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Challenge Organizers’ Editorial 

Artificial Intelligence (AI) / Machine Learning (ML) is impacting every aspect of business and society. 
AI will also shape how communication networks, a lifeline of our society, will evolve. 

Applying AI/ML in communication networks poses an entirely different set of challenges than in other 
domains like image recognition or natural language processing. Time scales in a communication 
network span many orders of magnitude; some parameters change on an annual basis (e.g. your 
subscription to a telecom provider), while others may vary on a millisecond timescale (e.g. resource 
block allocation in the radio access networks). In addition, network environments are dynamic and 
noisy. Limitations in computing resources in a network adds to these challenges. Thus, while telecom 
operators have seen early AI applications to predict customer churn, predict fraud, identify customers 
for promotions, the industry has been slower in applying AI in use cases related to different domains 
within networks like core networks, radio access networks and management domains.  

ITU has been at the forefront to explore how to best apply AI/ML in future networks including 5G 
networks. To advance the use of AI/ML in the telco industry, the ITU AI/ML in 5G Challenge was born 
(https://aiforgood.itu.int/ai-ml-in-5g-challenge-2020/). It rallied like-minded students and professionals 
from around the globe to study the practical application of AI/ML in emerging and future networks. 
The first edition of the Challenge was conducted in 2020 with over 1300 students and professionals 
from 62 countries, competing for global recognition and a shared a prize fund totalling 33 000 CHF. 
Through the Challenge, ITU encourages and supports the growing community driving the integration 
of AI/ML in networks and at the same time enhances the community driving standardization work for 
AI/ML, creating new opportunities for industry and academia to influence the evolution of ITU 
standards. Tools, data resources and problem statements were contributed by industry and academia in 
Brazil, China, India, Ireland, Japan, Russia, Spain, Turkey and the United States. The Challenge offered 
participants an opportunity to showcase their talent, test their concepts on real data and real-world 
problems, and compete for global recognition. The solutions can be accessed in several repositories on 
the Challenge GitHub: https://github.com/ITU-AI-ML-in-5G-Challenge.  

Many solutions submitted to the Challenge were innovative and, in some cases, improvements with 
respect to the baselines. To share the solutions with the larger community, ITU issued a call for papers 
for a special issue on AI and machine learning solutions in 5G and future networks of the ITU Journal 
on Future and Evolving Technologies (ITU J-FET). In this special issue, hosts (i.e., the originators of 
the problem statements) and participants of the ITU Challenge submitted their solutions and learnings 
for publication. This special issue is dedicated to exploration of Artificial Intelligence and Machine 
Learning in 5G and future networks as well as enabling technologies and tools in networks. After 
rigorous review by reviewers in conjunction with guest editors, 10 papers were accepted for publication. 

The ability to automatically and rapidly detect network and device failures is an essential feature for 
network operators to provide reliable service in future networks and 5G. In the paper “Analysis on route 
information failure in IP core networks by NFV-based test environment,” the authors propose a method 
that extract features from large-scale unstructured data to differentiate between normal and abnormal 
states. The proposed method reduces computation without degrading the performance and achieves a 
prediction accuracy of 94%. 

Existing methods of network topology planning do not consider the increasing network traffic and 
uneven link capacity utilization, resulting in sub-optimal resource utilization and unnecessary 
investments in network construction. In this special issue, two papers “Applying machine learning in 
network topology optimization” and “AI-based network topology optimization system” consider the 
problem of topology optimization. The former proposes a solution by considering an ML pipeline in 
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ITU Y.3172 (https://www.itu.int/rec/T-REC-Y.3172/en, an ITU standard) and other mainstream 
algorithms to solve the problem, whereas the latter builds a Long Short-term Memory (LSTM) model 
for time series traffic forecasting, using NetworkX (a Python library) to dynamically optimize the 
network topology by edge deletion or addition based on traffic over nodes.  

The paper “Machine learning for performance prediction of channel bonding in next-generation 
IEEE 802.11 WLANS” presents results gathered from the problem statement by Universitat Pompeu 
Fabra (UPF), whose primary goal was predicting the performance of next-generation Wireless Local 
Area Networks (WLANs) by applying Channel Bonding (CB) techniques. The paper presents an 
overview of ML models proposed by participants (including Artificial Neural Networks, Graph Neural 
Networks, Random Forest regression, and gradient boosting) and analyze their performance on an open 
dataset generated using the IEEE 802.11ax-oriented Komondor network simulator. The accuracy 
achieved by the proposed methods demonstrates the suitability of ML for predicting the performance 
of WLANs.  

Recent advancements in Deep Learning (DL) have revolutionized the way we can efficiently tackle 
complex optimization problems. However, existing DL-based solutions are often considered as black 
boxes with high inner complexity. In this context, explainability techniques have recently emerged to 
unveil why DL models make each decision. The paper “NetXplain: Real-time explainability of graph 
neural networks applied to networking” focuses on the explainability of Graph Neural Networks (GNN) 
applied to networking. GNNs are a novel DL family with unique properties to generalize over graphs. 
As a result, they have shown unprecedented performance to solve complex network optimization 
problems. NetXplain is a novel real-time explainability solution that uses a GNN to interpret the output 
produced by another GNN. In evaluation, the proposed explainability method is applied to RouteNet, a 
GNN model that predicts end-to-end QoS metrics in networks.  

In the paper “Graph-neural-network-based delay estimation for communication networks with 
heterogeneous scheduling policies,” the authors propose a solution that supports multiple scheduling 
policies (Strict Priority, Deficit Round Robin, Weighted Fair Queuing) and handles mixed scheduling 
policies in a single communication network as opposed to RouteNet which is based on simplified 
assumptions (such as the restriction to a single scheduling policy). The solution proposed by the authors 
achieved a mean absolute percentage error under 1% on the evaluation data set from the Challenge. 
This takes neural-network-based delay estimation one step closer to practical use. 

The paper titled “Site-specific millimeter-wave compressive channel estimation algorithms with hybrid 
MIMO architectures” presents and compares three novel model-cum-data driven channel estimation 
procedures in a millimeter-wave multi-input multi-output (MIMO) orthogonal frequency division 
multiplexing (OFDM) wireless communication system. The techniques are adapted from a wide range 
of signal processing methods, such as detection and estimation theories, compressed sensing, and 
Bayesian inference, to learn the unknown virtual beamspace domain dictionary, as well as the delay-
and-beamspace sparse channel. The model-based algorithms were trained with a site-specific training 
dataset generated using a realistic ray tracing-based wireless channel simulation tool. Through 
benchmarking, model-based approaches combined with data-driven customization unanimously 
outperform the state-of-the-art techniques by a large margin.  

Beamforming is an essential technology in the 5G massive multiple-input-multiple-output (MMIMO) 
communications, which are subject to many impairments due to the nature of the wireless transmission 
channel. The inter-cell interference (ICI) is one of the main obstacles faced by 5G communications due 
to frequency-reuse technologies. However, finding the optimal beamforming parameter to minimize the 
ICI requires infeasible prior network or channel information. The paper “A dynamic Q-learning 
beamforming method for inter-cell interference mitigation in 5G massive MIMO networks” proposes a 
dynamic Q-learning beamforming method for ICI mitigation in the 5G downlink that does not require 
prior network or channel knowledge. Comparing with a traditional beamforming method and other 
industrial Reinforcement Learning (RL) methods, the proposed method has lower computational 
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complexity and better convergence efficiency. Performance analysis shows the quality-of-service 
improvement in terms of signal-to-interference-plus-noise-ratio (SINR) and the robustness towards 
different environments. 

The paper “Enhanced shared experiences in heterogeneous network with generative AI” considers an 
environment where the participants can interact with each other through video conferencing by only 
sending the audio in the network. The authors propose a multi-modal adaptive normalization-based 
architecture (MAN) to synthesize a talking person video of arbitrary length using as input an audio 
signal and a single image of a person. The architecture uses the multi-modal adaptive normalization, 
keypoint heatmap predictor, optical flow predictor and class activation map-based layers to learn 
movements of expressive facial components and hence generates a highly expressive talking-head video 
of the given person. 

Digital representations of the real world are being used in many applications such as augmented reality. 
6G systems will not only support use cases that rely on virtual worlds but also benefit from the rich 
contextual information to improve performance and reduce communication overhead. The paper 
“Simulation of machine learning-based 6G systems in virtual worlds” focuses on the simulation of 6G 
systems that rely on a 3-D representation of the environment, as captured by cameras and other sensors. 
New strategies for obtaining paired MIMO channels and multimodal data are presented and tradeoffs 
between speed and accuracy when generating channels via ray-tracing are discussed.  

This special issue was made possible due to the tireless and selfless efforts by the Guest Editors. The 
leading Guest Editor – Chih-Lin I, China Mobile Research Institute, China – as well as the Guest Editors 
– Akihiro Nakao, University of Tokyo, Japan; Aldebaro Klautau, The Federal University of Pará 
(UFPA), Brazil; Nuria González Prelcic, North Carolina State University, USA; and Albert Cabellos-
Aparicio, Technical University of Catalonia, Spain – worked together as a team to guide the authors. 
The insights, expert comments and recommendations of the well experienced Guest editors were 
invaluable for bringing out the innovations behind the Challenge in the form of this journal. We also 
thank the numerous reviewers who worked hard to make sure that we have quality manuscripts for this 
special issue. Furthermore, we would like to thank the authors who not only submitted solutions to the 
Challenge but also took the trouble to document them and share them to our readers. Last but not least 
we are grateful to the Editor-in-Chief of the ITU Journal, Ian Akyildiz, for his enthusiasm and guidance. 

