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Abstract - With recent advances in the field of Machine Learning (ML), a multitude of problems related to communication
systems and networks can be solved with data-driven solutions. Since data in these systems is mostly represented as graphs,
Graph-based Neural Networks (GNNs) are a good candidate for solving such problems. These GNNs can be used as a computer
network modeling technique to build models that accurately estimate the Key Performance Indicators (KPI) such as delay or jitter
in real network scenarios in order to ensure their requirements in terms of service assurance. To build GNN solutions with higher
accuracy, low computational resource requirements, and easy deployment of synthetic network training results into real-world
networks, it is more than necessary to develop efficient and effective GNN models. This paper presents a GNN model capable of
accurately estimating the average delay per flow in networks. By designing scale-independent features and using notions from
queuing theory, the proposed model successfully generalizes to large size topologies, routing configurations, and traffic matrices

not seen during the training phase.
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1. INTRODUCTION

5G and B5G networks, which operate with Software De-
fined Networking (SDN) technology [1] have critical per-
formance requirements from a network and user perspec-
tive. In particular, 5G/B5G networks offer service requests
with very precise categorization, in order to allow network
operators to design and operate dedicated slices for each
service, while maintaining a certain level of both Quality
of Service (QoS) and Quality of Experience (QoE) as per-
ceived by the users [2]. These networks are expected to
be very dynamic, and therefore require reliable methods
to accurately predict expected KPI parameters to meet ser-
vice assurance requirements [3]. To fulfill this objective, an
important constraining factor to consider is that the pro-
posed method must be scalable for larger topologies, which
means that the solution must remain accurate when applied
to much larger topologies than previously encountered by
the solution. In the context of SDN, Rusek et al. [4] have
shown that GNNs [5] are particularly promising for mod-
eling computer networks. They presented a GNN-based
model to predict key metrics to evaluate network perfor-
mance. GNNs are designed to learn and model information
structured as graphs and are able to capture complex inter-
actions between network components and generalize to un-
seen network topologies. However, GNNs still have issues
generalizing to networks whose scale is much larger than
what the model has seen during training. In this paper, we
aim to address this issue and we propose an efficient and
scalable GNN model that can generalize well to unseen net-

work topologies whose size greatly exceeds that of topolo-
gies that were encountered during the training process. We
trained our model with samples simulated in topologies of
25 to 50 nodes, and we showed that the proposed model
generalizes well with samples on larger network topolo-
gies with 50 to 300 nodes. We performed additional exper-
iments to study the stability of our solution as well as its
robustness.

This paper is structured as follows. In Section 2, we cover
the context related to network performance estimation. In
Section 3, we formally present the specific problem of es-
timating per-flow delay from given network statistics. In
Section 4, we introduce graph neural networks and the
RouteNet model on which our solution is based. In Section
5, we propose changes to the RouteNet model in order to
address the scaling issues. We describe our experimental
results in Section 6 and draw our conclusions in Section 7.

