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Abstract – This paper shows a flexible orchestration solution for deploying Cooperative, Connected, and 
Automated Mobility (CCAM) services in 5G and beyond networks. This solution is based on the concepts of 
federation and hierarchy of orchestration functions. The federated approach is leveraged to cope with the 
differentiated complexity operation when multiple network operators are considered, whereas the 
hierarchical approach addresses the issue of jointly orchestrating multiple edge platforms in the network of 
a single operator. In this complex orchestration architecture, the main contribution of this paper consists of 
the design and implementation of an Abstraction and Adaptation Layer (AAL) for edge clouds, a new 
component enabling a truly cooperative and coordinated orchestration between different edge systems, 
characterized by appreciable experimental performance in terms of latency. 
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1. INTRODUCTION

In recent years, the development of hardware and 
software technologies that can be used in the design, 
implementation and management of mobile 
communication systems has produced new models 
for service implementation and deployment. 
Among these, the general model that is currently 
characterized by a great momentum is that linked to 
the use of Multi-access Edge Computing (MEC). 
Essentially, it consists in making use of the 
outermost portions of cloud networks to host 
services that can benefit from the proximity 
between their deployment site and the users who 
use them. This concept can be applied to a 
multiplicity of services, both fixed and mobile, as 
witnessed by an intense research activity, 
illustrated in a dedicated section of this paper.  

This paper refers to the vehicular environment, 
which promises truly disruptive innovations 
compared to the services we commonly use [1][2]. 
In particular, we consider the so-called Cooperative, 
Connected, and Automated Mobility (CCAM) 
services. This restriction of the focus does not 
correspond to a simplification of the issues to be 
addressed. On the contrary, it significantly 
complicates them, as appears from the different 
research directions that have recently been 
identified, as illustrated in the background section.  

In order to offer CCAM services to vehicles, we 
assume to rely on 5G and beyond (B5G) 
technologies. In a B5G network, we can identify the 
Radio Access Network (RAN), the core network 
(5GC), including both control plane and User Plane 
Functions (UPFs), and a transport network 
interconnecting them. In this architecture, an edge 
cloud offering MEC services is typically positioned 
close to the RAN, in order to offer latency bounded 
services to vehicles. To achieve the desired quality 
from the deployed (vehicular) MEC services, edge 
resources need to be managed by orchestration 
functions [4], which are the main focus of this paper. 
In fact, both network and computing resources in 
5G/B5G are typically virtualized, and network 
functions are offered as Virtual Network Functions 
(VNFs) [39] running in both edge and core 
environments, since this improves flexibility and 
deployment agility. The entity managing the 
lifecycle of such VNFs is standardized by ETSI under 
the Network Function Virtualization (NFV) 
Management and Orchestration (MANO) initiative 
[38], and called NFV orchestrator (NFVO).  

Since the main characteristic of the vehicular 
environment is mobility, this calls for general 
scenarios in which multiple network operators can 
be involved. In particular, this is unavoidable in 
cross-border scenarios, as in the so-called 
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“corridors” defined in the framework of the trans-
European transport network [34]. In particular, our 
work is framed in the project 5G CARMEN, which is 
pursuing the experimental validation of CCAM 
services through 5G networks over the European 
highway corridor connecting Bologna (Italy) to 
Innsbruck (Austria) to Munich (Germany), thus 
crossing three countries with one bordering the 
other two. The features that best describe the added 
value of our orchestration solution include 
federation in a multi-domain environment and 
hierarchical orchestration inside the domain of 
each Mobile Network Operator (MNO). In fact, since 
edge computing/MEC is characterized by the 
proximity of network and computing resources to 
the access network (i.e., the 5G RAN in this scenario), 
it is necessary to deploy multiple edge/MEC 
clusters inside the network of an MNO, each one 
close to a group of gNodeBs. ETSI defined a 
standard architecture for managing MEC resources, 
including an orchestration function [37]. 

In a B5G network, a further cloud deployment, with 
the relevant orchestration function, is typically 
required to manage private cloud resources used to 
run the 5GC, as well as those application services 
not having critical latency requirements and thus 
not executed at the network edge. This additional 
orchestration function may not only manage 
centralized cloud resources, but also orchestrate 
service execution in different edge clouds by 
interacting with MEC orchestrators, through a 
hierarchical orchestration architecture. Indeed, 
ETSI provided an architectural solution for 
orchestrating Network Services (NSs) composed of 
VNFs running in different domain [36], including 
also the relevant interface specifications [35]. It 
defines two roles: the composite orchestrator 
(NFVO-C), in charge of issuing requests, and the 
nested peer orchestrator (NFVO-N), offering 
services. In short, the NFVO-C invokes NS lifecycle 
management operations towards the NFVO-N. The 
resulting NS is a composite instance, including a 
number of nested ones. In principle, this solution 
can be used for both federated and hierarchical 
orchestration use cases. However, it makes use of a 
continuous RESTful request/response pattern for 
requesting/granting any (even trivial) operation, 
creating a really significant communication burden 
on peer NFVOs. In addition, current orchestrators, 
such as the well-known ETSI Open Source MANO 
(OSM) [41], do not still implement these functions 

and relevant interfaces. Finally, the ETSI solution 
may be critical for services needing latency 
bounded orchestration operations, such as the 
horizontal scaling of a VNF instance in another MEC 
node, possibly in another domain, due to the need 
of obtaining a grant from the NFVO-C for 
implementing local actions.  

In order to address these challenges, the 5G 
CARMEN project proposes a flexible orchestration 
solution, based on the concepts of federation and 
hierarchy, and leveraging a suitable delegation of 
the orchestration decisions [30], so as to involve a 
high-level orchestration function only in critical 
tasks. In order to deliver CCAM services associated 
with the pilot of selected use cases, 5G CARMEN 
goes beyond the validation of functional and 
operational integrity for the orchestrated edges. It 
also assesses the contribution of the enabling 
components for cross-border and multi-domain 
edge service orchestration to reduce CCAM service 
interruption, latency and packet loss during 
automotive mobility. 

Paper contribution: The contribution of this paper, 
framed in the overall 5G CARMEN architecture, is 
the design and performance evaluation of a 
component named Abstraction and Adaptation 
Layer (AAL) for edge clouds, implementing the 
functions to empower real world MEC orchestrators 
with federated and hierarchical capabilities. The 
AAL is an enabler for the 5G CARMEN orchestration 
architecture, allowing a truly cooperative and 
coordinated orchestration between different MNOs’ 
edge systems for performance improvement in 
terms of latency and packet loss reduction. We 
present the guiding principles that have driven the 
design of the AAL, its detailed behavior and the 
exposed interfaces, as well as an experimental 
validation of its performance, executed on real edge 
nodes in different MNOs participating in the 5G 
CARMEN experimentation campaign. 

This paper is organized as follows. Section 2 
includes a global picture of the background 
research on the considered subject and related 
work in the field, especially those related to multi-
domain and/or hierarchical orchestration. Section 3 
illustrates the overall system architecture, focusing 
on the design of the AAL. Section 4 presents the 
results of an experimental campaign carried out on 
real nodes, and finally Section 5 reports our 
concluding remarks. 
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2. BACKGROUND AND RELATED WORK

2.1 Background material 

The background research related to introducing 
MEC-based solutions in vehicular networks is huge. 
Although this section may not include all existing 
proposals as in a comprehensive review document, 
we identify the main research directions and 
mention significant contributions for all of them, in 
order to give readers a global picture of the state of 
the art on the subject.  

Regarding the user plane, a considerable research 
effort has been devoted to ensure low latency and 
continuous delivery, through the introduction of 
compute and storage resources at the MEC of 
mobile networks, and proactive service migration. 
This is the key aspect for providing latency-
sensitive vehicular applications. The paper [3] 
shows a proposal for reducing the latency observed 
by users accessing services deployed in MEC. It is 
based on migrating the service instances to the edge 
node that are located nearest to users. The 
proposed solution makes use of Convolutional 
Neural Networks (CNN) and genetic algorithms for 
mobility prediction. Similarly, in [6] the authors 
propose an orchestration algorithm for 
orchestrating a virtualized infrastructure accessible 
by a large number of users. Also in this case, 
prediction of the user movement is used to 
proactively place user instances in MEC. More 
sophisticated prediction, based on heterogeneous 
information including cartograpy and inference 
from a high volume of past measurements is 
proposed in [8] and [9]. The use of Recurrent Neural 
Networks (RNNs) is proposed in [11] to predict 
network-wide vehicle patterns in urban 
environments, using claimed similarity between 
trajectory prediction and language modeling. Again, 
[12] shows an algorithmic proposal based on CNN,
modeling vehicle trajectories as images. They
achieve interesting prediction results, showing also
the capability of managing two-dimensional
trajectories at different spatial scales.

