
RF‑BASED LOW‑SNR CLASSIFICATION OF UAVS USING CONVOLUTIONAL NEURAL NETWORKS

Ender Ozturk1, Fatih Erden1, Ismail Guvenc1
1Electrical and Computer Engineering, NC State University, Raleigh, NC 27606, United States

NOTE: Ender Ozturk, eozturk2@ncsu.edu

Abstract – Unmanned Aerial Vehicles (UAVs), or drones, which can be considered as a coverage extender for Internet of 
Everything (IoE), have drawn high attention recently. The proliferation of drones will raise privacy and security concerns 
in public. This paper investigates the problem of classi ication of drones from Radio Frequency (RF) ingerprints at the low 
Signal‑to‑Noise Ratio (SNR) regime. We use Convolutional Neural Networks (CNNs) trained with both RF time‑series images 
and the spectrograms of 15 different off‑the‑shelf drone controller RF signals. When using time‑series signal images, the CNN 
extracts features from the signal transient and envelope. As the SNR decreases, this approach fails dramatically because the 
information in the transient is lost in the noise, and the envelope is distorted heavily. In contrast to time‑series representation 
of the RF signals, with spectrograms, it is possible to focus only on the desired frequency interval, i.e., 2.4 GHz ISM band, and 
ilter out any other signal component outside of this band. These advantages provide a notable performance improvement 
over the time‑series signals‑based methods. To further increase the classi ication accuracy of the spectrogram‑based CNN, 
we denoise the spectrogram images by truncating them to a limited spectral density interval. Creating a single model using 
spectrogram images of noisy signals and tuning the CNN model parameters, we achieve a classi ication accuracy varying 
from 92% to 100% for an SNR range from –10 dB to 30 dB, which signi icantly outperforms the existing approaches to 
our best knowledge.
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1. INTRODUCTION

Unmanned aerial vehicles (UAVs) or drones have re‑ 
cently gained a great deal of interest among researchers 
due to unrivaled commercial opportunities in various 
ields, such as wireless communications, logistics, deliv‑ 
ery, search and rescue, smart agriculture, surveillance, 
among others [1]. In addition, the recent COVID‑19 out‑ 
break revealed the importance of remote operations in 
every aspect of life, which may accelerate social accep‑ 
tance of drone use cases such as delivery of goods and 
medication [2, 3, 4]. With the new advances in airspace 
regulations and drone‑related technologies, it is expected 
that there will be more and more UAVs in the skies for var‑ 
ious use cases, sharing the airspace with other aerial ve‑ 
hicles [5]. The increase in daily drone usages can be con‑ 
sidered in the context of The Internet of Everything (IoE), 
a broader term than Internet of Things (IoT), aiming to 
include the entire realm of information sources and des‑ 
tinations in one paradigm.

Innate advantages of UAVs that make them popular, such 
as ease of operation and low cost, could also be consid‑ 
ered as major disadvantages from security and privacy 
perspectives. This motivates detection, classi ication, and 
tracking of different types of UAVs, and interdicts unau‑ 
thorized or malicious UAVs to maintain privacy and secu‑ 
rity. Classi ication of UAVs can also be critical for forensics 
use cases, e.g. for identifying a UAV after a malicious ac‑ 
tivity (e.g. eavesdropping, espionage) based on the cap‑ 
tured signals of the UAV. There have been many

criminal activities recently with drones involved, and 
their small sizes make it dif icult to detect, classify, and 
interdict them [6, 7]. Latest surveys also demonstrate 
that 75% of the subjects exhibit privacy and security 
concerns about all unmanned aerial use cases [8]. In 
this regard, Federal Aviation Agency (FAA) of the 
United States recently announced a Proposed Rule that 
elaborates the future action that would require remote 
identi ication of unmanned aircraft systems to address 
safety and security concerns [9]. UAVs can be identi ied 
through a set of features that uniquely represent them. 
These features can be extracted from various data 
sources, such as visual data, acoustic, RF, or radar 
signals. Each of these source types has its own pros 
and cons which we will review in the next section. Our 
contributions with this work are summarized below.

• In this study, we develop a Convolutional Neural Net‑
work (CNN)‑based classi ier using both time‑series
signal images and spectrogram images of 15 differ‑
ent drone controller RF signals to classify drones
of different makes and models. These signals are
transmitted by proprietary circuit designs and con‑
tain distinct ingerprints of commercially available
drones; they can be exploited by a machine learn‑
ing model to classify the make and model of the
drone. We use controller signals as the data set [27]
was already in possession; however, the proposed
approach can also be directly applied to the sig‑
nals transmitted from drones to their controllers. A
lowchart of the overall procedure is given in Fig. 1.
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Table 1 – Related work on detection and classi ication of drones using ML techniques.

Litera‑
ture

Source type Features Data process
method

Classi i‑
cation UAVs

Accuracy Noise
conside-
ration

[10] Drone  
RF signals

Slope,  
skewness Several ML algorithms X N/A 96.36% X

[11] Drone  
RF signal CSI data Channel state 

information X N/A 86.6% X

[12] Acoustic
waves MFCC and LPCC SVM X N/A 96.7% X

[13] Acoustic
waves STFT features CNN X N/A 99.87% X

[14] Camera
images RGB arrays

CNN for moving body
detection and kNN for
detection

X N/A 93% X

[15] Camera
images RGB arrays CNN on ZF and VGG16

and Fast R‑CNN X N/A 0.66 mAP X

[16] Radar signals Spectrogram 2‑D complex‑log‑
Fourier transform X N/A 3.27% EER X

[17] Radar signals Range Doppler
Matrix SVM X N/A 98% X

[18] Radar signals Micro‑Doppler
signature

PCA feature extraction
on spectrograms X 3 94.7% X

[19] Radar signals Micro‑Doppler
spectrogram CNN and LSTM‑RNN X 5 97.7% X

[20] Radar signals Micro‑Doppler
signature CNN X 6 94.7% X

[21] Radar signals
Micro‑Doppler
signatures
through EMD

SVM X 11 >95% X

[22] Radar signals Micro‑Doppler
signatures SVM X 11 95.4% X

[23] Radar signals Range Doppler
spectrum CNN X N/A 99.5% and

54.2% for 0 dB X

[24] Drone 
RF signals

Statistical features
e.g., mean,median,
RMS

Logistic regression X 8 88‑94% in
0.35 s X

[25] Radar signals Micro‑Doppler
signature ANN on MLP X 4 Various X

[26] Controller 
RF signals

Shape factor,  
kurtosis, variance Several ML algorithms X 17

98.13% and
40% for 0 dB
SNR

X

This
work

Controller
RF signals

Time‑series 
signal and 
spectrogram 
RGB arrays

CNN X 15
99.7% and
99.5% for
0 dB SNR

X

• For the classi ication tasks that involve RF in‑
gerprinting, variations in the Signal‑to‑Noise Ra‑
tio (SNR) of the received RF signals is a challenging
problem. In this work, we also address this prac‑
tical problem by considering a range of SNR levels
from−10dB to30dBwhile training the CNNmodels.
Noisy training data is generated by adding arti icial
white noise to the original data. When using spec‑
trogram images to train the CNN models, we only
focus on the frequency range of interest, which im‑ 
proves classi ication accuracy signi icantly in com‑ 
parison with time‑series images.

