
NEURAL NETWORK COMPRESSION WITH FEEDBACK MAGNITUDE PRUNING FOR AUTOMATIC
MODULATION CLASSIFICATION

Jakob Krzyston1,3, Rajib Bhattacharjea2, Andrew Stark3
1School of Electrical and Computer Engineering, Georgia Tech, Atlanta, GA USA, 2DeepSig Inc., Arlington, VA USA,

3Georgia Tech Research Institute, Atlanta, GA USA

NOTE: Corresponding author: Jakob Krzyston, jakobk@gatech.edu

Abstract – In the past few years, there have been numerous demonstrations of neural networks outperforming tradi‑
tional signal processing methods in communications, notably for Automatic Modulation Classiϔication (AMC). Despite the
increase in accuracy, these algorithms are notoriously infeasible for integrating into edge computing applications. In this
work, we propose an enhanced version of a simple neural network pruning technique, Iterative Magnitude Pruning (IMP),
calledFeedbackMagnitudePruning (FMP)anddemonstrate its effectiveness for the “Lightning‑FastModulationClassiϔication
with Hardware‑Efϔicient Neural Network” 2021 AI for Good: Machine Learning in 5G Challenge hosted by the International
Telecommunications Union (ITU) and Xilinx. IMP achieved a compression ratio of 9.313, while our proposed FMP achieved
a compression ratio of 831 and normalized cost of 0.0419. Our FMP result was awarded second place, demonstrating the
compression and classiϔication accuracy beneϔits of pruning with feedback.

Keywords – Artiϐicial intelligence, automatic modulation classiϐication, feedback magnitude pruning, neural network
compression

1. INTRODUCTION

Modern wireless communication systems operate at
speeds of gigabits per second or higher; signal processing
in these systems must occur at the same scale of speed.
Such systems are designed to be fast by minimizing com‑
putational complexity, memory footprint, and energy ex‑
penditure while maximizing accuracy on a speciϐic task.
Edge communication systems are deployed in a variety
of operating environments (cellular, seaborne, airborne,
etc.) where all of these are constrained to legacy technolo‑
gies, implementation costs, and the physics underlying
power dissipation. Neural networks have been successful
solving problems in communications, e.g., Convolutional
Neural Networks (CNNs) for Automatic Modulation Clas‑
siϐication (AMC) [1, 2, 3, 4], but require signiϐicant reduc‑
tion of computation,memory footprint, and storage space
for widespread deployment.

Neural network compression is the set of methods and
techniques that have been developed to reduce the num‑
ber of computations and memory required while main‑
taining sufϐicient accuracy. Pruning methods remove
edges in the neural network [5], and quantization meth‑
ods to reduce the precision of the values stored in the
data, weights, and activations [6]. Other techniques, such
as depth‑wise separable convolutions and inverted bot‑
tleneck residuals [7, 8], have been developed to make
computations in these neural networks more efϐicient.

Deep neural networks occupy large memory footprints,
are typically developed in Python libraries like PyTorch,
and rely primarily on hardware such as Graphical Pro‑

cessing Units (GPUs) for computation execution in a par‑
allel manner. This works well for cloud‑based machine
learning applications or other uses where very low la‑
tency is not critical. Communication systems often de‑
ploy algorithms on ϐlexible hardware such as a Field Pro‑
grammable Gate Array (FPGA). This requires specialists
who not only understand the hardware, but also the low‑
level programming necessary to use the specialized hard‑
ware.

Recently, Xilinx released a programming package called
Brevitas [9] that allows for quantized models to be trained
and leverages FINN [10] which then translates PyTorch
models for execution on FPGAs. With the rising popular‑
ity for deep learning in communications, Xilinx teamed
up with International Telecommunications Union (ITU)
to host a competition, called, “Lightning‑Fast Modulation
Classiϐication with Hardware‑Efϐicient Neural Networks”
that was part of their 2021 AI for Good: Machine Learning
in 5G Challenge [11].

2. MACHINE LEARNING IN 5G CHALLENGE

The International Telecommunications Union hosted a
competition [11] to create a neural network that classiϐies
modulation formats of communication signals. The net‑
work must minimize the inference cost while maintain‑
ing at least 56% overall accuracy across all modulation
classes and SNRs in the RadioML 2018.01A dataset [2].
The inference cost was measured relative to a baseline
network architecture provided by the challenge organizers,

©International Telecommunication Union, 2022
Some rights reserved. This work is available under the CC BY-NC-ND 3.0 IGO license: https://creativecommons.org/licenses/by-nc-nd/3.0/igo/.

