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Abstract – In the past few years, there have been numerous demonstrations of neural networks outperforming tradi‑
tional signal processing methods in communications, notably for Automatic Modulation Classiϔication (AMC). Despite the
increase in accuracy, these algorithms are notoriously infeasible for integrating into edge computing applications. In this
work, we propose an enhanced version of a simple neural network pruning technique, Iterative Magnitude Pruning (IMP),
calledFeedbackMagnitudePruning (FMP)anddemonstrate its effectiveness for the “Lightning‑FastModulationClassiϔication
with Hardware‑Efϔicient Neural Network” 2021 AI for Good: Machine Learning in 5G Challenge hosted by the International
Telecommunications Union (ITU) and Xilinx. IMP achieved a compression ratio of 9.313, while our proposed FMP achieved
a compression ratio of 831 and normalized cost of 0.0419. Our FMP result was awarded second place, demonstrating the
compression and classiϔication accuracy beneϔits of pruning with feedback.

Keywords – Artiϐicial intelligence, automatic modulation classiϐication, feedback magnitude pruning, neural network
compression

1. INTRODUCTION

Modern wireless communication systems operate at
speeds of gigabits per second or higher; signal processing
in these systems must occur at the same scale of speed.
Such systems are designed to be fast by minimizing com‑
putational complexity, memory footprint, and energy ex‑
penditure while maximizing accuracy on a speciϐic task.
Edge communication systems are deployed in a variety
of operating environments (cellular, seaborne, airborne,
etc.) where all of these are constrained to legacy technolo‑
gies, implementation costs, and the physics underlying
power dissipation. Neural networks have been successful
solving problems in communications, e.g., Convolutional
Neural Networks (CNNs) for Automatic Modulation Clas‑
siϐication (AMC) [1, 2, 3, 4], but require signiϐicant reduc‑
tion of computation,memory footprint, and storage space
for widespread deployment.

Neural network compression is the set of methods and
techniques that have been developed to reduce the num‑
ber of computations and memory required while main‑
taining sufϐicient accuracy. Pruning methods remove
edges in the neural network [5], and quantization meth‑
ods to reduce the precision of the values stored in the
data, weights, and activations [6]. Other techniques, such
as depth‑wise separable convolutions and inverted bot‑
tleneck residuals [7, 8], have been developed to make
computations in these neural networks more efϐicient.

Deep neural networks occupy large memory footprints,
are typically developed in Python libraries like PyTorch,
and rely primarily on hardware such as Graphical Pro‑

cessing Units (GPUs) for computation execution in a par‑ 
allel manner. This works well for cloud‑based machine 
learning applications or other uses where very low la‑ 
tency is not critical. Communication systems often de‑ 
ploy algorithms on ϐlexible hardware such as a Field Pro‑ 
grammable Gate Array (FPGA). This requires specialists 
who not only understand the hardware, but also the low‑ 
level programming necessary to use the specialized hard‑ 
ware.

Recently, Xilinx released a programming package called 
Brevitas [9] that allows for quantized models to be trained 
and leverages FINN [10] which then translates PyTorch 
models for execution on FPGAs. With the rising popular‑ 
ity for deep learning in communications, Xilinx teamed 
up with International Telecommunications Union (ITU) 
to host a competition, called, “Lightning‑Fast Modulation 
Classiϐication with Hardware‑Efϐicient Neural Networks” 
that was part of their 2021 AI for Good: Machine Learning 
in 5G Challenge [11].

2. MACHINE LEARNING IN 5G CHALLENGE

The International Telecommunications Union hosted a 
competition [11] to create a neural network that classiϐies 
modulation formats of communication signals. The net‑ 
work must minimize the inference cost while maintain‑ 
ing at least 56% overall accuracy across all modulation 
classes and SNRs in the RadioML 2018.01A dataset [2]. 
The inference cost was measured relative to a baseline 
network architecture provided by the challenge organizers,
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𝑐𝑜𝑠𝑡 = 𝑏𝑖𝑡_𝑜𝑝𝑠𝑓𝑖𝑛𝑎𝑙
2 × 𝑏𝑖𝑡_𝑜𝑝𝑠𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

+ 𝑏𝑖𝑡_𝑚𝑒𝑚𝑓𝑖𝑛𝑎𝑙
2 × 𝑏𝑖𝑡_𝑚𝑒𝑚𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

(1)

where 𝑏𝑖𝑡_𝑜𝑝𝑠 is the number of bit operations in the ϐinal 
or the provided baseline model and 𝑏𝑖𝑡_𝑚𝑒𝑚 is the num‑ 
ber of memory bits respectively. Baseline code for a net‑ 
work and training loop was provided to challenge partici‑ 
pants containing a simple VGG‑style neural network [12].