The second edition of the ITU AI/ML in 5G Challenge is already underway in 2021. This provides an 
opportunity for partners, hosts and participants to collaborate on new problem statements, datasets and 
solutions. The call for papers resulting from the second edition of the Challenge provides a further 
opportunity for collaboration and learning for our hosts and participants.  

We invite you to enjoy reading the current special issue and to join us on our journey of the next one. 

 

 
Vishnu Ram 

Independent Researcher 

 
Thomas Basikolo 

ITU  

 
Reinhard Scholl 

ITU 
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LIST OF ABSTRACTS 
Graph-neural-network-based delay estimation for communication networks with 
heterogeneous scheduling policies  
Pages 1–8 
Martin Happ, Matthias Herlich, Christian Maier, Jia Lei Du, Peter Dorfinger 

Modeling communication networks to predict performance such as delay and jitter is important for 
evaluating and optimizing them. In recent years, neural networks have been used to do this, which may 
have advantages over existing models, for example from queueing theory. One of these neural networks 
is RouteNet, which is based on graph neural networks. However, it is based on simplified assumptions. 
One key simplification is the restriction to a single scheduling policy, which describes how packets of 
different flows are prioritized for transmission. In this paper we propose a solution that supports 
multiple scheduling policies (Strict Priority, Deficit Round Robin, Weighted Fair Queueing) and can 
handle mixed scheduling policies in a single communication network. Our solution is based on the 
RouteNet architecture as part of the "Graph Neural Network Challenge". We achieved a mean absolute 
percentage error under 1% with our extended model on the evaluation data set from the challenge. This 
takes neural-network-based delay estimation one step closer to practical use.   

View Article 

Site-specific millimeter-wave compressive channel estimation algorithms with 
hybrid MIMO architectures 
Pages 9–26 

Sai Subramanyam Thoota, Dolores Garcia Marti, Özlem Tugfe Demir, Rakesh Mundlamuri, Joan 
Palacios, Cenk M. Yetis, Christo Kurisummoottil Thomas, Sameera H. Bharadwaja, Emil Björnson, 
Pontus Giselsson, Marios Kountouris, Chandra R. Murthy, Nuria González-Prelcic, Joerg Widmer 

In this paper, we present and compare three novel model-cum-data-driven channel estimation 
procedures in a millimeter-wave Multi-Input Multi-Output (MIMO) Orthogonal Frequency Division 
Multiplexing (OFDM) wireless communication system. The transceivers employ a hybrid analog-
digital architecture. We adapt techniques from a wide range of signal processing methods, such as 
detection and estimation theories, compressed sensing, and Bayesian inference, to learn the unknown 
virtual beamspace domain dictionary, as well as the delay-and-beamspace sparse channel. We train the 
model-based algorithms with a site-specific training dataset generated using a realistic ray tracing-based 
wireless channel simulation tool. We assess the performance of the proposed channel estimation 
algorithms with the same site's test data. We benchmark the performance of our novel procedures in 
terms of normalized mean squared error against an existing fast greedy method and empirically show 
that model-based approaches combined with data-driven customization unanimously outperform the 
state-of-the-art techniques by a large margin. The proposed algorithms were selected as the top three 
solutions in the "ML5G-PHY Channel Estimation Global Challenge 2020" organized by the 
International Telecommunication Union. 

View Article 
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Enhanced shared experiences in heterogeneous network with generative AI 
Pages 27–46 

Neeraj Kumar, Ankur Narang, Brejesh Lall, Nitish Kumar Singh  

COVID-19 has made the immersive experiences such as video conferencing, virtual reality/augmented 
reality, the most important modes of exchanging information. Despite much advancement in the 
network bandwidth and codec techniques, the current system still suffers from glitches, lags and poor 
video quality, especially under unreliable network conditions. In this paper, we propose the method of 
a video streaming pipeline to provide better video quality under erratic network conditions. We propose 
an environment where the participants can interact with each other through video conferencing by only 
sending the audio in the network. We propose a Multimodal Adaptive Normalization (MAN)-based 
architecture to synthesize a talking person video of arbitrary length using as input: an audio signal and 
a single image of a person. The architecture uses multimodal adaptive normalization, keypoint heatmap 
predictor, optical flow predictor and class activation map-based layers to learn movements of expressive 
facial components and hence generates a highly expressive talking-head video of the given person. We 
demonstrate the effectiveness of proposed streaming that dynamically controls the Quality of 
Experience (QoE) as per the requirements. 

View Article 

A dynamic Q-learning beamforming method for inter-cell interference mitigation 
in 5G massive MIMO networks 
Pages 47–55 

Aidong Yang, Xinlang Yue, Mohan Wu, Ye Ouyang 

Beamforming is an essential technology in 5G Massive Multiple-Input Multiple-Output (MMIMO) 
communications, which are subject to many impairments due to the nature of wireless transmission 
channel. The Inter-Cell Interference (ICI) is one of the main obstacles faced by 5G communications 
due to frequency-reuse technologies. However, finding the optimal beamforming parameter to 
minimize the ICI requires infeasible prior network or channel information. In this paper, we propose a 
dynamic Q-learning beamforming method for ICI mitigation in the 5G downlink that does not require 
prior network or channel knowledge. Compared with a traditional beamforming method and other 
industrial Reinforcement Learning (RL) methods, the proposed method has lower computational 
complexity and better convergence efficiency. Performance analysis shows the quality of service 
improvement in terms of Signal-to-Interference-plus-Noise-Ratio (SINR) and the robustness towards 
different environments. 

View Article 
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NetXplain: Real-time explainability of graph neural networks applied to 
networking 
Pages 57–66 

David Pujol-Perich, José Suárez-Varela, Shihan Xiao, Bo Wu, Albert Cabellos-Aparicio, 
Pere Barlet-Ros 

Recent advancements in Deep Learning (DL) have revolutionized the way we can efficiently tackle 
complex optimization problems. However, existing DL-based solutions are often considered as black 
boxes with high inner complexity. As a result, there is still certain skepticism among the networking 
industry about their practical viability to operate data networks. In this context, explainability 
techniques have recently emerged to unveil why DL models make each decision. This paper focuses on 
the explainability of Graph Neural Networks (GNNs) applied to networking. GNNs are a novel DL 
family with unique properties to generalize over graphs. As a result, they have shown unprecedented 
performance to solve complex network optimization problems. This paper presents NetXplain, a novel 
real-time explainability solution that uses a GNN to interpret the output produced by another GNN. In 
the evaluation, we apply the proposed explainability method to RouteNet, a GNN model that predicts 
end-to-end QoS metrics in networks. We show that NetXplain operates more than 3 orders of magnitude 
faster than state-of-the-art explainability solutions when applied to networks up to 24 nodes, which 
makes it compatible with real-time applications; while demonstrating strong capabilities to generalize 
to network scenarios not seen during training. 

View Article 

Machine learning for performance prediction of channel bonding in next-
generation IEEE 802.11 WLANS 
Pages 67–79 

Francesc Wilhelmi, David Góez, Paola Soto, Ramon Vallés, Mohammad Alfaifi, Abdulrahman 
Algunayah, Jorge Martín-Pérez, Luigi Girletti, Rajasekar Mohan, K Venkat Ramnan, Boris Bellalta 

With the advent of Artificial Intelligence (AI)-empowered communications, industry, academia, and 
standardization organizations are progressing on the definition of mechanisms and procedures to 
address the increasing complexity of future 5G and beyond communications. In this context, the 
International Telecommunication Union (ITU) organized the First AI for 5G Challenge to bring 
industry and academia together to introduce and solve representative problems related to the application 
of Machine Learning (ML) to networks. In this paper, we present the results gathered from Problem 
Statement 13 (PS-013), organized by Universitat Pompeu Fabra (UPF), whose primary goal was 
predicting the performance of next-generation Wireless Local Area Networks (WLANs) applying 
Channel Bonding (CB) techniques. In particular, we provide an overview of the ML models proposed 
by participants (including artificial neural networks, graph neural networks, random forest regression, 
and gradient boosting) and analyze their performance on an open data set generated using the IEEE 
802.11ax-oriented Komondor network simulator. The accuracy achieved by the proposed methods 
demonstrates the suitability of ML for predicting the performance of WLANs. Moreover, we discuss 
the importance of abstracting WLAN interactions to achieve better results, and we argue that there is 
certainly room for improvement in throughput prediction through ML. 

View Article 
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AI-based network topology optimization system 
Pages 81–90 

Han Zengfu, Kong Jiankun, Wang Zhiguo, Zhang Yiwei, Liu Ke, Pan Liang, Li Sicong, Wu Desheng  

Existing network topology planning does not fully consider the increasing network traffic and problem 
of uneven link capacity utilization, resulting in lower resource utilization and unnecessary investments 
in network construction. The AI-based network topology optimization system introduced in this paper 
builds a Long Short-Term Memory (LSTM) model for time series traffic forecasting, which uses 
NetworkX, a Python library, for graph analysis, dynamically optimizes the network topology by edge 
deletion or addition based on traffic over nodes, and ensures network load balancing when node traffic 
increases, mainly introducing the LSTM forecasting model building process, parameter optimization 
strategy, and network topology optimization in some detail. As it effectively enhances resource 
utilization, this system is vital to the optimization of complex network topology. The end of this paper 
looks forward to the future development of artificial intelligence, and suggests the possibility of how to 
cooperate with operator networks and how to establish cross-border ecological development. 

