
LYSIS CHATBOT: A VIRTUAL ASSISTANT FOR IOT PLATFORMS

Raimondo Cossu1, Roberto Girau2, Luigi Atzori3
1,3Dept. of Electrical and Electronic Engineering, University of Cagliari and National Telecommunication Inter‑University

Consortium (CNIT), Research Unit of Cagliari, Italy., 2Dept. of Computer Science and Engineering,
University of Bologna, Italy

NOTE: Corresponding author: Roberto Girau, roberto.girau@unibo.it

Abstract – The conϔiguration and management of devices and applications in Internet of Things (IoT) platforms may be
very complicated for a user, which may limit the usage of relevant functionalities and which does not allow its full potential
to be exploited. To address this issue, in this paper we present a new chatbot which is intended to assist the user in interacting
with an IoT platform and allow them to use and exploit its full potential. The requirements for a user‑centric design of the
chatbot are ϔirst analyzed, then a proper solution is designed which exploits a serverless approach and makes extensive use of
Artiϔicial Intelligence (AI) tools. The developed chatbot is integrated with Telegram to message between the user and the Lysis
IoT platform. The performance of the developed chatbot is analyzed to assess its effectiveness when accessing the platform,
set the main devices’ parameters and request data of interest.

Keywords – Chatbot, IoT platform, Lysis IoT, user experience

1. INTRODUCTION
In recent years, the development and deployment of chat‑
bots to be used in several scenarios have risen signiϐi‑
cantly, and many businesses have opted to use these in
their services. In many sectors, such as e‑commerce, in‑
surance, banking, healthcare, ϐinance, legal, and others,
chatbots are currently used to support the execution of
a variety of business activities. Gartner Summits [1] pre‑
dicts that over 70 % of customer interactions will involve
emerging technologies such as Machine Learning (ML)
applications, chatbots and mobile messaging by 2022.
The objective of a chatbot is to emulate the conversa‑
tional capabilities of humans so that when a person in‑
teracts with a chatbot they behave as if they were inter‑
acting with a peer. This is possible because the chatbot
goes through a series of steps to process human data and
then determine an appropriate response or action based
on the user’s query. There are already various examples
of Artiϐicial Intelligence (AI)‑based chatbots, for example:
Cleverbot, Cortana or Tay. First of all, Tay [2], Microsoft’s
ϐirst public experiment involving the test of a bot on Twit‑
ter, was so successful that it began to behave like its fol‑
lowers. Over time, however, after just 16 hours of activity
it was necessary to turn it off because they she had be‑
gun to exhibit xenophobic, feminist and racist behavior.
It was a similar ending for the conversation between two
AI entities developed in the Facebook labs, trying to make
them talk to each other, after some time they began to
speak a language that was known only to them. While the
epilogue was not what was expected, these experiments
showed how much the technology around smart chatbots
had evolved. Chatbots are a hot topic among tech be‑
hemoths like Facebook and Microsoft, as well as smaller
messaging platforms like Telegram and Slack, which have
made their frameworks available to developers to ensure
smooth development.

A chatbot can be used for a variety of purposes, and the In‑
ternet of Things (IoT) can easily be added to this list. One
of the reasons why the IoT is struggling to take off is the
difϐiculty of less experienced users installing or conϐigur‑
ing their devices, as well as solving small, common prob‑
lems. This forces users to rely on qualiϐied staff to ϐix sim‑
ple problems on a regular basis, which makes the user ex‑
perience frustrating. In this scenario, a chatbot can have a
vital role in improving the user experience, as when prop‑
erly programmed and inserted within the reference IoT
platform, it would give the user the necessary support
when dealing with complicated actions thus fulϐilling the
lack of skills. Obviously, it would not only provide some
help in performing speciϐic actions but it would also pro‑
vide information that will be speciϐically requested by the
user, such as, for example, about the status of their car,
home, work and so on, signiϐicantly reducing the barriers
between the user and connected objects. All in natural
language (human language) rather than relying on navi‑
gation through a graphical interface in a mobile applica‑
tion or website. Unfortunately, progress is currently be‑
ing made at a snail’s pace. The truly conversational chat‑
bot, which will be able to autonomously interpret user in‑
puts, is still a long way off, but several research efforts
are moving towards the uniϐication of an ecosystem that
is currently very fragmented. The IoT space is at an in‑
ϐlection point, with conversational user interfaces at the
forefront. This process is becoming more achievable day‑
to-day with services that help companies to easily inte‑
grate natural language understanding into their products.
The scope for conversational user interfaces is enormous,
and it continues to expand. With a variety of technology
available for the implementation of such systems, the
next step is to figure out where machine learning
strategies make more sense than other technologies and
whether they can potentially save us time and enable
people to focus on more valuable tasks.

ITU Journal on Future and Evolving Technologies, Volume 2 (2021), Issue 5, 2 August 2021

©International Telecommunication Union, 2021
Some rights reserved. This work is available under the CC BY-NC-ND 3.0 IGO license: https://creativecommons.org/licenses/by-nc-nd/3.0/igo/.

More information regarding the license and suggested citation, additional permissions and disclaimers is available at:
https://www.itu.int/en/journal/j-fet/Pages/default.aspx

https://creativecommons.org/licenses/by-nc-nd/3.0/igo/
https://www.itu.int/en/journal/j-fet/Pages/default.aspx

This work will focus on the interfaces between users and
IoT‑enhanced environments. Indeed, the chatbot will
provide users with a user‑friendly interface to assist them
in creating their proϐile and managing their services and
objects. The virtualization of the user is also introduced to
suggest relevant services that are expected to be the most
suitable and interesting for each user based on their pro‑
ϐile and thanks to context‑awareness mechanisms. The
use of chatbots in the IoT already has a history, but the
main limitation comes from the fact that these are vertical
and domain‑speciϐic solutions. The solution we propose,
thanks also to the intermediation of user/device virtual‑
izations, allows the reuse of the same chatbot interface on
different IoT applications.
Accordingly, the contributions of the paper are as follows:

• We analyze the key requirements for the develop‑
ment of a chatbot for the IoT scenario and provide
a description of the architectural components of the
chatbot‑enabled user virtualization;

• We discuss the integration of the chatbot system in
a fully distributed virtualization‑based IoT architec‑
ture;

• We provide the details of the implementation that
have been carried out to develop a prototype;

• We present some experimental results for the eval‑
uation of the capability of the proposed solution to
identify correctly the user intention interacting in
the IoT environment.