2. RELATED WORK

Traditionally, network calculus is a well-known theoreti-
cal framework for computer network analysis, including
packet-based systems. However, network calculus requires
the input of several bounds and distributions which are not
realistic in practical systems, e.g., a lower bound on data
forwarding or packet generation distribution. Besides, the
most prohibitive aspect of network calculus is that it re-
quires enormous computational times to proceed. To re-
duce computational times, researchers leverage deep learn-
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ing and machine learning to accelerate existing network cal-
culus techniques. Recent advancements in machine learn-
ing help network calculus reduce computational times sig-
nificantly while remaining highly accurate. In [6], given a
data flow, the authors proposed the DeepTMA model to
predict delay. The DeepTMA model is an improvement of
Tandem Matching Analysis (TMA) using GNNs to reduce
the number of analyzed tandem decompositions. DeepTMA
also shows that its model trained on networks composed
of 10 nodes is able to generalize to topologies never before
encountered in testing with 1,000 nodes. The execution
time of DeepTMA is less than one second for large networks.
However, network calculus requires strong assumptions on
traffic settings. Usually, these assumptions are not avail-
able or practical, so one can use simulation runs to estimate
the characteristics of traffic flows. Unfortunately, simula-
tion runs are not only resource-intensive but also instance-
driven, i.e., one simulation result cannot give answers to dif-
ferent settings. Recent work uses machine learning to learn
the behaviors of simulation runs. Then, they infer char-
acteristics of different settings based on learned models.
In [7, 4], the authors proposed RouteNet for this strategy.
It is a novel network model using Graph Neural Networks
(GNNSs) that can understand the complex interactions be-
tween topology, routing, and input data in order to obtain
accurate estimates of the packet delay distribution and loss
for each source-to-destination flow. Moreover, RouteNet
has shown its ability to precisely infer characteristics of in-
put (e.g.,, topology) unseen in the training [8]. Especially, in
[9], the authors have shown a novel integration of GNNs into
a Deep Reinforcement Learning (DRL) framework to solve
routing problems by which trained models are capable of
inferring solutions for unseen testing topologies. Compre-
hensive machine learning approaches to graph combinato-
rial optimization problems, including GNN design for sev-
eral algorithms are presented in [10].

3. PROBLEM DESCRIPTION

Consider a physical network represented by a directed
graph G = (V, L) where V is the set of nodes and L is the
set of directed links. Let F' be a set of streams/flows. We are
also given a set of routing paths R, where each routing path
is a sequence of links connecting a source to a destination.
Each flow f € F'is mainly characterized by:

¢ asource s, to a destination dj,

» r, € R: sequence of links connecting the source to the
destination (routing path)

e AvgBuw,: average bandwidth reserved for the flow

e PktsGen,: packets generated per time unit (pack-
ets/time unit)
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e acompletelist ofrandom distribution parameters used
to generate traffic is presented in [11]

If these settings are put into a simulation (e.g, OMNet++
[12]), then it can accurately report metrics of connection
quality (e.g., average delay per package). However, a sim-
ulation requires a long waiting time (order of hours). Thus,
the problem is to estimate the characteristics of flows faster.
Beyond that, the solution must also be able to "scale” and re-
main effective even when applied to topologies which may
be much larger than anything encountered during the de-
velopment or experimentation phase.

4. NETWORK MODELING WITH GNN

In this section, we briefly describe the background on GNNs
and RouteNet which are key concepts to understand the
contributions of this paper.

4.1 Background on GNN

A graph can be seen as a data structure consisting of two
components: nodes, which represent a specific object or
data point, and edges, which represent relations between
two objects. A graph neural network [5] is a type of neu-
ral network that can be directly applied to graph-structured
data. A GNN takes graph data as inputs and produces node-
level embeddings that encode the surrounding graph con-
text for the nodes, which can then be used to infer proper-
ties about the individual nodes or the entire graph. There
are many different variations of GNNs, but at their core,
most GNNs have these two basic operations: a message-
passing scheme and an update function. The message-
passing scheme determines how information about the
nodes’ state is communicated to its neighbors, and the up-
date function determines how a node’s state is updated us-
ing the messages aggregated from neighboring nodes.

4.2 Background on RouteNet

RouteNet [4] is a network model based on a Graph Neu-
ral Network (GNN) that is able to understand the relation-
ship between topology, routing, and input traffic to pro-
duce estimates of some KPIs in communication networks
(per-flow mean delay for our study). RouteNet uses the in-
put data, i.e., network topologies, source-destination rout-
ing schemes and traffic, to build a new heterogeneous graph
with two types of nodes underlining the circular dependen-
cies between links and flows. First, one node of type “link” is
created for every link in the initial network topology. Then,
for every flow, a “flow” node is added. In this architecture, a
“link“ node is connected to all the flows that traverse it and
a “flow" node is connected to all the links it crosses.