View Article 

Applying machine learning in network topology optimization 
Pages 91–99 

Zhouwei Gang, Qianyin Rao, Lin Guo, Lin Xi, Zezhong Feng, Qian Deng  

Nowadays, telecommunications have become an indispensable part of our life, 5G technology brings 
better network speeds, helps the AR and VR industry, and connects everything. It will deeply change 
our society. Transmission is the vessel of telecommunications. While the vessel is not so healthy, some 
of them are overloaded, meanwhile, others still have lots of capacity. It not only affects the customer 
experience, but also affects the development of communication services because of a resources problem. 
A transmission network is composed of transmission nodes and links. So that the possible topology 
numbers equal to node number multiplied by number of links means it is impossible for humans to 
optimize. We use Al instead of humans for topology optimization. The AI optimization solution uses 
an ITU Machine Learning (ML) standard, Breadth-First Search (BFS) greedy algorithm and other 
mainstream algorithms to solve the problem. It saves a lot of money and human resources, and also 
hugely improves traffic absorption capacity. The author comes from the team named "No Boundaries". 
The team attend ITU AI/ML in 5G Challenge and won the Gold champions (1st place). 

View Article 
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Analysis on route information failure in IP core networks by NFV-based test 
environment 
Pages 101–112 

Xia Fei, Aerman Tuerxun, Jiaxing Lu, Ping Du, Akihiro Nakao  

Stable and high‑quality Internet connectivity is mandatory for 5G mobile networks. However, the 
pandemic of COVID‑19 has forced global and large‑scale staying at home and telecommuting in many 
countries. The increasing traffic has induced more pressure on networks, devices and cloud data centers. 
It becomes an essential task for network opera‑tors to enable their ability to automatically and rapidly 
detect network and device failures. We propose a highly practical method based on highly practical 
technology. Our method has a high generalization ability that can efficiently extract features from 
large‑scale unstructured data and ensure high accuracy prediction. First, 997 useful features are 
extracted from 28GB‑per‑day network logs. Then, a differential approach is employed to preprocess 
the extracted features so as to highlight the differences between normal and abnormal states. Third, 
those features are refined based on the feature importance we calculated. According to our experiment, 
the proposed feature extraction and refinement method can reduce computation without degrading the 
performance. Among the five types of failures, we achieve a 100% recall rate in four types and the rest 
can also reach 71%. Overall, the total average prediction accuracy of the proposed method is 94%. 
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Digital representations of the real world are being used in many applications, such as augmented reality. 
6G systems will not only support use cases that rely on virtual worlds but also benefit from their rich 
contextual information to improve performance and reduce communication overhead. This paper 
focuses on the simulation of 6G systems that rely on a 3D representation of the environment, as captured 
by cameras and other sensors. We present new strategies for obtaining paired MIMO channels and 
multimodal data. We also discuss trade‑offs between speed and accuracy when generating channels via 
ray tracing. We finally provide beam selection simulation results to assess the proposed methodology. 
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Abstract – Modeling communication networks to predict performance such as delay and jitter is important for evaluat‑
ing and optimizing them. In recent years, neural networks have been used to do this, which may have advantages over
existing models, for example from queueing theory. One of these neural networks is RouteNet, which is based on graph
neural networks. However, it is based on simpliϐied assumptions. One key simpliϐication is the restriction to a single
scheduling policy, which describes how packets of different ϐlows are prioritized for transmission. In this paper we pro‑
pose a solution that supports multiple scheduling policies (Strict Priority, Deϐicit Round Robin, Weighted Fair Queueing)
and can handle mixed scheduling policies in a single communication network. Our solution is based on the RouteNet ar‑
chitecture as part of the ”GraphNeural Network Challenge”. We achieved amean absolute percentage error under 1%with
our extendedmodel on the evaluation data set from the challenge. This takes neural‑network‑based delay estimation one
step closer to practical use.

Keywords – Communication networks, delay estimation, graph neural networks, scheduling

1. INTRODUCTION

There has been an increasing use of machine learning
techniques for various kinds of problems in recent years.
Due to the variety of problems, many newmachine learn‑
ing algorithmshavebeendeveloped. Inparticular for data
that can be described by graphs, there has been an im‑
portant new development known as ”Graph Neural Net‑
works” [1]. Examples of such data are chemical elements
or communicationnetworks. We focus on the latter in this
paper. In this context, a communication network can be
characterized by nodes and edges, where the edges rep‑
resent the links between nodes. Additionally, there are
properties associatedwith each node and each edge. This
is the basic setting of Graph Neural Networks (GNNs).
GNNs use the so‑called ”Message Passing” algorithm [2]
and can express the notion of nodes and edges. However,
for communication networks it is also important to con‑
sider paths (and network ϐlows) along several consecu‑
tive links. RouteNet [3, 4] is an implementation of this
idea that allows expressing paths. The RouteNet archi‑
tecture consistsmainly of two gated recurrent neural net‑
works that are responsible for calculating path and link
properties, respectively.
The RouteNet architecture can be used to predict per‑
ϐlow performance metrics such as average delay and jit‑
ter. This can be useful for assessing networks with re‑
spect to different loads without needing to test them in
reality. Hence, it is possible to determine if a network
can handle a certain load with respect to a performance
metric such as average delay. An alternative to such a
prediction with neural networks is a simulation, using

simulators such as OMNeT++ [5]. However, such sim‑
ulations may be time‑consuming. If the communication
network itself or any settings are changed, the simula‑
tion has to be repeated. Thus, it becomes especially time‑
consuming when simulating the impact of a series of pa‑
rameter changes. In contrast, the time‑consuming train‑
ing of neural networks has to happen only once in general.
Hence, prediction with neural networks usually provides
a faster way to estimate the performance of networks.

2. RELATEDWORK
There are classical (i.e. non‑machine learning) methods
to predict delays in communication networks, like queu‑
ing theory [6], network calculus [7] and simulation‑based
approaches [5].
Boutaba et al. [8] provide a general overview on the appli‑
cation of machine learning to communication technolo‑
gies and network measurements. The approaches in par‑
ticular differ in whether the data used for learning comes
from network simulators (e.g. from OMNeT++ as in our
case) or from actual measurements. In addition, they can
be divided into supervised, unsupervised and reinforce‑
ment learning. The approach considered in this paper is
an example of supervised learning.
Mestres et al. [9] investigate modeling and prediction
of delays in communication networks with feed‑forward
neural networks. They predict the latency based on the
trafϐic conϐiguration. In contrast to the RouteNet archi‑
tecture, a neural network has to be trained for each spe‑
ciϐic communication network. Graph neural networks
and message passing were ϐirst introduced by Scarselli et
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Fig. 1 – Problem setting for the challenge

al. [1] and Gilmer et al. [10]. These concepts were applied
to the domain of communication technologies by Geyer
andCarle [11], where the authors use aGNN for automatic
network protocol design.
A different approach to deal with heterogeneous schedul‑
ing policies was recently proposed by Ferriol et al. [12].
They provide a GNN architecture with states for links,
paths and queues. This model reaches a mean relative
error of 3.88% in the German Backbone Network (GBN)
topology (which was not used for the training process).

3. SETTING
The solutionproposed in this paperwasdevelopedwithin
the GNN Challenge [13] provided by the ”Barcelona Neu‑
ral Networking Center” from the Universitat Politècnica
de Catalunya. This challenge was organized as part of the
”ITU Artiϐicial Intelligence/Machine Learning in 5G Chal‑
lenge”.
The goal of the GNN challenge was to predict the aver‑
age per ϐlow delay in a communication network. In other
words, it is of interest to estimate the average time it takes
for a packet to travel from its source node to its desti‑
nation node. Additionally, the network topology may be
different from that used in the training data. Thus, the
neural network should not be adapted to only one topol‑
ogy but work for general topologies. For this, three differ‑
ent network topologies have been provided. For training,
the NSFNET topology with 14 nodes [14] and GEANT2
topology with 24 nodes [15] were used. For validation,
GBN [16] with 17 nodes was used. The data set that was
used for the evaluation of the challenge consisted of 19
nodes. Other information has not been published by the
challenge organizers. Thus, the proposed solution for this
challengemustwork even for such unknown communica‑
tion networks where no details are known beforehand.
The data set consisted of different node and link informa‑
tion, as well as different settings used in the OMNeT++
simulator. A crucial simpliϐication for all data sets is that
there exists only one ϐlow for each path. And for each ϐlow,
a Type of Service (ToS) is randomly assigned. That means
all packets of a path have the same ToS. This is an impor‑
tant property of the data set and we will utilize it in Sec‑
tion 4.3. The number of generated packets per time unit
follow a Poisson distribution, and the inter‑packet arrival
times follow an exponential distribution. A two‑valued
distribution is used to model packet size. The maximum
bit rate is chosen randomly between 400 and 2000 bits
per time unit. For more details on the simulated data, we
refer to the challenge documentation [13].