The paper is structured as follows. Section 2 discusses
the major related works in this area. Section 3 presents
the key requirements in designing a chatbot system in a
virtualization‑based IoT platform. The system archite‑
cure is presented in Section 4, while in Section 5 we illus‑
trate a use case to better understand the reference sce‑
nario. The implementation and the experimental results
are shown in Section 6 and Section 7 respectively. Finally,
Section 8 concludes the paper.

2. STATE OF ART
The ϐirst entertainment chatbot was developed in 1966,
it was called ELIZA [3] and was a parody of a psychother‑
apist who answered the patient’s questions with other
questions, obtained by rephrasing the patient’s questions.
In 1995, Richard S. Wallace built A.L.I.C.E. [4] a chatbot
made entirely with open source software that uses the
AIML language, child of the XML language from which it
inherits extensibility, which thus allows the chatbot to
hold a conversation. With the growing interest in artiϐi‑
cial intelligence and with the idea of simplifying the inter‑
action between man and machine, more and more com-
panies, have developed or directed part of their research
on chatbots.

In industry and in particular in the IoT ϐield, chatbots
are entering in workϐlows in a capillary way. This is
because thanks to their characteristics they allow to
stem the difϐiculties of conϐiguring and troubleshooting
devices encountered by operators and users.
The ϐirst problem that arises when new solutions have to
be introduced into existing systems is to understand the
impact in terms of complexity. To understand the com‑
plexity in [5] the authors analyzed the possibility of cre‑
ating a general architecture that would allow the integra‑
tion between chatbot and IoT systems in a simple way.
The study found that what chatbots and IoT have in com‑
mon is that they adopt their services through relatively
simple, often RESTful, web APIs. In this scenario, adopt‑
ing a service‑oriented development approach to devel‑
opment, integration is feasible thanks to RESTful HTTP
standards and protocols. In this case the ISO/OSI appli‑
cation level is the only level concerned, without having to
go down to the underlying levels. It is therefore clear that
with design precautions, the integration between chatbot
and IoT platforms is extremely simple.
In the literature there are several examples of systems
that use chatbots to interact with IoT devices.
In [6] the authors implement a chatbot integrated with an
agricultural plant monitoring system. In their implemen‑
tation they use fuzzy logic and Natural Language Process‑
ing (NLP) to interpret user inputs. The user asks the plant
a question and it answers. An orchid was used for the ex‑
periments. The success rate of the interaction between
question and answer was 71%.
An interesting proposal is presented in [7], an IoT system
with AI chatbots for plant monitoring capable of monitor‑
ing various parameters useful for knowing the health of
houseplants. Alongside the IoT system, we implement a
chatbot to inform the owner about the current conditions
of the plant and its current needs. The data is also stored
and through the bot the user is able to analyze the graph
and determine the level of wellbeing of the plant and any
problems.
In [8] an integrated Chatbot‑IoT system is implemented
to make the monitoring and improvement of water qual‑
ity quick and efϐicient. For monitoring, a network of IoT
sensors was created, supported by a cloud platform. In‑
side, a chatbot has been integrated that uses text mining
techniques to interpret user inputs. The result showed
excellent performance with high precision and recall for
each class.
In [9] and in [10] two IoT platforms for home monitor‑
ing and remote control are presented. They have a built‑
in chatbot that can understand text or voice commands
using NLP. Using different APIs and protocols, the au‑
thors have obtained user‑friendly systems for controlling
home devices. They also demonstrated how an architec‑
ture structured on multiple services is effective and easy
to implement.

ITU Journal on Future and Evolving Technologies, Volume 2 (2021), Issue 5, 2 August 2021

The authors in [11] focus on integrating chatbots and IoT
to address a critical problem such as air quality aware‑
ness. In this case, the chatbot not only provides users with
information on air quality, temperature and humidity, but
also provides services such as subscriptions to preferred
air quality monitoring points. Furthermore, advanced
functions have been implemented that can be managed
entirely via chat such as: alarm services, threshold set‑
tings, geoquery and advice based on pollutant levels.
In [12], a healthcare prognosis chatbot based on AI‑IoT
and with adaptive learning capabilities is proposed. The
aim of the system is to provide medical diagnoses in real
time and to support patients in the absence of healthcare
professionals. The interactive system provides tools to
collect data, answer general medical questions, provide
assistance and provide alerts to remind patients that they
need to take their medication. The system in question has
shown an accuracy of 90% of the answers. Similar to the
previous one, in [13] is presented a chatbot designed to
increase the capacity of health services so as to reduce the
management costs for medical consultancy services. Un‑
like the [12] proposal, this chatbot is paired with an IoT
device for detecting vital signs. This combination can help
people know their health status.
With COVID‑19 social stress has grown exponentially, the
proposed work in [14] uses a chatbot to defeat the stress of
individuals during the period of isolation. This chatbot
allows persons to interface with remote clinical special‑
ists. In this case, artiϐicial intelligence and NPL techniques
combined with a clinical chatbot. This will understand if it
is enough to continue the conversation with the bot or if the
user needs to interact with a human professional. From
what has been analyzed, it can be seen that integration with
IoT systems is very useful for enabling inexperienced users
to use advanced features in a simple way. Our proposal is to
insert a support chatbot within a Social IoT (SIoT) platform.
In this way, all the applications that will be hosted within it
will be easily usable and conϐigurable even by the less
experienced.