Based on message passing GNN, RouteNet exchanges infor-
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mation encoded between “link“ and “flow" nodes to gener-
ate “link“ and “flow*” states that are then used for the down-
stream task, i.e., performance metrics prediction. More pre-
cisely, link and flow features are fed to a neural network
to generate the initial “link” and “flow“ embeddings. Then,
messages are iteratively exchanged to update these embed-
dings. First, the path embeddings are updated from the
ordered embeddings of its links. This task is done by an
RNN to take into account the order of the links followed by
a Gated Recurrent Unit (GRU). Next, each link embedding
is updated by aggregating the embeddings of all flows that
use that link. To represent the increasing load on the links,
this aggregation is done by a global sum function, followed
by a Gated Recurrent Unit (GRU). These two updates are
repeated T = 8 times for every sample, both during train-
ing and inference. After that, the final flow hidden states
of the message passing iteration are then processed in an-
other neural network to readout the expected performance
metrics (i.e., average flow delay for our case).

As stated in the baseline paper [4], RouteNet supports an
arbitrary number of nodes in a network and can gener-
alize well to other topologies. However, it has some dif-
ficulty generalizing to larger graphs. For the evaluation
dataset, the RouteNet authors reported that in its unmod-
ified state, Routenet’s delay estimation on topologies of 50
to 300 nodes, given topologies of 25 to 50 nodes as training,
achieves a Mean Absolute Percentage Error (MAPE) score
in the range of about 300%. Our goal was therefore to im-
prove its ability to estimate delay on larger topologies than
those seen in the training.

The changes we made to the original RouteNet implemen-
tation allowed us to achieve a MAPE of less than 1.5%.

5. METHODOLOGY

In this section, we detail the methodology used to design a
GNN that can estimate the average delay of a network as a
function of the network topology, the routing and the traffic
matrix.

5.1 Overview of the proposed solution

Noting the limitations of RouteNet and based on network
data analysis, we made two major updates to the original
RouteNet model.

As a first modification, we proposed a new feature that we
call’link load’ which indicates the percentage of use of a link
at a given moment. It is computed as the ratio of the sum-
mation of the flows traversing the link by the link’s trans-
port capacity, or maximum allowable bandwidth. The goal
here is to provide dynamic information that matches exactly
what is happening in the network rather than just using a
static, absolute value like the link transport capacity as it
was done in the baseline RouteNet model.

This feature was later used to further improve our solution
by designing two other derived features. The first derived
feature is 'link load squared’ (link load raised to the power
two) and the second one is 'link load cubed’ (link load raised
to the power three). This was done in order to not only
help GNNs to better extrapolate by manually adding non-
linearities to our features [13], but also because, by doing
so, less busy links would be more easily differentiated from
busier ones.

The second change of significance we implemented per-
tains to the model’s output. Originally, the RouteNet model
attempts to directly predict the delay for the individual
flows in the network. One issue with this approach is that
the distribution of delay values in the training set differs sig-
nificantly from the distribution found in the validation and
test sets as shown in Fig. 1a.

In order to address this observation, we changed the pre-
dictive variable. Instead of predicting the delay, our model
predicts the occupancy ratio of the outgoing queues, which
have a range of possible values bound between 0 and 1
in both training and validation sets, and then uses these
predicted values to estimate the delay through a post-
processing step that relates the occupancy ratio to the delay.
Fig. 1b presents the distribution of the queue occupancy in
the training and validation sets. We can see that both sets
have similar queue occupancy distribution. This second
modification makes RouteNet much more robust to changes
in input topology size since the occupancy ratio is topology
size independent.

With the aforementioned changes, the proposed model is
an ensemble model. It is based on the combination of the
solutions of two models, both based on Routenet.

The following sections, 5.2, 5.3 and 5.4, describe in detail
our contributions.

5.2 Proposed feature design

In order to provide GNN with a dynamic input to model
the link feature, we designed a new link feature called "link
load”. This feature indicates in a relative way how busy
a link is at a given time. The goal here was to provide
the model with a characteristic that evolves consistently
over time and remains in the same range ([0,1]) even if we
change some network parameters such as link capacity. As
presented in Eq. (1), it is computed as the ratio of the sum-
mation of the flow traversing the link by the link’s capacity,
or maximum allowable bandwidth.