In communication networks, scheduling policies describe
in which order packets are transmitted. A simple and
straightforward algorithm is FIFO, where the packets are
transmitted in the order in which they are received [17].
The original RouteNet was developed for networks that
use only a single scheduling policy. However, this im‑
plementation does not work well with other scheduling
algorithms and networks with heterogeneous schedul‑
ing can have large a impact on the behavior of networks
and thus on the delays. For this challenge speciϐically,
three different scheduling policies, namely Weighted‑
Fair‑Queuing (WFQ), Strict Priority (SP), and Deϐicit
Round Robin (DRR) are being used. For WFQ and DRR,
there are three ToS classes. The networks are in general
not homogeneous with respect to scheduling policies, in
fact there are data sets where all policies are present in a
single communication network.

3.1 RouteNet
RouteNet uses Graph Neural Networks and the so‑called
message passing [2] for predicting average per‑path de‑
lays in communication networks. There are two impor‑
tant elements in this architecture, links and paths; where
each path consists of at least one link. Note that we use
the term ”capacity” to refer to the tight upper bound on
the transmission rate of a link and the term ”data rate” to
refer to the desired transmission rate of a trafϐic ϐlow on a
network path. Each link is associated with speciϐic infor‑
mation, such as link capacity. We will refer to this simply
as link state information, which is represented as a vector.
The same holds true for paths, which we will call analo‑
gously path state information. The RouteNet version pro‑
vided for the challenge [18] uses at initialization only link
capacity (bits/time unit) for the link state information ℎ𝑙
and the average data rate (bits/time unit) of a single ϐlow
for the path state informationℎ𝑝. The data rate of the ϐlow
can be encoded as part of the path state information as in
RouteNet it is assumed that there is at most one ϐlow per
path. Thedimensionof link andpath informationareboth
set to 32 in this RouteNet version, that is at the beginning
only one component of the link and path state contains
meaningful information, all other components are ϐilled
with zeros. Therefore, those two vectors can be written
as

ℎ𝑙 = [𝑥, 0, … , 0]′ ∈ ℝ32 and
ℎ𝑝 = [𝑧, 0, … , 0]′ ∈ ℝ32,

where 𝑥 denotes the link capacity and 𝑧 the average de‑
sired data rate on that path.
RouteNet utilizes two recurrent neural networks 𝐺𝑝 and
𝐺𝑙. The neural network 𝐺𝑝 calculates the new path state
information based on the previous path information and
link information. The result of this neural network is then
used for 𝐺𝑙 to calculate new link state information with
the previous link state information. See Algorithm 1 for
the pseudo‑code. As 𝐺𝑝 is a recurrent neural network,
it returns the hidden path state after each link of a path.
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All these states are combined to a sequence of path states
for each path. Therefore, the output from 𝐺𝑝 is aggre‑
gated for each link with a function that is denoted by 𝑓 .
In RouteNet, this 𝑓 is equal to a summation. The func‑
tion 𝑔 reduces the output that is returned by𝐺𝑝 to the last
state only, which is considered to be the new path state
information. This algorithm or message passing between
these two neural networks is repeated 𝑇 = 8 times. The
number of repetitions should be of the order of the aver‑
age shortest path length [2]. The ϐinal path information is
then an approximation of the ϐixed point of this message
passing procedure. It is then used to predict the average
delay with an additional neural network. Figure 2 gives
a simpliϐied overview of this message passing. Rusek et
al. [4] give more details about the RouteNet architecture.
Data: path state ℎ𝑝 and link state vector ℎ𝑙
Result: predicted per‑path delay ̂𝑦𝑝
for t = 0 to T do

𝐻𝑡+1
𝑝 = 𝐺𝑝(ℎ𝑡

𝑝, ℎ𝑡
𝑙)

ℎ𝑡+1
𝑙 = 𝐺𝑙(𝑓(𝐻𝑡+1

𝑝 ), ℎ𝑡
𝑙)

ℎ𝑡+1
𝑝 = 𝑔(𝐻𝑡+1

𝑝 )
end

̂𝑦𝑝 = 𝑅(ℎ𝑇
𝑝 );

Algorithm 1: RouteNet architecture

4. PROPOSED SOLUTION
Our proposed solution is a modiϐication of RouteNet [3],
which is based on message passing and graph neural net‑
works. Instead of just providing the ϐinal architecture, we
give an overview of all changes we applied to the origi‑
nal RouteNet model and provide intermediate results for
the delay predictions. That way, it is possible to see and
evaluate the impact that different changes had on the re‑
sults. All variants have been repeated 5 times to also as‑
sess the stability and variability of each model. Note that
this number of 5 replications is arbitrary and no sample
size calculation was done to compare different variants
with each other given a pre‑speciϐied power for the statis‑
tical analysis. We use 600 000 training steps for each run
and an exponential decay after every 60 000 steps. That
means the learning rate of 0.001 is multiplied by the fac‑
tor 0.6 after 60 000 training steps. Regularization is the
same as in the RouteNet implementation provided for the

challenge [18], that is the 𝐿2 regularization is set to 0.1
and 0.01 for all neural networks in the ϐirst hidden layer
and second hidden layer of the readout neural network.
In the following we illustrate the impact of all changes on
the mean absolute percentage error.

4.1 Baseline
The task was to minimize the mean absolute percentage
error of per‑path delays. Hence, we decided to change the
loss function in the original implementation from Mean
Squared Error (MSE) to Mean Absolute Percentage Error
(MAPE) to use the same metric for training and evalua‑
tion.
We compare this ϐirst change with the baseline code
where the optimization is done with respect to the mean
squared error. The results are displayed in Table 1 as
Step 0 and Step 1. It shows that without any modiϐica‑
tions the model does not perform well as the average er‑
ror over 5 runs is over 200%. This is not surprising as
the original RouteNet model was developed for networks
with a different scheduling policy. Using the mean ab‑
solute percentage error as the target function improved
the model signiϐicantly. The grand mean of all results
was about 46% (with a 95% Conϐidence Interval (CI) of
[26.5%, 66.29%]). This improvement was expected as
the results were evaluated by the mean absolute percent‑
age error and the training was done with the same target
function.

4.2 Normalization
For neural networks, it is common and advised to stan‑
dardize the input variables [19, 20]. Therefore, all vari‑
ables were shifted into [0, 1] such that they are on the
same scale. No centering was applied. This modiϐica‑
tion signiϐicantly improved the results given in Table 1.
The grand mean is about 23% (95% CI [23.7%, 23.74%]).
It shows again, what is already known in the literature,
that normalizing or standardizing input variables is cru‑
cial and should be done. Not only to improve prediction
but also to improve stability of training the model, which
is reϐlected in a small standard deviation of those 5 runs.

4.3 Adding variables
In Step 3 we added all variables that are provided in the
data set from the challenge to either path state informa‑
tion ℎ𝑝 or link state information ℎ𝑙. When referring to
such variables, wewill provide the names of the variables
as named in the data sets in parenthesis to make cross‑
referencing the source code easier. As the dimension is
still greater than the number of variables, all unused com‑
ponents of ℎ𝑝 and ℎ𝑙 are again initialized with 0. To be
precise, we added link capacity (bandwidth), the schedul‑
ing policy (schedulingPolicy) and weights for schedul‑
ing as link information. As there are three different ToS,
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there are also threeweights for thepoliciesWFQandDRR.
For the policy SP, we artiϐicially set these three weights to
1.
For the scheduling policy, we used dummy variables,
since there are three different policies. Let e𝑖 =
(𝑒𝑖1, 𝑒𝑖2, 𝑒𝑖3)′ ∈ ℝ3 be the 𝑖th canonical vector with 𝑒𝑖𝑗 =
1 if 𝑖 = 𝑗 and 𝑒𝑖𝑗 = 0 otherwise. Note that 𝑒′

𝑖 denotes the
transpose of 𝑒𝑖. For simplicity, the scheduling policy 𝑠 is
identiϐied as integers 0, 1 or 2. Then the dummy variable
for the scheduling policy can be written as 𝑒𝑠+1 (some‑
times known as ”one hot” encoding).
For this particular data set there is exactly one ϐlow for
each path as already mentioned in Section 3. Hence, we
can identify paths with ϐlows and can therefore assign
each path a ToS. That is why we can use ToS as path in‑
formation. Other variables for the path information are
the average data rate on that path (AvgBw), the gener‑
ated packets (PKtsGen), average bit rate per time unit
(EqLambda), average number of packets of average size
generated per time unit (AvgPktsLambda), information
about packet sizes (AvgPktSize, PktSize1, PktSize2)
and a variable describing the upper limit for the inter‑
packet arrival times used in the OMNeT++ simulation
(ExpMaxFactor). All these variables were as well shifted
into [0, 1] to improve the stability of the model.
Wedecided to split the average desired data rate on a path
(AvgBw) into different variables for each ToS, respectively.
For example, if the ToS is 1, then the ϐirst of these three
variables contains the average data rate, while the other
two are set to 0. For illustration, let 𝑑 ∈ ℝ≥0, 𝑡 ∈ {0, 1, 2}
be the data rate and ToS, where the ToS is identiϐied by
integers. Then this data rate dummy variable can bewrit‑
ten as 𝑑 ⋅e𝑡+1. We also used ToS additionally for the initial
path state information. It should be noted that many of
those variables listed above are highly correlated. How‑
ever, we did not encounter any problems and decided to
keep these variableswithout any furthermodiϐication. By
adding these additional variables, we now take into ac‑
count the scheduling and therefore the prediction of av‑
erage delays improved signiϐicantly.
For illustration, the state information are given by

ℎ𝑙 = [𝑥, 𝑤1, 𝑤2, 𝑤3, 𝑒′
𝑠+1, 0, … , 0]′ ∈ ℝ32 and

ℎ𝑝 = [𝑧 ⋅ 𝑒′
𝑡+1, … , 0]′ ∈ ℝ32,

where 𝑥 denotes the link capacity, 𝑤𝑖 (𝑖 = 1, 2, 3) for the
weights, 𝑠 for the scheduling policy, 𝑡 for the ToS and 𝑧 for
the average path data rate.
Note that some variables are node properties in the data
set, for example the queue scheduling policy that is used.
However, ϐlows have a direction. Let us consider a ϐlow on
the link from node A to node B. Then we assign this link
the scheduling policy from the source node A. Conversely,
if we have a ϐlow in the opposite direction on the link from
node B to node A, then we assign the scheduling policy
fromnodeB. Although both links connect the samenodes,
they are treated as different links.
Adding these variables improves themodel as scheduling

information is now used as input. The average error is
about 4.46% (95% CI [3.97%, 4.94%]) as can be seen un‑
der Step 3 in Table 1.