3. BACKGROUND
Currently, there are multiple architectural solutions for
IoT (vertical, horizontal, centralized or distributed solu‑
tions, etc.) with involvement at various levels of the user
in interacting with devices that surround them. The de‑
sign of an intuitive interface requires key requirements
that best ϐit the chosen architectural solution. The follow‑
ing subsections show the technological needs in the de‑
sign of a chatbot and the chosen reference IoT architec‑
ture.

3.1 Key requirements in designing a chatbot
system

In human‑interaction‑based applications the processing
time and the latency in general are key requirements.
Similarly, in a chatbot application, users expect imme‑
diate responses in comparison to other web and mobile

applications. The processing time should not increase
directly or exponentially with the number of users, but
rather should be constant and perform at its best al‑
most regardless of the workload. To get high scalabil‑
ity, we can rely on serverless cloud services such as Ama‑
zon AWS, Google Cloud Platform, IBM OpenWhisk or Mi‑
crosoft Azure. On these platforms, we are able to develop
lightweight event‑based architectures so as an event can
have more than one handler and is also able to start the
execution of short isolated parts of codes written in order
to perform speciϐic atomic tasks. Additionally, each event
handler can create one or more event after processing the
event data. Function as a Service (FaaS) is a cloud service
model based on serverless architecture that allows devel‑
opers to build a ϐlexible system that ϐits well to pulling en‑
tire functions up and down for each request. In chat ap‑
plications, the speed with which applications are instanti‑
ated is crucial to reduce latency times. In an FaaS solution,
the platform manages the loads at the level of individual
requests, optimizing in terms of performance and costs.
However, it is not possible to implement a chatbot system
entirely in FaaS, as there are other features that require
other service models to ensure, for example, data persis‑
tence, back end to an IoT platform or front end for user
interface rendering. And it is not recommended to use
exclusively a container‑based service model (Containers
as a Service (CaaS)) even if currently Kubernetes, at the
level of scaling, is approaching FaaS solutions thanks to
intelligent trafϐic management based on analysis models
that imply FaaS features. Based on the application con‑
text, however, we can think of a hybrid use of containers
and FaaS, which is the solution we adopted in our system.

The use of a pay‑per‑use model reduces operating costs
compared to a traditional system that requires the alloca‑
tion of the resources of one or more processing instances.
In fact, the FaaS model allows you to activate the neces‑
sary functions on request and to release them immedi‑
ately after the execution of the tasks. So we can see that,
given the speed with which requests must be processed
and given the conditions of trafϐic non‑uniformity that
make it impossible to estimate the users who will actu‑
ally request the service, the most convenient solution for
the implementation of the chatbot is the serverless one.
In addition to scalability, it is also necessary to pay atten‑
tion to the latency at start‑up, that is the time that a FaaS
function takes to respond to requests. Typically in all the
platforms mentioned they take from a few milliseconds to
a few minutes, this time is variable and depends on vari‑
ous factors, such as programming languages, for example.

Another key requirement is the management of the state,
a serverless system by its nature is stateless, to overcome
this problem we will rely on an instance of a database that
will take care of saving both the state and further inputs
that will be used to manage the requests.

ITU Journal on Future and Evolving Technologies, Volume 2 (2021), Issue 5, 2 August 2021

3.2 Reference IoT architecture
Recently, several studies have looked at the problems of
managing and effectively using large numbers of hetero‑
geneous devices, and have found a solution in the use of
social networking principles and technologies. In [15],
the deϐinition of the Social IoT (SIoT) has been formalized,
and it is intended to be a social network in which each
node is an entity capable of forming social relationships
with other things on its own, according to the rules set
by the owner. The proposed model is based on the Lysis
cloud SIoT architecture [16], which incorporates virtual
objects as digital counterparts to physical objects to en‑
hance their capabilities in a transparent manner to users.
Lysis architecture foresees a four level structure of inde‑
pendent modules. Its lowest layer is populated by Real
WorldObjects (RWO), i.e. physical IoTdevices able to per‑
form basic tasks. On top of this, the virtualization layer,
directly interfaceswith the realworld and is populated by
Social Virtual Objects (SVO),which are VOswith socializa‑
tion capabilities. The aggregation layer is responsible for
composing several SVOs into entities with extended capa‑
bilities, called Micro‑Engines (MEs). Finally, at the appli‑
cation layer, user‑oriented macro‑services are provided
(APP).
Socialization algorithms implemented in the ϐirst two lev‑
els allow for the creation of social relations as foreseen in
the SIoT paradigm. The resulting social graph is exploited
to ϐind the required resources.

3.3 User virtualization in IoT
The widespread presence of connected objects through‑
out daily life has allowed the Internet of Things (IoT) to
spread. The IoT vision forms a collaborative ecosystem
for a multitude of heterogeneous objects with different
connectivity and computing capabilities to achieve the
common purpose of providing user services.
At the current time, the IoT platforms seem to present
several pending issues that prevent a full spread of IoT
applications. Indeed, services aremostly conϐiguredman‑
ually by users, according to preferences that could be
shared among similar or cross‑domain services (e.g., pref‑
erences about ambient temperature at home and at work
to manage HVAC systems). Secondly, the users that ac‑
cess an IoT platform need to autonomously look for the
required services among a plethora of them. The risk is
in a decrease in the quality and reliability perceived by
users, who therefore risk being discouraged from using
IoT applications. Our system has the objective of exploit‑
ing the concept of Virtual User (VU)[17] to improve the
user experience and, at the same time, enhance the efϐi‑
ciency and usability of the IoT platforms and services.
The VU is the virtualization of a user, and it is represented
by an agent that enables the following major beneϐits:
providing users with a user‑friendly interface that en‑
ables automatic or assisted setup of their proϐile, objects
and services; proposing the services that are expected to

be the most suitable and interesting for each user, based
on their proϐile and context: and enabling objects to be as
much plug & play as possible.
The speciϐic focus of this work will be on the interfaces be‑
tween the users and IoT enriched environments. Indeed,
a user‑friendly interface will be provided by means of the
chatbot to users to assist them to create their proϐile and
manage their services and objects. Based on their pro‑
ϐile and thanks to context‑awareness mechanisms, the VU
will be able to suggest relevant services that are expected
to be the most suitable and interesting for each user, and
settings will be automatically conϐigured.

