
AN EDGE ABSTRACTION LAYER ENABLING FEDERATED AND HIERARCHICAL ORCHESTRATION OF
CCAM SERVICES IN 5G AND BEYOND NETWORKS

Mauro Femminella1,2, Gianluca Reali1,2
1Dept of Engingeering, University of Perugia, Italy

2Consorzio Nazionale Interuniversitario per le Telecomunicazioni (CNIT), Parma, Italy

NOTE: Corresponding author: Mauro Femminella, mauro.femminella@unipg.it

Abstract – This paper shows a flexible orchestration solution for deploying Cooperative, Connected, and
Automated Mobility (CCAM) services in 5G and beyond networks. This solution is based on the concepts of
federation and hierarchy of orchestration functions. The federated approach is leveraged to cope with the
differentiated complexity operation when multiple network operators are considered, whereas the
hierarchical approach addresses the issue of jointly orchestrating multiple edge platforms in the network of
a single operator. In this complex orchestration architecture, the main contribution of this paper consists of
the design and implementation of an Abstraction and Adaptation Layer (AAL) for edge clouds, a new
component enabling a truly cooperative and coordinated orchestration between different edge systems,
characterized by appreciable experimental performance in terms of latency.

Keywords – Beyond 5G networks, CCAM services, delegation of orchestration decisions, federated
orchestration, hierarchical orchestration

1. INTRODUCTION

In recent years, the development of hardware and
software technologies that can be used in the design,
implementation and management of mobile
communication systems has produced new models
for service implementation and deployment.
Among these, the general model that is currently
characterized by a great momentum is that linked to
the use of Multi-access Edge Computing (MEC).
Essentially, it consists in making use of the
outermost portions of cloud networks to host
services that can benefit from the proximity
between their deployment site and the users who
use them. This concept can be applied to a
multiplicity of services, both fixed and mobile, as
witnessed by an intense research activity,
illustrated in a dedicated section of this paper.

This paper refers to the vehicular environment,
which promises truly disruptive innovations
compared to the services we commonly use [1][2].
In particular, we consider the so-called Cooperative,
Connected, and Automated Mobility (CCAM)
services. This restriction of the focus does not
correspond to a simplification of the issues to be
addressed. On the contrary, it significantly
complicates them, as appears from the different
research directions that have recently been
identified, as illustrated in the background section.

In order to offer CCAM services to vehicles, we
assume to rely on 5G and beyond (B5G)
technologies. In a B5G network, we can identify the
Radio Access Network (RAN), the core network
(5GC), including both control plane and User Plane
Functions (UPFs), and a transport network
interconnecting them. In this architecture, an edge
cloud offering MEC services is typically positioned
close to the RAN, in order to offer latency bounded
services to vehicles. To achieve the desired quality
from the deployed (vehicular) MEC services, edge
resources need to be managed by orchestration
functions [4], which are the main focus of this paper.
In fact, both network and computing resources in
5G/B5G are typically virtualized, and network
functions are offered as Virtual Network Functions
(VNFs) [39] running in both edge and core
environments, since this improves flexibility and
deployment agility. The entity managing the
lifecycle of such VNFs is standardized by ETSI under
the Network Function Virtualization (NFV)
Management and Orchestration (MANO) initiative
[38], and called NFV orchestrator (NFVO).

Since the main characteristic of the vehicular
environment is mobility, this calls for general
scenarios in which multiple network operators can
be involved. In particular, this is unavoidable in
cross-border scenarios, as in the so-called

ITU Journal on Future and Evolving Technologies, Volume 3, Issue 1, July 2022

©International Telecommunication Union, 2022
Some rights reserved. This work is available under the CC BY-NC-ND 3.0 IGO license: https://creativecommons.org/licenses/by-nc-nd/3.0/igo/.

More information regarding the license and suggested citation, additional permissions and disclaimers is available at:
https://www.itu.int/en/journal/j-fet/Pages/default.aspx

mailto:mauro.femminella@unipg.it

“corridors” defined in the framework of the trans-
European transport network [34]. In particular, our
work is framed in the project 5G CARMEN, which is
pursuing the experimental validation of CCAM
services through 5G networks over the European
highway corridor connecting Bologna (Italy) to
Innsbruck (Austria) to Munich (Germany), thus
crossing three countries with one bordering the
other two. The features that best describe the added
value of our orchestration solution include
federation in a multi-domain environment and
hierarchical orchestration inside the domain of
each Mobile Network Operator (MNO). In fact, since
edge computing/MEC is characterized by the
proximity of network and computing resources to
the access network (i.e., the 5G RAN in this scenario),
it is necessary to deploy multiple edge/MEC
clusters inside the network of an MNO, each one
close to a group of gNodeBs. ETSI defined a
standard architecture for managing MEC resources,
including an orchestration function [37].

In a B5G network, a further cloud deployment, with
the relevant orchestration function, is typically
required to manage private cloud resources used to
run the 5GC, as well as those application services
not having critical latency requirements and thus
not executed at the network edge. This additional
orchestration function may not only manage
centralized cloud resources, but also orchestrate
service execution in different edge clouds by
interacting with MEC orchestrators, through a
hierarchical orchestration architecture. Indeed,
ETSI provided an architectural solution for
orchestrating Network Services (NSs) composed of
VNFs running in different domain [36], including
also the relevant interface specifications [35]. It
defines two roles: the composite orchestrator
(NFVO-C), in charge of issuing requests, and the
nested peer orchestrator (NFVO-N), offering
services. In short, the NFVO-C invokes NS lifecycle
management operations towards the NFVO-N. The
resulting NS is a composite instance, including a
number of nested ones. In principle, this solution
can be used for both federated and hierarchical
orchestration use cases. However, it makes use of a
continuous RESTful request/response pattern for
requesting/granting any (even trivial) operation,
creating a really significant communication burden
on peer NFVOs. In addition, current orchestrators,
such as the well-known ETSI Open Source MANO
(OSM) [41], do not still implement these functions

and relevant interfaces. Finally, the ETSI solution
may be critical for services needing latency
bounded orchestration operations, such as the
horizontal scaling of a VNF instance in another MEC
node, possibly in another domain, due to the need
of obtaining a grant from the NFVO-C for
implementing local actions.

In order to address these challenges, the 5G
CARMEN project proposes a flexible orchestration
solution, based on the concepts of federation and
hierarchy, and leveraging a suitable delegation of
the orchestration decisions [30], so as to involve a
high-level orchestration function only in critical
tasks. In order to deliver CCAM services associated
with the pilot of selected use cases, 5G CARMEN
goes beyond the validation of functional and
operational integrity for the orchestrated edges. It
also assesses the contribution of the enabling
components for cross-border and multi-domain
edge service orchestration to reduce CCAM service
interruption, latency and packet loss during
automotive mobility.

Paper contribution: The contribution of this paper,
framed in the overall 5G CARMEN architecture, is
the design and performance evaluation of a
component named Abstraction and Adaptation
Layer (AAL) for edge clouds, implementing the
functions to empower real world MEC orchestrators
with federated and hierarchical capabilities. The
AAL is an enabler for the 5G CARMEN orchestration
architecture, allowing a truly cooperative and
coordinated orchestration between different MNOs’
edge systems for performance improvement in
terms of latency and packet loss reduction. We
present the guiding principles that have driven the
design of the AAL, its detailed behavior and the
exposed interfaces, as well as an experimental
validation of its performance, executed on real edge
nodes in different MNOs participating in the 5G
CARMEN experimentation campaign.

This paper is organized as follows. Section 2
includes a global picture of the background
research on the considered subject and related
work in the field, especially those related to multi-
domain and/or hierarchical orchestration. Section 3
illustrates the overall system architecture, focusing
on the design of the AAL. Section 4 presents the
results of an experimental campaign carried out on
real nodes, and finally Section 5 reports our
concluding remarks.

© International Telecommunication Union, 2022 59

Femminella et al.: An edge abstraction layer enabling federated and hierarchical orchestration of CCAM services in 5G and beyond networks

2. BACKGROUND AND RELATED WORK

2.1 Background material

The background research related to introducing
MEC-based solutions in vehicular networks is huge.
Although this section may not include all existing
proposals as in a comprehensive review document,
we identify the main research directions and
mention significant contributions for all of them, in
order to give readers a global picture of the state of
the art on the subject.

Regarding the user plane, a considerable research
effort has been devoted to ensure low latency and
continuous delivery, through the introduction of
compute and storage resources at the MEC of
mobile networks, and proactive service migration.
This is the key aspect for providing latency-
sensitive vehicular applications. The paper [3]
shows a proposal for reducing the latency observed
by users accessing services deployed in MEC. It is
based on migrating the service instances to the edge
node that are located nearest to users. The
proposed solution makes use of Convolutional
Neural Networks (CNN) and genetic algorithms for
mobility prediction. Similarly, in [6] the authors
propose an orchestration algorithm for
orchestrating a virtualized infrastructure accessible
by a large number of users. Also in this case,
prediction of the user movement is used to
proactively place user instances in MEC. More
sophisticated prediction, based on heterogeneous
information including cartograpy and inference
from a high volume of past measurements is
proposed in [8] and [9]. The use of Recurrent Neural
Networks (RNNs) is proposed in [11] to predict
network-wide vehicle patterns in urban
environments, using claimed similarity between
trajectory prediction and language modeling. Again,
[12] shows an algorithmic proposal based on CNN,
modeling vehicle trajectories as images. They
achieve interesting prediction results, showing also
the capability of managing two-dimensional
trajectories at different spatial scales.

In addition to properly estimating user trajectories
to guide content migration, a lot of research has
been done on the policies and algorithms for server
migration and selection. An interesting comparison
is shown in [27]. In addition to assessing the need
for service migration in a vehicular environment,
different metrics used for server selection are
compared, namely distance-based MEC, load-based
MEC and their combination.

Although the migration of services, or their status,
is essential for their usage in a vehicular
environment, the related functions may have a
significant cost, as highlighted in [13]. The authors
propose a mobility-aware online service placement,
which aims at achieving a balance between latency
and migration cost. The importance of this balance
increases with the frequency of service migrations,
the burden of which could degrade the perceived
Quality of Experience (QoE).