• In this work, we apply denoising on the spectrogram
images to further improve the performance at
low SNRs. We tune the spectral density level that
will appear  on  the  spectrogram  image  and
ilter  out spectral densities lower than the tuned

level. Our proposed classifier highly outperforms
previously published work, especially at low SNRs.

# of

kurtosis
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Fig. 1 – Overview of the proposed system. Multistage detector classi‑
ies the captured data as of type UAV or non‑UAV. In the case of a UAV
signal, captured data is arti icially noised, and time‑series and spectro‑
gram images are created afterwards for training the corresponding CNN
models. Time‑series images are converted to grayscale to increase com‑
putational ef iciency. Spectrograms are denoised to increase the model
accuracy. Separate CNN models are trained and predictions are made
using these CNNmodels. The best CNN model is deployed at the end.

A possible use case of the proposed system would be 
about the upcoming FAA regulation on Remote ID [9]. Re‑ 
mote ID is de ined as the ability of a UAV to provide the 
relevant identity information to other parties. Even the 
drones will be obliged to reveal their IDs to comply with 
this regulation, it will still be possible for the malicious 
drones to fake their IDs. The system proposed in this 
work can be a part of a framework that veri ies the drone 
IDs and make sure that the lying drone has the same ID as 
in the FAA’s logs. This way countermeasures can be taken 
in the presence of a threat.

With regard to the type of images used, even though CNN 
models trained on spectrogram images perform better 
than models trained on time‑series images for every sce‑ 
nario, we kept the results for the latter to provide a bet‑ 
ter basis for comparison of our contribution. This is be‑ 
cause our present work is an extension of the work in [26], 
where statistical features extracted from time‑series data 
have been used previously.

The rest of the paper is organized as follows. In Section 2, 
a comprehensive literature review including the infor‑ 
mation of noise consideration is given. In Section 3, the
data set and the procedure for obtaining noisy samples 
are introduced. 

Section 4 discusses an image data preprocessing step 
and the CNN‑based classi ier used in this work. 
Experimental results and relevant discussions are 
presented in Section 5. Finally, the paper is concluded in 
Section 6.

2. LITERATURE REVIEW AND CONTRIBU‑
TIONS

Various approaches have been proposed in the litera‑
ture for the detection and classi ication of drones. In Ta‑
ble 1, we summarize the related literature on drone de‑
tection and classi ication with some representative work
and emphasis on the number of UAVs considered, clas‑
si ication accuracy, and noise considerations. Here we
use the term detection as a special case of classi ication
that has only two classes (i.e., UAV/non‑UAV). Techniques
used to achieve these tasks can be categorized based
on the type of data being captured (e.g., radar signals,
drone or controller Radio Frequency (RF) signals, acous‑
tic data, or camera images), features extracted from the
data (e.g., RF ingerprints, spectrogram images), and the
Machine Learning (ML) algorithms deployed for classi‑
ication. Acoustic sensors do not require line‑of‑sight
(LOS); however, they suffer from short range, as drones
could operate very quietly [12, 28], and data gathered us‑
ing microphone systems are prone to wind and environ‑
mental clutter. On the other hand, a LOS vision under
daylight is essential for techniques that utilize camera im‑
ages [14, 29]. Using thermal or laser‑based cameras to
overcome this issue increases the cost signi icantly.

Radar signals are immune to environmental factors, such
as acoustic noise and fog. However, drones are small de‑
vices with tiny propellers which make it hard to perceive
and distinguish them from each other by most radars.
A high‑frequency wideband radar could be used to deal
with these dif iculties [20, 30, 31, 18]. Such radars are
considerably expensive and suffer from high path loss.
RF signals of either drones themselves or controllers are
mostly at sub‑6 GHz band and share unlicensed Wi‑Fi
bands. As a result of this, equipment to capture RF sig‑
nals are affordable, but on the downside, RF‑based tech‑
niques require special attention for handling interference
from other co‑channel signal sources. Besides, no LOS is
required, and these techniques are immune tomanyprob‑
lems that acoustic and visual techniques suffer from.

RF signals can be used for classi ication of the UAVs, ei‑
ther directly or indirectly after some processing. In [26,
10, 24], time‑domain statistical properties of the RF sig‑
nal, such as slope, kurtosis, skewness, shape factor and
variance, are used as features along with different ML al‑
gorithms to detect and classify drones. However, since
unlicensed bands are heavily employed, time‑domain in‑
formation suffers from low SNR. Frequency‑domain rep‑
resentation of RF signals can also be used to distinguish
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Fig. 2 – Sample controller time‑series RF signals: (a) DJI Matrice 100, (b) DJI Matrice 600, (c) Spektrum DX5e, (d) FlySky FS‑T6, and (e) Spektrum JR
X9303. RF signals from different controllers may look alike, making it dif icult to identify the drones based on only the envelopes of the captured signals.

between different types of drones. Transforming RF sig‑ 
nals into the frequency domain ilters out the out‑of‑band 
noise and helps improve classi ication accuracy up to a 
certain extent.
In the literature, there are studies using radar signals and 
spectrograms to detect and classify drones [16, 18, 19, 
20, 21, 22, 23]. However, there is no study that utilize 
spectrograms of RF signals in the context of UAV detec‑ 
tion/classi ication to the best of our knowledge.

Even though the mass majority of classi ication efforts in 
this ield aim to identify drone make and model to support 
a decision of friend/foe, there are some other work that 
use ML techniques to identify drone pilots. For example, 
in [32], drone controller RF signals are recorded to char‑ 
acterize pilot activity, and different types of maneuvers 
that a pilot could do are used as features.

Classi ication accuracy should be considered together 
with the number of UAVs as it gets harder to classify 
UAVs with high accuracy as the number of classes in‑ 
creases. For studies which have X marks in the Classi i‑ 
cation column, the proposed models performed only de‑ 
tection which means there are only two classes. We also 
provide the information about whether the work consid‑ 
ers noise or not, to better emphasize our contribution.

3. DATA SET AND NOISING PROCEDURE
In this work, the data set in [26] is used. This data set con‑ 
sists of RF signals from 15 different off‑the‑shelf UAV con‑ 
trollers listed in Table 2. RF signals were captured using 
an Ultra‑Wideband (UWB) antenna and an oscilloscope 
with a sampling rate of 20 Gsa/s. Total number of sam‑ 
ples in each signal is 5 × 106, which corresponds to a time 
duration of 250 µs. Time‑series and spectrogram images 
are created from the training RF signals, and CNN models 
are generated for each image database.

3.1 Image creation process
The time‑series RF signal of a controller is kept in a 1‑D 
array. Time‑series images are simply acquired by plot‑ 
ting these 1‑D arrays. RF signals captured from different 
UAV controllers are illustrated in Fig. 2. As it can be 

Table 2 – UAV controllers used in this work.