In this paper we present our submission to the 2021 ITU 
AI for Good Challenge: “Lightning‑Fast Modulation Classi‑ 
ϐication with Hardware‑Efϐicient Neural Networks”, which 
earned second place. Our competition submission con‑ 
sists of modifying the baseline approach to incorporate 
1) quantization, 2) a simple learning rate “reduce‑on‑ 
plateau” scheduler, and 3) a new method of pruning called
Feedback Magnitude Pruning (FMP). FMP is an advanced
form of IMP that leverages feedback from the training to
adjust the rate of pruning.

3. BACKGROUND
This core of the challenge is to engineer the trade‑off 
between accuracy and network compression. Pruning, 
quantization, and network architecture techniques aim 
to reduce latency and computational demand while var‑ 
ious training paradigms aim to increase the accuracy 
of the network. The authors recognized that utilizing 
more efϐicient architectures, such as MobileNets [7] and 
SqueezeNets [8], is another valid tactic to succeeding in 
this competition, however it is explicitly avoided in this 
work to constrain the variable space.

3.1 Neural network pruning
The proliferation in applications for neural networks, ac‑ 
companied by the desire for greater accuracy improve‑ 
ments, has led to a trend of ever‑larger network archi‑ 
tectures [12, 13, 14, 15, 16]. As architectures grow, the 
number of parameters to optimize also increases, with 
well‑known large models containing trillions of parame‑ 
ters. This has been a concern in the ϐield of AI for many 
years [17, 18]. Research focused on reducing the number 
of parameters in a network has been an ongoing pursuit 
by teams of researchers for decades [5, 19, 20, 21, 22]. 
Network pruning is focused on devising strategies to best 
remove edges in the network such that the resultant sub‑ 
network performs comparable to the original network. 
For clarity, we use the term edge synonymously with the 
terms connection and weight.

Typically, edges are removed after training a network. 
Recent efforts in this area of research have focused on 
removing edges while using little to no training data at 
all [23, 24, 25, 26]. In practice, accuracy is of the utmost 
concern and these sophisticated methods do not outperform a 
simple method called Iterative Magnitude Pruning (IMP) [20].

IMP works by three simple steps:

1. Train the neural network.

2. Prune the network by removing the smaller weights.

3. Continue training the remaining subnetwork.

Steps 2 and 3 are to be repeated for a speciϐied number of
epochs or up to a certain compression ratio, 𝜂 [27]. Given
a pruning percentage 𝑝, and a number of pruning epochs
𝑒𝑝, the compression ratio is deϐined as

𝜂 = 1
(1 − 𝑝)𝑒𝑝

. (2)

The compression ratio is inversely proportional to the
sparsity of the network, e.g. if 1% of the weights remain
after pruning, 𝜂 = 100.
The two primary approaches to neural network prun‑
ing include unstructuredpruning and structuredpruning.
Unstructuredpruning [28] is the removal of speciϐic edges
from the computational graph, whereas structured prun‑
ing [29] focuses on removing entire nodes of the graph
altering the structure. In practice, unstructured pruning
yields more compressed networks but leveraging the ex‑
treme sparsity for computational beneϐit remains an out‑
standing challenge.

3.2 Network quantization
Typically when training a neural network on a GPU, the
weights, activations, and gradients are stored using 32
ϐloatingpoint bits. Training for anetwork tooperate at 16,
8, 4, 2, or even 1 bit integer representation brings about
opportunities for these algorithms to be more readily im‑
plemented onto specialized hardware such as FPGAs and
Application Speciϐic Integrated Circuits (ASICs). Impor‑
tant considerations when quantizing are the range of val‑
ues represented aswell as the spacing between the values
(i.e. the precision of the values), which changes whether
using the float or int data type [6]. Examples of meth‑
ods for quantizing a neural network include: using adap‑
tive ranges and clipping [30, 31], mixed precision train‑
ing [32, 33, 34, 35], coding schemes [36], and differen‑
tiable quantization [37, 38, 39, 40, 41].