A further aspect to be considered in the usage of
MEC resources is energy efficiency. This issue is
addressed in [16], where the authors propose a
solution for offloading traffic from resource-
constrained vehicles to a MEC platform and
integrate MEC-enhanced vehicular networks with
Non-Orthogonal Multiple Access (NOMA)
technology for improving the efficiency of the
available spectrum. Computation offloading
combined with resource allocation has recently
stimulated many research contributions aiming to
optimize offloading decisions [20][21][22][23].

In operation, the situation is further complicated by
the heterogeneity of the MEC environment
[17][18][14]. Combining heterogenous
infrastructures, resources, and technologies
available in different MEC sites could determine
significant challenges for defining orchestration
policies in order to achieve and preserve the
desired QoE over time.

The scope of the orchestration functions is another
aspect determining the exploitability of research
results in a complex real environment. This is
indeed the aspect on which this paper provides the
most significant research contribution. Some recent
papers focus on providing orchestration services
throughout multiple domains. The different
approaches are characterized by the organization of
the individual orchestrators that cooperate in
delivering the overall service. The investigated
solutions include hierarchical organization, cascade
organization, or a distributed one. A comprehensive
review of such proposals can be found in [19]. Our
contribution to this problem includes service
federation and possible delegation, that are shown
to improve efficiency and flexibility of inter-domain
orchestration functions.

In addition to contributing to the identification of
technically valid solutions, it is necessary to make
the proposals operational by making them
compliant with orchestration reference standards.

© International Telecommunication Union, 202260

ITU Journal on Future and Evolving Technologies, Volume 3, Issue 1, July 2022

In this regard, the strategic importance of resorting
to 5G services for implementing advanced vehicular
services is addressed by [15]. The authors highlight
the superiority of 5G features in supporting Vehicle-
to-Everything (V2X) networks in comparison with
previous standards, such as IEEE 802.11p. They
also observe that the suitable network support to
vehicular applications, based on roadside unit
connectivity, can significantly benefit from an
automated discovery of MEC-based virtualized
service components. Again with regard to widely
recognized standards, the ETSI standardization
activities identify the MEC features needed to
support V2X applications and identify the
requirements for including new features and
functions [2]. In this regard, it is worth mentioning
the technologies and related standards that are
typically put in place in conjunction with MEC
orchestrators to make them effective. In particular,
SDN and NFV have been shown to be very effective
to deploy management automation fuctions when
dealing with delay-sensitive vehicular applications
[4]. In [14], the authors depict a closed-loop
lifecycle management of network services, and map
their proposal over the ETSI NFV MANO
architecture. This proposal includes MEC-oriented
key features for network service and resource
orchestration in vehicular networks. Similarly, the
papers [25][26] include a contribution related to
introducing monitoring functions for control
and/or data planes into the ETSI NFV architecture,
designed to enhance 5G services. Additional
benefits deriving from SDN and NVF in operating
vehicular networks include service customization.
For this purpose, the paper [24] shows a proposal
of introducing the so-called function-specific
managers and service-specific managers,
configured by VNF descriptors and NS descriptors.
They are used to integrate MANO functions for
orchestrating services and resources in a custom
manner. As for the implementation of the VNFs,
they can be realized not only using the classic
approach based on Virtual Machines (VMs), but also
in a containerized environment, managed by
Kubernetes [52]. A computational efficient scheme
to run applications, running on top of containerized
settings, is serverless computing [53]. It could be an
interesting option for deploying network functions
and vehicular services in MEC nodes.

Finally, it is worth mentioning a comparison of two
popular orchestration tools shown in [14]. An
extensive performance analysis of Open Baton and
Open Source MANO is shown. The comparison is
based on instantiation delay, responsiveness, and
isolation features.

2.2 Related work

When more than one MNO is involved, it is possible
to envisage two main approaches.

In the first one, multiple MNOs federate together by
using a top-layer orchestrator. It does not really
orchestrate any resource, but only redirects service
requests to one of the MNO networks, or builds
virtualized connections between them in order to
create a composite NS with VNFs running in the
private clouds of multiple MNOs. Thus, the
federation is built throught an additional, inter-
MNO, vertical orchestration layer. In this way, it is
possible to avoid any direct interaction between the
NFVOs of the different MNOs, which communicate
through standardized interfaces like ETSI GS NFV-
SOL005 [40] only with the top layer NFVO [32]. For
instance, this is the approach adopted in the 5G-EVE
project [29]. In order to mask this complexity to
(vertical) user of operators’ cloud services,
abstraction layers are commonly used to provide a
simplified view of a service, the interconnections of
its components, as well as the relevant
descriptors [28].

The other approach is based on a horizontal
federation [33], in which the NFVOs of different
MNOs set up distributed NSs across their private
clouds using the standardized ETSI solution, thus
communicating on the so-called Or-Or reference
point [35]. However, as already mentioned in the
Introduction, this approach suffers from increased
latency and excessive communication burden on
peer NFVOs, and thus is difficult to adopt in
practical settings.

In addition, when the supported services have strict
requirements in terms of latency and packet losses,
often MNOs resort to the MEC approach, implying a
number of edge clouds distributed in the MNO’s
network. In turn, also this deployment raises a
number of issues. A first and simplistic solution
could be to deploy just a centralized NFVO, which is
able to manage not only a central private cloud, but
also multiple remote edge clouds. They are handled
as multiple Virtualized Infrastructure Managers
(VIMs), each one deployed in an edge cloud. A VIM
is an entity responsible for controlling and
managing the NFV infrastructure (NFVI). It consists
of physical compute, storage, and network
resources. However, this would increase the
complexity of operations and management burden
of the NFVO. As an alternative solution, the central
private cloud and all the distributed edge clouds
could be managed by a single VIM, in turn

© International Telecommunication Union, 2022 61

Femminella et al.: An edge abstraction layer enabling federated and hierarchical orchestration of CCAM services in 5G and beyond networks

orchestrated by the central NFVO. Again, the
communication and complexity burden required to
the VIM to handle a set of distributed computing
cluster would be not acceptable. This led ETSI to the
definition of a self contained solution for MEC
deployments, including its own orchestrator [37].
However, the ETSI solution does not solve the issue
of deploying services made of components
distributed on multiple edge nodes and a central
cloud, which is instead a quite popular setting,
especially in dynamic environments as those
offering CCAM services.

The 5G CARMEN architecture addresses this issue,
by proposing an architecture that adopts
hierarchical orchestration within the infrastructure
of an MNO, and a horizontal federation between
different MNOs, as proposed in [31]. In addition, in
order to solve the issue of horizontal federation
realized through the Or-Or reference point, it
adopts a form of delegation of orchestration
decisions [30]. This delegation principle can be
implemented both intra-domain, that is between
the high level NFVO and the MEC NFVOs, and inter-
domain, that is between the MEC NFVOs operated
by different MNOs, through previously agreed
policies at the Or-Or level.

3. ORCHESTRATION ARCHITECTURE

Since the access network is implemented through
B5G technology, edge clouds have to be connected
to 5G user plane and control plane functions. The
design principles of the 5G CARMEN system
architecture can be summarized as follows.

• Optimized lifecycle management of distributed
CCAM service instances. The orchestrated 5G
platform supports an automated Lifecycle
Management (LCM) of NS instances, including
operations such as dynamic service
instantiation, scaling, migration,
update/reconfiguration, and termination.

• Hierarchical and distributed edge orchestration.
The orchestrated edge platform is capable of
performing a flexible and agile service
orchestration in a hierarchical and distributed
manner, by deploying top-level service
orchestrators in different administrative
domains, and edge-level orchestrators in
multiple edge domains within each MNO
network. With such a setting, services and
associated resources can be managed locally
(i.e., in edge domains), but different

orchestration layers collaborate to optimize
the outcome of the orchestration operations. A
design according to such objective is in line
with existing solutions for end-to-end
orchestration under the control of top-level
orchestrators, while enabling direct edge-to-
edge orchestration, which is considered of
particular value for the automotive industry for
its ability to reduce latency of orchestration.

• Delegation of MANO operations in a federated
environment. In order to optimize the
performance of the MANO operations, a key
element is the introduction of the concept of
Management Level Agreement (MLA) [30]. It
enables the delegation of MANO
tasks/operations between the top-level and
edge-level orchestration systems (intra-
domain), and between the peering edge
platforms in the same and/or different
domains (inter-domain). MLA enables the
offloading of LCM operations from the top level
to edge level orchestrators. Such a negotiated
agreement determines the operations and
functions that the edge-level entities are
allowed to perform within their edge
boundaries, thereby executing LCM operations
on the relevant service applications and their
respective resources without asking for
permission from the top-level entity. The
prerequisite for establishing cross-domain
federation is an MLA negotiated between
administrative domains, i.e., relevant top-level
NFVOs. Developing federation also at the edge
level enables the interworking of MEC
platforms, to provide a cross-edge on-demand
management and orchestration in a
collaborative manner, while enabling and
maintaining low-latency edge-to-edge CCAM
service/session continuity.

• Coupling of 5G UPF and MEC data plane.
Cooperation between the edge platform with
the overall 5G architecture is mandatory for
complete end-to-end system management and
control. This allows enforcing data plane traffic
rules aligned with policies and configurations
associated with mobile subscribers in both the
UPF and the MEC platform. This allows
enabling (i) traffic steering within the MEC
programmable data plane for execution of
CCAM services, (ii) traffic forwarding towards
a different MEC platform, and (iii) relocation of
the UPF of a mobile subscriber due to vehicle
mobility.

© International Telecommunication Union, 202262

ITU Journal on Future and Evolving Technologies, Volume 3, Issue 1, July 2022

• Slicing. The orchestrated edges platform can
host and manage services from different
vertical players acting as tenants for the
platform, and isolating them by adopting
slicing techniques enforced by edge
orchestration systems.