More information regarding the license and suggested citation, additional permissions and disclaimers is available at:
https://www.itu.int/en/journal/j-fet/Pages/default.aspx

ITU Journal on Future and Evolving Technologies, Volume 3, Issue 2, September 2022

mailto:jakobk@gatech.edu

𝑐𝑜𝑠𝑡 = 𝑏𝑖𝑡_𝑜𝑝𝑠𝑓𝑖𝑛𝑎𝑙
2 × 𝑏𝑖𝑡_𝑜𝑝𝑠𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

+ 𝑏𝑖𝑡_𝑚𝑒𝑚𝑓𝑖𝑛𝑎𝑙
2 × 𝑏𝑖𝑡_𝑚𝑒𝑚𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

(1)

where 𝑏𝑖𝑡_𝑜𝑝𝑠 is the number of bit operations in the ϐinal
or the provided baseline model and 𝑏𝑖𝑡_𝑚𝑒𝑚 is the num‑
ber of memory bits respectively. Baseline code for a net‑
work and training loop was provided to challenge partici‑
pants containing a simple VGG‑style neural network [12].

In this paper we present our submission to the 2021 ITU
AI for Good Challenge: “Lightning‑Fast Modulation Classi‑
ϐication with Hardware‑Efϐicient Neural Networks”, which
earned second place. Our competition submission con‑
sists of modifying the baseline approach to incorporate
1) quantization, 2) a simple learning rate “reduce‑on‑
plateau” scheduler, and 3) a new method of pruning called
Feedback Magnitude Pruning (FMP). FMP is an advanced
form of IMP that leverages feedback from the training to
adjust the rate of pruning.

3. BACKGROUND
This core of the challenge is to engineer the trade‑off
between accuracy and network compression. Pruning,
quantization, and network architecture techniques aim
to reduce latency and computational demand while var‑
ious training paradigms aim to increase the accuracy
of the network. The authors recognized that utilizing
more efϐicient architectures, such as MobileNets [7] and
SqueezeNets [8], is another valid tactic to succeeding in
this competition, however it is explicitly avoided in this
work to constrain the variable space.

3.1 Neural network pruning
The proliferation in applications for neural networks, ac‑
companied by the desire for greater accuracy improve‑
ments, has led to a trend of ever‑larger network archi‑
tectures [12, 13, 14, 15, 16]. As architectures grow, the
number of parameters to optimize also increases, with
well‑known large models containing trillions of parame‑
ters. This has been a concern in the ϐield of AI for many
years [17, 18]. Research focused on reducing the number
of parameters in a network has been an ongoing pursuit
by teams of researchers for decades [5, 19, 20, 21, 22].
Network pruning is focused on devising strategies to best
remove edges in the network such that the resultant sub‑
network performs comparable to the original network.
For clarity, we use the term edge synonymously with the
terms connection and weight.

Typically, edges are removed after training a network.
Recent efforts in this area of research have focused on
removing edges while using little to no training data at
all [23, 24, 25, 26]. In practice, accuracy is of the utmost
concern and these sophisticated methods do not outperform a
simple method called Iterative Magnitude Pruning (IMP) [20].

IMP works by three simple steps:

1. Train the neural network.

2. Prune the network by removing the smaller weights.

3. Continue training the remaining subnetwork.

Steps 2 and 3 are to be repeated for a speciϐied number of
epochs or up to a certain compression ratio, 𝜂 [27]. Given
a pruning percentage 𝑝, and a number of pruning epochs
𝑒𝑝, the compression ratio is deϐined as

𝜂 = 1
(1 − 𝑝)𝑒𝑝

. (2)

The compression ratio is inversely proportional to the
sparsity of the network, e.g. if 1% of the weights remain
after pruning, 𝜂 = 100.
The two primary approaches to neural network prun‑
ing include unstructuredpruning and structuredpruning.
Unstructuredpruning [28] is the removal of speciϐic edges
from the computational graph, whereas structured prun‑
ing [29] focuses on removing entire nodes of the graph
altering the structure. In practice, unstructured pruning
yields more compressed networks but leveraging the ex‑
treme sparsity for computational beneϐit remains an out‑
standing challenge.

3.2 Network quantization
Typically when training a neural network on a GPU, the
weights, activations, and gradients are stored using 32
ϐloatingpoint bits. Training for anetwork tooperate at 16,
8, 4, 2, or even 1 bit integer representation brings about
opportunities for these algorithms to be more readily im‑
plemented onto specialized hardware such as FPGAs and
Application Speciϐic Integrated Circuits (ASICs). Impor‑
tant considerations when quantizing are the range of val‑
ues represented aswell as the spacing between the values
(i.e. the precision of the values), which changes whether
using the float or int data type [6]. Examples of meth‑
ods for quantizing a neural network include: using adap‑
tive ranges and clipping [30, 31], mixed precision train‑
ing [32, 33, 34, 35], coding schemes [36], and differen‑
tiable quantization [37, 38, 39, 40, 41].