>ty

FEN,
C,

Link_Load = (1)
where iy is the value of the traffic feature of flow f, N, is the

set of flows that traverse link ¢, and C, indicates the trans-
port capacity of the link (link bandwidth (bits / time unit)).
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Fig. 1 - Dataset distributions

According to Xu et al. [13], GNNs, as well as fully-connected
neural networks using ReLU activation, can only fit linear
functions outside of the training support. Encoding non-
linearities either through the architecture of the model or,
as in this case, through the features may result in the model
only needing to fit a linear function and thus allowing it to
generalize to unseen data more effectively. Based on that,
we further improve our model by designing two more de-
rived features by raising link load to the power 2 and 3 re-
spectively called 'Link Load squared’ and 'Link Load cubed’.
This allowed us to add some non-linearities to the input
that will help the GNN extrapolate. Futhermore, raising link
load to the powers 2 and 3 would also provide features
that show significant differentiation between links that are
heavily used from those that are not.

5.3 Proposed output transformation

The validation and test sets are both divided into three
different settings, which are: setting-1 (longer paths than
those found in the training set), setting-2 (larger link band-
width capacity), and setting-3 (longer paths and larger
link bandwidth capacity). In Fig. 2a and Fig. 2b, 'train,
'val_1’, 'val_2’, 'val_3’, "test_1’, 'test_2’ and 'test_3’ represent
the training, validation setting-1, validation setting-2, val-
idation setting-3, testing setting-1, testing setting-2, and
testing setting-3 sets respectively. In Fig. 2a, we report the
queue utilization distributions for training, validation and
testing data. It shows that the data contains a wide range
of queue utilization rates, despite a low loss rate of the sim-
ulation setting (at most 3% loss rate). Thus, it implies that
learning and prediction of queue utilization for a link of the
data are not trivial. Fig. 2b recaps the average delay per
hop of flows in the data. It shows that the ranges of av-
erage delay per hop of flows are narrow, especially in the

test data. Thus, it suggests that predicting delay per hop
is a promising direction for the data. Based on these in-
sights from the data, we change the predictive variable of
the model from delay to queue occupancy of the outgoing
queues. This way, the scalability issue is indirectly partially
solved since instead of a path-level prediction, where the
path length can vary significantly when going to a small to
a larger network topology, we predict a link-level measure
that is not affected by the network size. By scalability issue,
we mean that the accuracy of the path-level prediction gets
worse when testing with topologies larger than those seen
in the training data. Thus, the proposed solution predicts,
for each link, the "queue occupancy”, which is expressed as
the average port occupancy (service and waiting queue) of
the QoS queue (packets) divided by the queue size (pack-
ets). In other words, this is a normalization of the average
port occupancy. We then compute the combined queue and
propagation delay to obtain a delay value for a given link. In
particular, path delays can be estimated as the linear combi-
nation of delays encountered in the queues of the outgoing
links of the nodes along the path, considering the average
Queue Occupancy (QO), the Queue Size (QS), the Packet Size
(PS), and the Capacity (C) of the outgoing links of the queue.
The link delay and flow delay expressions are represented
below in Eq.(2) and Eq. (3) respectively

Delay, = Q0, x QS, x PS,/C,, 2)
Ny

Delayf = Z Delay,, 3)
k=1

where N is the number of links that defines the flow path
f,and C, the transport capacity of link 4.
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5.4 Proposed GNN architecure

Since combining several models generally leads to a re-
duced bias and variance in the results, the solution we pro-
pose is an ensemble of two models that results in improving
the score of each single model. Indeed, as shown in Fig. 3,
our solution is an ensemble of two RouteNet based models
(GNN; and GNN,) where from the orignial RouteNet model,
we modified the size of the link hidden state and path hid-
den state as well as the number of units of each DNN to
adapt it to our designed features and output. While each
of these models had a relative error higher than 1.4% on
the validation set, averaging their output actually led to a
lower error. Our best solution used the arithmetic mean of
the output of the two models, leading to a MAPE of under
1.3%.