3.1 Overall system architecture

Fig. 1 shows the key components of the 5G CARMEN
architecture. It extends and interfaces the MNOs’
centralized service orchestration system (NFV-SO),
which is in charge of implementing top-level
orchestration functions, with the edge
orchestration system. The latter is composed of the
NFV Local Orchestrator (NFV-LO) and the MEC
Application Orchestrator (MEAO), which are
connected through the Mv1 reference point in
alignment with ETSI GS MEC 003 specification [37].
The MEAO is responsible for the LCM of CCAM
services running on the MEC hosts of the edge
cluster, while the NFV-LO is responsible for the
management of the VNFs hosted on the NFVI of the
MEC platform. This edge orchestration system
interfaces with the NFV-SO via the newly defined
Mv1’ reference point, which is an extension of the
standard Mv1 reference point. In fact, as the MEAO
takes an orchestration decision on CCAM services
and communicates them to the NFV-LO via Mv1, in
the same way the NFV-SO takes a high-level
orchestration decision on deployed services and
communicates them via Mv1’ to the NFV-LO. The
NFV-SO supports the Or-Or reference point for
interconnecting and federating with other MNOs’
NFV-SOs in alignment with the ETSI NFV-IFA 028
[36] and ETSI NFV-IFA 030 [35]. The NFV-LO
executes local orchestration tasks following the
NFV-SO’s directives, which are defined in MLA [6]
and exposed to the NFV-LO via the Mv1’ reference
point. The MLA is a concept that enables granting
operational autonomy from a top-level
management entity to an edge-level one. In the 5G
CARMEN architecture, this concept of delegation is
applied to resource orchestration. The MLA allows
the NFV-SO granting some degree of autonomy in
orchestration operations to the underlying NFV-LO.
This means that some orchestration operations,
such as scaling, can be carried out by the NFV-
LO/MEAO without asking any permission from the
controlling NFV-SO.

The way to implement the MLA concept consists of
onboarding an MLA descriptor (a simplified
example can be found in [30]) from the NFV-SO to

the NFV-LO for each service type before
instantiating any instance of the service itself. This
descriptor is uploaded to the NFV-LO via a suitable
interface over the Mv1’ reference point. In this way,
the NFV-LO is aware of the operations that it can
execute autonomously and of those that need to be
authorized by the NFV-SO on request, thus speeding
up and easing orchestration tasks at the edge. This
autonomy may extend also to include LCM
operations carried out in cooperation with other
edge nodes, both intra-domain and inter-domain,
specifying for each service the permitted operations
and the potential peer edges. In any case, the NFV-
SO must be kept aligned with what happens in edge
nodes. This means that a notification mechanism
has to be implemented at the Mv1’ reference point.

Finally, a new Lo-Lo reference point was introduced
to enable the peering between NFV-LO instances, in
order to enable direct and low-latency management
of multi-domain and multi-site services in the edge
domains, bypassing the top-level NFV-SO
orchestrators, as specified by MLA. The design of
the Lo-Lo reference point [31] inherits from the Or-
Or reference point between the NFV-SOs [35].

The overall system architecture defined within the
5G CARMEN project is shortly described in what
follows and illustrated in Fig. 1, focusing on
orchestration aspects:

• NFV-SO: Represents the top-level orchestrator
of the multi-tier orchestration system of the
platform running CCAM services. The
operational scope of this orchestrator includes
the management of the entire virtualized
infrastructure of an operator domain. In
particular, it is responsible for the management
and orchestration of application services from
multiple tenants. It has the additional task of
enabling federation with the NFV-SOs of other
administrative domains. It maintains a global
repository of the application packages and
software images received through the
northbound interface on the Os-Ma-nfvo
reference point upon onboarding requests.

• NFV-LO/MEAO: The combination of the NFV-
LO and the MEAO realizes the local edge
orchestrator, which represents the second tier
of the multi-tier orchestration system. The
operational scope of this orchestrator includes
the designated clusters of MEC sites. A 1:N
relationship exists between the NFV-SO and the
local orchestrator.

© International Telecommunication Union, 2022 63

Femminella et al.: An edge abstraction layer enabling federated and hierarchical orchestration of CCAM services in 5G and beyond networks

• The Edge Controller (EC) acts as a VNF manager
(VNFM) for the management of the NFVI
resources, on top of VIM, as per the ETSI MEC
specification [37]. The EC represents a binding
element between the technology specific edge
platform (realized through Kubernetes clusters
[52] in the 5G CARMEN) and the relevant
orchestration layer, realized by NFV-LO/MEAO.
The EC combines the features for edge platform
management, VNFM, as well as additional
control enablers, such as connectivity
management of both edge platform applications
(CCAM services) and Value Added Services
(VAS), slice management, and coupling with the
5G system via 3GPP Naf reference point.

• CCAM services: service functions or micro-
service instances running on the MEC Platform.
Those services can be persistent, such as
maneuvering services, or on demand, with
situation-aware or dynamic mission-critical
requirements.

• MEC Value-Added Services (VAS): services
running on the MEC platform to provide value
added functions to other CCAM services.
Examples include the Radio Network
Information Service (RNIS) [48], location
services, as well as publish/subscribe AMQP
broker, extensively used in 5G CARMEN
experiments to distribute vehicular data to
services.

3.2 Abstraction and Adaptation Layer (AAL):
functional view

The NFV-SO is the orchestrator that runs in the core
of the MNO in order to manage and orchestrate the
application services for the MNO’s tenants at a
global infrastructure level. The NFV-SO manages
and coordinates the LCM of the CCAM services
deployed in the edge system by interacting with the
edge level orchestration system (NFV-LO/MEAO)
over interfaces defined over the Mv1’ reference
point. With the information retrieved through this
reference point, the NFV-SO has an abstract view of
the orchestrated 5G edge platforms running below.

The Mv1’ reference point on the MEC side is
managed by the Abstraction and Adaptation Layer
(AAL) depicted in Fig. 2. It is the intermediate layer
that enables the communication among
orchestrators implementing incompatible APIs. It is
deployed on the top of the NFV-LO, abstracting its
features and making it compliant to the standard
ETSI GS NFV-SOL005 [40], to simplify the
operations at the NFV-SO level. Thus, it is the
enabler of the orchestration functional split,
allowing the NFV-SO to be unaware of the
underlying NFV-LO proprietary APIs. This
abstraction is provided by means of an Adaptation
and Abstraction Module (AAM).

Fig. 1 – 5G CARMEN system orchestration architecture

© International Telecommunication Union, 202264

ITU Journal on Future and Evolving Technologies, Volume 3, Issue 1, July 2022

It masks the features and semantics of the
orchestrators running in the edge orchestration
layer, i.e., the NFV-LOs, and runs in the edge sites
together with it. This enables the NFV-SO to carry
out orchestration operations that are independent
and transparent to those specific of the MANO
platform running in edge nodes. Thus, the AAM
performs the necessary adaptation of the interfaces
over the Mv1’ reference point between the different
types of the orchestration system employed at the
NFV-SO and the NFV-LO/MEAO. As mentioned
above, the north-bound interface of the AAM over
the Mv1’ reference point is compliant with the ETSI
GS NFV-SOL005 interface specification [40]. The
abstraction layer was developed to support not only
OSM, which (partially) implements the ETSI NFV-
SOL005 interface as northbound API [41], but also
other, possibly cloud-native, NFV-LO APIs. In more
detail, in the AAM we developed an adaptor also for
lightMANO [49], a lightweight, standard compliant
ETSI NFVO designed to nativelly run in a
Kubernetes environment [52].

Adopting a standard interface is a clear advantage
for decoupling the development of NFV-SO from
that of NFV-LOs, enabling to deploy different NFV-
LOs in different MEC nodes. In order to do so, the
AAM exposes a REST Application Programming
Interface (API) as Northbound API (NBI) on the
Mv1’. On this API, the AAM accepts and manages the
mandatory fields defined in the ETSI NFV-SOL005
APIs towards the NFV-SO. On the other end, on the
AAM SBI, it is compliant with the NBI exposed by the
underlying NFV-LO, which can be OSM or
lightMANO. Thus, the AAL is a functional entity
accomplishing multiple tasks. First, it provides an
adaptation between the REST call received on its
NBI and those available on the NBI on the
underlying NFV-LO, mapping different API URLs
between the two interfaces and adapting the format
of messages, when needed. For instance, in the case
of OSM, some NFV-SO REST calls received on the
Mv1’ reference point will be relayed almost directly
to the OSM, whereas for lightMANO there is the
need of REST calls translation to completely new
calls, with a mapping between different parameters
of message body. In addition, in some cases the AAM
also hides to the NFV-SO the details of how specific
operations are implemented, providing an abstract
view of the NFV-LO operations, and implementing
some functions when they are not provided at all by
the underlying NFV-LO. For instance, both OSM and
lightMANO do not support REST notifications,
which is instead defined in the ETSI GS NFV-SOL005

standard and necessary to support orchestration
operations in multi-domain scenarios. Thus, when
the underlying NFV-LO is OSM, the AAM is in charge
of retrieving NS-related information through
repeated polling on the OSM NBI. When dealing
with lightMANO, the AAM has to subscribe to an
AMQP Message Broker (MB) to retrieve
notifications about instantiated services on the
lower layer. In turn, a subset of this information,
retrieved via polling or subscription to an MB, has
to be forwarded to the NFV-SO according to the
agreed notification filters, acting as a client node
contacting the NFV-SO on its callback URI, as
specifed on ETSI GS NFV-SOL005 [40]. Thus, the
presence of the AAL allows decoupling the design of
the orchestrator used as the NFV-LO from its
adoption in the overall orchestration architecture
used in 5G CARMEN.

Finally, the AAL enables the enforcement of the MLA
descriptor from the NFV-SO to the underlying NFV-
LOs, enabling the formalization of autonomous
operations that can be executed by the NFV-LO
without affecting upper layers for any further
permission requests. The delegation allows also the
NFV-LO to execute NS instantiation/termination
operations on cross-border domains, establishing
the horizontal Lo-Lo interface with relevant peer
NFV-LOs. This descriptor includes also the
definition of the scaling policies of each NS instance.

To sum up, the usage of OSM as the underlying NFV-
LO is intended for orchestrating a core MNO cloud,
whereas a simpler and lightweight NFV-LO, such as
lightMANO, are designed for usage on edge nodes.
The combination of NFV-SO and AAM allows
managing a hierarchy of generic NFVOs, each one
with its target usage environment. If some functions
are not provided by the underlying NFV-LO, it is the
AAL that takes care of them.

Fig. 2 – The AAL role in intra-domain operations

© International Telecommunication Union, 2022 65

Femminella et al.: An edge abstraction layer enabling federated and hierarchical orchestration of CCAM services in 5G and beyond networks

Fig. 3 – Scheme of the edge entities composing the orchestration function split running on Kubernetes cluster.