3.3 Learning rate strategies
Neural networks traverse their loss landscape according
to an optimization algorithm. A key parameter in these
optimization algorithms is the step size, or Learning Rate
(LR) from deep learning parlance. Some baseline deep
learning optimizers such as Stochastic Gradient Descent
(SGD) [42] and SGD with momentum [43], use a constant
learning rate and other commonly used optimizers such
as Adam [44] have parameters that adjust the learning
rate. Whether a constant or adaptive learning rate, it is
difϐicult to efϐiciently traverse the loss landscape as well

© International Telecommunication Union, 2022

ITU Journal on Future and Evolving Technologies, Volume 3, Issue 2, September 2022

158

as avoiding getting stuck in a localminimumor even ‘step‑
ping’ out of a minimum. An easy way to alter the ϐinal ac‑
curacy of a network is by modifying the LR value through
the use of an LR scheduler. Learning rate schedulers ad‑
just the LR as a function of at least one variable, such
as number of epochs and/or derivative of validation loss.
LR schedulers can be put into categories: ϐixed, decaying,
and cyclical [45]. Fixed LR schedulers imply the LR never
changes, which can prevent the network from converg‑
ing into a local minimum. Decaying LR schedulers lever‑
age various decay functions for LR annealing. Decaying
LRs anticipate the optimization function will need to take
larger steps in the beginning to locate a sufϐicient mini‑
mum, then smaller steps to ensure it locates theminimum
and does not escape. Cyclical LR schedulers periodically
vary the LR within a speciϐied range. Cyclical LRs lever‑
age the properties of decaying LR schedulers and inter‑
mittently take larger steps to determine the robustness
of the minimum reached [46].
In the PyTorch framework there is a unique, adaptive
learning rate scheduler called Reduce LR on Plateau. This
methodoperates by tracking the validation loss in thenet‑
work and by recording for how long the validation loss
does not improve, governed by a parameter called pa‑
tience. No improvement implies no discovery of a local
minimum. Reduce LR on Plateau will reduce the learning
rate by a set factor to stop jumping over local minima and
seek improved accuracy.

4. METHODS

In this competition we began from the neural network
provided by the competition and (1) quantized the
weights of the network prior to training, (2) implemented
a learning rate scheduler, and (3) performed neural net‑
work pruning.

4.1 Neural network architecture
MobileNets are extremely popular in edge applications
of deep learning. Recent work analyzing the effects of
quantization on MobileNets saw drastic ϐluctuations in
the dynamic range and trouble matching the distribu‑
tions between channel‑wise and layer‑wise distributions
in depth‑wise separable CNNs [47]. These issues lead
to greater degradation as MobileNets were increasingly
quantized as well as greater distributional shift as infor‑
mation propagated through the network. The authors ex‑
perimentally showed there is less error due to quantiza‑
tion in traditional CNNs, like VGG‑style networks, com‑
pared to depth‑wise separable CNNs, like MobileNet.

Due to these ϐindings, we decided to utilize the provided
VGG‑style architecture shown in Fig. 1 because of the
opportunity to further quantize the network to improve
the normalized inference cost while mitigating accuracy
losses.

Fig. 1 – VGG‑style architecture provided by the competition. k denotes
the kernel dimension, ch denotes the number of channels, and the num‑
ber in the parenthesis for the dense layers indicates the number of out‑
put nodes.

4.2 Network quantization
The precision of the input, weights, and activations are
determined by three different parameters: input_bits,
w_bits and a_bits, respectively. By default these were
all set to eight and were equal for all layers of the net‑
work. We changed the precision of these parameters to
four (int4) for all layers of the network.

4.3 Training paradigm
In this work, the Adam optimizer was used with an initial
learning rate of 10−3. Reduce LR on Plateau was used in
order to help our model ϐind a better local minima as we
pruned and quantized the model. The model was trained
on an NVIDIA Quadro RTX 4000 GPU, with a batch size of
1024 and an upper bound of 50 training epochs. Addi‑
tionally, there was an upper bound of 20 pruning epochs.

4.4 Network pruning
In this competition, we test a well‑established neural net‑
work pruning called Iterative Magnitude Pruning (IMP)
as well a novel pruning method we call Feedback Mag‑
nitude Pruning (FMP). All pruning was L1 unstructured
which was advantageous to the inference cost shown in
Equation (1).

4.4.1 Iterative magnitude pruning
When using Iterative Magnitude Pruning (IMP) to prune
our quantized architecture, following the advice of the au‑
thor of [48], we set the pruning percentage, 𝑝, to be 20%.
In traditional IMP, the model is trained until convergence,
then pruned. To speed up the pruning process, we imple‑
menteda criterionwhere themodelwouldpruneonce the
accuracy was at least 56%, the minimum criteria for the
competition. Both the traditional version of IMP (train

© International Telecommunication Union, 2022

Krzyston et al.: Neural network compression with feedback magnitude pruning for automatic modulation classification

159

until convergence) and the IMP with the accuracy crite‑
rion were tested in this competition. In both versions of
IMP, 𝑝 does not change and the models are not reinitial‑
ized after each round of pruning. The pseudocode for our
implementation of IMP, with the accuracy criterion, is in
Algorithm 1.

for number of pruning epochs do
for number of training epochs do

Train model;
Evaluate model;
if model accuracy ≥ 56% then

Save model;
Prune 20% of the weights;
Break

end
end
if model accuracy < 56% then

Break
end

end
Algorithm 1: IMP with accuracy criterion

The number of pruning epochs is set to a large number
and is not a limiting factor in the pruning process.