In our ensemble model, GNN, differs from GNN, solely
through their respective inputs. While GNN, takes as input
link features our designed link load and link load squared,
GNN, has an additional feature which is link load cubed.
With both models, after four rounds of message passing, the
link hidden state will be fed to the readout function repre-
sented here with a neural network to predict the link queue
occupancy. Then with a post-processing step represented
in equations (2) and (3), both models will output their pre-
dictions and the final prediction will be their average (arith-
metic mean).

5.5 Features selection and preprocessing

From the dataset, we extracted the input features that are
presented in Table 1 to be fed to each model in our solution.
In Table 1, link_load, link_load_squared, link_load_cubed are
our designed features described in Section 5.2. Further-

more, as defined in [11], "traffic” is the average bandwidth
of a given traffic flow (bits/time unit), "packets” is the pack-
ets generated by a traffic flow per time unit (packets/time
unit), "Eqlambda” is the time distribution feature (average
bit rate per time unit (bits/time unit)). Flow input fea-
tures show important differences in their range of values:
for instance, traffic varies from 30.787 to 2048.23 while
packets vary from 0.032895 to 2.03633 and Eqlambda from
40.0337t01999.52. Hence, we normalized them using Min-
Max normalization.

6. EXPERIMENTS

We now present the experiments we conducted to evaluate
the scalability capacity of our model. We explore different
aspects, the benefit of our designed feature and output, the
stability of our model as well as its robustness.

6.1 Dataset and settings

In this work, we used the dataset provided by "The
Barcelona Neural Betworking Center” from the Universitat
Politecnica de Catalunya. This dataset was created using
OMNet++ [12], a packet-accurate network emulator. They
comprise hundreds of route configurations and traffic ma-
trices, as well as samples simulated in many topologies.
The network performance metrics obtained by the simu-
lator are labeled on each sample: per-source-destination
performance measurements (mean per-packet delay, jitter,
and loss), as well as port statistics (e.g., queue utilization,
size). We had three separate datasets available to us: one
for training, one for validation, and one for evaluation. The
validation and test datasets contain samples of networks
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Table 1 - Model input features

GNN 1 GNN 2
Traffic Traffic
Flow features Packets Packets
EqLambda EgqLambda
Link Load Link Load
Link features  Link Load squared Link Load squared
- Link Load cubed

that are significantly bigger (51-300 nodes) than those in
the training dataset (25-50 nodes), as the work is focused
on scalability. A detailed description of the dataset can be
found on the GNN Challenge 2021 website[14]. In Fig. 4
and Fig. 5, we plot for a sample graph from the training, val-
idation and test data set i) its topology shape, ii) number of
flows per node pair, iii) total bandwidth requirement of the
flows per node pair, and iv) total packet generation rate of
the flows per node pair. First, we observe that, for these two
samples, there is only one flow at each source-destination
pair. However, because flows have different bandwidth and
packet generation rates, we can consider the traffic flows

heterogeneous. Besides, although the simulation is com-
patible with different 5G queue types (e.g., ‘FIFO’ (First-
In, First-Out), Strict Priority, Weighted Fair Queuing, Deficit
Round Robin), the current available simulation-output data
is reporting metrics of simulations whose every node im-
plements only FIFO queues. Regarding our experimental
setup, the training was done on an NVIDIA GeForce RTX
2080 Tiin under 20 hours. The code is available on Github?.

