channels
is ϐirstly convolved with a kernel shaped (Kh,1) with the
same amount of channels. Each C channel of the result‑
ing Intermediate Feature Map is then convolved with D
unitary kernels which results in an Output Feature Map
(OFM) with a shape of (OFMh,1) and D channels.
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Fig. 2 – Depth‑wise separable convolution

The replacement of standard convolutions byDSCs allows
a reduction of operations and parameters as expressed by
Equation (2), while having little impact on accuracy [17].
According to Fig. 2, the replacement of a standard convo‑
lutions by the DSC enables an operation and parameter
reduction of 1/D + 1/Kh.

1
𝐷 + 1

∏ 𝐾�̂�
(2)

Residual connections were introduced in the ResNet
architecture [18] to improve the learning ability of a net‑
work. Intuitively, the accuracy of a Deep Neural Network
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(DNN) can be enhanced by using more layers, i.e., mak‑
ing the network deeper, however there is a point where
the accuracy gets saturated and can even degrade. This
degradation of accuracy in deep networks can be a con‑
sequence of the vanishing or exploding gradient problem,
which can be tamed by the use of residual connections.
Fig. 3 shows a residual connection example where the in‑
put skips one or more layers and is added to the output
of the skipped layers. We were then motivated to exper‑
iment with residual connections for two main reasons.
First and foremost, it overcomes the problem of the van‑
ishing/exploding gradient. Secondly, we believe that in‑
formation carried downstream by residual functions al‑
lows the extraction of features with different temporal
resolutions, potentially improving learning [18].

N Layers

input

output

N Layers

input

output

+

Fig. 3 – Residual connection

Quantization In order to provide a higher gradient def‑ 
inition in the back‑propagation step, ANNs are usually 
trained with a higher precision than required at the in‑ 
ference stage. As a result, weight and activation quanti‑ 
zation has become a common practice to reduce storage 
requirements in the forward pass [19]. Quantization can 
be either applied after or during training (e.g., Quantiza‑ 
tion Aware Training (QAT)), with the latter being capable 
of achieving consistently better results [20]. Quantization 
to every bit‑width is possible, even to binary or ternary 
weights, however, the more aggressive the quantization 
is, the higher the chance of signiϐicant accuracy degrada‑ 
tion [21].

Pruning is a compression method that removes the 
least important parameters of a neural network. Prun‑ 
ing methods can be classiϐied as unstructured pruning 
or structured pruning [22]. Unstructured pruning re‑ 
moves the least important individual weights or biases 
from a model. However, the potential speed‑up offered 
by skipping zeroes in unstructured sparsity is challeng‑ 
ing to achieve due to the irregular memory accesses [22]. 
Structured pruning aims to remove structures from the 
network (e.g., layers or kernels) that have low impact in 
the model accuracy. Structured pruning is usually pre‑ 
ferred for its higher potential speed‑up. Unstructured and 
structured pruning methodologies can be used to com‑ 
press a CNN model potentially enabling its deployment in
resource-constrained devices.

3. BACALHAUNET

BacalhauNet is a tiny CNN built for the classiϐication of 
ra‑ dio modulations, employing depth‑wise separable 
convo‑ lutions and residual connections. It was designed 
through design space exploration, i.e., different 
architectures were explored in order to minimize the 
inference cost score while achieving the required 
accuracy threshold. The mo‑ tivation to develop 
BacalhauNet arises from the far higher inference costs 
score displayed by other efϐicient CNNs. One of such 
examples is MobileNetV3‑Small [23], a more compact 
version of MobileNetV3, which, even when quan‑ tized to 
8 bits, only achieves ≈ 7.25 inference cost score, 
signiϐicantly higher than our proposed architecture.

3.1 Architecture exploration

As we previously mentioned, BacalhauNet was devel‑ 
oped using a design space exploration methodology. We 
started our experiments using a model with a single DSC 
layer for feature extraction and progressively stacked 
more DSC layers until we reached an accuracy of at least 
59%. This minimum was set to allow for some accu‑ 
racy degradation in later steps, namely quantization and 
pruning. For each stacked DSC layer several training runs 
using different parameters were made (i.e., kernel size, 
number of output channels, stride length). The chosen 
parameters for each layer were the ones that led to a good 
balance between accuracy and the inference cost score. 
We ended up with a model composed of four DSC lay‑ 
ers that are preceded by a hardtanh layer and followed 
by a global max pool and ϐinally a Fully Connected (FC) 
layer. We also tuned the hardtanh layer minimum and 
maximum clipping values to achieve higher test accuracy. 
Later, the quantization and pruning steps had a larger 
than anticipated negative effect on accuracy. Thus we 
ended up adding an additional DSC layer to which we did 
not apply the same optimization procedure.