4.4.2 Feedback magnitude pruning

Pruning techniques typically specify desired spar‑
sity/compression ratios beforehand or keep the pruning
rate constant for a speciϐic number of pruning epochs.
Some work regarding changing the level of sparsity as
a function of a variable [49, 50, 51] has focused on re‑
moving then reallocating the weights later in the training
process. In this section we propose a pruning rate sched‑
uler called Feedback Magnitude Pruning (FMP) which
leverages feedback to adjust the pruning rate according
to a function of a speciϐied criterion without needing
to train an unpruned model simultaneously. Similar
to existing learning rate schedulers like Reduce LR on
Plateau, FMP does not guarantee the next pruning rate
nor the schedule by which the pruning rate is changed.
Rather, FMP uses information regarding the status of a
model with respect to a criterion how much to prune.

In this work, the pruning rate in FMP follows a decaying
trajectory parameterized by a normalizing factor 𝑛
which regulates the rate at which the initial pruning
percentage 𝑝 decreases. In this speciϐic implementation
of FMP, 𝑝 is allowed to decrease until it is less than 5%.
This threshold was chosen to save computation time and
due to dimin‑ ishing improvement in normalized
inference cost. Pseu‑ docode of our implementation of
FMP for this competi‑ tion is shown in Algorithm 2.

The pruning percentage 𝑝 is user deϐined as is 𝑛, the di‑
visor which will dictate how rapidly 𝑝 will reduce. The
authors initialized 𝑝 = 0.2 and 𝑛 = 2.

while 𝑝 ≥ 0.05 do
𝑖 = 0;
while i < number of training epochs do

Train model;
Evaluate model;
if model accuracy ≥ 56% then

Save model;
Prune weights, per 𝑝 andmethod;
𝑖 = 0

end
else

𝑖 += 1
end

end
if model accuracy < 56% then

𝑝 = 𝑝/𝑛;
Load most recent 56% accurate model;

end
end
Algorithm 2: Feedback magnitude pruning

Extending Equation(2), the total compression ratio is

𝜂 =
𝑅

∏
𝑟=0

1
(1 − 𝑝𝑟)𝑒𝑟

(3)

where 𝑝𝑟 is the pruning rate as governed by 𝑝 and 𝑛, 𝑅 =
𝑓𝑙𝑜𝑜𝑟(log𝑛(100 ∗ 𝑝)) + 1 is the total number of pruning
rates, and 𝑒𝑟 is the number of pruning epochs at a given
pruning rate. Equation (3) is an approximation because a
percentage does not always result in an exact number of
nodes/connections to prune, i.e. 20% of a network with
11 eligible elements.

5. RESULTS
5.1 IMP results
Two implementations of IMP were compared against one
another, one with the accuracy criterion and one that
trained for the deϐined number of training epochs. We
compare the number of pruning epochs achieved before
yielding a network below 56% accurate as well as the
compression ratio 𝜂.
As we see in Table 1, the accuracy constraint enabled us
to achieve onemore pruning epoch, ten compared to nine.
This increased the compression ratio by nearly 25% from
7.451 to 9.313.

Table 1 – Comparison of IMP strategy

Strategy Prune Epochs 𝜂𝜂𝜂
Normal IMP 9 7.45

IMP w/ Accuracy 10 9.31

With our quantized network, we compared the reduced
bit operations and weight bits to that of the provided ar‑
chitecture in Table 2. Our pruning andquantizationmeth‑
ods resulted in a 96.97% and 94.53% reduction in the
number of bit operations and weight bits respectively.

© International Telecommunication Union, 2022

ITU Journal on Future and Evolving Technologies, Volume 3, Issue 2, September 2022

160

Table 2 – Comparison of original and IMP networks

Network Bit_Ops (%) Bit_Mem (%) Cost
Baseline 100 100 1
IMP 3.025 5.468 0.0424

Using IMP, we were able to achieve a normalized inference
cost of 0.0424 and an overall accuracy of 56.25%.

5.2 FMP results
Feedback magnitude pruning was tested on the same neu‑
ral network architecture seen in Fig. 1, however the num‑
ber of bits in the inputs, activations, and weights was var‑
ied. Table 3 shows network architectures with greater
numbers of bits were able to be further compressed, how‑
ever these models did not achieve as low an inference
score as the 4 bit FMP model, 0.0419, which beat the 4 bit
IMP model and achieved second place. Table 3 shows FMP
greatly increasing the ability for a network to be com‑
pressed. The 4 bit VGG network with IMP achieved a com‑
pression ratio of 𝜂 = 9.313, whereas the same network
with FMP achieved a compression ratio of 𝜂 = 813. We
also compare the full 8 bit version of the VGG model with
FMP, and was able to compress it 5,821x and resulted in
an inference cost of 0.0583.