4. PROPOSED ARCHITECTURE
The proposed solution is aimed at designing and exper‑
imenting a chatbot system that simplies the interaction
of the users with the VU in an IoT platform by means of
text messaging. As previously explained in Section 3, the
VU is the virtualization of the user and takes decisions on
their behalf for known activities; as such, it interacts with
all the modules of the Lysis IoT architecture [17]. The VU
was not introduced speciϐically for the Lysis platform. In
fact, it follows the more general concept of virtualization
in the IoT and of virtual objects. The concept of VU arises
from the need to provide a virtualization element that
constantly deals with the context of the user it represents,
their interaction interfaces and their IoT services. In this
scenario, the VU is a standalone element in a distributed
virtualization system. The Lysis platform, which we use
as a development environment, is precisely a distributed
system of elements that allows for the creation of a social
network among virtual objects in order to facilitate their
interaction. The VU could be used in a centralized system,
possibly vertical; however, in this case it would not bring
all the advantages that characterize the implementation
in a distributed system. Furthermore, any IoT platform
that is a candidate for the integration of the VU and its in‑
terfaces, such as the chatbot, should provide open APIs
that allow for full integration.
Fig.1 shows the components of the overall architecture
according to the Lysis model. The VU communicates with
all levels to provide user preference information to build
tailored IoT services. The chatbot system is a back‑end
service for proxies the communication between the users
the the VU.
Fig. 2 shows the architecture of the proposed solution
that has been designed to address the requirements that
have been previously discussed.
The upper layer implements the functionalities to re‑
ceive and transmit requests and data. The requests are
generated by either web apps or (proprietary / non‑
proprietary) messaging services which are used by the
user for sending and receiving messages. Each request
contains the intent, i.e., the action that the user would like
to take, which is written in natural language. The intents
are then received by the chatbot API gateway to be sent
to an AI‑based service that interprets the intents to

ITU Journal on Future and Evolving Technologies, Volume 2 (2021), Issue 5, 2 August 2021

Fig. 1 – ChatBot‑enabled VU in the Lysis architecture

Fig. 2 – The propose chatbot architecture

understand what events are associated with these. In par‑
ticular, in the developed solution, we have adopted the
Dialogϐlow service. The resulting event is then commu‑
nicated to the gateway (through the edge layer), which
takes care of sending it to the interface that then stores it
in an event queue waiting for the dispatcher to direct it to
the needed function. Indeed, there is a different function
for each event or group of events that is activated when a
given event is received. At this moment, a search is then
carried out to understand if there is already an active in‑
stance for this function; if not, a new instance of this func‑
tion is activated, the event status is temporarily saved and
then ϐinally the function instance is destroyed once it is
no longer needed. The functions to be implemented do
not have to be all accessible via a gateway route; in fact,
it will be sufϐicient to make them accessible via a speciϐic
topic. In this way it is easier to manage the planned events
also considering the interaction between the same func‑
tions. The gateway is an HTTP server in which routes and

endpoints have been deϐined, where each route is asso‑
ciated with a FaaS function. When the gateway receives a
request, it identiϐies the corresponding routing conϐigura‑
tion by calling the relevant FaaS function. Fig. 3 shows the
gateway workϐlow. When the user at a given time needs
to request information, theywill forward amessage to the
gateway. Herein, let us assume that the user is already au‑
thenticated; at the timeof sending the request, a POST call
is made to the URL / API / createHook. This URL takes
care of creating the WebHook to use for communicating
(conversing)with the cloud functions. TheWebHook con‑
sists of two basic parts: a token and an event. The token is
generatedduring the creation of theWebHook and is used
to authenticate the communication, lasting for a prede‑
ϐined amount of time; if this cannot be authenticated the
call is stopped. The event, on the other hand, becomes the
topic. Whenever the endpoint receives signed data from
the chat service correctly, the gateway has to respond im‑
mediately with an HTTP status code; if everything went
smoothly, it generates a code 200 (OK), 201 (created) or
202 (accepted). However, if the data is not signed cor‑
rectly or even the signature is missing, it responds with
a 403 code (forbidden) and does not provide the broker
with the needed data. To protect transactions between
servers, it is convenient to use SSL / TLS.
This described architecture is integrated in the Lysis IoT
platform so that the outcome of the functions is taken by
the VU to perform the resulting tasks. The following are
the different needed functions: Message Handler; Action
Service; Save Conversation; Send Message; Failure Han‑
dler; and Save Logs. These are brieϐly presented in the
following.

Fig. 3 – Process ϐlow for the whole system

4.1 Message Handler
If the gateway gives the green light, it stores the input in
an event queue and then processes it as soon as possible.
The various topics provided allow for calling the related
functions. In the case of a request generated by the user,
then the topic will be msg_ received which calls the Mes‑
sage Handler function; this is the only function that can be
called directly from the gateway interfaces. This function
processes the request and creates the output to be pro‑
vided to the user. The construction of the output takes
place in various stages and on the basis of the user’s request.

ITU Journal on Future and Evolving Technologies, Volume 2 (2021), Issue 5, 2 August 2021

As a representative case, let us consider the user that
wants to enable remote surveillance of her home (at the
moment this functionality is off). The user sends the fol‑
lowing text “Set video On”; in order to understand what to
do with this command, the message must be broken down
and analyzed. From here, therefore, the function has to
understand the entity, the user intent and the context us‑
ing an NLU (Natural Language Understanding) algorithm.
Obviously, in order for the analysis to be relevant to what
is requested in the messages, the system must be able to
store and analyze the status otherwise, if this was not the
case, the responses and actions taken would not be rel‑
evant to the general context of the conversation. On the
basis of the results obtained then, if an intervention or a
reading is required in a given device, you will have to be
able to invoke, through an appropriate topic, a function
that will implement or request what the user needs and
then return it to the Message Handler. Once all the data
has been obtained, it is possible to create the reply and
make it available for sending.