UAV ID (#) Brand &Model

1 Jeti Duplex DC‑16
2 DJI Matrice 100
3 DJI Matrice 600
4 DJI Phantom 3
5 DJI Inspire 1 Pro
6 Spektrum DX5e
7 Spektrum DX6e
8 FlySky FS‑T6
9 Futuba T8FG
10 Graupner MC‑32
11 Hobby King HK‑T6A
12 Spektrum JR X9303
13 DJI Phantom 4 Pro
14 Spektrum DX6i
15 Turnigy 9X

observed from the igure, RF signals exhibit different wave-
forms. Digital image processing literature bestows useful 
techniques to distinguish such signals using an envelope 
detector and template matching-based approaches [33]. 
However, some controller signals may exhibit similar 
envelopes (e.g., RF signals in Fig. 2(a) and Fig. 2(b), or 
the signals in Fig. 2(c) and Fig. 2(d)), making it 
challenging to identify the controllers with these 
approaches. Besides, taking into account that signal 
envelopes get distorted at high noise levels, more 
advanced approaches are needed to achieve high 
classi ication accuracy.

Spectrogram images are created calculating power spec‑ 
tral densities of the signals using Welch’s average peri‑ 
odogram method, which is also called Weighted Over‑ 
lapped Segment Averaging (WOSA) method [34]. In this 
method, time‑domain signal 𝑥[𝑖] captured from a UAV is 
divided into successive blocks and averaged to esti‑ mate 
the power spectral density after forming the peri‑ 
odograms for each block, i.e.,

𝑥𝑚[𝑖] = 𝑤[𝑖]𝑥[𝑖 + 𝑚𝑅] , (1)

where 𝑖 = 0, 1, ..., 𝑀 − 1 is the sample index, 𝑀 is the 
window size, 𝑚 = 0, 1, ..., 𝐾 − 1 denotes the window in‑ 
dex, 𝐾 is the total number of blocks, 𝑅 is the window’s

 ITU Journal on Future and Evolving Technologies, Volume 2 (2021), Issue 5, 23 July 2021



0 0.05 0.1 0.15 0.2 0.25
Tim e (m s)

-0.2

-0.1

0

0.1

0.2

A
m

p
lit

u
d

e
 (

V
o

lt
s)

0 0.05 0.1 0.15 0.2 0.25
Tim e (m s)

-0.2

-0.1

0

0.1

0.2

A
m

p
lit

u
d

e
 (

V
o

lt
s)

0 0.05 0.1 0.15 0.2 0.25
Tim e (m s)

-0.2

-0.1

0

0.1

0.2

A
m

p
lit

u
d

e
 (

V
o

lt
s)

0 0.05 0.1 0.15 0.2 0.25
Tim e (m s)

0

2

4

6

8

10

F
re

q
u

e
n

c
y

 (
G

H
z
)

(a)

0 0.05 0.1 0.15 0.2 0.25
Tim e (m s)

0

2

4

6

8

10
F

re
q

u
e

n
c
y

 (
G

H
z
)

(b)

0 0.05 0.1 0.15 0.2 0.25
Time (ms)

0

2

4

6

8

10

Fr
eq

ue
nc

y 
(G

Hz
)

−100

−80

−60

−40

−20

0

De
ns
ity

 (d
B/
Hz

)

(c)

Fig. 3 – Noisy controller signal of a DJI Inspire 1 Pro for different SNRs: a) 30 dB, b) 15 dB, and c) 0 dB. Base noise in lab environment is around 30 dB.
As SNR decreases, distortion occurs for both image types. All spectrogram images have the same density color scale.

hop size that tunes the amount of overlap between con‑
secutive windows, and 𝑤[𝑖] is the window function. Then
the periodogram of a block is calculated as

𝑃𝑥𝑚,𝑀(𝑤𝑘) = 1
𝑀 |𝐹𝐹𝑇𝑁,𝑘(𝑥𝑚)|2 (2)

= 1
𝑀 ∣

𝑁−1
∑
𝑖=0

𝑥𝑚[𝑖]𝑒−2j𝜋𝑖𝑘/𝑁 ∣ .

Consequently, Welch estimate of power spectral density
is calculated as follows

̂𝑆𝑊
𝑥 = 1

𝐾
𝐾−1
∑
𝑚=0

𝑃𝑥𝑚,𝑀(𝑤𝑘). (3)

In this paper the Hanning window is used while calcu‑
lating preiodograms. Then the calculated densities are
mapped to a color scale to create spectrograms. We use
a color map that spans the whole color space evenly, i.e.,
passes throughall the colors in the visible range,which in‑
creases the accuracy of the proposed model signi icantly.

3.2 Noising procedure
Assuming ixed environmental noise, the SNR level of an
RF signal decreases as the source gets farther away from
the receiving antenna. Since the drone or the controller
position and hence their distance to the receiver antenna
may vary in different scenarios, systems that can work
under low SNR regimes are required. In this study, we
propose a method that can identify drones even at very

low SNRs. Since the data [26] is collected in a lab en‑
vironment, the noise is stable and the same for all mea‑
surements. To train and test our models for noisy signals,
we add white Gaussian noise to the raw data, and then
generate the corresponding time‑series and spectrogram
images. While generating the noisy signals, we irst use
Higuchi’s fractal dimension method [35] to ind the ap‑
proximate position of the transient signal segment. We
use this information to distinguish between the noise and
the RF signal and calculate their actual power separately
as

𝑃noise [dB] = 10 × log10 (∑𝑇𝑏
𝑖=0 |𝑥[𝑖]|2

𝑇𝑏
) , (4)

and

𝑃signal [dB] = 10 × log10
⎛⎜
⎝

∑𝑁
𝑖=𝑇𝑒

|𝑥[𝑖]|2
𝑁 − 𝑇𝑒

⎞⎟
⎠

, (5)

where 𝑇𝑏 and 𝑇𝑒 are the indexes where the transient be‑
gins and ends, respectively.

Next, we calculate the SNR (Γ) of the received signal and
the difference between the current SNR level and the de‑
sired SNR level as follows:

Γsignal [dB] = 𝑃signal − 𝑃noise, (6)

and
ΔΓ [dB] = Γsignal − Γdesired. (7)

Finally, an appropriate amount of random noise 𝑛[𝑖] is 
added to the whole signal to set the signal to the desired 
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Fig. 4 – Denoising of a 0 dB SNR signal at different cut‑off values: a) no truncation, b) ‑60 dB/Hz, and c) ‑20 dB/Hz. Truncation process sets the lower
limit of the density color scales. This increases the level of representation of the high density signal components on the spectrogram image, consequently
model accuracy is improved.

𝑠[𝑖] = 𝑥[𝑖] + 𝑛[𝑖], (8)

where 𝑛[𝑖] = ΔΓ × 𝒩(0, 1), 𝑖 = 0, 1, ..., 𝑁 − 1, and 𝑁 is
the total number of samples in 𝑥[𝑖]. Note that ΔΓ that is
used to generate the noise sequence is not in dB scale.
A set of arti icially noised time‑series images and the cor‑
responding spectrograms are given in Fig. 3. Subject to
the type of controller, the original data has an SNR of
about 30 dB. Increased noise causes distortion visible in
both image types. However, time‑series images are af‑
fected more. Spectrograms preserve signal characteris‑
tics better than time‑series images as signal components
can be better resolved in the frequency domain.