4.4 Residual connection
For the readout neural network, we used a similar idea
already used in the original RouteNet model [3]. They
used a residual connection for the path information to
the last hidden layer of the readout neural network. This
can be seen as some kind of residual neural network [21].
However, this idea is not present in the RouteNet code
provided for the challenge. The readout neural network
consists of two hidden layers. The output of this neural
network together with the ϐinal path state information is
used as input in a second neural network with one hid‑
den layer and without any activation function (which is
equivalent to a linear activation function) as the path state
information can be important for estimating the average
delays. The number of neurons for this layer is chosen to
be equal to the dimension of the input.
The results are similar to the earlier results. The average
error for Step 4 is about 4.55% (95% CI [4.38%, 4.71%]).
However, the standard deviation is reduced by a factor of
about 3 = 0.39/0.13, which means the results are stabler,
which can be explained by this residual neural network.
There are hypotheses that such neural networks smooth
the loss function and the algorithm does get stuck less of‑
ten in non‑optimal local minima [21][22].
To illustrate this modiϐication, we refer to the pseudo
code 2. In contrast to the unmodiϐied code 1, the readout
neural network is separated into two feed forward neu‑
ral networks. The output of the ϐirst neural network with
two hidden layers and ”relu” activation functions is used
as input for the secondneural network. Note that the path
state information is used in both neural networks as in‑
put.
Data: path state ℎ𝑝 and link state vector ℎ𝑙
Result: predicted per‑path delay ̂𝑦𝑝
for t = 0 to T do

𝐻𝑡+1
𝑝 = 𝐺𝑝(ℎ𝑡

𝑝, ℎ𝑡
𝑙)

ℎ𝑡+1
𝑙 = 𝐺𝑙(𝑓(𝐻𝑡+1

𝑝 ), ℎ𝑡
𝑙)

ℎ𝑡+1
𝑝 = 𝑔(𝐻𝑡+1

𝑝 )
end
𝑟 = 𝑅1(ℎ𝑇

𝑝 )
̂𝑦𝑝 = 𝑅2(𝑟, ℎ𝑇

𝑝 )
Algorithm 2: RouteNet architecture with modiϐied
readout neural network

4.5 Stacked gated recurrent networks
The idea of the RouteNet architecture is that for each
path/ϐlow we have information about all links of which
the path consists. And this link information is used as in‑
put in a gated recurrent neural network. The initial infor‑
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mation is the current path state. For the ϐirst cell of the
gated recurrent unit (GRU), the information of the ϐirst
link of a path is being used as the input. Then, the re‑
sult of this ϐirst calculation, and the information of the
second link is used in the next step. This is done until
all link information of a path has been used. This works
well as long as no heterogeneous queuing is in the data.
However, to tackle the additional complexity of queuing,
we decided to use two gated recurrent networks stacked
together. The idea of using stacked gated recurrent net‑
works has already been used in a slightly different con‑
text [23], where neural networks predicted trafϐic volume
in road networks to relieve trafϐic congestion. Further‑
more, these gated recurrent networks seemingly allow
for more ϐlexibility as more parameters can be trained.
The average error for this Step 5 is about 3.18% (95% CI
[2.94%, 3.41%]); see Table 1.
Data: path state ℎ𝑝,1, ℎ𝑝,2 and link state vector ℎ𝑙
Result: predicted per‑path delay ̂𝑦𝑝
for t = 0 to T do

𝐻𝑡+1
𝑝 = 𝐺𝑝(ℎ𝑡

𝑝,1, ℎ𝑡
𝑝,2, ℎ𝑡

𝑙)
ℎ𝑡+1

𝑙 = 𝐺𝑙(𝑓(𝐻𝑡+1
𝑝 ), ℎ𝑡

𝑙)
ℎ𝑡

𝑝,1 = 𝑔1(𝐻𝑡+1
𝑝 )

ℎ𝑡
𝑝,2 = 𝑔1(𝐻𝑡+1

𝑝 )
end
𝑟 = 𝑅1(ℎ𝑇

𝑝,1, ℎ𝑇
𝑝,2)

̂𝑦𝑝 = 𝑅2(𝑟, ℎ𝑇
𝑝,1, ℎ𝑇

𝑝,2)
Algorithm 3: RouteNet architecture with stacked
gated recurrent networks. Each GRN has its own hid‑
den states denotes by ℎ𝑝,𝑖, 𝑖 = 1, 2. The functions 𝑔1
and 𝑔2 return the ϐinal hidden state for each gated re‑
current network.

4.6 Dimension path and link information

As the problem of prediction average delays in networks
with scheduling is more complex than without schedul‑
ing, it may be necessary to have a higher dimension of
path and link state information. The RouteNet code ini‑
tially used a dimension of 32 for both. We tried increas‑
ing the dimension to 64, 128, and 256. For a dimension
of 64, we observe a signiϐicant increase of the overall er‑
ror over just using a dimension of 32. Doubling the di‑
mension to 128 again reduces the prediction error signif‑
icantly. However, using dimension 256 seems to increase
the error, whichmaybe a result of overϐitting. For this set‑
ting, we did not try to add more regularization to avoid
a possible overϐit. But rather, we decided to set the di‑
mension to 128 in the following. Another reason is com‑
putational complexity as we want to train the model in a
reasonable amount of time. The results are given again in
Table 1 where Step 6A represents dimension 64 with an
average error of 2.02%, 6B with a dimension of 128 and
an average error of 1.6% and 6C with a dimension of 256
and an error of 2.86%.

4.7 Neurons
The ϐinal path state information is obtained through the
message passing [2] loop. This ϐinal information ismainly
used for predicting the average delays in two steps, one
neural network with two hidden layers each with 8 neu‑
rons. The other neural network does not contain an acti‑
vation function and is described in Step 4.4. As we have
increased the dimension of this path state information in
the previous step from 32 to 128, it may be useful to in‑
crease the number of neurons in the ϐirst neural network
responsible for prediction. The baseline number of neu‑
rons is 8. We increased this number to 128 and 256 and
observed that there is no signiϐicant difference between8,
128 or 256 neurons. The results for 128 and 256 neurons
are given in Table 1 as Step 7A and Step 7B with an av‑
erage error of 1.61% and 1.67%, respectively. As already
mentioned, there is no difference to 8 neurons under Step
6B with an error of 1.6%. As the standard deviation of
the results for 128 neurons (0.047) seems to be smaller
than for just 8 neurons (0.061), we decided to include this
change in our ϐinal solution. But as this decision is based
on only 5 observations, it is not conclusive.

4.8 Decay rate
For the two ϐinal steps, wewant to optimize this algorithm
with respect to learning parameters. We tried two differ‑
ent approaches. First, we usually trained the models for
600 000 steps. For each 60 000 steps, the learning rate is
decreased exponentially with a decay rate of 0.6. That is,
the current learning rate 𝑟𝑛 after 𝑛 training steps is given
by 𝑟𝑛 = 0.001 ⋅ 0.6⌊𝑛/60 000⌋ where ⌊.⌋ denotes the ϐloor
function. This means that after 600 000 steps the learn‑
ing rate is almost zero and no changes are observed any‑
more to the parameters. That is why we decided to in‑
crease the learning rate again after 600 000 steps artiϐi‑
cially by changing the decay rate to 0.85. Then, the ad‑
justed learning rate is given by 𝑟𝑛 = 0.001 ⋅ 0.85⌊𝑛/60 000⌋

for 𝑛 ≥ 600 000. We refer to this approach as Step 8A and
it is related to the concept of cyclical learning rates [24]
where the learning rate is increasing and decreasing in a
cyclical way.
We compared this approach where we change the decay
rate in the beginning of the training to 0.85. We call this
approach Step 8B. The formermethod returns an average
error of about 1.47%, the latter an average error of 1.36%
as can be seen in Table 1. A graphical representation of
the loss functions up to 1.2 million training steps is given
in Figure 3 and Figure 4. In Figure 3, there is an increase
in the loss function after 600 000 steps as the learning
rate was modiϐied at that point. Note that for both loss
functions themean absolute percentage errors are shown
shown on a log scale.
As no overϐittingwas observedwe did not change the reg‑
ularization and decided to keep the standard parameters
from RouteNet. In our tests, method Bwhere we changed
the decay rate in the beginning performed slightly better.
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Table 1 – Mean absolute percentage error (MAPE) for each modiϐication step for ϐive runs: Last two columns denote the average and standard deviation of
each row.