Thttps://github.com/ITU-AI-ML-in-5G-Challenge /ITU-ML5G-PS-001-
SOFGNN-Graph-Neural-Networking-Challenge
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Table 2 - Hyper-parameters

GNN, GNN,

Link Hidden State Size 256 128
Path Hidden State Size 256 128

Readout Layer Size 256 128
Message Passing Rounds 4 4
Learning Rate 0.001 0.001
Optimizer Adam Adam
Loss MAPE MAPE

6.2 Hyper-parameter tuning

After some hyper-parameter searches, we observed that a
learning rate of Ir = 1072 seems to be too large as step,
whereas Ir = 10~*’s training takes longer to converge with
no apparent improvement in MAPE over Ir = 1073

Regard- ing the number of message passes, we did not
observe any improvement in the performance of the model
when we in- crease it. As this hyper-parameter has the

most drastic ef- fect on the training time of the model, we
see no incentive to set the value beyond 4. Regarding the
link hidden state size, we observed some improvement in
the validation re- sults up to a size of 256 units, beyond
which improvement is harder to discern. Likewise, we
observe no apparent ben- efit in increasing this value
beyond 256, as the validation performance noticeably
degrades past this point. Based on these observations,
Table 2 presents in detail the hyper- parameters we used
while Table 3 presents the architecture of our proposed
GNN ensemble model.

6.3 Link bandwidth vs link load

We conducted some experiments to evaluate and validate
the importance of our feature design. We compare the re-
sults of training our GNN model using the "capacity”, or link
bandwidth feature elaborated in the original RouteNet con-
figuration in one hand and using our designed feature "Link
Load” that we have defined in Section 5.2 on the other hand.
Fig. 6 shows the training and validation curves for the two
GNN models with all hyper-parameters identical (the ones
of GNN; presented in Table 2). We observe that the swap-
ping of "link bandwidth” feature to "link load” feature re-
sults in a significant increase in the accuracy of the model on
the validation set. Likewise, a significant improvement in
the stability of the training relative to before the change was
made is observed. The generalization ability of the model
with the proposed feature is therefore improved as shown
by the narrowing of the train-validation accuracy gap.

In Table 4, we present the overall MAPE of the two mod-
els on the validation and test set. We observe that, simply
swapping these two features results in a drop of the final
MAPE on both validation and test sets from around 50%
down to around 2%.

6.4 Queue occupancy vs. direct delay

In this section, we investigate the effect the form of the
model’s output has on it’s accuracy, in order to verify claims
that a model trained to predict a variable whose distribu-
tion varies much less across training, validation and test
sets and different topology sizes will generalize better as
the size of the topology shifts. Table 6 shows the results of
both the direct delay prediction model and the queue oc-
cupancy prediction model on the validation and test sets.
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Both models are identical save for their output type, using
the same hyper-parameters as the previously-mentioned
GNN;. We can see that the model utilizing the queue occu-
pancy and per-flow delay estimation configuration clearly
outperforms the direct delay model, as can be understood
by the value of the MAPE going from above 200 down to
under 2, demonstrating it’s superior ability to generalize to
topologies of increasing size.

6.5 Stability analysis

As explained in Section 5, our final configuration is an en-
semble of two GNN-based models with inputs and param-
eters defined respectively in tables 1 and 3. From the re-
sults of Section 6.3 and Section 6.4, we have the confirma-
tion that using our proposed feature design and output de-
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Table 3 - Graph neural networks architectures

GNN, GNN,
Layer Type Activation Number of Units Number of Units
Link Embedding
1 Fully conected RELU 256 128
2 Fully conected SELU 256 128
Path Embedding
1 Fully conected RELU 256 128
2 Fully conected SELU 256 128
Link Update
1 GRU 256 128
Path Update
1 GRU 256 128
Readout
1 Fully conected RELU 32 128
2 Fully conected RELU 32 128
3 Fully conected None 1 1

Table 4 - Link bandwidth vs link load

Baseline Model = Our model v1

Traffic Traffic
Flow features Packets Packets
EqLambda EqLambda
Link features Link Bandwidth Link Load
MAPE (%) MAPE(%)
Validation set 57.90 1.94
Test set 46.82 1.86

sign significantly improves the results. We have conducted
additional experiments to evaluate the stability of the pro-
posed model. We retrained the model six times and evalu-
ated its performance for each run on the test and validation
datasets. Table 5 shows the results we obtained over the six
runs, and the last column presents the mean and standard
deviation on both the validation and test sets for each run.
We observe that taking the ensemble of both models helped
in improving the performance. We moved from two models
of around 1.5% of MAPE on average to one ensemble model
with around 1.3% of MAPE on average, on both validation
and test sets. The similarity of results on both datasets was
expected as they both contain samples following similar dis-
tribution. Moreover, the ensemble model yields a much
more stable MAPE with a standard deviation of about 0.01
in the validation set and 0.055 in the test set.