From a functional point of view, the abstraction
layer relies on a persistence layer to abstract the
functionalities specified by the ETSI standard and
not implemented in the underlying NFV-LO. The
persistence layer is provided by deploying a
dedicated database along with the Mv1’ adaptation
layer (Fig. 3). Below we report the main abstract
operations that rely on the persistence layer:

• ETSI VNF/NS descriptors onboarding and
querying, a feature not necessarily
implemented in the underlying NFV-LO. For
instance, lightMANO is not compliant with
ETSI/OSM descriptors and instead it uses a
helm-chart to describe orchestrated services.
Thus, onboarded descriptors are stored in the
Mv1’ internal DB and the parameters defined
therein are processed to complete some
preliminary tests, such as the availability check
of the relevant helm-chart on the NFV-LO side
and for configuring the NS instantiation. In the
end, the descriptors onboarding is a feature
exposed by the abstraction layer on behalf of
the NFV-LO. Since the latest versions of OSM
support the usage of Kubernetes cluster to
implement VNFs (KNFs), we used this option in
our descriptors to ease the mapping towards
helm-charts used by lightMANO.

• NS creation/deletion operations are exposed
towards the NFV-SO, which is expecting at first
to create the NS, and then to instantiate it, as
defined by OSM/ETSI NFV-SOL005 APIs. This
operation is not supported by lightMANO,
which instead instantiates directly its
applications (Apps). Thus, the creation
operation consists in the creation of the NS
entry in the internal database, according to the
body parameters enclosed in an OSM compliant
request. A unique ID is then returned to the
calling NFV-SO, enabling the lifecycle
management of the created resource. Similarly,
the NS deletion is an abstract feature that
involves the Mv1’ database only, avoiding the
interaction with the lower layers. The removal
of the entity from the DB is allowed on the
NOT_INSTANTIATED NS only, which means
that the resource is not running anymore on
the lower layers. Thus, the AAM has to
implement a state machine for handled NS
instances. In addition, since lightMANO does
not support services made of multiple apps, it
has to keep the mapping between the VNFs
composing a service and the relevant NS.

• MLA onboarding: The AAM stores locally and
then forwards the MLA descriptor to the NFV-
LO. In case of an NFV-LO that is not compliant

© International Telecommunication Union, 202266

ITU Journal on Future and Evolving Technologies, Volume 3, Issue 1, July 2022

with the MLA, such as OSM, the AAM will
manage the relevant permissions towards the
NFV-LO underneath.

3.3 AAL supported operations

The Mv1' reference point is exposed by the AAM and
instantiated between each NFV-LO and its “parent”
NFV-SO. Its scope is limited within the same
operator’s domain. However, in case the underlying
NFV-LO cannot handle the Lo-Lo interface, the
extension to support it and the relevant MLA
permissions on behalf of the edge orchestration
underneath would be straightforward. This
reference point is primarily designed to:

• Enable the interaction between multiple
decentralized orchestration functions. This
implies North-South (and potentially East-
West) interactions in case of orchestrators’
hierarchy.

• Support the provisioning of management
autonomy to lower orchestration domains of
an orchestration hierarchy.

• Support the LCM of services in a multi-domain
environment.

The Mv1’ reference point is unique to the
orchestrated platform for CCAM, thus an
appropriate initialization is required to implement
the orchestration functional split. This procedure is
called bootstrap in the following list.

The Mv1’ reference point is primarily used for the
NS/VNF package management between the global
package repositories and the local package
repositories, as well as for carrying out the main NS
LCM operations in the 5G edge platform:

• Create/Instantiate NS: ETSI NFV-SOL005
compliant operation, leading to the creation of
an NS instance.

• Scaling NS: request to scale an already
instantiated NS, likely on a different edge site.

• Terminate/Delete NS: ETSI NFV-SOL005
compliant operation, leading to the deletion of
an NS instance.

• Notification of NS instance updates: ETSI NFV-
SOL005 compliant notifications towards the
NFV-SO to update it about some parameters
related to the running instances.

In addition, the Mv1’ is the reference point over
which the MLA parameters are negotiated to
determine the scope of the management autonomy

that the NFV-SO can delegate to the NFV-LO.
Moreover, this reference point also exposes
interfaces that enable the NFV-SO not only to
monitor the performance and fault events of the
resources within the NFV-LO domain, but also to
monitor the compliance of the MLA agreement. It
should be noted that the NFV-SO has full
administrative access of the entire management
domain and can support and/or overrule the
management decisions of the NFV-LO.

3.3.1 Bootstrap

The Bootstrap operation is the very first operation
to be executed after the AAM initialization
(see Fig. 4). At this time (message 1), the AAM
knows only the public endpoint of the NFV-SO and
the endpoint of the local MB, both defined in its
configuration file.

At the beginning of the bootstrap phase, the AAM
forwards a subscription request to some specific
topics on the local MB. Altough this operation is part
of the bootstrap phase, it is not strictly related to the
message chain described below. This means that it
can be initialized at any time without affecting the
vertical registration sketched in Fig. 4. The
underlying NFV-LO, performing a periodic polling,
detects the AAM availability and then transmits the
registration message (message 2) in order to
provide relevant information about its identity, its
network location (i.e., the endpoint in the
Kubernetes cluster), and the topological
coordinates of the radio coverage it manages in
GeoJSON format.

The AAM forwards this information towards the
NFV-SO (message 3), providing its public endpoint
in order to allow the NFV-SO to orchestrate the
underlying cluster below the Mv1’ interface. The
NFV-SO’s response (message 4) consists of its
unique ID. Provided information will be processed
by the NFV-SO to compile the MLA descriptor that
will be uploaded in a subsequent phase. Finally, the
AAM pushes the NFV-SO ID towards the NFV-LO
(message 5) in order to complete the vertical
registration phase.

As a final operation, which is not strictly related to
the registration phase, the NFV-SO transmits a
subscription on the Mv1’ reference point in order to
receive unsolicited notifications about instantiated
NSs. The request body contains subscription filters,
in order to define only a subset of messages, and the
callback URI that should be used by the AAM for the
transmission of relevant notifications. This
functionality is essential to enable low latency
orchestration operation via Lo-Lo reference point.

© International Telecommunication Union, 2022 67

Femminella et al.: An edge abstraction layer enabling federated and hierarchical orchestration of CCAM services in 5G and beyond networks

Fig. 4 – Bootstrap and registration of vertical layers

3.3.2 MLA onboarding/query/deletion

Since the MLA is not defined in the ETSI standard,
the AAM API was extended to support it. The MLA
descriptor, formatted by using the JSON encoding, is
pushed by the NFV-SO on the Mv1’ towards the
AMM, which forwards the descriptor to the NFV-LO.
The MLA is also stored in the local AAM DB for
handling the other NS-related operations. Any
further upload will result in an update of the MLA
on both AAM (internal DB) and NFV-LO.

In the descriptor retrieval operation, the NFV-SO
sends the information request to the AAM, which
forwards the request towards the NFV-LO, upon
proper translation of the request URI. The response
body returned by the NFV-LO is forwarded via Mv1’
towards the NFV-SO. The response body consists of
an array of MLA descriptors in JSON format.

As for deletion, the NFV-SO triggers this operation
on the Mv1’ reference point. In turn, the AAM
forwards the request to the NFV-LO. If no errors
occur, the AAM assumes that the NFV-LO has
successfully removed the content, and removes the
corresponding entry from its internal DB, providing
proper confirmation to the NFV-SO.

3.3.3 Descriptors onboarding/query/deletion

The onboarding operation of both VNF/NS
descriptors (VNFD/NSD) is an abstracted feature
exposed by the AAM, as it is not implemented in the

NFV-LO used in 5G CARMEN edges (i.e., lightMANO).
It basically consists of a file upload, as defined in the
ETSI NFV-SOL005 APIs, by using standard
endpoints. Onboarding is a two-step operation.
First, the NFV-SO uploads the VNFDs and then the
related NSD. A preliminary check is performed in
order to verify whether the helm-chart defined in
the VNFD under the KDU section (Kubernetes
Deployment Unit) is available on the NFV-LO side.
Thus, an OSM-compliant onboarding request
triggers a GET request on the NFV-LO NBI. If no
errors occur, the VNFD can be stored as JSON object
in the local DB.

As mentioned above, the second step consists of the
NSD file upload, done in a similar manner as
described in the first step. The AAM searches among
the onboarded VNFDs for those defined in the NSD
body. This is an internal operation that does not
involve the NFV-LO. If a match for all VNFs included
in the NS is found, the NSD can be stored in the local
DB. For each successful NS onboarding the AAM
returns a unique ID to the NFV-SO in order to
properly address each descriptor on the Mv1’ side.
This ID is required for the NS creation and
instantiation phases and for any other operation
involving the descriptors (query or deletion).

The descriptor retrieval is an abstracted feature
implemented on the Mv1’ side only through HTTP
GET messages compliant with ETSI NFV-SOL005 for
both VNF and NS descriptors. In both cases, the

© International Telecommunication Union, 202268

ITU Journal on Future and Evolving Technologies, Volume 3, Issue 1, July 2022

information returned via Mv1’ are collected from
the internal DB and are compliant to the ETSI
standard format.

The descriptors cancellation is an abstract feature
implemented on the Mv1’ side only. For a complete
removal of a VNFD descriptor, the NFV-SO has to
trigger the removal of all the NSDs that include such
a descriptor, specifying in both cases their IDs. The
AAM then removes the descriptor matching the
provided ID from the local DB.

3.3.4 NS creation

The NS creation operation enables the creation of
an NS instance towards the AAM providing
mandatory parameters for the deployment phase
on the NFV-LO. Note that the creation operation is
not implemented in lightMANO. It is an abstract
feature exposed by the Mv1’ only and consists of
validating the OSM mandatory parameters
provided in the request body:

• nsName: the NS instance name should be
unique in the local DB. Any duplication will
cause the rejection of the current request;

• nsdId: the ID provided should match an already
onboarded NSD in the local DB;

• vimAccountId: this parameter, coming from the
OSM APIs’ definition, was overwritten to
represent the ID of the target NFV-LO;

• additionalParamsForNs: it is a data structure
containing some instantiation parameters used
by the underlying layers to properly deploy the
applications on the Kubernetes cluster.

In case no errors occur, the NS instance can be
stored in the local DB, setting its internal state to
NOT_INSTANTIATED. Thus, the resource was
created and it is ready for the instantiation at any
time, as specified by ETSI NFV-SOL005. An NS
instance ID (nsInstanceId) is then generated and
returned to the NFV-SO, in order to enable
subsequent LCM operations.