3.2 Building blocks

The proposed model consists of a hardtanh activation 
function followed by ϐive depth‑wise separable convolu‑ 
tional blocks ending with a global max pool and a fully 
connected layer. The overall architecture and its parame‑ 
ters are described in Table 1.

Inspired by the baseline model the ϐirst layer of our CNN 
architecture implements a hardtanh activation function, 
a computational efϐicient alternative to the tanh that is 
characterized by Equation (3). The hardtanh layer as‑ 
sumes the role of clipping the input minimum and max‑ 
imum values to −2 and 3,  decreasing inter‑class 
variation of input amplitudes. 
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Table 1 – BacalhauNet architecture

Layer Type Kernel Residual Input Size
HardTanh ‑ ‑ 1024 × 2
DSC 1D 27 ‑ 1024 × 2
DSC 1D 21 � 512 × 24
DSC 1D 15 ‑ 512 × 24
DSC 1D 9 � 256 × 48
DSC 1D 9 ‑ 256 × 48
Global MaxPool 1D ‑ ‑ 128 × 48
Fully Connected ‑ ‑ 1 × 48

Particularly high input value amplitudes are exhibited 
by the AM‑SSB‑SC and AM‑SSB‑WC modulations, as 
shown in Fig. 4.

ℎ𝑎𝑟𝑑𝑡𝑎𝑛ℎ =
⎧{
⎨{⎩

𝑚𝑖𝑛 𝑥 < 𝑚𝑖𝑛
𝑥 𝑚𝑖𝑛 ≤ 𝑥 ≤ 𝑚𝑎𝑥
𝑚𝑎𝑥 𝑥 > 𝑚𝑎𝑥

(3)
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Fig. 4 – Variance for all dataset modulations and SNR pairs

The feature extraction is performed in depth‑wise separa‑
ble convolutional blocks. Fig. 5 represents a functional di‑
agram of this structure. It implements a DSC, i.e., a depth‑
wise convolutional block followed by a pointwise convo‑
lutional block, which uses residual connectionswhenever
stride is unitary and the number of output channels is
the same as the number of input channels. Both depth‑
wise and pointwise convolutional blocks implement a
depth‑wise and a pointwise convolution, respectively, fol‑
lowed by a batch normalization and a Rectiϐied Linear
Unit (ReLU) activation function.

3.3 Training

Regarding the training procedure, only a subset of the to‑
tal datasetwas used. Speciϐically, only frameswith an SNR
equal or greater than ‑6dB were used. This allowed us to
train the network faster with a negligible impact on the
test accuracy since the low SNR frames contain little ef‑
fective information for the network, i.e., the samples are

Po
in

t-w
is

e 
C

on
vo

lu
tio

na
l B

lo
ck

Pointwise 
Convolution

BatchNorm1D

ReLU

Input

Output Output

+
s = 1 
and 
I = O

Yes

No

D
ep

th
-w

is
e 

C
on

vo
lu

tio
na

l B
lo

ck

Depth-wise 
Convolution

BatchNorm1D

ReLU

Fig. 5 – 1D depth‑wise separable block. The residual connections are
only used when stride (s) is unitary and the number of input channels
(I) is equal to the number of output channels (O).

mostly comprised of noise. For eachmodulation class and
SNR level pair the train subset contains 90%of the frames
while the remainder 10% of the frames belong to the test
subset.

The model was trained using the Adaptive Moment Es‑
timation (Adam) optimization algorithm [24] with a co‑
sine annealing warm restarts [25] learning rate sched‑
uler. The initial learning rate was set to 0.01, being re‑
set each ϐive epochs. The cross‑entropy loss function was
used to compute the loss between the model prediction
and the target output. Each training procedure was ter‑
minated after a total of 20 epochs following the provided
baseline implementation.

3.4 Compression

Quantization Despite BacalhauNet already being rela‑
tively small, Quantization Aware Training (QAT) was ex‑
plored to further reduce its complexity using a PyTorch
QAT library developed by Xilinx, called Brevitas [26].
The Brevitas library provides alternative PyTorch layer
classes and its use can be as simple as deϐining the bit‑
width that is intended for each layer’s parameters. An ex‑
ample of the deϐinition of a Brevitas quantized convolu‑
tional layer and activation function can be found on List‑
ing 1.