In addition to properly estimating user trajectories 
to guide content migration, a lot of research has 
been done on the policies and algorithms for server 
migration and selection. An interesting comparison 
is shown in [27]. In addition to assessing the need 
for service migration in a vehicular environment, 
different metrics used for server selection are 
compared, namely distance-based MEC, load-based 
MEC and their combination.  

Although the migration of services, or their status, 
is essential for their usage in a vehicular 
environment, the related functions may have a 
significant cost, as highlighted in [13]. The authors 
propose a mobility-aware online service placement, 
which aims at achieving a balance between latency 
and migration cost. The importance of this balance 
increases with the frequency of service migrations, 
the burden of which could degrade the perceived 
Quality of Experience (QoE). 

A further aspect to be considered in the usage of 
MEC resources is energy efficiency. This issue is 
addressed in [16], where the authors propose a 
solution for offloading traffic from resource-
constrained vehicles to a MEC platform and 
integrate MEC-enhanced vehicular networks with 
Non-Orthogonal Multiple Access (NOMA) 
technology for improving the efficiency of the 
available spectrum. Computation offloading 
combined with resource allocation has recently 
stimulated many research contributions aiming to 
optimize offloading decisions [20][21][22][23].  

In operation, the situation is further complicated by 
the heterogeneity of the MEC environment 
[17][18][14]. Combining heterogenous 
infrastructures, resources, and technologies 
available in different MEC sites could determine 
significant challenges for defining orchestration 
policies in order to achieve and preserve the 
desired QoE over time.  

The scope of the orchestration functions is  another 
aspect determining the exploitability of research 
results in a complex real environment. This is 
indeed the aspect on which this paper provides the 
most significant research contribution. Some recent 
papers focus on providing orchestration services 
throughout multiple domains. The different 
approaches are characterized by the organization of 
the individual orchestrators that cooperate in 
delivering the overall service. The investigated 
solutions include hierarchical organization, cascade 
organization, or a distributed one. A comprehensive 
review of such proposals can be found in [19]. Our 
contribution to this problem includes service 
federation and possible delegation, that are shown 
to improve efficiency and flexibility of inter-domain 
orchestration functions. 

In addition to contributing to the identification of 
technically valid solutions, it is necessary to make 
the proposals operational by making them 
compliant with orchestration reference standards. 
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In this regard, the strategic importance of resorting 
to 5G services for implementing advanced vehicular 
services is addressed by [15]. The authors highlight 
the superiority of 5G features in supporting Vehicle-
to-Everything (V2X) networks in comparison with 
previous standards, such as IEEE 802.11p. They 
also observe that the suitable network support to 
vehicular applications, based on roadside unit 
connectivity, can significantly benefit from an 
automated discovery of MEC-based virtualized 
service components. Again with regard to widely 
recognized standards, the ETSI standardization 
activities identify the MEC features needed to 
support V2X applications and identify the 
requirements for including new features and 
functions [2]. In this regard, it is worth mentioning 
the technologies and related standards that are 
typically put in place in conjunction with MEC 
orchestrators to make them effective. In particular, 
SDN and NFV have been shown to be very effective 
to deploy management automation fuctions when 
dealing with delay-sensitive vehicular applications 
[4]. In [14], the authors depict a closed-loop 
lifecycle management of network services, and map 
their proposal over the ETSI NFV MANO 
architecture. This proposal includes MEC-oriented 
key features for network service and resource 
orchestration in vehicular networks. Similarly, the 
papers [25][26] include a contribution related to 
introducing monitoring functions for control 
and/or data planes into the ETSI NFV architecture, 
designed to enhance 5G services. Additional 
benefits deriving from SDN and NVF in operating 
vehicular networks include service customization. 
For this purpose, the paper [24] shows a proposal 
of introducing the so-called function-specific 
managers and service-specific managers, 
configured by VNF descriptors and NS descriptors. 
They are used to integrate MANO functions for 
orchestrating services and resources in a custom 
manner. As for the implementation of the VNFs, 
they can be realized not only using the classic 
approach based on Virtual Machines (VMs), but also 
in a containerized environment, managed by 
Kubernetes [52]. A computational efficient scheme 
to run applications, running on top of containerized 
settings, is serverless computing [53]. It could be an 
interesting option for deploying network functions 
and vehicular services in MEC nodes. 

Finally, it is worth mentioning a comparison of two 
popular orchestration tools shown in [14]. An 
extensive performance analysis of Open Baton and 
Open Source MANO is shown. The comparison is 
based on instantiation delay, responsiveness, and 
isolation features. 

2.2 Related work 

When more than one MNO is involved, it is possible 
to envisage two main approaches.  

In the first one, multiple MNOs federate together by 
using a top-layer orchestrator. It does not really 
orchestrate any resource, but only redirects service 
requests to one of the MNO networks, or builds 
virtualized connections between them in order to 
create a composite NS with VNFs running in the 
private clouds of multiple MNOs. Thus, the 
federation is built throught an additional, inter-
MNO, vertical orchestration layer. In this way, it is 
possible to avoid any direct interaction between the 
NFVOs of the different MNOs, which communicate 
through standardized interfaces like ETSI GS NFV-
SOL005 [40] only with the top layer NFVO [32]. For 
instance, this is the approach adopted in the 5G-EVE 
project [29]. In order to mask this complexity to 
(vertical) user of operators’ cloud services, 
abstraction layers are commonly used to provide a 
simplified view of a service, the interconnections of 
its components, as well as the relevant 
descriptors [28].  

The other approach is based on a horizontal 
federation [33], in which the NFVOs of different 
MNOs set up distributed NSs across their private 
clouds using the standardized ETSI solution, thus 
communicating on the so-called Or-Or reference 
point [35]. However, as already mentioned in the 
Introduction, this approach suffers from increased 
latency and excessive communication burden on 
peer NFVOs, and thus is difficult to adopt in 
practical settings.  

In addition, when the supported services have strict 
requirements in terms of latency and packet losses, 
often MNOs resort to the MEC approach, implying a 
number of edge clouds distributed in the MNO’s 
network. In turn, also this deployment raises a 
number of issues. A first and simplistic solution 
could be to deploy just a centralized NFVO, which is 
able to manage not only a central private cloud, but 
also multiple remote edge clouds. They are handled 
as multiple Virtualized Infrastructure Managers 
(VIMs), each one deployed in an edge cloud. A VIM 
is an entity responsible for controlling and 
managing the NFV infrastructure (NFVI). It consists 
of physical compute, storage, and network 
resources. However, this would increase the 
complexity of operations and management burden 
of the NFVO. As an alternative solution, the central 
private cloud and all the distributed edge clouds 
could be managed by a single VIM, in turn 
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orchestrated by the central NFVO. Again, the 
communication and complexity burden required to 
the VIM to handle a set of distributed computing 
cluster would be not acceptable. This led ETSI to the 
definition of a self contained solution for MEC 
deployments, including its own orchestrator [37]. 
However, the ETSI solution does not solve the issue 
of deploying services made of components 
distributed on multiple edge nodes and a central 
cloud, which is instead a quite popular setting, 
especially in dynamic environments as those 
offering CCAM services.  

The 5G CARMEN architecture addresses this issue, 
by proposing an architecture that adopts 
hierarchical orchestration within the infrastructure 
of an MNO, and a horizontal federation between 
different MNOs, as proposed in [31]. In addition, in 
order to solve the issue of horizontal federation 
realized through the Or-Or reference point, it 
adopts a form of delegation of orchestration 
decisions [30]. This delegation principle can be 
implemented both intra-domain, that is between 
the high level NFVO and the MEC NFVOs, and inter-
domain, that is between the MEC NFVOs operated 
by different MNOs, through previously agreed 
policies at the Or-Or level. 

3. ORCHESTRATION ARCHITECTURE

Since the access network is implemented through 
B5G technology, edge clouds have to be connected 
to 5G user plane and control plane functions. The 
design principles of the 5G CARMEN system 
architecture can be summarized as follows.  