Step Run 1 Run 2 Run 3 Run 4 Run 5 ̂𝜇 �̂�
0 MSE 337 120 335 102 185 216 114
1* MAPE 26.4 64.1 43.7 36.9 60.9 46.4 16.0
2* Normalization 23.7 23.7 23.7 23.7 23.7 23.7 0.01
3* Variables 4.55 4.85 4.58 3.80 4.51 4.47 0.39
4* Residual connection 4.45 4.75 4.53 4.41 4.59 4.55 0.13
5* Stacked GRN 3.05 3.32 3.40 3.17 2.94 3.18 0.19
6A Dimension path and link state (64) 2.03 1.94 1.97 1.86 2.28 2.02 0.16
6B* Dimension path and link state (128) 1.68 1.63 1.52 1.58 1.57 1.60 0.06
6C Dimension path and link state (256) 2.65 2.99 3.00 3.19 2.48 2.86 0.29
7A* Neurons (128) 1.60 1.69 1.59 1.57 1.59 1.61 0.05
7B Neurons (256) 1.59 1.80 1.71 1.60 1.73 1.67 0.09
8A Decay rate (0.6/0.85) 1.42 1.61 1.37 1.42 1.52 1.47 0.10
8B* Decay rate (0.85) 1.35 1.34 1.32 1.49 1.30 1.36 0.08
* Variant selected for ϐinal solution
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Fig. 3 – Loss function for training during Step 8A

4.9 Final results
Overall, if we evaluate the best trained model, that is run
5 frommethod 8B as previously described, we get amean
absolute percentage error of about 0.897%with the ϐinal
data set from theGNNchallenge. For comparison, the best
result in the challenge by the winning team was an error
of 1.53%. Our originally submitted solution achieved an
error of about 1.9%, thuswe could improveour submitted
model further. The training was done on a single Geforce
RTX 2080 Ti in under 48 hours for 1.2 million training
steps. The code was written in Python 3.7.7 with tensor‑
ϐlow2.1.0 based onKeras and is available as open source.1

5. CONCLUSION
In this paper we have described the problem of estimat‑
ing delays in communication networks using deep neural
networks and proposed a solution based on the RouteNet
model [3]. Wedecomposedour solution into several steps
1https://github.com/ITU-AI-ML-in-5G-Challenge/GNN_
Challenge_SalzburgResearch_Follow_Up_Paper
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Fig. 4 – Loss function for training during Step 8B

to demonstrate the improvement of each step and com‑
pared different variants of the steps to ϐind good hyper‑
parameters. Such a step by step analysis of changes can
be helpful in constructing, improving and understanding
a model. Using this approach we were able to obtain an
error of about 0.897% for predicting average per‑path de‑
lays based on graph neural networks.
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Abstract – In this paper, we present and compare three novel model‑cum‑data‑driven channel estimation procedures in a
millimeter‑wave Multi‑Input Multi‑Output (MIMO) Orthogonal Frequency Division Multiplexing (OFDM) wireless communi‑
cation system. The transceivers employ a hybrid analog‑digital architecture. We adapt techniques fromawide range of signal
processing methods, such as detection and estimation theories, compressed sensing, and Bayesian inference, to learn the un‑
known virtual beamspace domain dictionary, as well as the delay‑and‑beamspace sparse channel. We train the model‑based
algorithmswith a site‑speciϔic training dataset generated using a realistic ray tracing‑basedwireless channel simulation tool.
We assess the performance of the proposed channel estimation algorithms with the same site’s test data. We benchmark the
performance of our novel procedures in terms of normalized mean squared error against an existing fast greedy method and
empirically show thatmodel‑based approaches combinedwith data‑driven customization unanimously outperform the state‑
of‑the‑art techniques by a large margin. The proposed algorithms were selected as the top three solutions in the “ML5G‑PHY
Channel Estimation Global Challenge 2020” organized by the International Telecommunication Union.

Keywords – Bayesian inference, channel estimation, compressed sensing, data‐driven, hybrid MIMO, mmWave

1. INTRODUCTION

Millimeter‐Wave (mmWave) wireless communication is
one of the potential technologies proposed for the next
generation communication systems (5G and beyond) to
meet the ever‐increasing demand for high data rates. The
mmWave frequency spectrum, ranging from 30 GHz to
300 GHz, is attractive because it offers large bandwidths
(∼ 2GHz), resulting in very high data rates and low la‐
tency. These advantages come at a cost of higher path loss
due to several factors, such as blockages and oxygen ab‐
sorption at mmWave frequencies, which in turn bring sev‐
eral engineering challenges in adopting this technology in
commercial wireless communication systems.

A potential solution to overcome this problem is beam‐
forming, which leverages the availability of multiple an‐
tennas at the transmitter and receiver. In particular,
millimeter wavelengths enable one to accommodate a
larger number of antennas into the same physical space,
and thereby attain high beamforming gains. However,
a fully digital architecture in a Multi‐Input Multi‐Output
(MIMO) system, i.e., one Radio Frequency (RF) chain per
antenna, and one complex‐valued Analog‐to‐Digital Con‐
verter (ADC) per RF chain is less appealing both from
commercial and engineering perspectives due to its high
cost and energy requirements. Therefore, a hybrid MIMO
architecture is proposed in the literature as a potential so‐
lution to solve this problem [1].

In a hybrid MIMO system, multiple antennas are con‐
nected to an RF chain using a phase shifter network (RF 
precoder/combiner), and a digital precoder/combiner 
is employed in the complex baseband side of the 
transceiver. The RF and digital precoders/combiners are 
conϐigured by optimizing a system performance metric 
such as the sum rate or signal to interference noise ra‐
tio. Unlike a fully analog architecture, a hybrid architec‐
ture allows one to reduce the number of RF chains, while 
supporting multi‐stream and multi‐user transmissions. 
The major challenges then are in estimating the mmWave 
wireless channel and conϐiguring the RF and digital pre‐
coders/combiners based on the channel estimate. The 
problem is exacerbated by the fact that only the low di‐
mensional RF combined signals at the baseband are avail‐
able for estimating the channel. Since the system does not 
have any knowledge of the channel state during the chan‐
nel estimation phase, the baseband precoders/combiners 
are set to the identity matrix and random phase shifts are 
chosen for the RF precoders/combiners.

MmWave channel estimation in a hybrid MIMO architec‐
ture is a well studied problem, and we provide a brief 
overview of some of the key existing literature here. The 
simplest channel estimation method in hybrid MIMO sys‐
tems is the Least Squares (LS)‐based approach [2], which 
is inherited from conventional MIMO [3]. A more reϐined 
solution to channel estimation is to exploit both the delay
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and angular domain sparsity that mmWave channels ex‐
hibit. In this approach, the channel estimation problem is
formulated as a sparse recovery problem [4]. Such com‐
pressive sensing based estimation techniques were ϐirst
developed for frequency‐ϐlat hybrid mmWave MIMO sys‐
tems [5, 6]. Recently, frequency‐selective channels with
OFDM‐based communications leading to a more complex
estimation problem have also been considered, with dif‐
ferent approaches to exploit the sparse channel charac‐
teristics [4, 7, 8]. Several model‐based signal processing
techniques for mmWave channel estimation under vari‐
ous system settings can be found in [9–23].

Machine Learning andArtiϐicial Intelligence (ML/AI) have
been shown to be powerful tools in diverse areas such as
natural language processing, speech processing, and im‐
age recognition, where it is challenging to design speciϐic
model‐based algorithms. However, the impact of ML/AI
on the design and optimization of communication sys‐
tems is yet to be extensively studied, especially under re‐
alistic and practically meaningful settings. We aim to ad‐
dress some of the aspects of ML/AI in wireless communi‐
cations here.

In this paper, we study the potential advantage of us‐
ing data‐driven approaches for channel estimation in hy‐
brid MIMO systems. The model‐cum‐data driven algo‐
rithms we develop in this paper were selected as the top
three solutions in the “ML5G‑PHY Channel Estimation
Global Challenge 2020” organized by the International
Telecommunication Union (ITU)1. Our main goal in this
paper is to present and contrast these three algorithms
for estimating an mmWave channel in a hybrid MIMO
system. We compare the Normalized Mean Squared Er‐
ror (NMSE) performance of these approaches and discuss
the machine learning techniques relevant for the chal‐
lenge at hand. These approaches utilize the channel train‐
ing datasets generated using the Raymobtime tool to cus‐
tomize the algorithms so that they perform well for a test
dataset generated in a similar environment [24].

We provide a brief overview of the three solutions below:

1. We integrate a fast greedy search with a high‐
performing Bayesian inference method in the ϐirst 
approach.2 We use a Multi‐Level Greedy Search 
(MLGS) to learn the sparsifying virtual beamspace 
dictionary that reduces the dimensionality of the 
problem and use the learned dictionary to estimate 
the channel using a Sparse Bayesian Learning (SBL) 
method. We ϐinally exploit the delay‐domain sparsity 
to de‐noise the estimated channels. We name the al‐
gorithm as MLGS‐SBL.