Table 3 – Feedback magnitude pruning results

Bits 𝜂𝜂𝜂 Bit_Ops (%) Bit_Mem (%) Cost
8∗ 1 100 100 1
8† 5,821 6.177 5.493 0.0583
7† 5,821 4.836 4.806 0.0482
6† 3,072 4.429 5.059 0.0465
5† 1,621 3.506 5.175 0.0434
4‡ 9.31 3.025 5.468 0.0424
4† 813 3.046 5.351 0.0419

∗ Baseline model provided by ITU
† Feedback magnitude pruning
‡ Iterative magnitude pruning

In the bottom two rows of Table 3, trials utilizing 4
bit quantization, the normalized inference cost did not
change in proportion to the increase in compression as a
result of using FMP. This stems from how the normalized
inference cost was deϐined in Equation (1). The weight
bits and bit operations are not proportionally reduced as
the pruning is increased.
The accuracies of the 4 bit IMP network and the 4 bit FMP
network were very similar, thus we report classiϐication
results for the FMP network. In Fig. 2 we show the confu‑
sion matrix for the submission performed on the modu‑
lation patterns over all SNRs. In Fig. 3 we show the over‑
all accuracy of the trained model as a function of SNR. In
Fig. 4, we show the accuracy of the model per modulation
format, as a function of SNR.

Inspection of ϐigures 2 through 4 reveals overall classiϐica‑
tion behavior of the neural network. When averaged over
all SNRs, the network has a difϐicult time distinguishing

Fig. 2 – Overall confusion matrix from the ITU Competition: Lightning‑
Fast Modulation Classiϐication with Hardware‑Efϐicient Neural Net‑
works.

Fig. 3 – Overall accuracy of the submission to the ITU competition, as a
function of the input SNR.

between 64‑QAM, 128‑QAM, and 256‑QAM, between the
AM‑SSB formats, and between the AM‑DSB formats. This
behavior makes intuitive sense because the high‑order
QAM formats are nearly analog in nature and exhibit rela‑
tively high SNR requirements for high accuracy. Other for‑
mats were readily identiϐiable: accuracy is nearly 100%
for formats of order below 16‑PSK. Some stand‑out ac‑
curacies include >90% classiϐication accuracy for 4ASK,
8QSK, and BPSK at SNR as low as 0 dB.

6. CONCLUSION

In this work, we detail our submission to the 2021 ITU
AI for Good Challenge: “Lightning‑Fast Modulation Clas‑
siϐication with Hardware‑Efϐicient Neural Network” and
showcase a proposed pruning technique called Feedback
Magnitude Pruning. Our submission demonstrates the
potential for simple quantization and learning rate strate‑
gies in combination with our novel Feedback Magnitude
Pruning technique. Our submission, compared to Itera‑

© International Telecommunication Union, 2022

Krzyston et al.: Neural network compression with feedback magnitude pruning for automatic modulation classification

161

Fig. 4 – Accuracy of the model, per modulation format, of the ITU com‑
petition submission, as a function of the input SNR.

tive Magnitude Pruning, achieved a normalized inference
cost of 0.0419versus 0.042467, yielded a compression ra‑
tio of 813 versus 9.3, and was awarded second place.

One of the outstanding issues in network compression,
speciϐically pruning, is understanding why the result‑
ing computational graph is of signiϐicance. Future work
from our group will be exploring the signiϐicance of
pruned neural networks as well as developing methods
to compress neural networks in a manner that allows re‑
searchers to understand why the remaining architecture
is of importance.

All code used in this work can be found at
https://github.com/ITU‑AI‑ML‑in‑5G‑Challenge/ITU‑
ML5G‑PS‑007‑Feedback‑Magnitude‑Pruning.

REFERENCES
[1] Timothy J O’Shea, Johnathan Corgan, and T Charles

Clancy. “Convolutional radio modulation recogni‑
tion networks”. In: International conference on en‑
gineering applications of neural networks. Springer.
2016, pp. 213–226.

[2] Timothy James O’Shea, Tamoghna Roy, and T
Charles Clancy. “Over‑the‑air deep learning based
radio signal classiϐication”. In: IEEE Journal of Se‑
lected Topics in Signal Processing 12.1 (2018),
pp. 168–179.

[3] Jakob Krzyston, Rajib Bhattacharjea, and Andrew
Stark. “Complex‑Valued Convolutions for Modula‑
tion Recognition using Deep Learning”. In: 2020
IEEE International Conference on Communications
Workshops (ICC Workshops). IEEE. 2020, pp. 1–6.

[4] Jakob Krzyston, Rajib Bhattacharjea, and Andrew
Stark. “Modulation Pattern Detection Using Com‑
plex Convolutions in Deep Learning”. In: 2020 25th
International Conference on Pattern Recognition
(ICPR). IEEE. 2021, pp. 2233–2239.