• Optimized lifecycle management of distributed
CCAM service instances. The orchestrated 5G
platform supports an automated Lifecycle
Management (LCM) of NS instances, including
operations such as dynamic service 
instantiation, scaling, migration, 
update/reconfiguration, and termination. 

• Hierarchical and distributed edge orchestration.
The orchestrated edge platform is capable of
performing a flexible and agile service
orchestration in a hierarchical and distributed
manner, by deploying top-level service
orchestrators in different administrative
domains, and edge-level orchestrators in
multiple edge domains within each MNO
network. With such a setting, services and
associated resources can be managed locally
(i.e., in edge domains), but different

orchestration layers collaborate to optimize 
the outcome of the orchestration operations. A 
design according to such objective is in line 
with existing solutions for end-to-end 
orchestration under the control of top-level 
orchestrators, while enabling direct edge-to-
edge orchestration, which is considered of 
particular value for the automotive industry for 
its ability to reduce latency of orchestration. 

• Delegation of MANO operations in a federated
environment. In order to optimize the
performance of the MANO operations, a key
element is the introduction of the concept of
Management Level Agreement (MLA) [30]. It
enables the delegation of MANO
tasks/operations between the top-level and
edge-level orchestration systems (intra-
domain), and between the peering edge
platforms in the same and/or different
domains (inter-domain). MLA enables the
offloading of LCM operations from the top level
to edge level orchestrators. Such a negotiated
agreement determines the operations and
functions that the edge-level entities are
allowed to perform within their edge
boundaries, thereby executing LCM operations
on the relevant service applications and their
respective resources without asking for
permission from the top-level entity. The
prerequisite for establishing cross-domain
federation is an MLA negotiated between
administrative domains, i.e., relevant top-level
NFVOs. Developing federation also at the edge
level enables the interworking of MEC
platforms, to provide a cross-edge on-demand
management and orchestration in a
collaborative manner, while enabling and
maintaining low-latency edge-to-edge CCAM
service/session continuity.

• Coupling of 5G UPF and MEC data plane.
Cooperation between the edge platform with
the overall 5G architecture is mandatory for
complete end-to-end system management and
control. This allows enforcing data plane traffic
rules aligned with policies and configurations
associated with mobile subscribers in both the
UPF and the MEC platform. This allows
enabling (i) traffic steering within the MEC
programmable data plane for execution of
CCAM services, (ii) traffic forwarding towards
a different MEC platform, and (iii) relocation of
the UPF of a mobile subscriber due to vehicle
mobility.
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• Slicing. The orchestrated edges platform can
host and manage services from different
vertical players acting as tenants for the
platform, and isolating them by adopting
slicing techniques enforced by edge
orchestration systems.

3.1 Overall system architecture 

Fig. 1 shows the key components of the 5G CARMEN 
architecture. It extends and interfaces the MNOs’ 
centralized service orchestration system (NFV-SO), 
which is in charge of implementing top-level 
orchestration functions, with the edge 
orchestration system. The latter is composed of the 
NFV Local Orchestrator (NFV-LO) and the MEC 
Application Orchestrator (MEAO), which are 
connected through the Mv1 reference point in 
alignment with ETSI GS MEC 003 specification [37]. 
The MEAO is responsible for the LCM of CCAM 
services running on the MEC hosts of the edge 
cluster, while the NFV-LO is responsible for the 
management of the VNFs hosted on the NFVI of the 
MEC platform. This edge orchestration system 
interfaces with the NFV-SO via the newly defined 
Mv1’ reference point, which is an extension of the 
standard Mv1 reference point. In fact, as the MEAO 
takes an orchestration decision on CCAM services 
and communicates them to the NFV-LO via Mv1, in 
the same way the NFV-SO takes a high-level 
orchestration decision on deployed services and 
communicates them via Mv1’ to the NFV-LO. The 
NFV-SO supports the Or-Or reference point for 
interconnecting and federating with other MNOs’ 
NFV-SOs in alignment with the ETSI NFV-IFA 028 
[36] and ETSI NFV-IFA 030 [35]. The NFV-LO
executes local orchestration tasks following the
NFV-SO’s directives, which are defined in MLA [6]
and exposed to the NFV-LO via the Mv1’ reference
point. The MLA is a concept that enables granting
operational autonomy from a top-level
management entity to an edge-level one. In the 5G
CARMEN architecture, this concept of delegation is
applied to resource orchestration. The MLA allows
the NFV-SO granting some degree of autonomy in
orchestration operations to the underlying NFV-LO.
This means that some orchestration operations, 
such as scaling, can be carried out by the NFV-
LO/MEAO without asking any permission from the
controlling NFV-SO.

The way to implement the MLA concept consists of 
onboarding an MLA descriptor (a simplified 
example can be found in [30]) from the NFV-SO to 

the NFV-LO for each service type before 
instantiating any instance of the service itself. This 
descriptor is uploaded to the NFV-LO via a suitable 
interface over the Mv1’ reference point. In this way, 
the NFV-LO is aware of the operations that it can 
execute autonomously and of those that need to be 
authorized by the NFV-SO on request, thus speeding 
up and easing orchestration tasks at the edge. This 
autonomy may extend also to include LCM 
operations carried out in cooperation with other 
edge nodes, both intra-domain and inter-domain, 
specifying for each service the permitted operations 
and the potential peer edges. In any case, the NFV-
SO must be kept aligned with what happens in edge 
nodes. This means that a notification mechanism 
has to be implemented at the Mv1’ reference point.  

Finally, a new Lo-Lo reference point was introduced 
to enable the peering between NFV-LO instances, in 
order to enable direct and low-latency management 
of multi-domain and multi-site services in the edge 
domains, bypassing the top-level NFV-SO 
orchestrators, as specified by MLA. The design of 
the Lo-Lo reference point [31] inherits from the Or-
Or reference point between the NFV-SOs [35].  

The overall system architecture defined within the 
5G CARMEN project is shortly described in what 
follows and illustrated in Fig. 1, focusing on 
orchestration aspects: 

• NFV-SO: Represents the top-level orchestrator
of the multi-tier orchestration system of the
platform running CCAM services. The
operational scope of this orchestrator includes
the management of the entire virtualized
infrastructure of an operator domain. In
particular, it is responsible for the management
and orchestration of application services from
multiple tenants. It has the additional task of
enabling federation with the NFV-SOs of other
administrative domains. It maintains a global
repository of the application packages and
software images received through the
northbound interface on the Os-Ma-nfvo
reference point upon onboarding requests.

• NFV-LO/MEAO: The combination of the NFV-
LO and the MEAO realizes the local edge
orchestrator, which represents the second tier
of the multi-tier orchestration system. The
operational scope of this orchestrator includes
the designated clusters of MEC sites. A 1:N
relationship exists between the NFV-SO and the
local orchestrator.
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• The Edge Controller (EC) acts as a VNF manager
(VNFM) for the management of the NFVI
resources, on top of VIM, as per the ETSI MEC
specification [37]. The EC represents a binding
element between the technology specific edge
platform (realized through Kubernetes clusters
[52] in the 5G CARMEN) and the relevant
orchestration layer, realized by NFV-LO/MEAO.
The EC combines the features for edge platform
management, VNFM, as well as additional
control enablers, such as connectivity
management of both edge platform applications
(CCAM services) and Value Added Services
(VAS), slice management, and coupling with the
5G system via 3GPP Naf reference point.

• CCAM services: service functions or micro-
service instances running on the MEC Platform.
Those services can be persistent, such as
maneuvering services, or on demand, with
situation-aware or dynamic mission-critical
requirements.

• MEC Value-Added Services (VAS): services
running on the MEC platform to provide value
added functions to other CCAM services. 
Examples include the Radio Network
Information Service (RNIS) [48], location
services, as well as publish/subscribe AMQP
broker, extensively used in 5G CARMEN
experiments to distribute vehicular data to
services.

3.2 Abstraction and Adaptation Layer (AAL): 
functional view 

The NFV-SO is the orchestrator that runs in the core 
of the MNO in order to manage and orchestrate the 
application services for the MNO’s tenants at a 
global infrastructure level. The NFV-SO manages 
and coordinates the LCM of the CCAM services 
deployed in the edge system by interacting with the 
edge level orchestration system (NFV-LO/MEAO) 
over interfaces defined over the Mv1’ reference 
point. With the information retrieved through this 
reference point, the NFV-SO has an abstract view of 
the orchestrated 5G edge platforms running below. 