2. As a second approach, we propose another SBL‐
based algorithm to exploit the sparsity of the chan‐
nel. We utilize the pattern-coupling concept to

1https://www.itu.int/en/ITU‐T/AI/challenge/2020/Pages/default.aspx
2The order in which the algorithms are presented is unrelated to their

ranking in the ITU ML5G‐PHY channel estimation challenge. The or‐
dering is based on ease of presentation and readability of the paper.

model possible block sparsity patterns among the 
consecutive Angle Of Arrivals (AoAs) and Angle Of 
Departures (AoDs). As a ϐirst step, we obtain the 
time‐domain channels from the provided training 
dataset via the inverse Discrete Fourier 
Transform (DFT) and remove the channel taps 
with small magnitude. Then, we apply the 
algorithm to the ground truth time‐domain 
channels to obtain the sparse representations. 
Using joint angular distribution learned from 
training data, we reϐine the grids and pattern‐
coupling relations in the testing stage to improve 
the channel estimation quality. This approach is 
called “Pattern‐Coupled Sparse Bayesian Learning 
for Channel Estimation with Dominating Delay Taps 
(PCSBL‐DDT)” in the paper.

3. The third approach, Projection Cuts Orthogonal
Matching Pursuit (PC‐OMP), is based on theOrthogo‐
nal Matching Pursuit (OMP) algorithm. This method
makes use of the sparsity of the mm‐wave channel
to extract channel components. At each iteration of
the OMP algorithm, a coarse estimate of the strongest
path parameters (AoA, AoD, and delay) is obtained
by a low resolution grid search. Then, each of the
three parameters is reϐined alternately, assuming the
other two to be known. In this way, we keep the algo‐
rithm’s complexity low without compromising on its
accuracy. At the end of each iteration, a path detec‐
tion hypothesis is tested, and, if successful, the path
is subtracted from the channel. This process is re‐
peated until no additional path is detected.

1.1 Notation
The operator (⋅)∗ represents the conjugate transpose or 
conjugate for a matrix or a scalar, respectively. Ā, A𝑇 , and 
A† denote the conjugate, transpose, and Moore‐Penrose 
pseudoinverse of a matrix A, respectively. The multivari‐
ate complex Gaussian distribution with mean vector 𝝁 
and covariance matrix C is denoted by 𝒞𝒩(𝝁, C) and its 
probability density function (pdf) of a random vector x is 
denoted by 𝒞𝒩(x|𝝁, C). blkdiag(⋅) represents the block‐
diagonal part of a matrix. diag(X) or diag(x) represents 
a vector obtained by the diagonal elements of the matrix 
X or the diagonal matrix obtained with the elements of 
x in the diagonal, respectively. A ⊗ B denotes the Kro‐
necker product of the matrices A and B. ||A||𝐹 denotes 
the Frobenius norm of a matrix A. ⟨a, b⟩ is the inner prod‐
uct of the two vectors a and b. The trace of a matrix A is 
denoted by tr(A). Tx and Rx denote the transmitter and 
receiver, respectively. We use 𝑣𝑒𝑐(A) to vectorize the ma‐
trix A column‐wise. 𝔼[⋅] denotes the expectation.

2. SYSTEM MODEL
We consider a single cell mmWave hybrid MIMO‐OFDM 
system with 𝑁𝑡 antennas at the transmitter (Tx) and 𝑁𝑟 
antennas at the receiver (Rx), as shown in Fig. 1. 
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Fig. 1 – mmWave MIMO system based on a hybrid analog‐digital architecture.

The Tx and Rx are equipped with 𝐿𝑡 and 𝐿𝑟 RF chains, 
respectively. The training input signal s[𝑘] ∈ ℂ𝐿𝑡×1 on the 
𝑘t h subcarrier is OFDM modulated, up‐converted to RF, 
and analog precoded using Ftr ∈ ℂ𝑁𝑡×𝐿𝑡 , and transmitted 
over the air to the Rx via an mmWave channel denoted 
by H[𝑘] on the 𝑘t h subcarrier. The received signal is 
ϐiltered using an RF combining matrix Wtr ∈ ℂ𝑁𝑟×𝐿𝑟 , 
down‐converted to baseband, OFDM demodulated to 
obtain the 𝑘t h subcarrier’s complex baseband signal 
y[𝑘] ∈ ℂ𝐿𝑟×1.  We denote the total number of subcarriers 
by 𝐾.

In the initial access phase, the system has no prior 
knowledge of the channel, and therefore the precoder 
and combiner matrices cannot be designed to optimize 
any chosen performance metric. Hence, we choose 
random analog precoding and combining matrices (with 
unit modulus entries). In our system model, we adopt a 
fully connected phase shifter network for analog 
precoding/combining. The analog precoders and 
combiners are frequency‐ϐlat, and thus are the same for 
each subcarrier 𝑘 = 1, … , 𝐾.  The system operates with 
Uniform Linear Arrays (ULAs) at both the Tx and Rx with 
half wavelength spacing be‐tween consecutive antennas. 
The total number of training frames is denoted by 𝑀 .

After RF combining, down‐conversion, zero preϐix re‐
moval and DFT, the complex baseband signal received 
during the 𝑚t h training frame for the 𝑘t h subcarrier, de‐
noted by y(𝑚)[𝑘] ∈ ℂ𝐿𝑟×1 is given by

y(𝑚)[𝑘] = W(𝑚)
tr

∗
(H[𝑘]F(𝑚)

tr q(𝑚)𝑡(𝑚)[𝑘] + n(𝑚)[𝑘]), (1)

for 𝑚 = 1, … , 𝑀 where H[𝑘] ∈ ℂ𝑁𝑟×𝑁𝑡 represents the
frequency domain MIMO channel matrix for the 𝑘th sub‐
carrier. We choose the 𝑚th training signal as s(𝑚)[𝑘] =
q(𝑚)𝑡(𝑚)[𝑘], where 𝑡(𝑚)[𝑘] ∈ ℂ is a subcarrier‐dependent
pilot symbol, and q(𝑚) ∈ ℂ𝐿𝑡×1 is a frequency‐ϐlat vector
whose entries are chosen as 1

√2𝐿𝑡
(𝑎 + 𝑗𝑏), where 𝑎, 𝑏 ∈

{−1, 1} and are uniformly distributed. The noise vec‐
tor n(𝑚)[𝑘] is independently and identically distributed
across 𝐾 subcarriers as 𝒞𝒩(𝟎, 𝜎2I𝑁𝑟

). We deϐine the
transmit Signal‐to‐Noise Ratio (SNR) as 𝜌 = 1

𝜎2𝑛
. After

compensating for 𝑡(𝑚)[𝑘], and vectorizing (1), we use the

result 𝑣𝑒𝑐(AXB) = (B𝑇 ⊗ A)𝑣𝑒𝑐(X) to obtain

𝑣𝑒𝑐(y(𝑚)[𝑘]) = (q(𝑚) 𝑇F(𝑚) 𝑇
tr ⊗W(𝑚)

tr
∗
)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝚽(𝑚)

𝑣𝑒𝑐(H[𝑘])

+W(𝑚)
tr

∗
n(𝑚)[𝑘]. (2)

Next, we describe the mmWave channel model.

2.1 Channel model
We consider a frequency‐selective geometric channel
model that is constant across 𝑀 training frames, and has
𝑁𝑐 delay taps [4, 25]. The 𝑑th delay tap is modeled as a
clustered channel with 𝐿 paths as

H𝑑 = √𝑁𝑡𝑁𝑟
𝐿𝜌𝐿

𝐿
∑
ℓ=1

𝛼ℓ𝑝(𝑑𝑇𝑠 − 𝜏ℓ)aR(𝜙ℓ)a∗
T(𝜃ℓ), (3)

where 𝜌𝐿 is the path loss between Tx and Rx, 𝛼ℓ repre‐
sents the complex path gain, 𝜙ℓ is the AoA, 𝜃ℓ is the AoD,
𝜏ℓ denotes the delay of the ℓth path. The corresponding
Rx and Tx array steering vectors are denoted by aR(𝜙ℓ) ∈
ℂ𝑁𝑟×1 and aT(𝜃ℓ) ∈ ℂ𝑁𝑡×1, respectively. The pulse shap‐
ing and other low pass ϐiltering evaluated at 𝜏 is repre‐
sented by 𝑝(𝜏), and 𝑇𝑠 is the sampling interval. We repre‐
sent the MIMO channel H𝑑 in a matrix form as

H𝑑 = AR𝚫𝑑A∗
T, (4)

whereAR ∈ ℂ𝑁𝑟×𝐿 andAT ∈ ℂ𝑁𝑡×𝐿 contain the Rx and Tx
array steering vectors aR(𝜙ℓ) and aT(𝜃ℓ) as their columns
for ℓ = 1, … , 𝐿, respectively. 𝚫𝑑 ∈ ℂ𝐿×𝐿 is a diagonal
matrix containing the complex channel gains. We take a
𝐾‐point DFT of the delay‐domain channel to get the fre‐
quency domain representation as

H[𝑘] =
𝑁𝑐−1
∑
𝑑=0

H𝑑 exp (−𝑗2𝜋𝑘𝑑
𝐾 ) = AR𝚫[𝑘]A∗

T, (5)

for 𝑘 = 0, … , 𝐾 − 1, and

𝚫[𝑘] =
𝑁𝑐−1
∑
𝑑=0

𝚫𝑑 exp (−𝑗2𝜋𝑘𝑑
𝐾 ) . (6)

We adopt the extended virtual channel model in [25] to
represent H𝑑 as

H𝑑 ≈ ÃR𝚫𝑣
𝑑Ã∗

T, (7)
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where the dictionary matrices ÃR ∈ ℂ𝑁𝑟×𝐺𝑟 and ÃT ∈
ℂ𝑁𝑡×𝐺𝑡 contain the Rx and Tx array steering vectors eval‐
uated on a grid of size 𝐺𝑟 for the AoA and a grid of size
𝐺𝑡 for the AoD, respectively. When 𝐺𝑟 and 𝐺𝑡 are cho‐
sen properly, i.e., much greater than 𝐿, 𝚫𝑣

𝑑 ∈ ℂ𝐺𝑟×𝐺𝑡 be‐
comes a sparse matrix containing the channel path gains
on the locations that match with the actual AoDs and
AoAs. We represent (7) in the frequency domain as

H[𝑘] ≈ ÃR𝚫𝑣[𝑘]Ã∗
T, (8)

for 𝑘 = 0, … , 𝐾 − 1, and

𝚫𝑣[𝑘] =
𝑁𝑐−1
∑
𝑑=0

𝚫𝑣
𝑑 exp (−𝑗2𝜋𝑘𝑑

𝐾 ) . (9)

Note that the dictionary matrices ÃR and ÃT are com‐
mon to all the subcarriers due to the frequency‐ϐlat ar‐
ray response vectors. Hence, the sparse matrices 𝚫𝑣[𝑘]
for 𝑘 = 1, … , 𝐾 have the non‐zero elements at the same
indices. This means that they share a common sparsity
pattern [4].