[5] Yann LeCun, John S Denker, and Sara A Solla. “Opti‑
mal brain damage”. In: Advances in neural informa‑
tion processing systems. 1990, pp. 598–605.

[6] James O’ Neill. “An overview of neural network
compression”. In: arXiv preprint arXiv:2006.03669
(2020).

[7] Andrew G Howard, Menglong Zhu, Bo Chen,
Dmitry Kalenichenko, Weijun Wang, Tobias
Weyand, Marco Andreetto, and Hartwig Adam.
“Mobilenets: Efϐicient convolutional neural net‑
works for mobile vision applications”. In: arXiv
preprint arXiv:1704.04861 (2017).

[8] Forrest N Iandola, Song Han, Matthew W
Moskewicz, Khalid Ashraf, William J Dally, and
Kurt Keutzer. “SqueezeNet: AlexNet‑level accuracy
with 50x fewer parameters and< 0.5 MB model
size”. In: arXiv preprint arXiv:1602.07360 (2016).

[9] Alessandro Pappalardo. Xilinx/brevitas. 2021. DOI:
10.5281/zenodo.3333552. URL: https://doi.
org/10.5281/zenodo.3333552.

[10] Y Umuroglu, NJ Fraser, G Gambardella, M Blott,
P Leong, M Jahre, and K Vissers. “Finn: A frame‑
work for fast, scalable binarized neural network in‑
ference. Acm”. In: SIGDA International Symposium
on Field‑Programmable Gate Arrays (FPGA). 2016,
pp. 65–74.

[11] ITU‑ML5G‑PS‑007: Lightning‑Fast Modulation Clas‑
siϔicationwithHardware‑EfϔicientNeuralNetworks.
June 2021. URL: https://challenge.aiforgood.
itu.int/match/matchitem/34.

[12] Karen Simonyan and Andrew Zisserman. “Very
deep convolutional networks for large‑scale im‑
age recognition”. In: arXiv preprint arXiv:1409.1556
(2014).

[13] KaimingHe, Xiangyu Zhang, ShaoqingRen, and Jian
Sun. “Deep residual learning for image recogni‑
tion”. In:Proceedings of the IEEE conference on com‑
puter vision andpattern recognition. 2016, pp. 770–
778.

[14] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. “Attention is all you
need”. In: Advances in neural information process‑
ing systems. 2017, pp. 5998–6008.

[15] Jacob Devlin, Ming‑Wei Chang, Kenton Lee, and
Kristina Toutanova. “Bert: Pre‑training of deep
bidirectional transformers for language under‑
standing”. In: arXiv preprint arXiv:1810.04805
(2018).

© International Telecommunication Union, 2022

ITU Journal on Future and Evolving Technologies, Volume 3, Issue 2, September 2022

162

https://doi.org/10.5281/zenodo.3333552
https://doi.org/10.5281/zenodo.3333552
https://doi.org/10.5281/zenodo.3333552
https://challenge.aiforgood.itu.int/match/matchitem/34
https://challenge.aiforgood.itu.int/match/matchitem/34

[16] TomBBrown, BenjaminMann, Nick Ryder,Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. “Language models are few‑shot learn‑
ers”. In: arXiv preprint arXiv:2005.14165 (2020).

[17] Emily L Denton, Wojciech Zaremba, Joan Bruna,
Yann LeCun, and Rob Fergus. “Exploiting linear
structure within convolutional networks for efϐi‑
cient evaluation”. In: Advances in neural informa‑
tion processing systems. 2014, pp. 1269–1277.

[18] Lei Jimmy Ba and Rich Caruana. “Do deep nets
really need to be deep?” In: arXiv preprint
arXiv:1312.6184 (2013).

[19] Babak Hassibi and David G Stork. Second order
derivatives for network pruning: Optimal brain sur‑
geon. Morgan Kaufmann, 1993.

[20] Song Han, Jeff Pool, John Tran, and William J
Dally. “Learning both weights and connections
for efϐicient neural networks”. In: arXiv preprint
arXiv:1506.02626 (2015).

[21] Hao Li, AsimKadav, Igor Durdanovic, Hanan Samet,
and Hans Peter Graf. “Pruning ϐilters for efϐicient
convnets”. In: arXiv preprint arXiv:1608.08710
(2016).

[22] Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang,
and Trevor Darrell. “Rethinking the Value of Net‑
work Pruning”. In: 7th International Conference on
Learning Representations, ICLR 2019, New Orleans,
LA, USA, May 6‑9, 2019. OpenReview.net, 2019.
URL: https : / / openreview . net / forum ? id =
rJlnB3C5Ym.

[23] Chaoqi Wang, Guodong Zhang, and Roger Grosse.
“Picking winning tickets before training by
preserving gradient ϐlow”. In: arXiv preprint
arXiv:2002.07376 (2020).