The Mv1’ reference point on the MEC side is 
managed by the Abstraction and Adaptation Layer 
(AAL) depicted in Fig. 2. It is the intermediate layer 
that enables the communication among 
orchestrators implementing incompatible APIs. It is 
deployed on the top of the NFV-LO, abstracting its 
features and making it compliant to the standard 
ETSI GS NFV-SOL005 [40], to simplify the 
operations at the NFV-SO level. Thus, it is the 
enabler of the orchestration functional split, 
allowing the NFV-SO to be unaware of the 
underlying NFV-LO proprietary APIs. This 
abstraction is provided by means of an Adaptation 
and Abstraction Module (AAM).  

Fig. 1 – 5G CARMEN system orchestration architecture
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It masks the features and semantics of the 
orchestrators running in the edge orchestration 
layer, i.e., the NFV-LOs, and runs in the edge sites 
together with it. This enables the NFV-SO to carry 
out orchestration operations that are independent 
and transparent to those specific of the MANO 
platform running in edge nodes. Thus, the AAM 
performs the necessary adaptation of the interfaces 
over the Mv1’ reference point between the different 
types of the orchestration system employed at the 
NFV-SO and the NFV-LO/MEAO. As mentioned 
above, the north-bound interface of the AAM over 
the Mv1’ reference point is compliant with the ETSI 
GS NFV-SOL005 interface specification [40]. The 
abstraction layer was developed to support not only 
OSM, which (partially) implements the ETSI NFV-
SOL005 interface as northbound API [41], but also 
other, possibly cloud-native, NFV-LO APIs. In more 
detail, in the AAM we developed an adaptor also for 
lightMANO [49], a lightweight, standard compliant 
ETSI NFVO designed to nativelly run in a 
Kubernetes environment [52]. 

Adopting a standard interface is a clear advantage 
for decoupling the development of NFV-SO from 
that of NFV-LOs, enabling to deploy different NFV-
LOs in different MEC nodes. In order to do so, the 
AAM exposes a REST Application Programming 
Interface (API) as Northbound API (NBI) on the 
Mv1’. On this API, the AAM accepts and manages the 
mandatory fields defined in the ETSI NFV-SOL005 
APIs towards the NFV-SO. On the other end, on the 
AAM SBI, it is compliant with the NBI exposed by the 
underlying NFV-LO, which can be OSM or 
lightMANO. Thus, the AAL is a functional entity 
accomplishing multiple tasks. First, it provides an 
adaptation between the REST call received on its 
NBI and those available on the NBI on the 
underlying NFV-LO, mapping different API URLs 
between the two interfaces and adapting the format 
of messages, when needed. For instance, in the case 
of OSM, some NFV-SO REST calls received on the 
Mv1’ reference point will be relayed almost directly 
to the OSM, whereas for lightMANO there is the 
need of REST calls translation to completely new 
calls, with a mapping between different parameters 
of message body. In addition, in some cases the AAM 
also hides to the NFV-SO the details of how specific 
operations are implemented, providing an abstract 
view of the NFV-LO operations, and implementing 
some functions when they are not provided at all by 
the underlying NFV-LO. For instance, both OSM and 
lightMANO do not support REST notifications, 
which is instead defined in the ETSI GS NFV-SOL005 

standard and necessary to support orchestration 
operations in multi-domain scenarios. Thus, when 
the underlying NFV-LO is OSM, the AAM is in charge 
of retrieving NS-related information through 
repeated polling on the OSM NBI. When dealing 
with lightMANO, the AAM has to subscribe to an 
AMQP Message Broker (MB) to retrieve 
notifications about instantiated services on the 
lower layer. In turn, a subset of this information, 
retrieved via polling or subscription to an MB, has 
to be forwarded to the NFV-SO according to the 
agreed notification filters, acting as a client node 
contacting the NFV-SO on its callback URI, as 
specifed on ETSI GS NFV-SOL005 [40]. Thus, the 
presence of the AAL allows decoupling the design of 
the orchestrator used as the NFV-LO from its 
adoption in the overall orchestration architecture 
used in 5G CARMEN.  

Finally, the AAL enables the enforcement of the MLA 
descriptor from the NFV-SO to the underlying NFV-
LOs, enabling the formalization of autonomous 
operations that can be executed by the NFV-LO 
without affecting upper layers for any further 
permission requests. The delegation allows also the 
NFV-LO to execute NS instantiation/termination 
operations on cross-border domains, establishing 
the horizontal Lo-Lo interface with relevant peer 
NFV-LOs. This descriptor includes also the 
definition of the scaling policies of each NS instance. 

To sum up, the usage of OSM as the underlying NFV-
LO is intended for orchestrating a core MNO cloud, 
whereas a simpler and lightweight NFV-LO, such as 
lightMANO, are designed for usage on edge nodes. 
The combination of NFV-SO and AAM allows 
managing a hierarchy of generic NFVOs, each one 
with its target usage environment. If some functions 
are not provided by the underlying NFV-LO, it is the 
AAL that takes care of them.  

Fig. 2 – The AAL role in intra-domain operations 
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Fig. 3 – Scheme of the edge entities composing the orchestration function split running on Kubernetes cluster. 

From a functional point of view, the abstraction 
layer relies on a persistence layer to abstract the 
functionalities specified by the ETSI standard and 
not implemented in the underlying NFV-LO. The 
persistence layer is provided by deploying a 
dedicated database along with the Mv1’ adaptation 
layer (Fig. 3). Below we report the main abstract 
operations that rely on the persistence layer: 

• ETSI VNF/NS descriptors onboarding and
querying, a feature not necessarily
implemented in the underlying NFV-LO. For
instance, lightMANO is not compliant with
ETSI/OSM descriptors and instead it uses a
helm-chart to describe orchestrated services.
Thus, onboarded descriptors are stored in the
Mv1’ internal DB and the parameters defined
therein are processed to complete some
preliminary tests, such as the availability check
of the relevant helm-chart on the NFV-LO side
and for configuring the NS instantiation. In the
end, the descriptors onboarding is a feature
exposed by the abstraction layer on behalf of
the NFV-LO. Since the latest versions of OSM
support the usage of Kubernetes cluster to
implement VNFs (KNFs), we used this option in
our descriptors to ease the mapping towards
helm-charts used by lightMANO.

• NS creation/deletion operations are exposed
towards the NFV-SO, which is expecting at first
to create the NS, and then to instantiate it, as
defined by OSM/ETSI NFV-SOL005 APIs. This
operation is not supported by lightMANO,
which instead instantiates directly its
applications (Apps). Thus, the creation
operation consists in the creation of the NS
entry in the internal database, according to the
body parameters enclosed in an OSM compliant
request. A unique ID is then returned to the
calling NFV-SO, enabling the lifecycle
management of the created resource. Similarly,
the NS deletion is an abstract feature that
involves the Mv1’ database only, avoiding the
interaction with the lower layers. The removal
of the entity from the DB is allowed on the
NOT_INSTANTIATED NS only, which means
that the resource is not running anymore on
the lower layers. Thus, the AAM has to
implement a state machine for handled NS
instances. In addition, since lightMANO does
not support services made of multiple apps, it
has to keep the mapping between the VNFs
composing a service and the relevant NS.

• MLA onboarding: The AAM stores locally and
then forwards the MLA descriptor to the NFV-
LO. In case of an NFV-LO that is not compliant
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with the MLA, such as OSM, the AAM will 
manage the relevant permissions towards the 
NFV-LO underneath.  

3.3 AAL supported operations 

The Mv1' reference point is exposed by the AAM and 
instantiated between each NFV-LO and its “parent” 
NFV-SO. Its scope is limited within the same 
operator’s domain. However, in case the underlying 
NFV-LO cannot handle the Lo-Lo interface, the 
extension to support it and the relevant MLA 
permissions on behalf of the edge orchestration 
underneath would be straightforward. This 
reference point is primarily designed to:  

• Enable the interaction between multiple
decentralized orchestration functions. This
implies North-South (and potentially East-
West) interactions in case of orchestrators’
hierarchy.

• Support the provisioning of management
autonomy to lower orchestration domains of
an orchestration hierarchy.

• Support the LCM of services in a multi-domain
environment.