4.2 Action Service
When the Massage Handler function needs data that is on
the platform, it must be able to retrieve it. The simplest
way is to rely on a second function with this objective.
The Action Service function takes care of retrieving the
requested data. Once the Message Handler has processed
the request and on the basis of the NLU algorithm has un‑
derstood the actions to be taken, it activates the Action
Service which fetches to the platform requesting data or
making settings. In the event of an error, the identiϐica‑
tion code will be returned.

4.3 Save Conversation
This function is invoked when the save event occurs.
This can be invoked by the Message Handler, Send Han‑
dler, and Failure Handler functions. In the ϐirst case, as
soon as the message is received, this (in addition to be‑
ing taken over by the Message Handler function) also
passes through the function in question which will cre‑
ate a record containing the request and the status of the
conversation. The second case is similar to the ϐirst but
now it takes care of saving the response produced by the
Message Handler function; however, if the sending fails,
the save event cannot be invoked and send_failure will be
invoked in its place. The last case is equal to the second
except for the fact that now failing or not, a record is still
created which will be the message produced in the case
of success or an error message in the case of failure. Each
time you save the conversation, the status is also saved.

4.4 Send Message
The sending function is the one that takes care of
forwarding the response to the user through the chosen
messaging service. It could be for example a telegram
rather than a proprietary application created ad hoc.

Whatever the application chosen, this function ϐirst of
all sets up the WebHook and then, if the setting is
successful, sends the response produced to the user; if
the setting fails, it contacts the Failure Handler function
to manage the mistakes. A best practice is to use separate
functions and topics for receiving, error handling and
sending. This way there won’t be problems in
contacting the correct endpoints; accordingly,
operations such as save and retry won’t be taken over
by this function.

4.5 Failure Handler
If the topic becomes send_failure, it means that there was a
problem sending data to the user. To manage these types
of problems there is the need to rely on a special function.
When the Send Message function fails the ϐirst attempt,
it contacts the Failure Handler function passing the mes‑
sage and the error code returned by the attempted send.
The function is encoded in order to retry the sending for
a certain number of times after which the user will be no‑
tiϐied that there is a problem in satisfying their request.
If, on the other hand, the sending is completed within the
established number of attempts, the message is delivered
in a totally transparent way to the user.

4.6 Save Logs
This is used to archive all messages related to the system
in general; in this way it is possible to monitor the ϐlow
and see if there are any problems or if some parts need
some actions to be performed. This is a feature that can
be implemented by relying on the logging of activities of
the cloud platform. In addition, some platforms such as
AWS or Google Cloud Platform allow for saving in the log
ϐile, in addition to the default entries, new ϐields at the
user’s discretion. In so doing, by integrating the system
logs with those of the requests to the bot, it is possible to
have complete and detailed logs.

5. SCENARIO
The IoT Lysis platform currently does not provide any
help for the user either with regard to the deployment of
SVO or with regard to the resolution of any problems such
as failures, unresponsive devices and so on. To simplify
the user‑platform‑SVO interaction, the intention is to in‑
sert a bot within the platform that guides the user in car‑
rying out those activities that are currently cumbersome
or even impossible to perform remotely:

• SVO deployment
• Problem resolution
• Inquire of devices
• Setting
• Task automation

ITU Journal on Future and Evolving Technologies, Volume 2 (2021), Issue 5, 2 August 2021

To create the bot, the Google Cloud platform was cho‑
sen, in which all the back end and the various functions
are hosted, alongside the DialogFlow service provided by
Google that offers a retrieval‑model‑based technique for
matching responses with the aid of machine algorithms
learning, where the latter can be enabled at the user’s dis‑
cretion. This function, if enabled, allows us to have some
ϐlexibility in the interpretation of the user’s requests as
the answers are given based on the best score obtained
from a classiϐication prior to the choice of the answer. In
this way, therefore, it is possible to manage any spelling
or form problems that might cause errors in recognizing
the correct intent for the request made.
The proposed solution allows for a dynamic composition
of the services that can be provided, given the ability of
the bot to query any SVO owned by the user present on
the platform. When the user queries the chatbot, they
will be offered various choices and based on the SVOs that
are selected, a service is composed with only the choices
made by the user. For example, in the car, in addition to
the SVOs relating to the car, you may also need SVOs re‑
lating to other environments, for the purpose of contin‑
uous monitoring, the service offered by the bot therefore
includes the data from these SVOs. In addition, youwould
also have the possibility to save them and re‑propose
them at a later time as favorite services. Fig. 4 shows the
sequence diagram which illustrates the simple steps that
take place when a request is sent to the bot.

Fig. 4 – Use case diagram

When the user accesses the chatbot interface, they are
presented with the various options. Once the desired op‑
tion is selected, the bot will send a message to the bot
gateway, who will take care of handling the request, la‑
beling it and sorting it to an Event Handler (EH).
The Message Handler will recognize that a message has
arrived and delivers it to a cloud function that takes care
of the part of creating the response message. Then, it has
to collect the data in addition to the textual answers by
querying the platform that contains the SVOs necessary
for the composition of the answer. At this moment, we
may have two different scenarios that we analyze below:

• The data request fails
• The data request is achieved

We can see in Fig. 5 theworkϐlow of requests in a possible
user interface. All these interventions are immediate, the
most expensive response in terms of timing is the one in
which the data is requested, in this case the video stream.
But in principle, the time between a send‑reply is given by
the user interaction time with the device plus the delay
introduced by the bot to reply, which is a maximum of a
few seconds.