Pruning An unstructured pruning methodology was
used to further compressBacalhauNet. Althoughunstruc‑
tured pruning is prone to deployment issues the com‑
petition evaluation metrics didn’t penalize unstructured
sparsity which enable us to achieve a better inference
cost score for the same accuracy. For that reason an
unstructured pruning approach was implemented in the
proposed network. In order to prune the model more ef‑
fectively a retrain is done before each prune iterationwith
a weight decay (𝜆) which forces the weights to converge
to zero. Following each retrain iteration, the weights be‑
low an minimum absolute threshold (𝜀) were set to zero
which effectively prunes the model.
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Listing 1 – Brevitas quantization example ‑ Convolutional layer “conv”
has its weights quantized to “w_bits” and activation layer “relu” has its
outputs quantized to “a_bits”.� �
from brevitas import nn as qnn

conv = qnn . QuantConv1d (
in_channels=2 ,
out_channels=2 ,
kernel_size=1 ,
weight_bit_width=w_bits

)

relu = qnn . QuantReLU ( bit_width=a_bits )� �
4. RESULTS AND DISCUSSION

In this section, the architecture design and compression
results are shown and discussed. All evaluations were
made using the RadioML2018.01A [1, 15] test subset. We
start by presenting how the architectural design choices
impact the accuracy and the train time. Afterwards, com‑
pression results are shown using the model with the low‑
est inference cost score that surpasses a 59% accuracy
threshold.

4.1 Architecture exploration results

Table 2 contains the average best accuracy reached by 10
individual training runs, for the model trained with and
without the hardtanh activation function as the ϐirst layer.
The results display the average of 10 runs to account for
any variance introduced by the random initialization of
weights. Results show that this layer improves the test
accuracy by ≈ 0.92%.

Table 2 – Average of maximum test accuracy achieved in 10 training
runs with and without hardtanh activation function as ϐirst layer of the
model.

Model Accuracy
with hardtanh 58.99%
without hardtanh 58.07%

The exclusive usage of frames with higher SNR levels to
train themodel resulted in a considerable reduction of the
training time with negligible impact on accuracy. Table 3
contains the average best accuracy and average training
times per epoch using an NVIDIA GeForce RTX 3090 GPU.
Once again, 10 training runs were performed to account
for any variance introduced by the random initialization
of weights. The results show a reduction of the training
time of≈ 1min 28 secs per epoch. This is consistent with
other results in literature that, in spite of their larger net‑
works, fail to correctly classify most modulations below a
certain SNR [27, 28].

The best BacalhauNet model was chosen for further com‑
pression. The best model is the one that surpasses 59%
accuracy with the lowest inference cost score. The 59%

Table 3 – Average of maximum test accuracy achieved in 10 training
runs and training epoch time when using all training samples or only
higher SNR ones.

Model Accuracy Time/Epoch
with SNR [‑6, 30] dB 58.99% 2 min 06 sec
with SNR [‑20, 30] dB 59.04% 3 min 34 sec

accuracy threshold is set in order to allow some accuracy
degradation caused by compression techniques. The best
model without any kind of optimization reached a test ac‑
curacy of ≈ 59.09% while having an inference cost score
of ≈ 1.4155. To fairly compare it against the baseline
model we quantized BacalhauNet’s input, weights and
activations to 8 bits, which improved the inference cost
score to ≈ 0.1461, i.e., ≈ 188.718 million binary opera‑
tions and 73088 parameters, with a negligible impact on
model accuracy. More details such as the Compression
Rate (CR), which reports the compression that the model
achieved w.r.t. the baseline model, are shown in Table 4.
These results demonstrate that our model is highly efϐi‑
cient for the modulation classiϐication task.

Table 4 – Non‑optimized BacalhauNet metrics. Column 𝜂 reports the
inference cost w.r.t. the baseline model and column CR reports the com‑
pression rate.