4. IMAGE PREPROCESSING AND CNN‑
BASED UAV CLASSIFICATION

CNN is a deep learning algorithm which has been proven 
to perform well in image recognition and classi ication 
tasks [36]. CNNs have layers just as any other neural net‑ 
works; however, different from other deep learning algo‑ 
rithms, convolution layers are used to apply various il‑ 
ters to an image to extract features no matter at which 
part of the image they reside. This nature of the algo‑ 
rithm makes CNN a perfect it for 2D data (e.g., images), 
and also reduces the number of required weights in a neu‑ 
ron, thus yields lower computational complexity in com‑ 
parison with conventional deep neural network architec‑ 
tures. In this work, spectrograms and time‑series images 
of RF signals have been used as inputs to the CNN models.

Even though CNN is a very powerful approach for extract‑ 
ing features from images, the preprocessing phase of the 
source data is crucial to increase the overall success of the 
classi ication and decrease the computational cost.

4.1 Conversion to grayscale and image 
cropping

As reviewed in Section 3.1, spectrograms re lect the
power spectral densities of the signals. Since color depth
preserves distinctive information, these images should be

kept in red/green/blue (RGB) format. However, time‑
series images are not represented in such a format, and
therefore, to decrease the complexity, time‑series signal
images should be converted to grayscale if these images
do not come in grayscale by default.

Time‑series and spectrogram images typically have axes,
ticks and labels regardless of the software tool that is
used to create them. We remove all those parts before
beginning post‑processing the images. Besides, captured
images would include both the noise‑only signal (when
there is no transmission) and the transmitted signal (see
the time‑series signals in Fig. 3). By using Higuchi’s frac‑
tal dimension method as suggested in Section 3.2, it is
possible to remove out the noise‑only part in both image
types. In addition, one of the axes of the spectrograms
will includes frequency domain information. In case the
frequency range of interest is known, it is appropriate to
crop the spectrograms further to lower the computational
cost focusing on the desired frequency band only.

4.2 Denoising the spectrograms
Denoising is an important step towards improving the ac‑
curacy of the spectrogram image‑based classi ication. De‑
noising by truncation is only applied to spectrogram im‑
ages. Power spectral densities should be calculated up to
a certain frequency that is de inedby the sampling rate for
several instants in the time domain that covers the whole
signal. These spectral density values are mapped to the
RGB color scale while creating spectrograms: the mini‑
mum and the maximum spectral densities are mapped to
the coolest and warmest colors of a chosen color map,
whereas the colors for the intermediate values are ad‑
justed accordingly. In order to denoise the spectrogram,
a cut‑off density is picked as a threshold, and the spec‑
trogram is truncated by setting the elements of the spec‑
tral density array that are smaller than this cut‑off to the
cut‑off value itself. This process assures signal compo‑
nents with smaller densities to be cleared. Since most of
the noise components have lower power densities than
the drone controller signal itself for a wide range of SNRs,
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the truncation process is essentially a denoising proce‑
dure. The rest of the signal is mapped to the same color
range set, which increases the level of representation of
the details. As a result, non‑noise (i.e., RF) signal compo‑
nents come forward that help the CNN models learn bet‑
ter. The procedure described above could be explained
mathematically as follows:

𝑆′[𝑓, 𝑖]
𝑓𝑡−→ {𝛾𝑐, if 𝑆[𝑓, 𝑖] ≤ 𝛾𝑐

𝑆[𝑓, 𝑖], else , (9)

𝑆′[𝑓, 𝑖]
𝑓𝑐−→ 𝑟𝑓,𝑖, 𝑔𝑓,𝑖, 𝑏𝑓,𝑖,

where 𝑓𝑡 is the truncation function, 𝑆′[𝑓, 𝑖] is the trun‑
cated signal subject to the cut‑off value 𝛾𝑐, 𝑓𝑐 is the color
mapping function, and 𝑟𝑓,𝑖, 𝑔𝑓,𝑖, and 𝑏𝑓,𝑖 are the color in‑
tensities in the corresponding channels.

There exists a critical trade‑off that depends on the cho‑
sen cut‑off threshold. For a given SNR level of the signal
in hand, spectrograms should be truncated at an optimum
level for that SNR. More speci ically, in the case of under‑
denoising, excess noise causes over itting, while in the
case of over‑denoising, useful information iswipedout to‑
gether with the noise, which yields to under itting. To il‑
lustrate this trade‑off, wewill consider Fig. 4which shows
the spectrograms of a DJI Inspire 1 Pro controller signal,
that is arti icially noised to 0 dB SNR, at different trunca‑
tion levels. In this igure, it is observed that as the thresh‑
old increases (i.e., from no truncation to −20 dB/Hz), the
lower limit of the density on the spectrograms changes.
This lowest density is the lowest value in the domain set.
As a result of truncation, high density components of the
signals are represented better on the images.

Another aspect of creating CNN models for different data
sets at various SNR levels is the necessity of de ining
the SNR of a signal beforehand to invoke the appropri‑
ate model. To manage this, we propose to follow two
approaches while working with the spectrograms. In
the irst approach, we create and optimize different CNN
models for different SNR levels. The idea is that, assum‑
ing that the captured signal’s SNR can be measured, the
model having the closest SNR is called to perform classi i‑
cation. Even though, calculating the SNR of a received sig‑
nal in real time is a tricky task, we believe, with the help of
featured state‑of‑the‑artmeasurement devices and newly
developed algorithms [37], this would not be a problem.
In the second approach, we de ine an optimum cut‑off
value (i.e., minimumaverage validation loss among all dif‑
ferent cut‑offs), merge all the images of different SNR lev‑
els truncated at this level to create a new comprehensive
data set, and then train a single model. The major advan‑
tageof this secondapproach is that it is no longer required
to determine the SNR of the signal in advance.

4.3 Training and testing CNNmodels
In this work, CNNs are trained using Keras with Tensor‑
low at the backend. In themodels created, we have three
convolution layers (Conv2D) followed by pooling layers
(MaxPool2D) and then a fully connected layer followed
by the output layer. Convolution layers get deeper (i.e.,
the number of ilters increase), and size of the images get
smaller as the data travels deep into the model, in accor‑
dancewith the general convention. The CNNmodels have
been trained and testedwith 3 ∶ 1 ratio for each UAV class.
Optimum hyperparameters are determined after running
a vast amount of simulations. Results are presented in the
next section.

An illustration of the CNN architecture is shown in Fig. 5.
While training the models, the categorical cross‑entropy
function is used as the loss function

ℒ(𝑊) = − 1
𝑁

𝑁
∑
𝑖=1

[𝑦(𝑖) log( ̂𝑦(𝑖))+ (10)

(1 − 𝑦(𝑖)) log(1 − ̂𝑦(𝑖))],

where 𝑊 represents the model parameters, and 𝑦(𝑖) and
̂𝑦(𝑖) represent the true labels and predicted labels for the

𝑖‑th image, respectively. This function gets smaller as the
true and the predicted results get closer to each other.
The aim of the model is to ind the optimum set of model
parameters to minimize this function, i.e.,

�̂� = argmin
𝑊

ℒ(𝑊). (11)

Probability of the 𝑖‑th test image, expressed as x(𝑖) in vec‑
tor form, being a member of the 𝑘‑th class is calculated
using normalized exponential function as:

𝑝𝑘(x(𝑖)) = 𝑒 ̂𝑣(𝑖)
𝑘

∑𝑗 𝑒 ̂𝑣(𝑖)
𝑗

, (12)

where v̂(i) is the 𝐾 × 1 vector output of the inal model
that uses optimized weights given in ((11)), and 𝐾 is the
number of classes. The class that has themaximum prob‑
ability is chosen to be the prediction of the model for the
𝑖‑th test image, ̂𝑦(𝑖), for the given image

̂𝑦(𝑖) = argmax
𝑘

𝑝𝑘(x(𝑖)). (13)

The next section presents the experimental results that
are acquired with the CNN models created for both the
time‑series and spectrogram images. Note that data sets
used to train CNN models include either time‑series im‑
ages or spectrograms.