3.3.5 NS instantiation

The NS instantiation is a two-step operation,
according to the ETSI NFV-SOL005 APIs. Initially,
the NS instance is created (as shown in the previous
section) and then it can be instantiated. Both
operations are triggered by the NFV-SO and can be
also executed at different times maintaining the
message sequence defined above.

The ETSI NFV-SOL005 standard instantiation
request, including in the request body the NS ID
(nsInstanceId), the nsdId, the vimAccountId, and
additionalParamsForNS, is mapped into the
equivalent one on the lightMANO NBI. The request
body extends the parameters provided in the
creation request with some additional fields
required for the app deployment in the underlying
edge platform. Any errors will be detected and
reported by the underlying layers towards the Mv1’
and then up to the NFV-SO. The internal state of the
NS instance is updated according to the result of the
instantiation request.

3.3.6 NS scaling

The NS scaling operation is already present in the
ETSI NFV-SOL005. In the proposed architecture, the
scaling operation is one of those typically handled
autonomously by the NFV-LO, as per the MLA
definition. However, we implemented the
possibility to scale an existing NS by scaling one of
its constituents VNFs on a different edge node,
assuming to use the Lo-Lo reference point for the
instantiation over a peer NFV-LO. Clearly, this is
possible only if an MLA with such a permission is
defined. This operation is analogous to the NS
instantiation one, using the same set of parameters
but with the vimAccountId set to the target remote
NFV-LO.

3.3.7 Get NS information

The AAM exposes over the Mv1’ reference point the
operation for the NS instance information retrieval,
defined by the ETSI standard. The query operation
returns details about the overall instantiated NSs,
although it is possible to filter the results for any
specific NS instance by providing its unique ID in the
request URI. Hence, the NFV-SO invokes the request
towards the AAM, which in turn forwards the
request to the NFV-LO, making proper mappings on
both request URI and inline parameters. The
response provided by the NFV-LO contains two
parameters only: the name of the app and its status.
To this aim, the AAM matches the returned app
name(s) to those stored in the local DB in order to
provide all details according to the ETSI NFV-
SOL005 response format. Note that
NOT_INSTANTIATED NS instances (i.e., those
created but not running) are not returned by the
NFV-LO, that manages running apps only. This
means that the number of stored NS instances in the
local DB can be equal or higher than those provided
by the NFV-LO, but only the NS instances provided
by the NFV-LO can match with the INSTANTIATED
state in the local DB.

© International Telecommunication Union, 2022 69

Femminella et al.: An edge abstraction layer enabling federated and hierarchical orchestration of CCAM services in 5G and beyond networks

Fig. 5 – NS instantiation sequence diagram, including vertical instantiation via Mv1’, horizontal low latency scaling operation via
Lo-Lo, vertical remote notification via Mv1’, and final horizontal final notification via Or-Or. Most details about operations occurring
between NFV-LO, MEAO, EC and Kubernetes cluster below, including messages distributed via MB, are omitted to ease the reading.

This constraint comes from the abstraction of the
NS creation operation, as described in the operation
above (Section 3.3.4).

3.3.8 NS notification operations

As previously described in the bootstrap phase, the
NFV-SO subscribes to the AAM over the Mv1’
reference point at the very beginning. This allows
NFV-SO to receive notifications coming from the
orchestrated edge platform. The notifications of
interest here are those relevant to the app
instantiation/deletion on cross-border domains.
Fig. 5 shows a sequence diagram of NS instantiation
and subsequent scaling of an NS in a cross-border
setting, this second event triggered by the MEAO.
Notifications messages, as well as other AAM
operations, are clearly identified. In addition, the
AAM, through the subscription to the MB, is able to
monitor the performance as well as the resource
usage of computing nodes in the edge platform.
Thus, it can use this operation to periodically notify
the NFV-SO about the edge resource usage in an
abstract and aggregated way.

In general, any app instantiation or deletion on the
NFV-LO side produces a notification message that it

is published on the MB on a specific topic. The AAM,
which has subscribed to the same topic on the MB
during the bootstrap phase, receives the relevant
notification, which in turn triggers internal controls
to detect any matching to the NFV-SO notification
filters. For instance, some notifications provide
updates on some parameters related to the running
instances (e.g., the IP address of a running app),
whereas others include the detection of new NS
instantiations occurred via Lo-Lo as per MLA
permissions, and thus transport the notification of
new instances created.

For any positive matching, the AAM prepares and
transmits an unsolicited notification message
towards the NFV-SO, by using the callback URI
defined in the subscription request. Both NFV-SO
notification filters and callback URI are stored in the
local DB.

3.3.9 NS termination

The termination operation is the reverse of the
instantiation operation described above. It triggers
the termination of an NS that has already been
instantiated (i.e., its internal status is
INSTANTIATED). The first step consists of the

© International Telecommunication Union, 202270

ITU Journal on Future and Evolving Technologies, Volume 3, Issue 1, July 2022

termination request from the NFV-SO to the NFV-LO
via the Mv1’. The NS instance ID (nsInstanceId) used
by the NFV-SO to address the instance to be
terminated is included in the POST message URI.
This is the same ID provided by the AAM after the
creation of this NS instance and it is required to
retrieve the NS instance information from the local
DB. This enables obtaining the unique app name
used by the NFV-LO to identify the running app
(appName). A HTTP DELETE message towards the
NFV-LO is then generated by using the appName
and the relevant parameters retrieved from the
local DB, such as the namespace of the relevant
tenant. In case of success, the app instance is
stopped and then removed from the NFV-LO.

The response provided by the NFV-LO causes an
update of the NS instance internal status on the local
DB. If no error occurs, the NS state changes
returning to NOT_INSTANTIATED. If needed, the
same NS instance can be instantiated again by the
NFV-SO always using the NS instantiation operation.

3.3.10 NS deletion

This operation is the reverse of Create NS.
Following the ETSI NFV-SOL005 API specifications,
the Mv1’ exposes the abstract operation for the
complete NS instance deletion by providing its
unique ID (nsInstanceId). This operation is executed
by the AAM only and consists of the removal of the
NS entry from the local DB. Any deletion request on
NS instances whose internal state is different from
NOT_INSTANTIATED will be rejected.

4. IMPLEMENTATION AND
PERFORMANCE ASSESSMENT

4.1 AAM implementation and testbed setup

The AAM used to execute the experiments was
implemented by using the Java Spring Framework
[50]. It allowed us to take advantage of some of its
out of the box solutions, such as the RESTful web
services based on Apache Tomcat® [45] and the
native multi-threaded handling of incoming
requests, thus accepting concurrent requests and
avoiding waiting times for the resolution of
previous ones. In order to implement the
persistence layer of the AAL, we used MongoDB [42].
This choice is motivated by the fact that it is natively
compliant to the JSON format [43], making it the
ideal solution to handle SOL005 API payloads.

The AAM is composed by three main software
modules, sketched in Fig. 6:

1. The MongoDB controller, which is in charge of
both marshalling operations (i.e., transforming
the in-memory software object into a data
format suitable for DB storage and retrieval)
and for executing DB queries. The payload of
the REST calls is encoded by using the JSON
format, which enables direct storage in the
local DB.

2. The MB client based on Apache QpidTM

component [46], which is responsible for a
subscription to AMQP broker [47] topics and
for consuming published messages.

3. The adaptation interface based on the well-
known adapter design pattern that allows
incompatible interfaces to work together. This
is the core architecture implementing the
business logic of the abstraction layer
implemented in the AAM.

Basically, the adapter design pattern is composed of
three main elements, highlighted by dashed red
boxes in Fig. 6:

• The target interface defines the operations
exposed to the client (i.e., the calling NFV-SO).
These operations are defined by the OSM/ETSI
NFV-SOL005 API and are identified by their
unique endpoints. They consist of a request
method (i.e., GET, POST, DELETE) and at least
one header field (i.e., Content-Type) defining
the media type of the body content for both
requests and responses (i.e., application/JSON).

• The adapter class implements the target
interface invoking relevant functions on the
adaptee in order to expose the expected
OSM/ETSI NFV-SOL005 operations. It is in
charge also of managing the MongoDB
controller and the interactions with the AMQP
client.

• The adaptee class is the interface that must be
adapted (i.e., the abstract NFV-LO class in
Fig. 6). This abstraction level enables the
definition of concrete adaptee objects able to
manage incoming requests according to their
own internal business logic, providing
standard OSM responses to the caller. This
means that the adaptees implement the
adaptation functions that transform OSM/ETSI
NFV-SOL005 request/response bodies to
custom ones, according to the interface to be
adapted. Moreover, each concrete adaptee
maps OSM endpoints to custom ones when an
equivalent function exists on the contacted

© International Telecommunication Union, 2022 71

Femminella et al.: An edge abstraction layer enabling federated and hierarchical orchestration of CCAM services in 5G and beyond networks

NFV-LO (as defined by the REST API
implemented in the underlying NFV-LO),
otherwise the required function is emulated by
the adaptee in order to provide the expected
OSM response. This means that the equivalent
OSM/ETSI NFV-SOL005 feature can be
obtained by forwarding multiple requests to
the underlying NFV-LO or by processing data
stored in the internal database (or by a proper
combination of both techniques). In the case
that the underlying NFV-LO implements the
same functionality as defined by the OSM/ETSI
NFV-SOL005 APIs, the adaptee object acts as a
relay node avoiding any further manipulation
on both endpoint and message body. Note that
this is the standard implementation of the
OSM_adaptee concrete class shown in Fig. 6.

A brief example of adapted call is shown in Fig. 6, for
the “query information about multiple NS instances”
operation, defined in the ETSI compliant target
interface. Any request on the endpoint defined
therein (i.e., “/nslcm/v1/ns_instances”) is handled
by the method “get_NS_interfaces()”, highlighted by
the blue color. The adapter class implements this
method and invokes the equivalent operation
(defined here using the same method name) on the
abstract adaptee class. According to the running
concrete adaptee object, selected during the AAM
bootstrap phase, the algorithm defined in that
method may differ significantly, as shown by the
pseudocode associated with OSM_adaptee and
lightMANO_adaptee classes, respectively, shown in
the gray boxes.