Data Type Accuracy 𝜂 CR
Float 32 bit 59.09% 1.4155 0.7065
Quantized 8 bit 59.06% 0.1461 6.8446

4.2 Compression techniques results

Quantization Table 5 displays the maximum obtained
accuracy and the corresponding inference cost score for
each ϐixed‑point representation. The presented results of
quantization are for a ϐixed bit‑width on the weights and
activations from 8 bit down to 5 bit, while quantizing in‑
put values to 8 bits using the initial hardtanh layer. As ex‑
pected, quantization reveals a drastic reduction in the in‑
ference cost scorewith decreasing bit‑width. However, as
the representation goes below 6 bit, accuracy starts to be
heavily affected and stops being above the required 56%
threshold. In the end, 6 bit quantization was selected due
to its results being a good compromise between accuracy
and inference cost score. It is likely that if we had done
more quantized training runs, using 6 bits would not pro‑
vide such an advantagewhen compared to 7 bits. We nev‑
ertheless moved on to the next step and just enjoyed the
luck we got in the initial weight initialization.

Pruning Unstructured pruning was performed after
quantization in order to reduce the computational com‑
plexity of the model. In total three pruning iterations
were performed using multiple 𝜀 and the 𝜆 values. In
each pruning iteration onemodelwas selected as the base
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Table 5 – Quantization results of BacalhauNet. Column 𝜂 reports the
inference cost w.r.t. the baseline model and column CR reports the com‑
pression rate.

Data Type Accuracy 𝜂 CR
Quant ‑ 8 bits 59.06% 0.1461 6.8446
Quant ‑ 7 bits 58.35% 0.1002 9.9800
Quant ‑ 6 bits 58.67% 0.0781 12.8041
Quant ‑ 5 bits 55.89% 0.0562 17.7936

model for the next pruning iteration. The selection crite‑
ria is as follows: (1) the model should always surpass a
57% accuracy threshold after intermediate pruning steps
to allow for further pruning; (2) the model accuracy and
inference cost score should be balanced, where the accu‑
racy and inference cost score are favored in initial and last
pruning iterations, respectively. After the last prune iter‑
ation a retrain phase is also performed so that the accu‑
racy degradation is not so expressive. Fig. 6 presents the
results from the design space exploration for each prun‑
ing iterationwhere each color represents an iteration and
the triangles represent the selected model.
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Fig. 6 – Results for the pruning design space exploration. Models that
result from the initial training and from each pruning iteration are rep‑
resented with a different color.

Table 6 contains details about the parameters used by the
selected model in each prune iteration. The ϐinal com‑
pressed model submitted to PS‑007, reached a test accu‑
racy of ≈ 56.24% while consuming ≈ 19.243 million bi‑
nary operations and using a total of 10704 parameters,
which translates to ≈ 61.73× lower computational com‑
plexity when compared to the baseline model.

Table 6 – Pruning results of BacalhauNet. Column 𝑖 is the pruning iter‑
ation, column 𝜆 reports the weight decay, column 𝜀 refers to the min‑
imum absolute weight value, column 𝜂 is the inference cost score and
column CR reports the compression rate.

𝑖 𝜆 𝜀 Accuracy 𝜂 CR
0 1 × 10−4 ‑ 57.62% 0.0735 13.6054
1 5 × 10−5 0.15 58.26% 0.0348 28.7356
2 1 × 10−4 0.25 57.55% 0.0235 42.5532
3 1 × 10−5 0.25 56.24% 0.0162 61.7284

5. CONCLUSIONS AND FUTUREWORK

In this paper, BacalhauNet, a computational efϐicient CNN
for radiomodulation classiϐicationwas introduced. Build‑
ing blocks and design decisions of the proposed architec‑
turewere described and results presented. A comparison
between the proposed model and a baseline model, both
quantized to 8 bits, reveals that BacalhauNet manages to
reduce computational complexity by ≈ 6.84× while re‑
taining an accuracy of ≈ 59.06%. Quantization and prun‑
ing methodologies were used to further compress the
model. The model was quantized down to 6 bits which
enabled us to reduce the computational complexity of the
model by ≈ 12.80× w.r.t. the baseline while achieving
≈ 58.67% accuracy. The pruned model achieved an accu‑
racy of ≈ 56.24% and an inference cost score of 0.0162,
i.e., reduced the computational complexity by ≈ 61.73×
w.r.t. the baseline and is over 2.6× better than the second
best submission. The quantized and pruned model was
the winning submission of the PS‑007, “Lightning‑Fast
Modulation ClassiϐicationwithHardware‑EfϐicientNeural
Networks”, of the ITU AI/ML in 5G Challenge 2021.

Further work should be devoted to: the optimization of
the last depth‑wise separable convolutional layer; the
testing of different levels of quantization per layer, since it
can increase evenmore the compression achieved; the ex‑
ploration of different feature engineering approaches, to
assess if the model’s inference cost score can be further
reduced while maintaining an acceptable accuracy.
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