3.3 Learning rate strategies
Neural networks traverse their loss landscape according
to an optimization algorithm. A key parameter in these
optimization algorithms is the step size, or Learning Rate
(LR) from deep learning parlance. Some baseline deep
learning optimizers such as Stochastic Gradient Descent
(SGD) [42] and SGD with momentum [43], use a constant
learning rate and other commonly used optimizers such
as Adam [44] have parameters that adjust the learning
rate. Whether a constant or adaptive learning rate, it is
difϐicult to efϐiciently traverse the loss landscape as well
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as avoiding getting stuck in a localminimumor even ‘step‑
ping’ out of a minimum. An easy way to alter the ϐinal ac‑
curacy of a network is by modifying the LR value through
the use of an LR scheduler. Learning rate schedulers ad‑
just the LR as a function of at least one variable, such
as number of epochs and/or derivative of validation loss.
LR schedulers can be put into categories: ϐixed, decaying,
and cyclical [45]. Fixed LR schedulers imply the LR never
changes, which can prevent the network from converg‑
ing into a local minimum. Decaying LR schedulers lever‑
age various decay functions for LR annealing. Decaying
LRs anticipate the optimization function will need to take
larger steps in the beginning to locate a sufϐicient mini‑
mum, then smaller steps to ensure it locates theminimum
and does not escape. Cyclical LR schedulers periodically
vary the LR within a speciϐied range. Cyclical LRs lever‑
age the properties of decaying LR schedulers and inter‑
mittently take larger steps to determine the robustness
of the minimum reached [46].
In the PyTorch framework there is a unique, adaptive
learning rate scheduler called Reduce LR on Plateau. This
methodoperates by tracking the validation loss in thenet‑
work and by recording for how long the validation loss
does not improve, governed by a parameter called pa‑
tience. No improvement implies no discovery of a local
minimum. Reduce LR on Plateau will reduce the learning
rate by a set factor to stop jumping over local minima and
seek improved accuracy.

4. METHODS

In this competition we began from the neural network
provided by the competition and (1) quantized the
weights of the network prior to training, (2) implemented
a learning rate scheduler, and (3) performed neural net‑
work pruning.

4.1 Neural network architecture
MobileNets are extremely popular in edge applications
of deep learning. Recent work analyzing the effects of
quantization on MobileNets saw drastic ϐluctuations in
the dynamic range and trouble matching the distribu‑
tions between channel‑wise and layer‑wise distributions
in depth‑wise separable CNNs [47]. These issues lead
to greater degradation as MobileNets were increasingly
quantized as well as greater distributional shift as infor‑
mation propagated through the network. The authors ex‑
perimentally showed there is less error due to quantiza‑
tion in traditional CNNs, like VGG‑style networks, com‑
pared to depth‑wise separable CNNs, like MobileNet.

Due to these ϐindings, we decided to utilize the provided
VGG‑style architecture shown in Fig. 1 because of the
opportunity to further quantize the network to improve
the normalized inference cost while mitigating accuracy
losses.

Fig. 1 – VGG‑style architecture provided by the competition. k denotes
the kernel dimension, ch denotes the number of channels, and the num‑
ber in the parenthesis for the dense layers indicates the number of out‑
put nodes.

4.2 Network quantization
The precision of the input, weights, and activations are
determined by three different parameters: input_bits,
w_bits and a_bits, respectively. By default these were
all set to eight and were equal for all layers of the net‑
work. We changed the precision of these parameters to
four (int4) for all layers of the network.

4.3 Training paradigm
In this work, the Adam optimizer was used with an initial
learning rate of 10−3. Reduce LR on Plateau was used in
order to help our model ϐind a better local minima as we
pruned and quantized the model. The model was trained
on an NVIDIA Quadro RTX 4000 GPU, with a batch size of
1024 and an upper bound of 50 training epochs. Addi‑
tionally, there was an upper bound of 20 pruning epochs.

4.4 Network pruning
In this competition, we test a well‑established neural net‑
work pruning called Iterative Magnitude Pruning (IMP)
as well a novel pruning method we call Feedback Mag‑
nitude Pruning (FMP). All pruning was L1 unstructured
which was advantageous to the inference cost shown in
Equation (1).