The AAM runs in a single pod, including both the
MongoDB database, storing requests metadata and
descriptors, and the module exposing the Mv1’
endpoint and managing the communications with
NFV-LO and the MB. As for the underlying modules
running in the edge node, that is NFV-LO, MB, and
MEAO, they are executed in different pods running
in the same orchestration VM where the AAM is
executed (see Fig. 3). As for the EC, it runs in another
VM in the same edge cluster. This means that the
latency associated with their communications does
not suffer from long propagation delays through the
MNO network.

We run tests on two MEC platforms, by using edge
nodes deployed in the network of two MNOs
participating in the project. The relevant
configuration is reported in Table 1. These tests
focus on the AAM module, thus we did not use the
relevant NFV-SO to trigger the orchestration

requests, but emulated it by using a Postman client
running in our the lab at University of Perugia.
Consequently, we used the public Internet to
establish the connectivity between the (emulated)
NFV-SO and relevant AAM. The latency associated
with these communications may be considered
representative of that obtainable between a remote
NFV-SO and the AAM on an edge node.

For some tests requiring a simple response from
NFV-SO, we used an instance of NFV-SO running in
AWS able to accept requests coming from the AAM
in edge platform (e.g., during the bootstrap) and
subsequently to answer them in a predefined way.

Table 1 – Testbed configuration

MNO VM Configuration

MNO1

Orchestration
VM (AAM, NFV-

LO, MEAO)

4 vCPU (shared), 8 GB RAM, 70
disk

Edge controller
+ apps

32 vCPU (shared), 16 GB RAM,
250 disk

MNO2

Orchestration
VM (AAM, NFV-

LO, MEAO)

8 vCPU (shared), 20 GB RAM,
70 disk

Edge controller
+ apps

16 vCPU (shared), 16 GB RAM,
250 disk, fast I/O data plane

4.2 Test cases

Experiments were performed for operations
characterized by different complexity of the
orchestration requests. Each request is generated,
received, and processed as a REST API request.

The following types of request were performed:

1. Overall edge-NFV-SO registration procedure;

2. Simple GET requests that involve certain
transactions and checkups in MongoDB co-
located with the AAM itself;

3. POST requests able to trigger changes in the
service deployments, such as instantiation and
termination requests.

Table 2 provides, for each operation, a brief
description and the methods tested with such an
operation. The tests have been executed in the
following conditions:

• System completely clean, with the MongoDB
empty (default test condition, used for MNO1
and MNO2 edge nodes);

• System loaded, with the MongoDB containing
10,000 NSD, 10,000 VNFD, 10,000 MLA
descriptors, and 10,000 NS instances, used for
MNO1 edge node only.

© International Telecommunication Union, 202272

ITU Journal on Future and Evolving Technologies, Volume 3, Issue 1, July 2022

Fig. 6 – UML diagram of the main components of the adaptation layer

In this way, we evaluated the impact of the database
operation, which is the component in charge of
ensuring the consistency of data and operations
across the AAM, with respect to the other
components, on the overall delay budget. The
number of items stored in the database is so high for
the considered service scenario, that the obtained
results can be considered a sort of upper bound to
the average performance. In fact, for each edge node,
we expect some tens of services contemporarily
deployed in it, and for sure no more than a few
hundred.

In all executed tests, the main measured Key
Performance Indicator (KPI) is the average
response time per orchestration request. This KPI is
highly relevant since it reflects the capability of an
orchestrator to perform orchestration operations
efficiently. In the case under consideration, this is
even more important, since the orchestration
operations are split both vertically (NFV-SO and
underlying NFV-LO) and horizontally (peer NFV-
SOs and peer NFV-LOs). For all operations, the
latency KPI is further evalauted in two ways: (i)

processing time in the AAM, and (ii) the overall
communication latency seen by the NFV-SO
(emulated by the Postman client).

In order to collect measurements of latency, we
defined a further endpoint on the AAM, which
allows retrieving the latency associated with each
atomic operation carried out by it. This data is
available in JSON format via REST call. Each element
of the JSON file reports the timestamp in which the
request was received or issued, the duration of the
operation, and the uri of the request itself, including
also a further string specifying also the method, and
optionally an index and some extra parameters, to
identify different transactions occurring to
complete the same operation.

In addition to parsing this JSON file with latency
measurements, we also parsed the AAM logs, in
order to identify errors or anomalous situations
causing abnormal latencies. When the
measurements were taken from the Postman client
to emulate a remote NFV-SO, we used the delay
measurement tool provided by that software.

© International Telecommunication Union, 2022 73

Femminella et al.: An edge abstraction layer enabling federated and hierarchical orchestration of CCAM services in 5G and beyond networks

Table 2 – Description of requests done to the AAM

Operation Description Tested methods

Bootstrap Overall process of
registration of NFV-
LO to NFV-SO

Multiple POST/PUT
requests and DB
transactions

Onboarding
VNFD

Descriptors
onboarding to AAM

Single POST request
+ DB transaction

Onboarding
NSD

Descriptors
onboarding to AAM

Single POST request
+ DB transaction

Onboard
MLA

Descriptors
onboarding to AAM

Single POST request
+ DB transaction

Create NS Creation NS request
to AAM, for
compliance with
ETSI NFV-SOL 005

Single POST request
+ DB transaction

Instantiate
NS

Instantiation of an
NS, it involves also
NFV-LO and MB

POST request
triggering a further
POST request
towards the NFV-LO
and message from
Broker + DB
transactions

Terminate
NS

Terminate an NS, it
involves also NFV-
LO

POST request
triggering a further
POST request
towards the NFV-LO
+ DB transactions

get NS list Request of NS list Single GET request +
DB transactions

get NSD Request of a specific
NS descriptor

Single GET request +
DB transactions

get VNFD Request of a specific
VNF descriptor

Single GET request +
DB transactions

get MLA Request of a specific
MLA descriptor

Single GET request +
DB transactions

delete MLA Delete MLA
descriptor

DELETE request
triggering a further
DELETE request
towards the NFV-LO
+ DB transactions

delete NS Delete NS descriptor Single DELETE
request + DB
transactions

delete
VNFD

Delete VNF
descriptor

Single DELETE
request + DB
transactions

delete NSD Delete NS descriptor Single DELETE
request + DB
transactions

Notification
NS

Processes an NFV-
LO notification via
MB and prepares the
one for NFV-SO

AMQP message + DB
transaction + POST
message towards
NFV-SO

Finally, a slightly different procedure was adopted
to measure the notification operation. In this case,
we evaluated the latency by considering the
following components separately. The first one is
the contribution associated with the delay
introduced by the MB. The other one is that
associated with the processing required by the AAM
to create/update the NS in the local MongoDB and
to prepare the notification to be sent to the NFV-SO.

The delay of the notification, delivered by using a
broker, was evaluated by the difference of the
timestamp values collected in the AAM and NFV-LO.
This is feasible since they see the same system time,
as they run in different pods in the same VM.

4.3 Performance evaluation

Fig. 7 shows the measurement results per each
operation, measured from the Postman client for
the MNO1 and MNO2 edge nodes, so emulating
operations triggered by a remote NFV-SO. As for the
edge node of MNO1, we tested the “default”
configuration, with the MongoDB internal to the
AAM empty, and the “loaded” configuration, as
explained in Section 4.2.

For each operation, we include the 95% confidence
interval obtained by multiple experiments. This
figure shows not only the measurement associated
with the Registration phase (from reception of
message 2 to reception of message 4 in Fig. 4), but
also those associated with simple GET operations as
well as those associated with more complex
orchestration operations, such as instantiation and
termination of NSs. We recall that NS creation and
deletion are very simple operations, implying only a
local database transaction on the MongoDB, and
implemented just for compliance with ETSI NFV-
SOL005 [40]. It is evident that most of operations,
when observed from an external entity, requires
nearly the same time (approximately 100 ms) but
NS instantiation and NS termination, which involve
more complex interactions with the platform below,
and namely with the EC to launch/stop real Apps
running in the Kubernetes cluster. For these
operations, the required time increases, and can be
even larger than 1s. When the loaded case is
considered, we can see that any increase of the
number of instances and descriptors loaded in the
AAM, which has to track their status by means of
database persistence, produces larger mean values
of the latency profile. However, variability is still
low, as can be seen by the value of the confidence
intervals. In any case, most operations, when

© International Telecommunication Union, 202274

ITU Journal on Future and Evolving Technologies, Volume 3, Issue 1, July 2022

observed from the NFV-SO, and thus including also
the delay contribution due to the interaction with
the underlying entities beyond the AAM, are always
lower than 600 ms. In particular, we can see that
latency associated with operations carried out on

the edge node of MNO2 is generally larger than both
that of MNO1 in standard configuration, and often
of that of the loaded configuration. Fig. 8 presents
the same set of measurements, but related to the
AAM processing only.

Fig. 7 – Latency measurement taken from the remote Postman client, emulating an NFV-SO, for edge nodes of MNO1 and MNO2 in
default conditions, and for edge node of MNO1 in loaded condition.

Fig. 8 – Latency measurement taken from the AAM for edge nodes of MNO1 and MNO2 in default conditions, and for edge node of
MNO1 in loaded condition.

© International Telecommunication Union, 2022 75

Femminella et al.: An edge abstraction layer enabling federated and hierarchical orchestration of CCAM services in 5G and beyond networks

In this case, it is evident a variability of the
processing times. Although most of them are below
20 ms, MLA onboarding and NS instantiation
require higher processing times. In fact, for those
operations the processing time is higher since it
implies a significant interaction with entities below,
and namely with the NFV-LO. In this case, not only a
local transaction for state persistence is necessary,
but also the preparation of a new message to feed
into the NFV-LO and the validation of some
parameters with the onboarded descriptors (NSD,
VNFD and MLA). This is the case of the MLA
onboarding and of NS instantiation. The NS
termination, instead, requires a much simpler
interaction with the NFV-LO, without requiring the
preparation of a complex message. In any case, the
maximum contribution to the delay budget is less
than 50 ms on average, and of 60 ms in 95% of cases.
Again, the average performance of edge node of
MNO1 is slightly better than those of MNO2 for the
standard configuration. When considering the AAM
contribution only and the loaded case, we can see a
significant difference with respect to the situation
shown to Fig. 7.