5. EXPERIMENTAL RESULTS
During training the CNN models, the original data set
in [26], where the SNR is about 30 dB for the whole set,
was used. We extended this data set by considering four
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Fig. 5 – CNN architecture formed of three convolution and pooling layer pairs followed by a fully connected and a softmax output layer. The number
of ilters increase as data travels deep into the model to capture a widening variety of features better. Softmax output layer gives a set of predictions
resolving the maximum likelihood of the signals class reference. The one with the highest probability is predicted by the model to be the class of the
signal.

additional SNR levels ranging from 0 dB to 20 dB for time‑ 
series signal‑based classi ication, and seven different ad‑ 
ditional SNR levels ranging from −10 dB to 20 dB for 
spectrogram‑based classi ication, with SNR increments 
of 5 dB in both cases. To train the models, we created 
100 images for each class and for each unique SNR trun‑ 
cation threshold pairs following the noising procedure 
described in Section 3.2 and the denoising procedure 
(for spectrogram images only) described in Section 4.2. 
Throughout the study, we created more than 100 data 
sets, each having 1500 images (15 classes with 100 im‑ 
ages each). A Hanning window function of size 128 with 
16 overlap samples is used while creating the spectro‑ 
grams.

Before feeding the CNN, we crop the images appropri‑ 
ately to get rid of the unnecessary parts of the images and 
reduce the ile sizes, which helps speed up the converg‑ 
ing of the CNN models. Resulting spectrogram and time‑ 
series signal images have the sizes of (90 × 385 × 3) and 
(779 × 769 × 1), respectively. In this work, we used brute 
force searching to optimize CNN model parameters. We 
utilized the NC State University HPC (High Performance 
Computing) Facility to run parallel simulations for differ‑ 
ent sets of hyperparameters to ind the optimum param‑ 
eter set.

Note that, after rigorous simulations, the optimum activa‑ 
tion function came up to be ReLu for all hyperparameter 
combinations. We also used single stride in both direc‑ 
tions on images with no dilation, and valid padding for all 
models created regardless of SNR level and type of data. 
Remaining details of the models are given in Fig. 5, and 
Table 3 and Table 4.

In the rest of this section, we will irst give consider‑ 
ations about the environmental interference issues and 
then present the classi ication results for the time‑series 
images and spectrogram images. Subsequently, we will 
discuss the relation between classi ication accuracy and 
training set size and, inally, share the results for out‑of‑ 
library classification performance of the proposed 
model.

Table 3 – Optimum set of hyperparameters for models trained on time‑
series images.

SNR
(dB)

Optimizer Batch
size

Validation
accuracy (%)

30 SGD 4 99.7
20 Adagrad 4 96.5
10 Nadam 16 81.6
5 Nadam 1 65.3
0 Adagrad 1 50.1

5.1 Comments on environmental interference
All the signals used in this study are recorded for a wide 
range of frequencies, i.e., 0−1  0 GHz, as illustrated by the 
spectrogram in Fig. 3(a). The irst observation that can 
be made in there is that the frequency utilization sig‑ 
ni icantly decreases above roughly 7 GHz, which is be‑ 
cause there is no wireless transmission for that 
frequency range near the locations where we conducted 
the measurements. One can also notice the high color 
intensity at the GSM band around 1800 MHz. Since all of 
the drone controllers considered in this study 
transmit in the 2.4 GHz ISM band, notable densities in 
other bands on spectrograms have no effect on 
the model accuracy. However, the 2.4 GHz band is also 
used heavily by Wi‑Fi and Bluetooth transmitters. In 
case Wi‑Fi and/or Bluetooth signals are received, 
our proposed model applies a multistage detection 
system described in [26] to detect those type of signals 
and ilter them out.

Raw data used in this work have been gathered 
in an indoor environment where Wi‑Fi and 
Bluetooth signals could exist. A 24 dBi gain 
directional antenna has been used to capture the 
signals. It is known that IEEE 802.11 standards 
family routers implement Carrier‑Sense Multiple
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Table 4 – Optimum set of hyperparameters for models trained on spec‑
trogram images.

SNR
(dB)

Cut‑off
level
(dB/Hz)

Optimizer Batch
size

Validation
accuracy
(%)

30 −100 Adamax 8 99.7
20 −90 Nadam 2 99.7
15 −10 Adam 32 100.0
10 −10 Nadam 2 100.0
5 −10 Adam 4 99.7
0 −10 Nadam 8 99.5
−5 −20 RMSProp 8 99.5
−10 −15 Nadam 16 92.0
Merged −10 SGD 1 98.8
Merged* −10 SGD 1 96.9

*Refers to the set of images created by assuming SNR levels
different than the ones used to train the merged model.

Access (CSMA) techniques, which may help reducing the 
probability of interference with Wi‑Fi transmitters when 
the drone controllers are close to the receiving antenna. 
Besides, low‑power Bluetooth transmitters will not 
possess a high risk of severe distortion on the received 
signal. Moreover, our classi ier makes a decision each 
time after processing a signal frame of 250 𝜇s . A short 
duration of signals allow our system to catch drone 
controller signals even in the existence of other packet‑ 
based communication technologies as they do not trans‑ 
mit packets continuously. While capturing a drone data‑ 
only signal frame may introduce time delays in 
identifying the drone, this delay will be on the order of 
milliseconds. Therefore, we can safely conclude that 
labeling the training set as if there are no WiFi and 
Bluetooth signals complies with real‑world scenarios.

5.2 UAV classi ication using time‑series

images
We optimize ive different CNNs for time‑series images
by a brute force searching approach. We ran simulations
for each data set using all combinations of seven differ‑
ent optimizers, seven different batch sizes, and ive dif‑
ferent activation functions, which add up to 245 distinct
simulations. The parameter set that gives the highest ac‑
curacy is chosen. Optimized parameters for these models
are given in Table 3 for reproducibility. We observe that
CNNs gather distinctive features from both the transient
(i.e., the signal segment where the noise‑only region ends
and the RF signal begins) and the envelope of the RF sig‑
nal. As the signal swamps into noise as SNR decreases,
irst the transient information disappearswhereas the in‑
formation carried in the signal envelope survives a little
longer. When the SNR is further decreased, envelope in‑
formation also disappears. Thus, the validation accuracy
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Fig. 6 – Spectrogram model classi ication accuracy versus the cut‑off 
threshold for different SNR levels. Denoising the spectrograms by trun‑ 
cating the spectral densities, subject to a threshold, increases the model 
accuracy in general. Models trained with high‑SNR data give reasonable 
accuracy even without denoising. Low‑SNR models need to be denoised 
a priori.