Fig. 5 – Representative ϐlow of messages exchanged between the user
and the bot

We have implemented the chatbot system that allows for
interacting with the platform and for setting and sending
requests to the devices. The queries to the bot are made
in natural language and are taken over and processed by
the DialogFlow platform, with has been integrated in our
system. Themessaging systemselectedhas been theTele‑
grammessaging client which is used by the user.
The development of the bot was divided into two parts:
design and development of all the components necessary
for the NLU functionalities; development of the gateway
and the functions necessary to handle the events and as‑
sociated data in the chatbot platform. An agent has been
created within the DialogFlow platform. Agents are NLU
modules that deal with transforming user requests, ex‑
pressed in natural language, intousabledata, i.e., data that
canbe associated to actions tobe activated. To ensure that
the requests are interpreted correctly, all the possible in‑
tents and entities have been loaded into the agent. Intents
are JSON ϐiles andhavebeendesigned andbuilt in order to
map the user’s requests with the actions to be performed
in the best possible way. In order to have the best match
between request and intent, new entities (all synonyms
for a given word are associated to an intent) have been
developed, in addition to thosemade available by theplat‑
form,whichwere able to best characterize the IoT context

ITU Journal on Future and Evolving Technologies, Volume 2 (2021), Issue 5, 2 August 2021

of useweneeded. Therefore, various attributes have been
created within each entity, with their synonyms, in order
to be able to extract the values of the input parameters
without these being necessarily identical to those we had
foreseen in the phase of creating the intents. In this way,
every time an intent is activated, the platformwill return a
JSON ϐile with the information on: Intents; Action; Event;
Response; Contexts; Parameters; Score.
At each request, these parameters are updated based on
the intent that is activated at that time so that, at the next
call, the new intent to be activated is also chosen based on
the previous parameters. In thisway, it is possible to com‑
pletely contextualize the conversation. In fact, the con‑
texts section contains all the active contexts in that call
ordered according to their lifetime. With this mechanism
it was therefore possible to implement a management of
the state of the bot allowing for the exchange of variables
between subsequent requests.

6. IMPLEMENTATION

Fig. 6 – Flow diagram of the bot

As we can see in the diagram in Fig. 6, it is possible to en‑
ter one of the intents based on what is asked. Let’s refer to
our use case previously described related to the surveil‑
lance. As we said, the user has to ask the bot for send‑
ing the video stream from the video camera device; if it is
turned off, it will ϐirst be asked to turn on and then send
the data. When the user needs to use the bot, they have to
log in and then send the message “show me what happens
at home”. This activates the “svo_facts” intent through the
“svo_facts” event and setting “svo _followup context” with
a certain lifetime set as the current context. The bot then
responds by giving the list of objects that are indexed in
their home. By selecting the video surveillance, the user
remains within the “svo_followup context” and then ac‑
tivates the loop indicated with “yes” in the diagram; by
reactivating the svo_facts intent, the context is updated
again and the bot responds by displaying the state of the
object. On the basis of this, then it allows for the choice
whether to activate it or not. Once concluded, if the user
decides to perform different actions to the question “do

you want to do other operations?” answering “no”, they
activate the reset of the contexts and the “exit_facts” in‑
tent, initializing the bot for new requests.

7. EXPERIMENTAL RESULTS
The experiments have been conducted to assess how ef‑
fective the chatbot was in understanding the user re‑
quests and perform action accordingly. In the following
section we describe the performed tests with reference
to the access to the platform and perform device setting
and request data of interest. The performance of query
matching results has been also analysed.

7.1 Access to the platform
Fig. 7 shows the interaction with the chatbot with the in‑
tent of accessing the Lysis platform. The ϐigure shows the
ϐlow of questions and answers between the bot and the
user. Remembering that it is necessary to authenticate,
to be able to use both the chatbot services and to have
access to the resources made available by the platform,
the ϐirst question asked was on how it was possible to au‑
thenticate. The bot’s response was a message with the
instructions on how to log in and, once logged in, it sug‑
gested to the user that it was necessary to enter some ad‑
ditional information to complete the conϐiguration. The
user then asked how to enter the owner key and the SVO
root, to which the bot answered by providing a descrip‑
tion of where to ϐind them and information on how to en‑
ter this information. This was possible thanks to the fact
that when you ask for information either on the key or on
the root SVO, the respective context is activated allowing
you to keep track of what was previously requested. Af‑
ter completing the conϐiguration and logging in again, you
can see that the welcome message is simply given, a sign
that the conϐiguration was successful.

7.2 Setting the devices and data retrieval
We also tested the ability to request data from the plat‑
form and apply the desired settings to the available de‑
vices, all with the most natural language possible. Fig. 8
shows how it was simple to request the list of devices and
their current status. If you want to switch a device on or
off, simply specify which of these actions should be ap‑
plied and the setting will be performed. The request for
data was also handled in a similar way; in the sentence it
is just needed to specify which data is needed and from
which environment to obtain the requested data.

7.3 Elaboration time and latency evaluation
The time spent processing the information sent to the
chatbot was very low. This happens thanks to the use of
an ML engine that is fully running in external services and
for the efϐicient implementation of the sample questions
on the platform. This allows for a low latency between
a request and the response and this makes the user

ITU Journal on Future and Evolving Technologies, Volume 2 (2021), Issue 5, 2 August 2021

Fig. 7 – Bot tests: access to the platform

experience a smooth interaction. For instance, using a vir‑
tual machine instance with 1vCPU and 512 Mb of RAM,
the latency values of the system to process and provide
a response for a single request are between 100 ms and
200 ms, to which the delay introduced by the network
should be added. This brings to an overall round trip time
of less than a second. Furthermore, thanks to the ductil‑
ity of the serverless system, by appropriately conϐiguring
the load balancing rules, when all the service instances
are occupied a new instance can be started to automati‑
cally lighten the load of others.