Beyond NS instantiation, the operations that are
typically more affected by the database content are
those implying getting the list of NSs or descriptors
(MLA, NSD, VNFD), especially when compared with
the values with empty system. The GET operations
are those with a larger increase, well beyond 10
times. However, they are operations with a very
small latency/processing time in the empty system
condition, thus the effect of system load is, in the
end, not so dramatic. The further consideration is
that, for most of the other operations, the AAM
processing time increases by less than 5 times,
especially for onboarding operations, although the
number of content items increased by a 1000x
factor. In any case, considering the perspective of
NFV-SO, which is at the end the most significant,
most operations have only a modest increase. It is a
positive result, considering the very high number of
items included in the database.

Finally, we show a separate figure for evaluating the
time needed to receive and process a notification
coming from the NFV-LO via the MB. Fig. 9 presents
the results of measurement done on both MNO1 and
MNO2 in default test conditions. Since results were
quite different, we used the logarithmic scale for the
ordinate axis. The notification delay via the internal
MB results is significantly lower than the processing
delay of the AAM to prepare the notification, as
expected. This is due to the fact that the AAM has to

parse the notification received via AMQP, extract
meaningful information, map that on the content of
the MongoDB database in order to identify the NS
for which the notification is relevant, update that
entry with the content of the received notification,
and finally prepare the message for the NFV-SO. For
the cross-border case, the AAM does not find any
correspondence in the MongoDB database beyond
the MLA. Thus, it has to create a new NS, push it in
the database, and prepare the instantiation
notification message for the NFV-SO, specifying the
instantiation has occurred via Lo-Lo. It is quite
evident that the edge node MNO1 is significantly
more performant than the MNO2 one.

Fig. 9 – Latency associated to notifications from NFV-LO
received by AAM via AMQP MB.

Finally, we collected the measurement of average
CPU time and memory footprint of the pod during
instantiation operations, which is the more
demanding one. The result is that the CPU time is,
on average, only 5m (milliunits of CPU time,
see [51]), whereas the memory footprint is 1081 Mi,
that is about 1 GB.

From the results presented in the previous figures,
we can derive the following considerations:

• The overall contribution to the delay budget
from the AAM in complex operations
(NS instantiation and termination) is quite
limited, when considering the end-to-end delay
seen by the NFV-SO. There are some operations
that terminate directly on the AAM itself, either
for compliance with ETSI-NFV-SOL 005 or for
overall system architecture (e.g., the deletion of
some descriptors does not propagate in the
entities below), but these are characterized by
very low values of the processing time. This is
a quite important result due to the function
splitting adopted for the orchestration
architecture.

• From the analysis of latency values, measured
by using Postman, and the processing time
captured directly by the AAM when

© International Telecommunication Union, 202276

ITU Journal on Future and Evolving Technologies, Volume 3, Issue 1, July 2022

considering only simple operations that
involve just the AAM and do not propagate to
the entities below, it is possible to estimate the
round-trip delay between the client and the
edge node. This value results to be 87.5 ms with
a 95% confidence interval equal to 3 ms for the
edge node of MNO2, and equal to 58 ms with a
95% confidence interval equal to 4 ms for the
edge node of MNO1. These values are realistic,
especially considering also the geographical
distance from the measurement point.

• The impact of the system load on the overall
operation latency is really modest. This is due
to the fact that we selected MongoDB to
implement data persistence, which is a
document-based NoSQL database particularly
suitable to manage JSON files.

• We tested extensively the two edge nodes. It is
quite evident that the edge node of MNO2,
although it has computing characteristics
similar to those of MNO1 (as shown in Table 2),
is sometimes significantly less performant,
with a higher processing delay, not only in the
AAM layer (Fig. 8 and Fig. 9), but also when the
other underlying entities are considered
(Fig. 7). This analysis is limited to the default
test condition. The main difference, which
cannot be captured by the analysis of
experimental results, is that the MNO2 host
runs several other applications contemporarily.
They share the CPU cores, while the system of
MNO1 is quite unloaded.

• From the analysis of the resource footprint, it is
quite evident that the AAM component
requires a significant amount of memory and a
very low share of CPU time. This is reasonable,
since all operations imply a DB transaction in
the MongoDB database. However, the
presented values are fully manageable by using
the resources typically available in modern
servers, without the risk of becoming the
system bottleneck.

5. CONCLUSION

Orchestration of CCAM services is known to be a
challenging task in a multi-operator envirinment.
The main contribution of this paper consists of a
flexible and effective solution for orchestrating the
deployment and the operation of CCAM services in
the MEC nodes of future cellular systems.

The core of the proposed solution is based on the
the federation and hierarchical organization of the
orchestration function, adapted to a multi-operator
scenario. The implementation of the proposed
architecture, which is compliant with the ETSI
recommendations, required the design and
implementation of a suitable abstraction and
adaptation layer for edge clouds. The resulting
system implements a truly cooperative and
coordinated orchestration between different edge
systems. The performance obtained through an
extensive experimentation campaign shows
significant benefits in terms of latency, which
demonstrate the effectiveness of the proposed
solution.

ACKNOWLEDGEMENT

This work was supported by EC H2020 5GPPP
project 5G CARMEN under grant agreement No.
825012. The views expressed are those of the
authors and do not necessarily represent the
project. The Commission is not responsible for any
use that may be made of the information it contains.
The authors sincerely thank the colleagues
participating in Work Package 4 of 5G CARMEN for
extensive and fruitful discussions.

REFERENCES

[1] F. Giust et al., "Multi-access edge computing:
The driver behind the wheel of 5G-connected
cars", IEEE Commununications Standards
Magazine, vol. 2, no. 3, pp. 66-73, Sep. 2018.

[2] ETSI, GR MEC 022 v2.1.1, "Multi-Access Edge
Computing (MEC); Study on MEC Support for
V2X Use Cases", (2018-09).

[3] A. Dalgkitsis et al, "Data Driven Service
Orchestration for Vehicular Networks," IEEE
Transactions on Intelligent Transportation
Systems, vol. 22, no. 7, pp. 4100-4109, July
2021.

[4] F. Bari et al, "Orchestrating virtualized
network functions," IEEE Transactions on
Network and Service Management, vol. 13,
no. 4, pp. 725-739, Dec. 2016.

[5] A. Machen, S. Wang, K. K. Leung, B. J. Ko and T.
Salonidis, "Live service migration in mobile
edge clouds", IEEE Wireless Commun., vol. 25,
no. 1, pp. 140-147, Feb. 2018.

© International Telecommunication Union, 2022 77

Femminella et al.: An edge abstraction layer enabling federated and hierarchical orchestration of CCAM services in 5G and beyond networks

[6] I. Farris, T. Taleb, H. Flinck and A. Iera,
"Providing ultra-short latency to user-centric
5G applications at the mobile network edge",
Transactions on Emerging Telecommuni-
cations Technologies, vol. 29, no. 4, Apr. 2018.

[7] I. Farris, T. Taleb, M. Bagaa and H. Flick,
"Optimizing service replication for mobile
delay-sensitive applications in 5G edge
network", Proceedings of the IEEE
International Conference on Communications
(ICC), May 2017.

[8] A. Nadembega, T. Taleb and A. Hafid, "A
destination prediction model based on
historical data contextual knowledge and
spatial conceptual maps", Proceedings of the
IEEE International Conference on
Communications (ICC), Jun. 2012.

[9] G. Xu, S. Gao, M. Daneshmand, C. Wang and Y.
Liu, "A survey for mobility big data analytics
for geolocation prediction", IEEE Wireless
Communications, vol. 24, no. 1, pp. 111-119,
Feb. 2017.

[10] R. Cziva, C. Anagnostopoulos and D. P. Pezaros,
"Dynamic latency-optimal vNF placement at
the network edge", Proceedings of the IEEE
Conference on Computer Communications
(INFOCOM), pp. 693-701, Apr. 2018.

[11] S. Choi, H. Yeo and J. Kim, "Network-wide
vehicle trajectory prediction in urban traffic
networks using deep learning,"
Transportation Research Record: Journal of
the Transportation Research Board, vol. 2672,
no. 45, pp. 173-184, Sep. 2018.

[12] J. Lv, Q. Li, Q. Sun and X. Wang, "T-CONV: A
convolutional neural network for multi-scale
taxi trajectory prediction," Proceedings of the
IEEE International Conference on Big Data
and Smart Computing (BigComp), pp. 82-89,
Jan. 2018.

[13] T. Ouyang, Z. Zhou and X. Chen, "Follow me at
the edge: Mobility-aware dynamic service
placement for mobile edge computing," IEEE
Journal on Selected Areas in Communications,
vol. 36, no. 10, pp. 2333-2345, Oct. 2018.

[14] Slamnik-Kriještorac, N., Silva, E., Municio, E.,
Resende, H., Hadiwardoyo, S. A., & Marquez-
Barja, J. M. “Network Service and Resource
Orchestration: A Feature and Performance
Analysis within the MEC-Enhanced Vehicular
Network Context”. Sensors, 20(14), 3852.

[15] Shah S.A.A., Ahmed E., Imran M., Zeadally S.
“5G for Vehicular Communications,” IEEE
Communications Magazine Volume: 56, No: 1,
Jan. 2018.

[16] Ning Z., Wang X. Mobile Edge Computing-
Enabled “5G Vehicular Networks: Toward the
Integration of Communication and
Computing,” IEEE Vehicular Technology
Magazine, Volume: 14, No: 1, March 2019.

[17] Soua R., Turcanu I., Adamsky F., Führer D.,
Engel T. “Multi-Access Edge Computing for
Vehicular Networks: A Position Paper,”
Proceedings of the 2018 IEEE Globecom
Workshops (GC Wkshps); Abu Dhabi,
December 9-13, 2018.

[18] Taleb T., Samdanis K., Mada B., Flinck H.,
Dutta S., Sabella D., “On Multi-Access Edge
Computing: A Survey of the Emerging 5G
Network Edge Cloud Architecture and
Orchestration,” IEEE Communications
Surveys & Tutorials, Volume: 19, No: 3, 2017.

[19] Saraiva de Sousa et al. “Network Service
Orchestration: A Survey”. Computer
Communications, Volumes 142-143, June
2019, Pages 69-94.

[20] Zhao J., Li Q., Gong Y., Zhang K., “Computation
Offloading and Resource Allocation For Cloud
Assisted Mobile Edge Computing in Vehicular
Networks,” IEEE Transactions on Vehicular
Technology. Volume: 68, No: 8, Aug. 2019.