[24] Namhoon Lee, Thalaiyasingam Ajanthan, and
Philip HS Torr. “Snip: Single‑shot network pruning
based on connection sensitivity”. In: arXiv preprint
arXiv:1810.02340 (2018).

[25] Hidenori Tanaka, Daniel Kunin, Daniel LK Yamins,
and Surya Ganguli. “Pruning neural networkswith‑
out any data by iteratively conserving synaptic
ϐlow”. In: arXiv preprint arXiv:2006.05467 (2020).

[26] ShreyasMalakarjunPatil andConstantineDovrolis.
“PHEW: Constructing Sparse Networks that Learn
Fast and Generalize Well without Training Data”.
In: International Conference on Machine Learning.
PMLR. 2021, pp. 8432–8442.

[27] Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan
Frankle, and John Guttag. “What is the state of neu‑
ral network pruning?” In: Proceedings of machine
learning and systems 2 (2020), pp. 129–146.

[28] Stephen Hanson and Lorien Pratt. “Comparing bi‑
ases for minimal network construction with back‑
propagation”. In: Advances in neural information
processing systems 1 (1988).

[29] WeiWen, ChunpengWu, YandanWang, Yiran Chen,
and Hai Li. “Learning structured sparsity in deep
neural networks”. In: Advances in neural informa‑
tion processing systems 29 (2016).

[30] Eunhyeok Park, Sungjoo Yoo, and Peter Vajda.
“Value‑aware quantization for training and infer‑
ence of neural networks”. In: Proceedings of the
European Conference on Computer Vision (ECCV).
2018, pp. 580–595.

[31] Ron Banner, Yury Nahshan, Elad Hoffer, and Daniel
Soudry. “Aciq: Analytical clipping for integer quan‑
tization of neural networks”. In: (2018).

[32] Paulius Micikevicius, Sharan Narang, Jonah Al‑
ben, Gregory Diamos, Erich Elsen, David Garcia,
Boris Ginsburg, Michael Houston, Oleksii Kuchaiev,
Ganesh Venkatesh, et al. “Mixed precision training”.
In: arXiv preprint arXiv:1710.03740 (2017).

[33] Fengfu Li, Bo Zhang, and Bin Liu. “Ternary weight
networks”. In: arXiv preprint arXiv:1605.04711
(2016).

[34] Chenzhuo Zhu, Song Han, Huizi Mao, and William
J Dally. “Trained ternary quantization”. In: arXiv
preprint arXiv:1612.01064 (2016).

[35] Dipankar Das, Naveen Mellempudi, Dheevatsa
Mudigere, Dhiraj Kalamkar, Sasikanth Avancha,
Kunal Banerjee, Srinivas Sridharan, Karthik
Vaidyanathan, Bharat Kaul, Evangelos Georganas,
et al. “Mixed precision training of convolutional
neural networks using integer operations”. In:
arXiv preprint arXiv:1802.00930 (2018).

[36] S Han, H Mao, and WJ Dally. “Compressing deep
neural networks with pruning, trained quantiza‑
tion and huffman coding. arXiv 2015”. In: arXiv
preprint arXiv:1510.00149 ().

[37] Ruihao Gong, Xianglong Liu, Shenghu Jiang, Tianx‑
iang Li, Peng Hu, Jiazhen Lin, Fengwei Yu, and Jun‑
jie Yan. “Differentiable soft quantization: Bridg‑
ing full‑precision and low‑bit neural networks”. In:
Proceedings of the IEEE/CVF International Confer‑
ence on Computer Vision. 2019, pp. 4852–4861.

[38] Eirikur Agustsson, Fabian Mentzer, Michael
Tschannen, Lukas Cavigelli, Radu Timofte, Luca
Benini, and Luc Van Gool. “Soft‑to‑hard vector
quantization for end‑to‑end learning com‑
pressible representations”. In: arXiv preprint
arXiv:1704.00648 (2017).

[39] Pierre Stock, Armand Joulin, Rémi Gribonval, Ben‑
jamin Graham, and Hervé Jégou. “And the bit goes
down: Revisiting the quantization of neural net‑
works”. In: arXiv preprint arXiv:1907.05686 (2019).

© International Telecommunication Union, 2022

Krzyston et al.: Neural network compression with feedback magnitude pruning for automatic modulation classification

163

https://openreview.net/forum?id=rJlnB3C5Ym
https://openreview.net/forum?id=rJlnB3C5Ym

[40] Benoit Jacob, Skirmantas Kligys, Bo Chen, Meng‑
long Zhu, Matthew Tang, AndrewHoward, Hartwig
Adam, and Dmitry Kalenichenko. “Quantization
and training of neural networks for efϐicient
integer‑arithmetic‑only inference”. In: Proceedings
of the IEEE conference on computer vision and pat‑
tern recognition. 2018, pp. 2704–2713.

[41] Zhen Dong, Zhewei Yao, Amir Gholami, Michael W
Mahoney, and Kurt Keutzer. “Hawq: Hessian aware
quantization of neural networks with mixed‑
precision”. In: Proceedings of the IEEE/CVF In‑
ternational Conference on Computer Vision. 2019,
pp. 293–302.