drops from 99.7% to 50.1% as the SNR goes down from 
around 30 dB to 0 dB. Even though different optimizers 
could give the maximum accuracy for different SNR lev‑ 
els, all optimum models use Recti ied Linear Unit (ReLu) 
as the activation function.
Both in‑band and out‑of‑band noise cause distortion in 
time‑series images of RF signals, and so the models 
trained on time‑series images suffer from noise more 
than the models that use the spectrogram images. Be‑ 
sides, while using the time‑series images, trained mod‑ 
els extract features from the amplitude of the signals it‑ 
self. However, the amplitude of a received signal depends 
on the distance between the receiver and transmitter an‑ 
tenna. This is an obvious problem when the only distinc‑ 
tive difference between the time‑series signal images of 
any two controllers is the difference in their amplitude 
(e.g., see the RF signals in in Fig. 2(c) and Fig. 2(d)). It is 
worth noting that best results reported for the same 
number of classes in the previous work [26] that uses 
kNN (k‑nearest neighbors), random forest and discrimi‑ 
nant analysis techniques are slightly better for high SNR 
levels (≈ 98% vs 96.5% at 20 dB). However our results 
for models trained on time‑series images are 
signi icantly better for low SNR levels (≈ 40% vs 50.1%) . 
Moreover, models trained on spectrograms show even 
better performances. The next subsection is dedicated to 
results of models that employ spectrogram images.

5.3 UAV classi ication using spectrogram 
images

Two approaches are adopted while creating models on 
spectrogram images. In the irst approach, we assumed 
that the SNR level of a received signal can be measured 
prior to classi ication and created different models for 
different SNR levels. In the second approach, we used a 
merged data set that includes spectrogram images of dif‑ 
ferent SNRs to create a model that can be used to classify 
any received signal without any prior information about
its SNR. Details of these approaches are given in the fol- 
lowing subsections.

 ITU Journal on Future and Evolving Technologies, Volume 2 (2021), Issue 5, 23 July 2021



5.3.1 Models with single SNR training sets
We have created eight models for eight different SNR lev‑ 
els that are truncated at their own optimum levels. To 
use this approach, the SNR of the received signal should 
be calculated irst, and then the model that has the clos‑ 
est SNR should be called to perform the classi ication. We 
observed that all of the models give their highest accu‑ 
racy with the ReLu activation function. The sensitivity of 
the validation accuracy to a single output was found to 
be 0.27% sample−1. Optimized parameters of the 
models using spectrogram images are given in Table 4. It 
is seen that the lowest accuracy belongs to the SNR level 
−10 dB among the individual sets. Performances of all
the other models can be considered almost perfect. It
is also observed from Table 4 that the optimum cut‑off
levels are different for different SNR levels.

Classi ication accuracy at different truncation thresholds 
for different SNR levels are given in Fig. 6. By considering 
this igure and Table 4 together, one can conclude that, in 
general, the classi ication accuracy tends to increase 
with the increasing level of truncation. For high SNRs 
(i.e., 20 dB and 30 dB), spectral densities of the signals 
are much higher than the noise; therefore, truncating the 
images at different levels does not wipe out much infor‑ 
mation. As a result, the accuracy curve navigates latter, 
and the necessary cut‑off threshold is low (−100 dB/Hz 
and −90 dB/Hz). At medium SNRs (i.e., 0−15 dB), a high 
level of truncation is required to preserve as much 
information as possible (all −10 dB/Hz). On the other 
hand, at the lowest end of SNRs (i.e., −5  dB and −10 dB), 
without truncating the images, no learning occurs at all. 
For these lowest two SNRs, distinctive information in the 
spectrograms is swamped into noise so with no trunca‑ 
tion, the accuracy is found to be only 6.66%. As the cut‑ 
off threshold increases, irst a reasonable accuracy is ac‑ 
quired for a −5  dB SNR data set at the −80 dB/Hz thresh‑ 
old level. This amount of iltering is still not suf icient for 
−10 dB SNR, which only begins to learn at a com‑ 
parably higher threshold of −40 dB/Hz. Moreover, the
−10 dB/Hz threshold level gives lower accuracy than the
models trained at medium SNRs (i.e., 0−15 dB) using the
same threshold. This is because over‑denoising chops
the meaningful information together with the noise, and
consequently, the optimum cut‑off level is slightly lower
than −10 dB/Hz (i.e., −20 dB/Hz for −5 dB SNR and
−15 dB/Hz for −10 dB SNR). If the cut‑off threshold is
too high, this wipes out all the information, making all
spectrograms look alike and consequently, there will be
no learning.

The advantage of using spectral domain information
could be seen from the results of a 0 dB SNRmodel where
the classi ication accuracy for time‑series images is only
50.1% (Table 3), whereas it is 82.9% (Fig. 6) for the spec‑
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trogram model at the same SNR level without denoising. 
Also note that, CNN models optimized using proposed de‑ 
noising technique perform substantially better than both 
time‑series image models and the models in [26], where 
conventional ML techniques are used at the latter, for ev‑ 
ery SNR level. For example, classi ication accuracies re‑ 
ported in [26] range from 40% to 98%, whereas CNN 
models trained on spectrograms with denoising range be‑ 
tween 99.5% and 100% for SNR levels from 0 dB to 30 dB.

5.3.2 Model with a merged training set
Even though the models trained with different single‑SNR 
data sets give satisfactory results, this approach comes 
with a practical dif iculty. We can use these models only if
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we canmeasure the SNR of a received signal prior to clas‑
si ication. In order to get rid of this requirement and also
to save time, wemerged the training sets of different SNR
levels to create a more generalized model. The trunca‑
tion cut‑off that gives the smallest average loss was found
to be −10 dB/Hz, therefore we merged all the images for
eight SNR levels denoised at this cut‑off threshold. Train‑
ing and test sets are eight times greater than those of the
single SNR sets. A classi ication accuracy of 98.8%(across
all SNR levels) is achieved when using this model.

A confusion matrix of the merged model is given in Fig. 7.
The major de iciency of the model is observed at (13, 3),
where 14 out of 200 test data which belongs to class 3
is predicted as class 13. These two controllers belong to
the same company and both their time‑series plots and
spectrograms show high virtual resemblance.

We also tested the merged model with images at inter‑
mediate SNR levels ranging from −12 dB to 22 dB with
increments of 5 dB. We used 30 images for each class at
each SNR,which add up to 3600 images, all previously un‑
seen to the classi ier, to test the model. Our model gives
96.9% accuracy, as shown in Table 4. In the case when
we exclude the test data at −12 dB, the accuracy of the
model increases up to 99.3%, which indicates that almost
all the misclassi ication is associated with this particular
SNR level.

5.4 Classi ication accuracy vs. training set size
There are popular CNN models in the literature that can
be implemented to a wide variety of image classi ica‑
tion problems via transfer learning, e.g., VGG16 or Incep‑
tionV3. These models have abundant hidden layers and
have been trained over enormous data sets. Other than
these models, it is more customary to come across CNN
models that are deeper and trained on larger data sets
in the literature. If the problem in hand is to accurately
classify images ofmiscellaneous objects, e.g., humans, an‑
imals or cars, then a deepmodelwith a very large number
of training set should be required. This is because these
images have more diversity in terms of position, angle,
ambiance, lightning, etc. However, in ourmodel, the set of
images that we classify are generated by the well‑de ined
methods that use the outputs of quite robust electronic
circuitry. Thus, proposed models reach very high accu‑
racy with as low as 100 training samples per class.