The Mv1’ reference point is unique to the 
orchestrated platform for CCAM, thus an 
appropriate initialization is required to implement 
the orchestration functional split. This procedure is 
called bootstrap in the following list. 

The Mv1’ reference point is primarily used for the 
NS/VNF package management between the global 
package repositories and the local package 
repositories, as well as for carrying out the main NS 
LCM operations in the 5G edge platform: 

• Create/Instantiate NS: ETSI NFV-SOL005
compliant operation, leading to the creation of
an NS instance.

• Scaling NS: request to scale an already
instantiated NS, likely on a different edge site.

• Terminate/Delete NS: ETSI NFV-SOL005
compliant operation, leading to the deletion of
an NS instance.

• Notification of NS instance updates: ETSI NFV-
SOL005 compliant notifications towards the
NFV-SO to update it about some parameters
related to the running instances.

In addition, the Mv1’ is the reference point over 
which the MLA parameters are negotiated to 
determine the scope of the management autonomy 

that the NFV-SO can delegate to the NFV-LO. 
Moreover, this reference point also exposes 
interfaces that enable the NFV-SO not only to 
monitor the performance and fault events of the 
resources within the NFV-LO domain, but also to 
monitor the compliance of the MLA agreement. It 
should be noted that the NFV-SO has full 
administrative access of the entire management 
domain and can support and/or overrule the 
management decisions of the NFV-LO.  

3.3.1 Bootstrap 

The Bootstrap operation is the very first operation 
to be executed after the AAM initialization 
(see Fig. 4). At this time (message 1), the AAM 
knows only the public endpoint of the NFV-SO and 
the endpoint of the local MB, both defined in its 
configuration file.  

At the beginning of the bootstrap phase, the AAM 
forwards a subscription request to some specific 
topics on the local MB. Altough this operation is part 
of the bootstrap phase, it is not strictly related to the 
message chain described below. This means that it 
can be initialized at any time without affecting the 
vertical registration sketched in Fig. 4. The 
underlying NFV-LO, performing a periodic polling, 
detects the AAM availability and then transmits the 
registration message (message 2) in order to 
provide relevant information about its identity, its 
network location (i.e., the endpoint in the 
Kubernetes cluster), and the topological 
coordinates of the radio coverage it manages in 
GeoJSON format. 

The AAM forwards this information towards the 
NFV-SO (message 3), providing its public endpoint 
in order to allow the NFV-SO to orchestrate the 
underlying cluster below the Mv1’ interface. The 
NFV-SO’s response (message 4) consists of its 
unique ID. Provided information will be processed 
by the NFV-SO to compile the MLA descriptor that 
will be uploaded in a subsequent phase. Finally, the 
AAM pushes the NFV-SO ID towards the NFV-LO 
(message 5) in order to complete the vertical 
registration phase.  

As a final operation, which is not strictly related to 
the registration phase, the NFV-SO transmits a 
subscription on the Mv1’ reference point in order to 
receive unsolicited notifications about instantiated 
NSs. The request body contains subscription filters, 
in order to define only a subset of messages, and the 
callback URI that should be used by the AAM for the 
transmission of relevant notifications. This 
functionality is essential to enable low latency 
orchestration operation via Lo-Lo reference point. 
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Fig. 4 – Bootstrap and registration of vertical layers 

3.3.2 MLA onboarding/query/deletion 

Since the MLA is not defined in the ETSI standard, 
the AAM API was extended to support it. The MLA 
descriptor, formatted by using the JSON encoding, is 
pushed by the NFV-SO on the Mv1’ towards the 
AMM, which forwards the descriptor to the NFV-LO. 
The MLA is also stored in the local AAM DB for 
handling the other NS-related operations. Any 
further upload will result in an update of the MLA 
on both AAM (internal DB) and NFV-LO.  

In the descriptor retrieval operation, the NFV-SO 
sends the information request to the AAM, which 
forwards the request towards the NFV-LO, upon 
proper translation of the request URI. The response 
body returned by the NFV-LO is forwarded via Mv1’ 
towards the NFV-SO. The response body consists of 
an array of MLA descriptors in JSON format. 

As for deletion, the NFV-SO triggers this operation 
on the Mv1’ reference point. In turn, the AAM 
forwards the request to the NFV-LO. If no errors 
occur, the AAM assumes that the NFV-LO has 
successfully removed the content, and removes the 
corresponding entry from its internal DB, providing 
proper confirmation to the NFV-SO. 

3.3.3 Descriptors onboarding/query/deletion 

The onboarding operation of both VNF/NS 
descriptors (VNFD/NSD) is an abstracted feature 
exposed by the AAM, as it is not implemented in the 

NFV-LO used in 5G CARMEN edges (i.e., lightMANO). 
It basically consists of a file upload, as defined in the 
ETSI NFV-SOL005 APIs, by using standard 
endpoints. Onboarding is a two-step operation. 
First, the NFV-SO uploads the VNFDs and then the 
related NSD. A preliminary check is performed in 
order to verify whether the helm-chart defined in 
the VNFD under the KDU section (Kubernetes 
Deployment Unit) is available on the NFV-LO side. 
Thus, an OSM-compliant onboarding request 
triggers a GET request on the NFV-LO NBI. If no 
errors occur, the VNFD can be stored as JSON object 
in the local DB.  

As mentioned above, the second step consists of the 
NSD file upload, done in a similar manner as 
described in the first step. The AAM searches among 
the onboarded VNFDs for those defined in the NSD 
body. This is an internal operation that does not 
involve the NFV-LO. If a match for all VNFs included 
in the NS is found, the NSD can be stored in the local 
DB. For each successful NS onboarding the AAM 
returns a unique ID to the NFV-SO in order to 
properly address each descriptor on the Mv1’ side. 
This ID is required for the NS creation and 
instantiation phases and for any other operation 
involving the descriptors (query or deletion). 

The descriptor retrieval is an abstracted feature 
implemented on the Mv1’ side only through HTTP 
GET messages compliant with ETSI NFV-SOL005 for 
both VNF and NS descriptors. In both cases, the 
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information returned via Mv1’ are collected from 
the internal DB and are compliant to the ETSI 
standard format.  

The descriptors cancellation is an abstract feature 
implemented on the Mv1’ side only. For a complete 
removal of a VNFD descriptor, the NFV-SO has to 
trigger the removal of all the NSDs that include such 
a descriptor, specifying in both cases their IDs. The 
AAM then removes the descriptor matching the 
provided ID from the local DB. 

3.3.4 NS creation 

The NS creation operation enables the creation of 
an NS instance towards the AAM providing 
mandatory parameters for the deployment phase 
on the NFV-LO. Note that the creation operation is 
not implemented in lightMANO. It is an abstract 
feature exposed by the Mv1’ only and consists of 
validating the OSM mandatory parameters 
provided in the request body:  

• nsName: the NS instance name should be
unique in the local DB. Any duplication will
cause the rejection of the current request;

• nsdId: the ID provided should match an already
onboarded NSD in the local DB;

• vimAccountId: this parameter, coming from the
OSM APIs’ definition, was overwritten to
represent the ID of the target NFV-LO;

• additionalParamsForNs: it is a data structure
containing some instantiation parameters used
by the underlying layers to properly deploy the
applications on the Kubernetes cluster.

In case no errors occur, the NS instance can be 
stored in the local DB, setting its internal state to 
NOT_INSTANTIATED. Thus, the resource was 
created and it is ready for the instantiation at any 
time, as specified by ETSI NFV-SOL005. An NS 
instance ID (nsInstanceId) is then generated and 
returned to the NFV-SO, in order to enable 
subsequent LCM operations. 

3.3.5 NS instantiation 

The NS instantiation is a two-step operation, 
according to the ETSI NFV-SOL005 APIs. Initially, 
the NS instance is created (as shown in the previous 
section) and then it can be instantiated. Both 
operations are triggered by the NFV-SO and can be 
also executed at different times maintaining the 
message sequence defined above. 

The ETSI NFV-SOL005 standard instantiation 
request, including in the request body the NS ID 
(nsInstanceId), the nsdId, the vimAccountId, and 
additionalParamsForNS, is mapped into the 
equivalent one on the lightMANO NBI. The request 
body extends the parameters provided in the 
creation request with some additional fields 
required for the app deployment in the underlying 
edge platform. Any errors will be detected and 
reported by the underlying layers towards the Mv1’ 
and then up to the NFV-SO. The internal state of the 
NS instance is updated according to the result of the 
instantiation request.  