7.4 Analysis of the questions matching scores

We have also analyzed the relevance of the questions sub‑
mitted to the bot with the patterns inserted in the intents,
created on the Dialogϐlow platform. The score calculated
by DialogFlow was used for this purpose. This evalu‑
ates the level of conϐidence of the question submitted to
the bot with the example ones present in the platform.
This conϐidence level is calculated based on the state of
the conversation and exploiting the Term Reinforcement
techniques. These techniques allow for a greater weight
to certain words through their repetition or the use of
synonyms. Score values range from 0.0 (completely un‑
certain) to 1.0 (completely certain). In the proposed im‑
plementation, once a question is evaluated, there are two
possible outcomes: a) if the question achieves a conϐi‑
dence match score greater than or equal to the classiϐi‑
cation threshold setting, the higher conϐidence intent is
triggered; b) if no intent meets the threshold, no match is
returned. In this case the threshold was set to 0.7. The
score plotted in Fig. 9 and Fig. 10 indicates the quality of
the match between the ideal question (the one contained
in the intent) with the real question (the one generated
by the user). Obviously, the sentences inserted within
the intent are constructed, with the help of the entities,
in such a way so as to be as general as possible, so they
are not strictly meaningful sentences but rather they are
composed only of the words actually necessary to give a

meaning to the sentence so as to be able to guarantee the
best match even with requests that are not well formu‑
lated, albeit with a lower score than the optimal one.

In Fig. 9 we can see the scores of the ϐlow of requests that
have been submitted to the bot during the conϐiguration
phase in two distinct cases. The ϐirst case, called “Best”,
was produced by submitting to the bot the sentences for‑
mulated as similar as possible to how they were inserted
into the intents, trying to make them as close as possi‑
ble to natural language. The second case, called “Worst”,
on the other hand was formulated using the synonym of
the keywords and looking for a grammatical form quite
different from the one used in the previous case. Simi‑
larly, in Fig. 10, the same analysis was performed for the
second test, where device setting and data request were
performed. Sentences 4 and 7 in 9, sentences 4 and 10
in 10 are cases in which the match between sentences is
not accurate. This phenomenon is governed both by the
number of synonyms that have been associated with the
entities, and by the level of similarity between the various
intents implemented and their length. For example, if you
have two intents that trigger two different events but are
very similar in natural language, the classiϐier will be less
accurate about which one to choose. In Table 1 we also
show the average values which demonstrate that there is
not a big difference between the “Best” and “Worst” cases;
indeed, in both cases it was possible to conϐigure the bot,
request data and set the devices smoothly without any is‑
sue about possible request misunderstanding. Obviously,
the better the intents are constructed, the easier it will be
to get accurate matches by submitting questions that are
apparently different but express the same concept.

Table 1 – Comparison between the average values of the scores obtained
for the two considered scenarios

𝑆𝐵𝑒𝑠𝑡 𝑆𝑊𝑜𝑟𝑠𝑡
Platform access 0.956 0.844
Device conϐiguration 0.925 0.819

ITU Journal on Future and Evolving Technologies, Volume 2 (2021), Issue 5, 2 August 2021

Fig. 8 – Bot tests: request of data and setting of the device

1 2 3 4 5 6 7 8 9 10
Questions

0.0

0.2

0.4

0.6

0.8

1.0

S
co
re
s

Configuration Flow

Best

Worst

Fig. 9 – Scores that have been obtained bymatching the querieswith the
intent during the platform accessing activities

1 2 3 4 5 6 7 8
Questions

0.0

0.2

0.4

0.6

0.8

1.0

S
co
re
s

Data Manage Flow

Best

Worst

Fig. 10 – Scores that have been obtained by matching the queries with
the intent during the setting of the devices and data retrieval

8. CONCLUSIONS
This study has investigated the possibility of integrating
a virtual assistant, developed in the form of a chatbot,
within an IoT platform to help and guide the user to eas‑
ily carry out the various operations that would otherwise
be cumbersome and sometimes complicated. This need,
as we know, derives from the fact that the conϐigurations
and requests for data, for an inexperienced user, are not
immediate but may require various steps to be completed
and may be frustrating.
A bot has been then developed which, thanks to a natu‑
ral language understanding engine, is able to process the
user’s requests formulated in a natural language. The bot
essentially works as a mediator between the real world
and the virtual world. In the experiments that have been
carried out it has been possible to see how simple it is to

conϐigure the bot and use it to interact naturally with the
IoT platform. We speciϐically focused on platform access,
device setting and data request. It has to be said that for
these experiments the operations carried out were sim‑
ple but still encouraging for future developments. One of
the most interesting actions is certainly the ability to de‑
ploy applications quickly and easily as well as being able
to use the bot as a guide for troubleshooting, knowing in
real time if the various devices are faulty or malfunction‑
ing, so as to restart them automatically.

ACKNOWLEDGEMENT
This work has been partially found by the POR
FESR Sardegna 2014 with the project Farmainforma
(RICERCA_1C‑38).

REFERENCES
[1] i. Gartner. 2020. URL: https : / / www . gartner .

com / smarterwithgartner / top - cx - trends -
for - cios - to - watch / # : ~ : text = Chatbots \
%2C \ %20virtual \ %20assistants \ %20and \
%20robots , up \ %20from \ %2015 \ %25 \ %20in \
%202018..

[2] G. Neff and P. Nagy. “Automation, Algorithms, and
Politics Talking to Bots: Symbiotic Agency and the
Case of Tay”. In: International Journal of Communi‑
cation 10.0 (2016).

[3] J. Weizenbaum. “ELIZA—a Computer Program for
the Study of Natural Language Communication be‑
tween Man and Machine”. In: Commun. ACM 9.1
(1966), pp. 36–45.

[4] R. Wallace. “The anatomy of A.L.I.C.E”. In: 2009,
pp. 181–210.

[5] R. Kar and R. Haldar. “Applying chatbots to the in‑
ternet of things: Opportunities and architectural
elements”. In: arXiv preprint arXiv:1611.03799
(2016).