To better explain the suf iciency of a low number of sam‑
ples for this particular problem, we examined the depen‑
dence of accuracy to the training data set size. Fig. 8
shows the accuracy of the classi ier with respect to sam‑
ple size per class for different SNR levels. In these simu‑
lations, the same models that are optimized for 100 sam‑
ples per class are used for all cases. Note that, in this ig‑
ure, x‑axis denotes the size of the training sets only. We
did not shrink the validation set while we tune the train‑
ing set sizes. All models have been validated with a test

0.0 0.2 0.4 0.6 0.8 1.0
Model uncertainty

0

10

20

30

40

50

60

p
d

f

In-library

Out-of-library

0.2 0.4 0.6
0

2

4

Fig. 9 – Pdfs of the model uncertainty for in‑library and out‑of‑library
UAV classes. The model predicts in‑library signals with high certainty.
The prediction uncertainty increases when the model encounters an
out‑of‑library controller.

set of 25 samples per class unseen by the models before.
Here it is seen that for small training set sizes, classi i‑
cation accuracy decreases as expected. After roughly 50
samples/class, the accuracy reaches saturation and be‑
gins to luctuate. On the other hand, we see that the cre‑
ated models give reasonable accuracy even for a training
set size of as lowas 20 samples per class, which is because
these samples are createdbydevices that have ahigh level
of consistency.

For the practicality of the proposed system, the RF sig‑
nal database should be updated as new products are in‑
troduced to the market. This also requires retraining of
the CNN models, and hence fast training algorithms are
needed. However, as explained above, the proposed sys‑
temonly requires a limited amount of trainingdata, which
in turn makes it a promising solution.

5.5 Out‑of‑library UAV controller signals
Finally, we investigate the behavior of the proposed algo‑
rithm when the receiver captures an out‑of‑library UAV
controller signal. To do that, we tested our optimized
CNN‑based classi ier for 40 signals from a Hubsan H501S
X4 drone and compared the estimated probability distri‑
bution functions (pdfs) of the prediction uncertaintywith
those of the in‑library test signals in Fig. 9. The output
layer of the trained model gives a set of predictions for
an incoming signal, where each element of the set corre‑
sponds to the estimated probability of that signal belong‑
ing to a particular class. A inal decision on the class of
the test signal is made based on the maximum probabil‑
ity, 𝑝max, in this set. We de ine the model uncertainty in
Fig. 9 as (1 − 𝑝max).

We observe that the two classes (i.e., in‑library and out‑
of‑library UAVs) are well separated in terms of the model
uncertainty associated with each of them, and out‑of‑
library UAV signals can be easily identi ied by a simple
thresholding mechanism. The threshold can be placed
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based on the system requirements, i.e., the desired clas‑
si ication performance and false alarm rate. We recog‑
nize that a complete consideration of out‑of‑library clas‑
si ication requires adding out‑of‑library data in the train‑
ing set or adaptation of open set recognition by introduc‑
ing an OpenMax layer, which estimates the probability of
an input being from an unknown class [38]. On the other
hand, our proposed model gives very low model uncer‑
tainty for in‑library signals, and this therefore still pro‑
vides a reasonable solution described above to detect the
out‑of‑library drones in practice.

6. CONCLUSION
In this study, we proposed a system that uses drone con‑
troller RF signals to classify drones of differentmakes and
models for a wide variety of SNRs. We used CNN classi‑
iers with two different sources for training the models:
time‑series images, and spectrogram images. We showed
that the CNNmodel using the spectrogram images ismore
resilient to noise when compared with the time‑series
images based model. The proposed method that uses a
merged training set of RF signals at different SNR lev‑
els along with the proposed denoising mechanism was
shown to be effective for UAV classi ication even at SNRs
not directly considered by the trained model. We also ex‑
plored classi ication performance against training set size
and showed that reasonable classi ication accuracy can
still be obtainedwith limited training data. Consequently,
adding newclasses to themodel (e.g., to include data from
newly released drones) does not entail a high computa‑
tion cost. Finally, we examined the model behavior with
in‑library and out‑of‑library drone signals and concluded
that the proposedmodel shows a good performance iden‑
tifying drones from an unknown class. Our future work
includes comparing our results with federated learning
techniques, and testing of the proposed CNN‑based UAV
classi ication technique at a larger scale, such as using the
AERPAW experimental platform at NC State University.

ACKNOWLEDGMENT
This work has been supported in part by NASA under
the Federal Award ID number NNX17AJ94A. The authors
would like to thank Martins Ezuma at NC State University
for providing the drone controller RF data set used in this
study.

REFERENCES
[1] Hazim Shakhatreh, Ahmad H Sawalmeh, Ala Al‑

Fuqaha, Zuochao Dou, Eyad Almaita, Issa Khalil,
Noor Shamsiah Othman, Abdallah Khreishah,
and Mohsen Guizani. “Unmanned aerial vehicles
(UAVs): A survey on civil applications and key
research challenges”. In: IEEE Access 7 (2019),
pp. 48572–48634.

[2] Dimas Pristovani Riananda, Galih Nugraha, Har‑
ish Mahatma Putra, Muhammad Lukman Baid‑
howi, and Riza Alaudin Syah. “Smart pulley work‑
low in delivery drone for goods transportation”.
In: AIP Conference Proceedings. Vol. 2226. 1. 2020,
p. 060010.

[3] Connie A Lin, Karishma Shah, Lt Col Cherie Maun‑
tel, and Sachin A Shah. “Drone delivery of medica‑
tions: Review of the landscape and legal consider‑
ations”. In: The Bulletin of the American Society of
Hospital Pharmacists 75.3 (2018), pp. 153–158.

[4] Vinay Chamola, Vikas Hassija, Vatsal Gupta, and
Mohsen Guizani. “A Comprehensive Review of the
COVID‑19 Pandemic and the Role of IoT, Drones,
AI, Blockchain, and 5G in Managing its Impact”. In:
IEEE Access 8 (2020), pp. 90225–90265.

[5] Walid Saad, Mehdi Bennis, and Mingzhe Chen.
“A Vision of 6G Wireless Systems: Applications,
Trends, Technologies, and Open Research Prob‑
lems”. In: IEEE Network 34.3 (2020), pp. 134–142.
DOI: 10.1109/MNET.001.1900287.

[6] M. Ritchie, F. Fioranelli, H. Grif iths, and B. Torvik.
“Micro‑drone RCS analysis”. In: Proc. IEEE Radar
Conf. Johannesburg, South Africa, Oct. 2015,
pp. 452–456.

[7] Ismail Guvenc, Farshad Koohifar, Simran Singh,
Mihail L Sichitiu, and David Matolak. “Detection,
tracking, and interdiction for amateur drones”. In:
IEEE Commun. Mag. 56.4 (2018), pp. 75–81.

[8] Crown Consulting. NASA Urban Air Mobility (UAM)
Market Study. URL: https : / / ntrs . nasa . gov /
citations/20190026762.

[9] Federal Aviation Agency. Proposed Rule on Remote
Identi ication of Unmanned Aircraft Systems.