4.4.1 Iterative magnitude pruning
When using Iterative Magnitude Pruning (IMP) to prune
our quantized architecture, following the advice of the au‑
thor of [48], we set the pruning percentage, 𝑝, to be 20%.
In traditional IMP, the model is trained until convergence,
then pruned. To speed up the pruning process, we imple‑
menteda criterionwhere themodelwouldpruneonce the
accuracy was at least 56%, the minimum criteria for the
competition. Both the traditional version of IMP (train
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until convergence) and the IMP with the accuracy crite‑
rion were tested in this competition. In both versions of
IMP, 𝑝 does not change and the models are not reinitial‑
ized after each round of pruning. The pseudocode for our
implementation of IMP, with the accuracy criterion, is in
Algorithm 1.

for number of pruning epochs do
for number of training epochs do

Train model;
Evaluate model;
if model accuracy ≥ 56% then

Save model;
Prune 20% of the weights;
Break

end
end
if model accuracy < 56% then

Break
end

end
Algorithm 1: IMP with accuracy criterion

The number of pruning epochs is set to a large number 
and is not a limiting factor in the pruning process.

4.4.2 Feedback magnitude pruning

Pruning techniques typically specify desired spar‑ 
sity/compression ratios beforehand or keep the pruning 
rate constant for a speciϐic number of pruning epochs. 
Some work regarding changing the level of sparsity as 
a function of a variable [49, 50, 51] has focused on re‑ 
moving then reallocating the weights later in the training 
process. In this section we propose a pruning rate sched‑ 
uler called Feedback Magnitude Pruning (FMP) which 
leverages feedback to adjust the pruning rate according 
to a function of a speciϐied criterion without needing 
to train an unpruned model simultaneously. Similar 
to existing learning rate schedulers like Reduce LR on 
Plateau, FMP does not guarantee the next pruning rate 
nor the schedule by which the pruning rate is changed. 
Rather, FMP uses information regarding the status of a 
model with respect to a criterion how much to prune.

In this work, the pruning rate in FMP follows a decaying 
trajectory parameterized by a normalizing factor 𝑛 
which regulates the rate at which the initial pruning 
percentage 𝑝 decreases. In this speciϐic implementation 
of FMP, 𝑝 is allowed to decrease until it is less than 5%. 
This threshold was chosen to save computation time and 
due to dimin‑ ishing improvement in normalized 
inference cost. Pseu‑ docode of our implementation of 
FMP for this competi‑ tion is shown in Algorithm 2.

The pruning percentage 𝑝 is user deϐined as is 𝑛,  the di‑ 
visor which will dictate how rapidly 𝑝 will reduce. The 
authors initialized 𝑝 = 0.2 and 𝑛 = 2.

while 𝑝 ≥ 0.05 do
𝑖 = 0;
while i < number of training epochs do

Train model;
Evaluate model;
if model accuracy ≥ 56% then

Save model;
Prune weights, per 𝑝 andmethod;
𝑖 = 0

end
else

𝑖 += 1
end

end
if model accuracy < 56% then

𝑝 = 𝑝/𝑛;
Load most recent 56% accurate model;

end
end
Algorithm 2: Feedback magnitude pruning

Extending Equation(2), the total compression ratio is

𝜂 =
𝑅

∏
𝑟=0

1
(1 − 𝑝𝑟)𝑒𝑟

(3)

where 𝑝𝑟 is the pruning rate as governed by 𝑝 and 𝑛, 𝑅 =
𝑓𝑙𝑜𝑜𝑟(log𝑛(100 ∗ 𝑝)) + 1 is the total number of pruning
rates, and 𝑒𝑟 is the number of pruning epochs at a given
pruning rate. Equation (3) is an approximation because a
percentage does not always result in an exact number of
nodes/connections to prune, i.e. 20% of a network with
11 eligible elements.

5. RESULTS
5.1 IMP results
Two implementations of IMP were compared against one
another, one with the accuracy criterion and one that
trained for the deϐined number of training epochs. We
compare the number of pruning epochs achieved before
yielding a network below 56% accurate as well as the
compression ratio 𝜂.
As we see in Table 1, the accuracy constraint enabled us
to achieve onemore pruning epoch, ten compared to nine.
This increased the compression ratio by nearly 25% from
7.451 to 9.313.

Table 1 – Comparison of IMP strategy

Strategy Prune Epochs 𝜂𝜂𝜂
Normal IMP 9 7.45

IMP w/ Accuracy 10 9.31

With our quantized network, we compared the reduced
bit operations and weight bits to that of the provided ar‑
chitecture in Table 2. Our pruning andquantizationmeth‑
ods resulted in a 96.97% and 94.53% reduction in the
number of bit operations and weight bits respectively.
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Table 2 – Comparison of original and IMP networks

Network Bit_Ops (%) Bit_Mem (%) Cost
Baseline 100 100 1
IMP 3.025 5.468 0.0424

Using IMP, we were able to achieve a normalized inference 
cost of 0.0424 and an overall accuracy of 56.25%.