[42] Léon Bottou et al. “Online learning and stochastic
approximations”. In: On‑line learning in neural net‑
works 17.9 (1998), p. 142.

[43] Boris T Polyak. “Some methods of speeding up the
convergence of iteration methods”. In: Ussr compu‑
tational mathematics andmathematical physics 4.5
(1964), pp. 1–17.

[44] Diederik P Kingma and Jimmy Ba. “Adam: A
method for stochastic optimization”. In: arXiv
preprint arXiv:1412.6980 (2014).

[45] Leslie N Smith. “Cyclical learning rates for training
neural networks”. In: 2017 IEEE winter conference
on applications of computer vision (WACV). IEEE.
2017, pp. 464–472.

[46] Yanzhao Wu, Ling Liu, Juhyun Bae, Ka‑Ho Chow,
Arun Iyengar, Calton Pu, Wenqi Wei, Lei Yu, and
Qi Zhang. “Demystifying learning rate policies for
high accuracy training of deep neural networks”.
In: 2019 IEEE International Conference on Big Data
(Big Data). IEEE. 2019, pp. 1971–1980.

[47] Stone Yun andAlexanderWong. “DoAllMobileNets
Quantize Poorly? Gaining Insights into the Effect
of Quantization on Depthwise Separable Convolu‑
tional Networks Through the Eyes of Multi‑scale
Distributional Dynamics”. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat‑
tern Recognition. 2021, pp. 2447–2456.

[48] Alex Renda, Jonathan Frankle, and Michael
Carbin. “Comparing rewinding and ϐine‑tuning
in neural network pruning”. In: arXiv preprint
arXiv:2003.02389 (2020).

[49] Decebal Constantin Mocanu, Elena Mocanu, Peter
Stone, Phuong H Nguyen, Madeleine Gibescu, and
Antonio Liotta. “Scalable training of artiϐicial neu‑
ral networks with adaptive sparse connectivity in‑
spired by network science”. In:Nature communica‑
tions 9.1 (2018), pp. 1–12.

[50] Hesham Mostafa and Xin Wang. “Parameter efϐi‑
cient training of deep convolutional neural net‑
works by dynamic sparse reparameterization”.
In: International Conference on Machine Learning.
PMLR. 2019, pp. 4646–4655.

[51] Tao Lin, Sebastian U Stich, Luis Barba, Daniil
Dmitriev, and Martin Jaggi. “Dynamic model
pruning with feedback”. In: arXiv preprint
arXiv:2006.07253 (2020).

AUTHORS
Jakob Krzyston received his
BS in biomedical engineering
(’17) fromRochester Institute of
Technology and an MS in elec‑
trical and computer engineering
(’20) from the Georgia Institute
of Technology. Currently, he is
an electrical and computer en‑
gineering PhD candidate in the

Terabit Optical Networking Consortium at Georgia Insti‑
tute of Technology and a research engineer at Georgia
Tech Research Institute.

Rajib Bhattacharjea received
his BS, MSECE, and PhD degrees
from The Georgia Institute of
Technology. He spent the next
ϐive years as a member of the
research faculty at the Georgia
Tech Research Institute, where
he served as technical lead and
principal investigator on dozens

of programs. He recently joined DeepSig, Inc., a technol‑
ogy startup company working at the intersection of arti‑
ϐicial intelligence and radio frequency signal processing,
where he is a key technical contributor to DeepSig’s fed‑
eral and defense programs.

Andrew Stark completed his
PhD in electrical engineering at
the Georgia Institute of Tech‑
nology in 2012 as a part of
the Terabit Optical Networking
Consortium, investigating ultra‑
high speed optical communi‑
cations and digital signal pro‑
cessing for terabit‑per‑second
signaling. Since then he has
worked for a year at Adtran Inc

in passive optical networks and at the Georgia Tech Re‑
search Institute in the intersection of photonic, radar, and
electronic warfare systems.

© International Telecommunication Union, 2022

ITU Journal on Future and Evolving Technologies, Volume 3, Issue 2, September 2022

164

	NEURAL NETWORK COMPRESSION WITH FEEDBACK MAGNITUDE PRUNING FOR AUTOMATIC MODULATION CLASSIFICATION
	1. INTRODUCTION
	2. MACHINE LEARNING IN 5G CHALLENGE
	3. BACKGROUND
	3.1 Neural network pruning
	3.2 Network quantization
	3.3 Learning rate strategies

	4. METHODS
	4.1 Neural network architecture
	4.2 Network quantization
	4.3 Training paradigm
	4.4 Network pruning
	4.4.1 Iterative magnitude pruning
	4.4.2 Feedback magnitude pruning

	5. RESULTS
	5.1 IMP results
	5.2 FMP results

	6. CONCLUSION
	REFERENCES
	AUTHORS