[10] H. Zhang, C. Cao, L. Xu, and T. A. Gulliver. “A UAV
Detection Algorithm Based on an Arti icial Neural
Network”. In: IEEEAccess6 (May2018), pp. 24720–
24728.

[11] W. Zhou, L. Wang, B. Lu, N. Jin, L. Guo, J. Liu, H. Sun,
and H. Liu. “Unmanned Aerial Vehicle Detection
Based on Channel State Information”. In: Proc. IEEE
Int. Conf. Sensing Commun. Netw. (SECON). Hong
Kong, China, June 2018, pp. 1–5.

[12] M. Z. Anwar, Z. Kaleem, and A. Jamalipour. “Ma‑
chine Learning Inspired Sound‑Based Amateur
Drone Detection for Public Safety Applications”.
In: IEEE Trans. Veh. Technol. 68.3 (Jan. 2019),
pp. 2526–2534.

[13] Y. Seo, B. Jang, and S. Im. “Drone Detection Us‑
ing Convolutional Neural Networks with Acoustic
STFT Features”. In: Proc. IEEE Int. Conf. Advanced
Video Signal Based Surveillance (AVSS). Nov. 2018,
pp. 1–6.

 ITU Journal on Future and Evolving Technologies, Volume 2 (2021), Issue 5, 23 July 2021



[14] V. Thai, W. Zhong, T. Pham, S. Alam, and V. Duong.
“Detection, Tracking and Classi ication of Aircraft
andDrones inDigital TowersUsingMachine Learn‑
ing on Motion Patterns”. In: Proc. Integrated Com‑
mun. Navig. Surveillance Conf. (ICNS). Herndon, VA,
Apr. 2019, pp. 1–8.

[15] M. Saqib, S. Daud Khan, N. Sharma, andM. Blumen‑
stein. “A study on detecting drones using deep con‑
volutional neural networks”. In:Proc. IEEE Int. Conf.
Advanced Video Signal Based Surveillance (AVSS).
Lecce, Italy, Aug. 2017, pp. 1–5.

[16] J. Ren and X. Jiang. “Regularized 2‑D Complex‑Log
Spectral Analysis and Subspace Reliability Analysis
of Micro‑Doppler Signature for UAV Detection”. In:
Pattern Recognit. 69 (Mar. 2017), pp. 225–237.

[17] M. Marco and G. Pinelli. “Classi ication of Drones
with a Surveillance Radar Signal”. In: Proc. Int. Conf.
Comput Vision Syst. Thessaloniki, Greece, Sept.
2019, pp. 723–733.

[18] P. Zhang, L. Yang, G. Chen, and G. Li. “Classi ication
of drones based on micro‑Doppler signatures with
dual‑band radar sensors”. In: Proc. Progress Elec‑
tromagn. Research Symp. (PIERS). Singapore, Singa‑
pore, Nov. 2017, pp. 638–643.

[19] A. Huizing, M. Heiligers, B. Dekker, J. de Wit,
L. Cifola, and R. Harmanny. “Deep Learning for
Classi ication of Mini‑UAVs Using Micro‑Doppler
Spectrograms in Cognitive Radar”. In: IEEE Trans.
Aerosp. Electron. Syst.34.11 (Nov. 2019), pp. 46–56.

[20] B. K. Kim, H. Kang, and S. Park. “Drone Classi i‑
cation Using Convolutional Neural Networks With
Merged Doppler Images”. In: IEEE Geosci. Remote
Sens. Lett. 14.1 (Jan. 2017), pp. 38–42.

[21] B. Oh, X. Guo, F. Wan, K. Toh, and Z. Lin. “Micro‑
Doppler Mini‑UAV Classi ication Using Empirical‑
ModeDecomposition Features”. In: IEEE Geosci. Re‑
mote Sens. Lett. 15.2 (Feb. 2018), pp. 227–231.

[22] P. Molchanov, K. Egiazarian, J. Astola, R. I. A. Har‑
manny, and J. J. M. de Wit. “Classi ication of small
UAVs and birds by micro‑Doppler signatures”. In:
Proc. Eur. Radar Conf. Nuremberg, Germany, Oct.
2013, pp. 172–175.

[23] L.Wang, J. Tang, and Q. Liao. “A Study on Radar Tar‑
get Detection Based on Deep Neural Networks”. In:
IEEE Sens. Lett. 3.3 (Jan. 2019), pp. 1–4.

[24] A. Alipour‑Fanid, M. Dabaghchian, N. Wang, P.
Wang, L. Zhao, and K. Zeng. “Machine Learning‑
Based Delay‑Aware UAV Detection and Operation
Mode Identi ication Over Encrypted Wi‑Fi Traf‑
ic”. In: IEEE Trans. Inf. Forensics Security 15 (Dec.
2019), pp. 2346–2360.

[25] N. Regev, I. Yoffe, and D. Wulich. “Classi ication of
single and multi propelled miniature drones using
multilayer perceptron arti icial neural network”.
In: Proc. Int. Conf. Radar Syst. Belfast. UK, Jan. 2017,
pp. 1–5.

[26] M. Ezuma, F. Erden, C. Kumar Anjinappa, O.
Ozdemir, and I. Guvenc. “Detection and Classi ica‑
tion of UAVs Using RF Fingerprints in the Presence
ofWi‑Fi and Bluetooth Interference”. In: IEEE Open
J. Commun. Soc. 1 (Nov. 2019), pp. 60–76.

[27] Martins Ezuma; Fatih Erden; Chethan K. Anji‑
nappa; Ozgur Ozdemir; Ismail Guvenc. “Drone Re‑
mote Controller RF Signal Dataset”. In: IEEE Dat‑
aport, 2020. DOI: 10 . 21227 / ss99 - 8d56. URL:
https://dx.doi.org/10.21227/ss99-8d56.

[28] Z. Shi, X. Chang, C. Yang, Z. Wu, and J. Wu. “An
Acoustic‑Based Surveillance System for Amateur
Drones Detection and Localization”. In: IEEE Trans.
Veh. Technol. 69.3 (Mar. 2020), pp. 2731–2739.

[29] C. Aker and S. Kalkan. “Using deep networks for
drone detection”. In: Proc. IEEE Int. Conf. Advanced
Video Signal Based Surveillance (AVSS). Lecce, Italy,
Aug. 2017, pp. 1–6.

[30] Y. Zhao and Y. Su. “The Extraction of Micro‑Doppler
Signal With EMD Algorithm for Radar‑Based Small
UAVs’ Detection”. In: IEEE Trans. Instrum. Meas.
69.3 (Apr. 2020), pp. 929–940.

[31] B. Choi and D. Oh. “Classi ication of Drone Type
Using Deep Convolutional Neural Networks Based
on Micro‑Doppler Simulation”. In: Proc. Int. Symp.
Antennas Propag. (ISAP). Busan, South Korea, Oct.
2018, pp. 1–2.

[32] A. Shoufan, H. M. Al‑Angari, M. F. A. Sheikh, and E.
Damiani. “Drone Pilot Identi ication by Classifying
Radio‑Control Signals”. In: IEEETrans. Inf. Forensics
Security 13.10 (Mar. 2018), pp. 2439–2447.

[33] Roberto Brunelli. Template Matching Techniques in
Computer Vision: Theory and Practice. JohnWiley &
Sons, Ltd, 2009. ISBN: 9780470744055.
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