3.3.6 NS scaling 

The NS scaling operation is already present in the 
ETSI NFV-SOL005. In the proposed architecture, the 
scaling operation is one of those typically handled 
autonomously by the NFV-LO, as per the MLA 
definition. However, we implemented the 
possibility to scale an existing NS by scaling one of 
its constituents VNFs on a different edge node, 
assuming to use the Lo-Lo reference point for the 
instantiation over a peer NFV-LO. Clearly, this is 
possible only if an MLA with such a permission is 
defined. This operation is analogous to the NS 
instantiation one, using the same set of parameters 
but with the vimAccountId set to the target remote 
NFV-LO. 

3.3.7 Get NS information 

The AAM exposes over the Mv1’ reference point the 
operation for the NS instance information retrieval, 
defined by the ETSI standard. The query operation 
returns details about the overall instantiated NSs, 
although it is possible to filter the results for any 
specific NS instance by providing its unique ID in the 
request URI. Hence, the NFV-SO invokes the request 
towards the AAM, which in turn forwards the 
request to the NFV-LO, making proper mappings on 
both request URI and inline parameters. The 
response provided by the NFV-LO contains two 
parameters only: the name of the app and its status. 
To this aim, the AAM matches the returned app 
name(s) to those stored in the local DB in order to 
provide all details according to the ETSI NFV-
SOL005 response format. Note that 
NOT_INSTANTIATED NS instances (i.e., those 
created but not running) are not returned by the 
NFV-LO, that manages running apps only. This 
means that the number of stored NS instances in the 
local DB can be equal or higher than those provided 
by the NFV-LO, but only the NS instances provided 
by the NFV-LO can match with the INSTANTIATED 
state in the local DB.  
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Fig. 5 – NS instantiation sequence diagram, including vertical instantiation via Mv1’, horizontal low latency scaling operation via 
Lo-Lo, vertical remote notification via Mv1’, and final horizontal final notification via Or-Or. Most details about operations occurring 
between NFV-LO, MEAO, EC and Kubernetes cluster below, including messages distributed via MB, are omitted to ease the reading. 

This constraint comes from the abstraction of the 
NS creation operation, as described in the operation 
above (Section 3.3.4). 

3.3.8 NS notification operations 

As previously described in the bootstrap phase, the 
NFV-SO subscribes to the AAM over the Mv1’ 
reference point at the very beginning. This allows 
NFV-SO to receive notifications coming from the 
orchestrated edge platform. The notifications of 
interest here are those relevant to the app 
instantiation/deletion on cross-border domains. 
Fig. 5 shows a sequence diagram of NS instantiation 
and subsequent scaling of an NS in a cross-border 
setting, this second event triggered by the MEAO. 
Notifications messages, as well as other AAM 
operations, are clearly identified. In addition, the 
AAM, through the subscription to the MB, is able to 
monitor the performance as well as the resource 
usage of computing nodes in the edge platform. 
Thus, it can use this operation to periodically notify 
the NFV-SO about the edge resource usage in an 
abstract and aggregated way.  

In general, any app instantiation or deletion on the 
NFV-LO side produces a notification message that it 

is published on the MB on a specific topic. The AAM, 
which has subscribed to the same topic on the MB 
during the bootstrap phase, receives the relevant 
notification, which in turn triggers internal controls 
to detect any matching to the NFV-SO notification 
filters. For instance, some notifications provide 
updates on some parameters related to the running 
instances (e.g., the IP address of a running app), 
whereas others include the detection of new NS 
instantiations occurred via Lo-Lo as per MLA 
permissions, and thus transport the notification of 
new instances created. 

For any positive matching, the AAM prepares and 
transmits an unsolicited notification message 
towards the NFV-SO, by using the callback URI 
defined in the subscription request. Both NFV-SO 
notification filters and callback URI are stored in the 
local DB. 

3.3.9 NS termination 

The termination operation is the reverse of the 
instantiation operation described above. It triggers 
the termination of an NS that has already been 
instantiated (i.e., its internal status is 
INSTANTIATED). The first step consists of the 
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termination request from the NFV-SO to the NFV-LO 
via the Mv1’. The NS instance ID (nsInstanceId) used 
by the NFV-SO to address the instance to be 
terminated is included in the POST message URI. 
This is the same ID provided by the AAM after the 
creation of this NS instance and it is required to 
retrieve the NS instance information from the local 
DB. This enables obtaining the unique app name 
used by the NFV-LO to identify the running app 
(appName). A HTTP DELETE message towards the 
NFV-LO is then generated by using the appName 
and the relevant parameters retrieved from the 
local DB, such as the namespace of the relevant 
tenant. In case of success, the app instance is 
stopped and then removed from the NFV-LO. 

The response provided by the NFV-LO causes an 
update of the NS instance internal status on the local 
DB. If no error occurs, the NS state changes 
returning to NOT_INSTANTIATED. If needed, the 
same NS instance can be instantiated again by the 
NFV-SO always using the NS instantiation operation. 

3.3.10 NS deletion 

This operation is the reverse of Create NS. 
Following the ETSI NFV-SOL005 API specifications, 
the Mv1’ exposes the abstract operation for the 
complete NS instance deletion by providing its 
unique ID (nsInstanceId). This operation is executed 
by the AAM only and consists of the removal of the 
NS entry from the local DB. Any deletion request on 
NS instances whose internal state is different from 
NOT_INSTANTIATED will be rejected. 

4. IMPLEMENTATION AND
PERFORMANCE ASSESSMENT

4.1 AAM implementation and testbed setup 

The AAM used to execute the experiments was 
implemented by using the Java Spring Framework 
[50]. It allowed us to take advantage of some of its 
out of the box solutions, such as the RESTful web 
services based on Apache Tomcat® [45] and the 
native multi-threaded handling of incoming 
requests, thus accepting concurrent requests and 
avoiding waiting times for the resolution of 
previous ones. In order to implement the 
persistence layer of the AAL, we used MongoDB [42]. 
This choice is motivated by the fact that it is natively 
compliant to the JSON format [43], making it the 
ideal solution to handle SOL005 API payloads.  

The AAM is composed by three main software 
modules, sketched in Fig. 6: 

1. The MongoDB controller, which is in charge of
both marshalling operations (i.e., transforming
the in-memory software object into a data
format suitable for DB storage and retrieval)
and for executing DB queries. The payload of
the REST calls is encoded by using the JSON
format, which enables direct storage in the
local DB.

2. The MB client based on Apache QpidTM

component [46], which is responsible for a
subscription to AMQP broker [47] topics and
for consuming published messages.

3. The adaptation interface based on the well-
known adapter design pattern that allows
incompatible interfaces to work together. This
is the core architecture implementing the
business logic of the abstraction layer
implemented in the AAM.

Basically, the adapter design pattern is composed of 
three main elements, highlighted by dashed red 
boxes in Fig. 6:  

• The target interface defines the operations
exposed to the client (i.e., the calling NFV-SO).
These operations are defined by the OSM/ETSI
NFV-SOL005 API and are identified by their
unique endpoints. They consist of a request
method (i.e., GET, POST, DELETE) and at least
one header field (i.e., Content-Type) defining
the media type of the body content for both
requests and responses (i.e., application/JSON).

• The adapter class implements the target
interface invoking relevant functions on the
adaptee in order to expose the expected
OSM/ETSI NFV-SOL005 operations. It is in
charge also of managing the MongoDB
controller and the interactions with the AMQP
client.

• The adaptee class is the interface that must be
adapted (i.e., the abstract NFV-LO class in
Fig. 6). This abstraction level enables the
definition of concrete adaptee objects able to
manage incoming requests according to their
own internal business logic, providing
standard OSM responses to the caller. This
means that the adaptees implement the
adaptation functions that transform OSM/ETSI
NFV-SOL005 request/response bodies to
custom ones, according to the interface to be
adapted. Moreover, each concrete adaptee
maps OSM endpoints to custom ones when an
equivalent function exists on the contacted
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NFV-LO (as defined by the REST API 
implemented in the underlying NFV-LO), 
otherwise the required function is emulated by 
the adaptee in order to provide the expected 
OSM response. This means that the equivalent 
OSM/ETSI NFV-SOL005 feature can be 
obtained by forwarding multiple requests to 
the underlying NFV-LO or by processing data 
stored in the internal database (or by a proper 
combination of both techniques). In the case 
that the underlying NFV-LO implements the 
same functionality as defined by the OSM/ETSI 
NFV-SOL005 APIs, the adaptee object acts as a 
relay node avoiding any further manipulation 
on both endpoint and message body. Note that 
this is the standard implementation of the 
OSM_adaptee concrete class shown in Fig. 6. 