[21] Du J., Yu F.R., Chu X., Feng J., Lu G.,
“Computation Offloading and Resource
Allocation in Vehicular Networks Based on
Dual-Side Cost Minimization,” IEEE
Transactions on Vehicular Technology,
Volume: 68, No: 2, Feb. 2019.

[22] Hoang V.H., Ho T.M., Le L.B., “Mobility-aware
Computation Offloading in MEC based
Vehicular Wireless Networks,” IEEE
Communications Letters, Volume: 24, No: 2,
Feb. 2020.

[23] Wang J., Feng D., Zhang S., Tang J., Quek T.Q.S.,
“Computation Offloading for Mobile Edge
Computing Enabled Vehicular Networks,”
IEEE Access, Volume:7, 2019, pp. 62624-
62632.

© International Telecommunication Union, 202278

ITU Journal on Future and Evolving Technologies, Volume 3, Issue 1, July 2022

[24] Soenen T. te al, “Empowering Network
Service Developers: Enhanced NFV DevOps
and Programmable MANO, ” IEEE
Communications Magazine, Volume: 57, No: 5,
May 2019.

[25] Celdrán A.H., Clemente G., Pérez G.M.,
“Automatic Monitoring Management for 5G
Mobile Networks,” Proceedings of the 12th
International Conference on Future Networks
and Communications, Leuven, July 24-26,
2017.

[26] R. Perez et al., "Monitoring Platform Evolution
towards Serverless Computing for 5G and
Beyond Systems," IEEE Transactions on
Network and Service Management, 2022, doi:
10.1109/TNSM.2022.3150586.

[27] Zhdanenko O., Liu J., Torre R., Mudriievskiy S.,
Salah H., Nguyen G.T., Fitzek F.H.P.,
“Demonstration of Mobile Edge Cloud for 5G
Connected Cars,”, Proceedings of the 2019
16th IEEE Annual Consumer
Communications & Networking Conference
(CCNC); Las Vegas, January 11-14, 2019.

[28] M.Femminella, M. Pergolesi, G. Reali, “5G
experiment design through Blueprint”,
Computer Networks, Volume 190, 2021.

[29] W. Nakimuli et al., "Automatic deployment,
execution and analysis of 5G experiments
using the 5G EVE platform," 2020 IEEE 3rd 5G
World Forum (5GWF), 2020, pp. 372-377.

[30] F. Z. Yousaf, V. Sciancalepore, M. Liebsch and
X. Costa-Perez, "MANOaaS: A Multi-Tenant
NFV MANO for 5G Network Slices," IEEE
Communications Magazine, vol. 57, no. 5,
pp. 103-109, May 2019.

[31] N. Slamnik-Krijestorac, G. M. Yilma, M.
Liebsch, F. Z. Yousaf and J. Marquez-Barja,
"Collaborative orchestration of multi-domain
edges from a Connected, Cooperative and
Automated Mobility (CCAM) perspective,"
IEEE Transactions on Mobile Computing, doi:
10.1109/TMC.2021.3118058.

[32] T. Taleb, I. Afolabi, K. Samdanis and F. Z.
Yousaf, "On Multi-Domain Network Slicing
Orchestration Architecture and Federated
Resource Control," IEEE Network, vol. 33,
no. 5, pp. 242-252, Sept.-Oct. 2019.

[33] O. Bekkouche, F. Z. Yousaf, X. Li and T. Taleb,
"Management and Orchestration of Mobile
Network Services over Federated Mobile
Infrastructures," IEEE Network, vol. 35, no. 6,
pp. 178-185, November/December 2021.

[34] Trans-European Transport Network (TEN-T),
https://transport.ec.europa.eu/transport-
themes/infrastructure-and-
investment/trans-european-transport-
network-ten-t_en. [Accessed 30 04 2022].

[35] ETSI NFV ISG, “Network Functions
Virtualisation (NFV) Release 3; Management
and Orchestration; Multiple Administrative
Domain Aspect Interfaces Specification”, ETSI
GS NFV-IFA 030 V3.3.1 (2019-09).

[36] ETSI NFV ISG, “Network Functions
Virtualisation (NFV) Release 3; Management
and Orchestration; Report on architecture
options to support multiple administrative
domains”, ETSI GR NFV-IFA 028 V3.1.1
(2018-01).

[37] ETSI, "Multi-Access Edge Computing (MEC);
Framework and Reference Architecture,"
ETSI ISG MEC, ETSI GS MEC 003 V2.1.1, 2019.

[38] ETSI, "Network Functions Virtualisation
(NFV); Management and Orchestration,,"
ETSI ISG NFV, ETSI GS NFV-MAN 001, V1.1.1,
2014. Online

[39] ETSI, "Network Functions Virtualisation
(NFV); Terminology for Main Concepts in
NFV," ETSI GR NFV 003, 2020.

[40] ETSI, "Network Functions Virtualisation (NFV)
Release 3; Protocols and Data Models;
RESTful protocols specification for the
Os-Ma-nfvo Reference Point," ETSI GS
NFV-SOL005 v3.3.1, 2020.

[41] OSM, "OSM North Bound Interface API,"
[Online]. Available:
https://osm.etsi.org/wikipub/index.php/NB
I_API_Description. [Accessed 27/04/2022].

[42] MongoDB, "a general purpose document-
based database," [Online]. Available:
https://www.mongodb.com/. [Accessed
27/04/2022].

[43] JSON, "JavaScript Object Notation data-
interchange format," [Online]. Available:
https://www.json.org/json-en.html.
[Accessed 27/04/2022].

© International Telecommunication Union, 2022 79

Femminella et al.: An edge abstraction layer enabling federated and hierarchical orchestration of CCAM services in 5G and beyond networks

https://transport.ec.europa.eu/transport-themes/infrastructure-and-investment/trans-european-transport-network-ten-t_en
https://transport.ec.europa.eu/transport-themes/infrastructure-and-investment/trans-european-transport-network-ten-t_en
https://transport.ec.europa.eu/transport-themes/infrastructure-and-investment/trans-european-transport-network-ten-t_en
https://transport.ec.europa.eu/transport-themes/infrastructure-and-investment/trans-european-transport-network-ten-t_en
https://osm.etsi.org/wikipub/index.php/NBI_API_Description
https://osm.etsi.org/wikipub/index.php/NBI_API_Description
https://www.mongodb.com/
https://www.json.org/json-en.html

[44] ETSI, "Multi-access Edge Computing (MEC);
MEC 5G Integration," ETSI GR MEC 031 V2.1.1,
2020.

[45] Apache, "Tomcat project," [Online]. Available:
https://tomcat.apache.org/. [Accessed
27/04/2022].

[46] Apache, "Apache Qpid Project," [Online].
Available: https://qpid.apache.org/.
[Accessed 27/04/2022].

[47] AMQP, [Online]. Available:
https://www.amqp.org/. [Accessed
27/04/2022].

[48] E. Coronado et al., "ONIX: Open Radio
Network Information eXchange," IEEE
Communications Magazine, vol. 59, no. 10,
pp. 14-20, October 2021.

[49] R. Riggio, S. N. Khan, T. Subramanya, I. G. B.
Yahia, and D. Lopez, “Lightmano: Converging
nfv and sdn at the edges of the network,”
IEEE/IFIP NOMS 2018, April 2018.

[50] Spring, Framework, [Online]. Available:
https://spring.io/projects/spring-
framework. [Accessed 30 04 2022].

[51] Kubectl Top Pod/Node: Collecting
Kubernetes Metrics,
https://www.containiq.com/post/kubectl-
top-pod-node-for-metrics. [Accessed 30 04
2022].

[52] Kubernetes web site: https://kubernetes.io/.
[Accessed 30 04 2022].

[53] Benedetti, P.; Femminella, M.; Reali, G.;
Steenhaut, K. “Experimental Analysis of the
Application of Serverless Computing to IoT
Platforms”, Sensors, 2021, 21, 928.

AUTHORS

Mauro Femminella received both a
Master’s degree and a Ph.D. in
electronic engineering from
University of Perugia in 1999 and
2003, respectively. Since November

2006, he is an assistant professor at the Department
of Engineering, University of Perugia. He is co-
author of about 100 papers in international journals
and refereed international conferences. His current
research interests focus on molecular
communications, big data systems, and
architectures and protocols for 5G networks.

Gianluca Reali has been an associate
professor at the University of Perugia,
Department of Engineering, Italy,
since January 2005. He received a Ph.D.
degree in telecommunications from

the University of Perugia in 1997. From 1997 to
2004 he was a researcher at the Department of
Electronic and Information Engineering of
University of Perugia. In 1999 he visited the
Computer Science Department at UCLA. His
research activities include resource allocation over
packet networks, wireless networking, network
management, multimedia services, big data
management, and nanoscale communications.

© International Telecommunication Union, 202280

ITU Journal on Future and Evolving Technologies, Volume 3, Issue 1, July 2022

https://tomcat.apache.org/
https://qpid.apache.org/
https://www.amqp.org/
https://spring.io/projects/spring-framework
https://spring.io/projects/spring-framework
https://www.containiq.com/post/kubectl-top-pod-node-for-metrics
https://www.containiq.com/post/kubectl-top-pod-node-for-metrics
https://kubernetes.io/

	AN EDGE ABSTRACTION LAYER ENABLING FEDERATED AND HIERARCHICAL ORCHESTRATION OF CCAM SERVICES IN 5G AND BEYOND NETWORKS
	1. INTRODUCTION
	2. BACKGROUND AND RELATED WORK
	2.1 Background material
	2.2 Related work

	3. ORCHESTRATION ARCHITECTURE
	3.1 Overall system architecture
	3.2 Abstraction and Adaptation Layer (AAL): functional view
	3.3 AAL supported operations
	3.3.1 Bootstrap
	3.3.2 MLA onboarding/query/deletion
	3.3.3 Descriptors onboarding/query/deletion
	3.3.4 NS creation
	3.3.5 NS instantiation
	3.3.6 NS scaling
	3.3.7 Get NS information
	3.3.8 NS notification operations
	3.3.9 NS termination
	3.3.10 NS deletion

	4. IMPLEMENTATION AND PERFORMANCE ASSESSMENT
	4.1 AAM implementation and testbed setup
	4.2 Test cases
	4.3 Performance evaluation

	5. CONCLUSION
	ACKNOWLEDGEMENT
	REFERENCES
	AUTHORS