5.2 FMP results
Feedback magnitude pruning was tested on the same neu‑ 
ral network architecture seen in Fig. 1, however the num‑ 
ber of bits in the inputs, activations, and weights was var‑ 
ied. Table 3 shows network architectures with greater 
numbers of bits were able to be further compressed, how‑ 
ever these models did not achieve as low an inference 
score as the 4 bit FMP model, 0.0419, which beat the 4 bit 
IMP model and achieved second place. Table 3 shows FMP 
greatly increasing the ability for a network to be com‑ 
pressed. The 4 bit VGG network with IMP achieved a com‑ 
pression ratio of 𝜂 = 9.313, whereas the same network 
with FMP achieved a compression ratio of 𝜂 = 813. We 
also compare the full 8 bit version of the VGG model with 
FMP, and was able to compress it 5,821x and resulted in 
an inference cost of 0.0583.

Table 3 – Feedback magnitude pruning results

Bits 𝜂𝜂𝜂 Bit_Ops (%) Bit_Mem (%) Cost
8∗ 1 100 100 1
8† 5,821 6.177 5.493 0.0583
7† 5,821 4.836 4.806 0.0482
6† 3,072 4.429 5.059 0.0465
5† 1,621 3.506 5.175 0.0434
4‡ 9.31 3.025 5.468 0.0424
4† 813 3.046 5.351 0.0419

∗ Baseline model provided by ITU
† Feedback magnitude pruning
‡ Iterative magnitude pruning

In the bottom two rows of Table 3, trials utilizing 4 
bit quantization, the normalized inference cost did not 
change in proportion to the increase in compression as a 
result of using FMP. This stems from how the normalized 
inference cost was deϐined in Equation (1). The weight 
bits and bit operations are not proportionally reduced as 
the pruning is increased.
The accuracies of the 4 bit IMP network and the 4 bit FMP 
network were very similar, thus we report classiϐication 
results for the FMP network. In Fig. 2 we show the confu‑ 
sion matrix for the submission performed on the modu‑ 
lation patterns over all SNRs. In Fig. 3 we show the over‑ 
all accuracy of the trained model as a function of SNR. In 
Fig. 4, we show the accuracy of the model per modulation 
format, as a function of SNR.

Inspection of ϐigures 2 through 4 reveals overall classiϐica‑ 
tion behavior of the neural network. When averaged over 
all SNRs, the network has a difϐicult time distinguishing

Fig. 2 – Overall confusion matrix from the ITU Competition: Lightning‑
Fast Modulation Classiϐication with Hardware‑Efϐicient Neural Net‑
works.

Fig. 3 – Overall accuracy of the submission to the ITU competition, as a
function of the input SNR.

between 64‑QAM, 128‑QAM, and 256‑QAM, between the
AM‑SSB formats, and between the AM‑DSB formats. This
behavior makes intuitive sense because the high‑order
QAM formats are nearly analog in nature and exhibit rela‑
tively high SNR requirements for high accuracy. Other for‑
mats were readily identiϐiable: accuracy is nearly 100%
for formats of order below 16‑PSK. Some stand‑out ac‑
curacies include >90% classiϐication accuracy for 4ASK,
8QSK, and BPSK at SNR as low as 0 dB.

6. CONCLUSION

In this work, we detail our submission to the 2021 ITU
AI for Good Challenge: “Lightning‑Fast Modulation Clas‑
siϐication with Hardware‑Efϐicient Neural Network” and
showcase a proposed pruning technique called Feedback
Magnitude Pruning. Our submission demonstrates the
potential for simple quantization and learning rate strate‑
gies in combination with our novel Feedback Magnitude
Pruning technique. Our submission, compared to Itera‑
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Fig. 4 – Accuracy of the model, per modulation format, of the ITU com‑
petition submission, as a function of the input SNR.

tive Magnitude Pruning, achieved a normalized inference
cost of 0.0419versus 0.042467, yielded a compression ra‑
tio of 813 versus 9.3, and was awarded second place.

One of the outstanding issues in network compression,
speciϐically pruning, is understanding why the result‑
ing computational graph is of signiϐicance. Future work
from our group will be exploring the signiϐicance of
pruned neural networks as well as developing methods
to compress neural networks in a manner that allows re‑
searchers to understand why the remaining architecture
is of importance.

All code used in this work can be found at
https://github.com/ITU‑AI‑ML‑in‑5G‑Challenge/ITU‑
ML5G‑PS‑007‑Feedback‑Magnitude‑Pruning.
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