A brief example of adapted call is shown in Fig. 6, for 
the “query information about multiple NS instances” 
operation, defined in the ETSI compliant target 
interface. Any request on the endpoint defined 
therein (i.e., “/nslcm/v1/ns_instances”) is handled 
by the method “get_NS_interfaces()”, highlighted by 
the blue color. The adapter class implements this 
method and invokes the equivalent operation 
(defined here using the same method name) on the 
abstract adaptee class. According to the running 
concrete adaptee object, selected during the AAM 
bootstrap phase, the algorithm defined in that 
method may differ significantly, as shown by the 
pseudocode associated with OSM_adaptee and 
lightMANO_adaptee classes, respectively, shown in 
the gray boxes. 

The AAM runs in a single pod, including both the 
MongoDB database, storing requests metadata and 
descriptors, and the module exposing the Mv1’ 
endpoint and managing the communications with 
NFV-LO and the MB. As for the underlying modules 
running in the edge node, that is NFV-LO, MB, and 
MEAO, they are executed in different pods running 
in the same orchestration VM where the AAM is 
executed (see Fig. 3). As for the EC, it runs in another 
VM in the same edge cluster. This means that the 
latency associated with their communications does 
not suffer from long propagation delays through the 
MNO network. 

We run tests on two MEC platforms, by using edge 
nodes deployed in the network of two MNOs 
participating in the project. The relevant 
configuration is reported in Table 1. These tests 
focus on the AAM module, thus we did not use the 
relevant NFV-SO to trigger the orchestration 

requests, but emulated it by using a Postman client 
running in our the lab at University of Perugia. 
Consequently, we used the public Internet to 
establish the connectivity between the (emulated) 
NFV-SO and relevant AAM. The latency associated 
with these communications may be considered 
representative of that obtainable between a remote 
NFV-SO and the AAM on an edge node.  

For some tests requiring a simple response from 
NFV-SO, we used an instance of NFV-SO running in 
AWS able to accept requests coming from the AAM 
in edge platform (e.g., during the bootstrap) and 
subsequently to answer them in a predefined way. 

Table 1 – Testbed configuration 

MNO VM Configuration 

MNO1 

Orchestration 
VM (AAM, NFV-

LO, MEAO)  

4 vCPU (shared), 8 GB RAM, 70 
disk 

Edge controller 
+ apps 

32 vCPU (shared), 16 GB RAM, 
250 disk 

MNO2 

Orchestration 
VM (AAM, NFV-

LO, MEAO) 

8 vCPU (shared), 20 GB RAM, 
70 disk 

Edge controller 
+ apps 

16 vCPU (shared), 16 GB RAM, 
250 disk, fast I/O data plane 

4.2 Test cases 

Experiments were performed for operations 
characterized by different complexity of the 
orchestration requests. Each request is generated, 
received, and processed as a REST API request.  

The following types of request were performed: 

1. Overall edge-NFV-SO registration procedure;

2. Simple GET requests that involve certain
transactions and checkups in MongoDB co-
located with the AAM itself;

3. POST requests able to trigger changes in the
service deployments, such as instantiation and
termination requests.

Table 2 provides, for each operation, a brief 
description and the methods tested with such an 
operation. The tests have been executed in the 
following conditions: 

• System completely clean, with the MongoDB
empty (default test condition, used for MNO1
and MNO2 edge nodes);

• System loaded, with the MongoDB containing
10,000 NSD, 10,000 VNFD, 10,000 MLA 
descriptors, and 10,000 NS instances, used for 
MNO1 edge node only. 
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Fig. 6 – UML diagram of the main components of the adaptation layer 

In this way, we evaluated the impact of the database 
operation, which is the component in charge of 
ensuring the consistency of data and operations 
across the AAM, with respect to the other 
components, on the overall delay budget. The 
number of items stored in the database is so high for 
the considered service scenario, that the obtained 
results can be considered a sort of upper bound to 
the average performance. In fact, for each edge node, 
we expect some tens of services contemporarily 
deployed in it, and for sure no more than a few 
hundred.  

In all executed tests, the main measured Key 
Performance Indicator (KPI) is the average 
response time per orchestration request. This KPI is 
highly relevant since it reflects the capability of an 
orchestrator to perform orchestration operations 
efficiently. In the case under consideration, this is 
even more important, since the orchestration 
operations are split both vertically (NFV-SO and 
underlying NFV-LO) and horizontally (peer NFV-
SOs and peer NFV-LOs). For all operations, the 
latency KPI is further evalauted in two ways: (i) 

processing time in the AAM, and (ii) the overall 
communication latency seen by the NFV-SO 
(emulated by the Postman client).  

In order to collect measurements of latency, we 
defined a further endpoint on the AAM, which 
allows retrieving the latency associated with each 
atomic operation carried out by it. This data is 
available in JSON format via REST call. Each element 
of the JSON file reports the timestamp in which the 
request was received or issued, the duration of the 
operation, and the uri of the request itself, including 
also a further string specifying also the method, and 
optionally an index and some extra parameters, to 
identify different transactions occurring to 
complete the same operation.  

In addition to parsing this JSON file with latency 
measurements, we also parsed the AAM logs, in 
order to identify errors or anomalous situations 
causing abnormal latencies. When the 
measurements were taken from the Postman client 
to emulate a remote NFV-SO, we used the delay 
measurement tool provided by that software. 
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Table 2 – Description of requests done to the AAM 

Operation  Description Tested methods 

Bootstrap Overall process of 
registration of NFV-
LO to NFV-SO 

Multiple POST/PUT 
requests and DB 
transactions 

Onboarding 
VNFD 

Descriptors 
onboarding to AAM 

Single POST request 
+ DB transaction 

Onboarding 
NSD 

Descriptors 
onboarding to AAM 

Single POST request 
+ DB transaction 

Onboard 
MLA 

Descriptors 
onboarding to AAM 

Single POST request 
+ DB transaction 

Create NS Creation NS request 
to AAM, for 
compliance with 
ETSI NFV-SOL 005 

Single POST request 
+ DB transaction 

Instantiate 
NS 

Instantiation of an 
NS, it involves also 
NFV-LO and MB 

POST request 
triggering a further 
POST request 
towards the NFV-LO 
and message from 
Broker + DB 
transactions 

Terminate 
NS 

Terminate an NS, it 
involves also NFV-
LO 

POST request 
triggering a further 
POST request 
towards the NFV-LO 
+ DB transactions 

get NS list Request of NS list Single GET request + 
DB transactions 

get NSD Request of a specific 
NS descriptor 

Single GET request + 
DB transactions 

get VNFD Request of a specific 
VNF descriptor 

Single GET request + 
DB transactions 

get MLA Request of a specific 
MLA descriptor 

Single GET request + 
DB transactions 

delete MLA Delete MLA 
descriptor 

DELETE request 
triggering a further 
DELETE request 
towards the NFV-LO 
+ DB transactions 

delete NS Delete NS descriptor Single DELETE 
request + DB 
transactions 

delete 
VNFD 

Delete VNF 
descriptor 

Single DELETE 
request + DB 
transactions 

delete NSD Delete NS descriptor Single DELETE 
request + DB 
transactions 

Notification 
NS 

Processes an NFV-
LO notification via 
MB and prepares the 
one for NFV-SO 

AMQP message + DB 
transaction + POST 
message towards 
NFV-SO 

Finally, a slightly different procedure was adopted 
to measure the notification operation. In this case, 
we evaluated the latency by considering the 
following components separately. The first one is 
the contribution associated with the delay 
introduced by the MB. The other one is that 
associated with the processing required by the AAM 
to create/update the NS in the local MongoDB and 
to prepare the notification to be sent to the NFV-SO. 

The delay of the notification, delivered by using a 
broker, was evaluated by the difference of the 
timestamp values collected in the AAM and NFV-LO. 
This is feasible since they see the same system time, 
as they run in different pods in the same VM.  