6.6 Robustness analysis

To further investigate how scalable the proposed model is,
we evaluated how well the model will perform for samples

of networks’ sizes in different ranges. Indeed, we consid-
ered five different ranges as shown in Fig. 7. We can see that
the solution is consistent regardless of the size of the net-
work with a median less than 1.4% for all ranges. Despite
the fact that the variability does not show a trivial pattern
as the size of the network increases, we still notice that we
have two levels of median on this figure. From 55 to 150,
there is an approximate median of about 1.15% and from
160 to 300 an approximate median of about 1.4% which is
still a very low MAPE. This shows that the proposed solu-
tion is highly scalable. However, given the small increase in
this median value over the last interval [220-300], it would
be interesting to analyse at what size the performance of
the proposed solution starts to degrade considerably. This
analysis is left for future work.
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Fig. 7 - MAPE of the ensemble model per range on the test set
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Table 5 - MAPE(%) of the proposed model on six independent runs

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Mean+ std
Val Test Val Test Val Test Val Test Val Test Val Test Val Test
GNN; 1.55 158 162 144 136 132 150 144 175 158 152 140 1.55+0.12 1.46+0.10
GNN, 155 154 155 154 153 163 149 146 141 146 138 130 1.484+0.07 1.48+0.11
Ensemble 136 133 135 124 136 139 133 132 138 134 136 1.24 1.32+0.01 1.31+0.05
Table 6 - Direct delay prediction vs. queue occupancy prediction direction to pursue.
Baseline Model Our model v2 ACKNOWLEDGEMENT

Prediction Direct Delay Queue Occupancy
MAPE(%) MAPE (%)
Validation set 292.92 1.75
Test set 248.28 1.58

7. CONCLUSION

We have shown that we can improve the performance of
the RouteNet model on the delay prediction task through a
few small modifications to the model’s input variables and
output. The first change is the replacement of the "capac-
ity”, or link bandwidth, link feature present in the default
configuration of Routenet, with a hand-designed feature we
call "link load”, consisting of the total amount of traffic go-
ing through the link as a function of the link’s capacity. The
second change concerns the output of the model. Instead of
having the model directly output the per-path delay predic-
tions, we have the model output per-link queue occupancy
predictions and infer the per-path delay from these using a
simple transformation, allowing us to avoid the "Out of Dis-
tribution” problem encountered by the previous configura-
tion when attempting to generalize to larger topologies, as
the distribution of queue occupancy varies less with topol-
ogy size.

Results show that implementing both of these changes had
a significant effect on the accuracy of the model, lowering
the MAPE on the validation and test sets from the 300 range
down to less than 2. Transitioning from a direct delay pre-
diction model to one where the formula presented in Sec-
tion 5.3 leads to a reduction in the MAPE on the validation
and test sets from 300 down to around 50, while the re-
placement of the "capacity” feature with "link load” further
reduces the MAPE on the training and validation set, bring-
ing it to under 2.

While the results presented in this work show that the so-
lution scales relatively well as topology size increases, it
would be of interest to find out exactly to what extent this
holds by going beyond 300 nodes to test on even larger
topology networks. Verifying if the current solution could
also be applied to predict other types of common KPIs such
asjitter and packetloss may be another interesting research

This work was supported by several joint Mitacs-Ciena
(Large-scale optimization for optical and fiber networks &
Self-Organized Fabric - SOF projects) internships, as well
as from the ministére de I’Economie et de I'Innovation for
CRIM.
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