ITU Journal on Future and Evolving Technologies, Volume 2 (2021), Issue 5, 2 August 2021

[6] S. Wiangsamut, P. Chomphuwiset, and S. Khumma‑
nee. “Chatting with Plants (Orchids) in Automated
Smart Farming using IoT, Fuzzy Logic and Chatbot”.
In:Advances in Science, Technology andEngineering
Systems Journal 4 (2019), pp. 163–173.

[7] M. H. A. Fadzil and D. Ab Kadir. “Plant Monitoring
with Artiϐicial Intelligence Chatbot”. In: Journal of
ComputingTechnologies andCreative Content (JTec)
5.2 (2020), pp. 34–38.

[8] M. U. H. Al Rasyid et al. “Integration of IoT and
chatbot for aquaculturewith natural language pro‑
cessing”. In: Telkomnika (Telecommunication Com‑
put. Electron. Control 18.2 (2020), pp. 640–648.

[9] G. Alexakis et al. “Control of smart homeoperations
using natural language processing, voice recogni‑
tion and IoT technologies in a multi‑tier architec‑
ture”. In: Designs 3.3 (2019), p. 32.

[10] S. Ahmed et al. “Smart Home Shield and Automa‑
tion System Using Facebook Messenger Chatbot”.
In: 2020 IEEE Region 10 Symposium (TENSYMP).
IEEE. 2020, pp. 1791–1794.

[11] S. Mahajan et al. “Design and implementation of
IoT‑enabled personal air quality assistant on in‑
stant messenger”. In: Proceedings of the 10th In‑
ternational Conference on Management of Digital
EcoSystems. 2018, pp. 165–170.

[12] J. E. P. Reddy et al. “AI‑IoT based Healthcare Prog‑
nosis Interactive System”. In: 2020 IEEE Interna‑
tional Conference for Innovation in Technology (IN‑
OCON). IEEE. 2020, pp. 1–5.

[13] K. Sivaraj et al. “Medibot: End to end voice based AI
medical chatbot with a smart watch”. In: 9 (2021),
pp. 201–206.

[14] C Balasubramaniam, S Velmurugan, and M Sara‑
vanan. “DESIGN AND DEVELOPMENT OFSMART
HEALTHCARE CHATBOT APPLICATION USING AI‑
ML”. In: Journal of Natural Remedies 21.7 (S1)
(2020), pp. 13–20.

[15] L. Atzori, A. Iera, and G. Morabito. “SIoT: Giving a
Social Structure to the Internet of Things”. In: Com‑
munications Letters, IEEE 15 (2011).

[16] R. Girau, S. Martis, and L. Atzori. “Lysis: a platform
for IoT distributed applications over socially con‑
nected objects”. In: IEEE Internet of Things Journal
PP.99 (2016), pp. 1–1.

[17] R. Girau et al. “Virtual User in the IoT: Deϐinition,
Technologies and Experiments”. In: Sensors 19.20
(2019), p. 4489.

AUTHORS
Raimondo Cossu is a telecom‑
munications engineer. As soon
as he graduated he did an in‑
ternship at Avanade SRL where
he acquired IT skills. After
the internship he was hired as
a collaborator in the MCLab
DIEE laboratory at the Univer‑
sity of Cagliari, where he cur‑

rently works. His ϐield of research and development is
focused on the Internet of Things, cloud computing and
distributed systems. Currently he is also CTO in WiData
SRL, a company that deals with data analysis.

Roberto Girau is a research
fellow at University of Bologna,
Department of Computer Sci‑
ence and Engineering since
2021. He received an M.S.
degree in telecommunication
engineering and his Ph.D. de‑
gree in electronic engineering
and computer science from

the University of Cagliari, Italy in 2012 and in 2017,
respectively.
From 2012 to 2020, he worked as researcher at the De‑
partment of Electrical and Electronic Engineering of the
University of Cagliari, developing an experimental plat‑
form for the social Internet of Things.
His main research areas of interest are IoT with particu‑
lar emphasis on its integrationwith social networks, soft‑
ware engineering, smart cities and cloud computing.

Luigi Atzori is Full Professor at
theDepartment of Electrical and
Electronic Engineering, Univer‑
sity of Cagliari (Italy) and Re‑
searchAssociate at theMultime‑
dia Communications Laboratory
of CNIT (Consorzio Nazionale
Inter‑universitario per le Tele‑
comunicazioni). His research
interests are inmultimedia com‑

munications and computer networking, with emphasis
on multimedia QoE, multimedia streaming, NGN service
management, service management in wireless sensor
networks, architecture and services in the Internet of
Things. He has been the associate and guest editor for
several journals, included: ACM/Springer Wireless Net‑
works Journal, IEEE IoT journal, IEEE Comm. Magazine,
the Springer Monet Journal, Elsevier Ad Hoc Networks,
and the Elsevier Signal Processing: Image Communica‑
tions Journal.

ITU Journal on Future and Evolving Technologies, Volume 2 (2021), Issue 5, 2 August 2021

	LYSIS CHATBOT: A VIRTUAL ASSISTANT FOR IOT PLATFORMS
	1. INTRODUCTION
	2. STATE OF ART
	3. BACKGROUND
	3.1 Key requirements in designing a chatbotsystem
	3.2 Reference IoT architecture
	3.3 User virtualization in IoT

	4. PROPOSED ARCHITECTURE
	4.1 Message Handler
	4.2 Action Service
	4.3 Save Conversation
	4.4 Send Message
	4.5 Failure Handler
	4.6 Save Logs

	5. SCENARIO
	6. IMPLEMENTATION
	7. EXPERIMENTAL RESULTS
	7.1 Access to the platform
	7.2 Setting the devices and data retrieval
	7.3 Elaboration time and latency evaluation
	7.4 Analysis of the questions matching scores

	8. CONCLUSIONS
	ACKNOWLEDGEMENT
	REFERENCES
	AUTHORS