4.3 Performance evaluation 

Fig. 7 shows the measurement results per each 
operation, measured from the Postman client for 
the MNO1 and MNO2 edge nodes, so emulating 
operations triggered by a remote NFV-SO. As for the 
edge node of MNO1, we tested the “default” 
configuration, with the MongoDB internal to the 
AAM empty, and the “loaded” configuration, as 
explained in Section 4.2. 

For each operation, we include the 95% confidence 
interval obtained by multiple experiments. This 
figure shows not only the measurement associated 
with the Registration phase (from reception of 
message 2 to reception of message 4 in Fig. 4), but 
also those associated with simple GET operations as 
well as those associated with more complex 
orchestration operations, such as instantiation and 
termination of NSs. We recall that NS creation and 
deletion are very simple operations, implying only a 
local database transaction on the MongoDB, and 
implemented just for compliance with ETSI NFV-
SOL005 [40]. It is evident that most of operations, 
when observed from an external entity, requires 
nearly the same time (approximately 100 ms) but 
NS instantiation and NS termination, which involve 
more complex interactions with the platform below, 
and namely with the EC to launch/stop real Apps 
running in the Kubernetes cluster. For these 
operations, the required time increases, and can be 
even larger than 1s. When the loaded case is 
considered, we can see that any increase of the 
number of instances and descriptors loaded in the 
AAM, which has to track their status by means of 
database persistence, produces larger mean values 
of the latency profile. However, variability is still 
low, as can be seen by the value of the confidence 
intervals. In any case, most operations, when 
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observed from the NFV-SO, and thus including also 
the delay contribution due to the interaction with 
the underlying entities beyond the AAM, are always 
lower than 600 ms. In particular, we can see that 
latency associated with operations carried out on 

the edge node of MNO2 is generally larger than both 
that of MNO1 in standard configuration, and often 
of that of the loaded configuration. Fig. 8 presents 
the same set of measurements, but related to the 
AAM processing only.  

Fig. 7 – Latency measurement taken from the remote Postman client, emulating an NFV-SO, for edge nodes of MNO1 and MNO2 in 
default conditions, and for edge node of MNO1 in loaded condition. 

Fig. 8 – Latency measurement taken from the AAM for edge nodes of MNO1 and MNO2 in default conditions, and for edge node of 
MNO1 in loaded condition.  
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In this case, it is evident a variability of the 
processing times. Although most of them are below 
20 ms, MLA onboarding and NS instantiation 
require higher processing times. In fact, for those 
operations the processing time is higher since it 
implies a significant interaction with entities below, 
and namely with the NFV-LO. In this case, not only a 
local transaction for state persistence is necessary, 
but also the preparation of a new message to feed 
into the NFV-LO and the validation of some 
parameters with the onboarded descriptors (NSD, 
VNFD and MLA). This is the case of the MLA 
onboarding and of NS instantiation. The NS 
termination, instead, requires a much simpler 
interaction with the NFV-LO, without requiring the 
preparation of a complex message. In any case, the 
maximum contribution to the delay budget is less 
than 50 ms on average, and of 60 ms in 95% of cases. 
Again, the average performance of edge node of 
MNO1 is slightly better than those of MNO2 for the 
standard configuration. When considering the AAM 
contribution only and the loaded case, we can see a 
significant difference with respect to the situation 
shown to Fig. 7.  

Beyond NS instantiation, the operations that are 
typically more affected by the database content are 
those implying getting the list of NSs or descriptors 
(MLA, NSD, VNFD), especially when compared with 
the values with empty system. The GET operations 
are those with a larger increase, well beyond 10 
times. However, they are operations with a very 
small latency/processing time in the empty system 
condition, thus the effect of system load is, in the 
end, not so dramatic. The further consideration is 
that, for most of the other operations, the AAM 
processing time increases by less than 5 times, 
especially for onboarding operations, although the 
number of content items increased by a 1000x 
factor. In any case, considering the perspective of 
NFV-SO, which is at the end the most significant, 
most operations have only a modest increase. It is a 
positive result, considering the very high number of 
items included in the database. 

Finally, we show a separate figure for evaluating the 
time needed to receive and process a notification 
coming from the NFV-LO via the MB. Fig. 9 presents 
the results of measurement done on both MNO1 and 
MNO2 in default test conditions. Since results were 
quite different, we used the logarithmic scale for the 
ordinate axis. The notification delay via the internal 
MB results is significantly lower than the processing 
delay of the AAM to prepare the notification, as 
expected. This is due to the fact that the AAM has to 

parse the notification received via AMQP, extract 
meaningful information, map that on the content of 
the MongoDB database in order to identify the NS 
for which the notification is relevant, update that 
entry with the content of the received notification, 
and finally prepare the message for the NFV-SO. For 
the cross-border case, the AAM does not find any 
correspondence in the MongoDB database beyond 
the MLA. Thus, it has to create a new NS, push it in 
the database, and prepare the instantiation 
notification message for the NFV-SO, specifying the 
instantiation has occurred via Lo-Lo. It is quite 
evident that the edge node MNO1 is significantly 
more performant than the MNO2 one.  

Fig. 9 – Latency associated to notifications from NFV-LO 
received by AAM via AMQP MB. 

Finally, we collected the measurement of average 
CPU time and memory footprint of the pod during 
instantiation operations, which is the more 
demanding one. The result is that the CPU time is, 
on average, only 5m (milliunits of CPU time, 
see [51]), whereas the memory footprint is 1081 Mi, 
that is about 1 GB. 

From the results presented in the previous figures, 
we can derive the following considerations: 

• The overall contribution to the delay budget
from the AAM in complex operations
(NS instantiation and termination) is quite
limited, when considering the end-to-end delay
seen by the NFV-SO. There are some operations
that terminate directly on the AAM itself, either
for compliance with ETSI-NFV-SOL 005 or for
overall system architecture (e.g., the deletion of
some descriptors does not propagate in the
entities below), but these are characterized by
very low values of the processing time. This is
a quite important result due to the function
splitting adopted for the orchestration
architecture.

• From the analysis of latency values, measured
by using Postman, and the processing time
captured directly by the AAM when
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considering only simple operations that 
involve just the AAM and do not propagate to 
the entities below, it is possible to estimate the 
round-trip delay between the client and the 
edge node. This value results to be 87.5 ms with 
a 95% confidence interval equal to 3 ms for the 
edge node of MNO2, and equal to 58 ms with a 
95% confidence interval equal to 4 ms for the 
edge node of MNO1. These values are realistic, 
especially considering also the geographical 
distance from the measurement point. 

• The impact of the system load on the overall
operation latency is really modest. This is due
to the fact that we selected MongoDB to
implement data persistence, which is a
document-based NoSQL database particularly
suitable to manage JSON files.

• We tested extensively the two edge nodes. It is
quite evident that the edge node of MNO2,
although it has computing characteristics
similar to those of MNO1 (as shown in Table 2),
is sometimes significantly less performant,
with a higher processing delay, not only in the
AAM layer (Fig. 8 and Fig. 9), but also when the
other underlying entities are considered
(Fig. 7). This analysis is limited to the default
test condition. The main difference, which
cannot be captured by the analysis of
experimental results, is that the MNO2 host
runs several other applications contemporarily.
They share the CPU cores, while the system of
MNO1 is quite unloaded.

• From the analysis of the resource footprint, it is
quite evident that the AAM component
requires a significant amount of memory and a
very low share of CPU time. This is reasonable,
since all operations imply a DB transaction in
the MongoDB database. However, the
presented values are fully manageable by using
the resources typically available in modern
servers, without the risk of becoming the
system bottleneck.

5. CONCLUSION

Orchestration of CCAM services is known to be a 
challenging task in a multi-operator envirinment. 
The main contribution of this paper consists of a 
flexible and effective solution for orchestrating the 
deployment and the operation of CCAM services in 
the MEC nodes of future cellular systems.  

The core of the proposed solution is based on the 
the federation and hierarchical organization of the 
orchestration function, adapted to a multi-operator 
scenario. The implementation of the proposed 
architecture, which is compliant with the ETSI 
recommendations, required the design and 
implementation of a suitable abstraction and 
adaptation layer for edge clouds. The resulting 
system implements a truly cooperative and 
coordinated orchestration between different edge 
systems. The performance obtained through an 
extensive experimentation campaign shows 
significant benefits in terms of latency, which 
demonstrate the effectiveness of the proposed 
solution. 
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