Now, we vectorize (8) to get

𝑣𝑒𝑐(H[𝑘]) = ( ̄ÃT ⊗ ÃR) 𝑣𝑒𝑐(𝚫v[𝑘]). (10)

We deϐine 𝚿 = ̄ÃT ⊗ ÃR ∈ ℂ𝑁𝑡𝑁𝑟×𝐺𝑡𝐺𝑟 and hv[𝑘] =
𝑣𝑒𝑐(𝚫v[𝑘]) ∈ ℂ𝐺𝑡𝐺𝑟 , and substitute 𝑣𝑒𝑐(H[𝑘]) in (2) to
get

𝑣𝑒𝑐(y(𝑚)[𝑘]) = 𝚽(𝑚)𝚿h[𝑘] + n(𝑚)
𝑐 [𝑘], (11)

where n(𝑚)
𝑐 [𝑘] = W(𝑚)

tr
∗
n(𝑚)[𝑘]. By concatenating the RF

combined signals of 𝑀 training frames, we get

⎡⎢
⎣

y(1)[𝑘]
⋮

y(𝑀)[𝑘]
⎤⎥
⎦⏟⏟⏟⏟⏟

y[𝑘]

= ⎡⎢
⎣

𝚽(1)

⋮
𝚽(𝑀)

⎤⎥
⎦⏟⏟⏟⏟⏟

𝚽

𝚿h
v[𝑘] + ⎡⎢

⎣

n
(1)
𝑐 [𝑘]

⋮
n

(𝑀)
𝑐 [𝑘]

⎤⎥
⎦⏟⏟⏟⏟⏟

n𝑐[𝑘]

.

(12)
Now, by stacking the received signals of 𝐾 subcarriers, we
get the ϐinal system equation

Y = [y[1] … y[𝐾]]
= 𝚽𝚿 [hv[1] … hv[𝐾]] + [n𝑐[1] … n𝑐[𝐾]]
= 𝚽𝚿Hv + N𝑐. (13)

Our goal is to estimate H[𝑘], for 𝑘 = 0, … , 𝐾 − 1, given Y
and 𝚽. As the AoDs and AoAs are the same for all the sub‐
carriers, Hv ∈ ℂ𝐺𝑡𝐺𝑟×𝐾 has a joint row sparse structure,
i.e., the support set of each column of H𝑣 are the same.
Also, we do not have the knowledge of the sparsifying dic‐
tionary 𝚿 and the noise variance, which makes the chan‐
nel estimation problem more challenging. In the follow‐
ing sections, we present three different solutions to this
channel estimation problem.

3. MLGS‑SBL
In this section, we propose amodel‐based approach using
the framework of Compressed Sensing (CS), to estimate
the mmWave channel given the received pilot measure‐
ments and the frequency‐ϐlat transmit vector. We inte‐
grate a fast greedy search procedure and a high perform‐
ing statistical inference method to estimate the channel.
The algorithm consists of the following steps:

1. Preconditioning

2. Multi‐level greedy search for dictionary learning

3. Noise variance estimation

4. Sparse Bayesian learning for channel estimation

5. Channel de‐noising

We provide a detailed description of each step below.

3.1 Preconditioning
Sparse signal recovery using greedy algorithms, such as
OMP, are likely to choose the correct support set when
the noise covariance matrix is diagonal. In our mmWave
channel estimation problem, RF combining by Wtr at the
front end of the receiver results in correlated noise, which
needs to be whitened using a preconditioning ϐilter [4].

The scaled noise covariance matrix before whitening is

Cw =𝔼 [n𝑐[𝑘]n∗
𝑐[𝑘]]

𝜎2

=blkdiag{W(1)
tr

∗
W(1)

tr , … ,W(𝑀)
tr

∗
W(𝑀)

tr }. (14)

We get the above by noting that

𝔼 [n(𝑖)
𝑐 [𝑘]n(𝑗)

𝑐
∗
[𝑘]] = 𝜎2W(𝑖)

tr
∗
W(𝑗)

tr 𝛿[𝑖 − 𝑗]. (15)

We perform a Cholesky decomposition of Cw to obtain
Cw = D∗

wDw, where Dw ∈ ℂ𝑀𝐿𝑟×𝑀𝐿𝑟 is upper triangu‐
lar. Let us deϐine D−∗

w to denote the inverse of D∗
w. Now,

we multiply the RF combined received signal (12) by D−∗
w

to obtain the noise‐whitened received signal:

yw[𝑘] = D−∗
w y[𝑘] = D−∗

w 𝚽𝚿h
v[𝑘] + D−∗

w n𝑐[𝑘]
= 𝚼wh

v[𝑘] + D−∗
w n𝑐[𝑘], (16)

where 𝚼w = D−∗
w 𝚽𝚿 ∈ ℂ𝑀𝐿𝑟×𝐺𝑡𝐺𝑟 . Concatenating the

noise‐whitened received signals of all the 𝐾 subcarriers,
we get

Yw = [yw[1] … yw[𝐾]] = 𝚽w𝚿H
v + Nw , (17)

where Yw ∈ ℂ𝑀𝐿𝑟×𝐾 , 𝚽w = D−∗
w 𝚽 ∈ ℂ𝑀𝐿𝑟×𝑁𝑡𝑁𝑟 , and

Nw = D−∗
w [n[1] … n[𝐾]] ∈ ℂ𝑀𝐿𝑟×𝐾 . Thus, we need

to estimate the row sparse matrix Hv given Yw and 𝚽w.
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3.2 Multi‐level greedy search
We obtain an initial channel estimate using the MLGS
procedure with a coarsely quantized beamspace dictio‐
nary. We adopt the Simultaneously Weighted Orthogonal
Matching Pursuit (SW‐OMP) algorithm as our base algo‐
rithm to form an initial estimate of the channel [4]. As the
sparsifying dictionary 𝚿 is unknown a priori, we use row‐
truncated DFT matrices of size 𝑁𝑡 × 𝐺𝑡 and 𝑁𝑟 × 𝐺𝑟 as
the Tx and Rx array steering matrices, respectively. Let �̃�
be the initial sparsifying dictionary.

In the ϐirst step of MLGS, we select a column from �̃� that
is maximally correlated with the received signal. Mathe‐
matically,

̂𝑖 = arg max
𝑖

𝐾
∑
𝑘=1

∣(𝚽w�̃�[∶, 𝑖])
∗
yw[𝑘]∣

2
, (18)

where | ⋅ | denotes an element‐wise modulus operation,
and �̃�[∶, 𝑖] is the 𝑖th column of �̃�. Once we select ̂𝑖, we ex‐
tract AoD 𝜃 ̂𝑖 and AoA 𝜙 ̂𝑖 using the structure of �̃�, and form
a ϐinely spaced dictionary of range (𝜃 ̂𝑖 − Δ𝜃, 𝜃 ̂𝑖 + Δ𝜃) and
(𝜙 ̂𝑖 − Δ𝜙, 𝜙 ̂𝑖 + Δ𝜙), where Δ𝜃 and Δ𝜙 are appropriately
chosen based on the spatial quantization of the previously
chosen dictionary. We repeat (18) with �̃� replaced by the
newly formed dictionary, and choose a new {AoD, AoA}
pair. We repeat this process 𝑁 times and select one set of
AoD and AoA. Then, we compute

Ĥv = (𝚽w�̂�)
†
Yw, (19)

where �̂� is formed using the currently chosen AoD and
AoA. This whole procedure constitutes the ϐirst out of 𝑆
iterations of the MLGS algorithm in which we recover a
single tap.

In the 𝑠th iteration of MLGS, we recover 𝑠 channel taps by
following the same steps as above, but with the residual
Y′

w = Yw − 𝚽w�̂�Ĥv as observations, where �̂� comprises
the set of {AoD, AoA} pairs chosen in the ϐirst 𝑠 − 1 iter‐
ations. Therefore, after 𝑆 iterations, we recover 𝑆 virtual
beamspace channel taps. We summarize MLGS as a ϐlow
diagram in Fig. 2.

3.3 Noise variance estimation
We estimate the noise variance �̂�2

𝑛 using the residual out‐
put from MLGS. The noise variance is computed as

�̂�2
𝑛 = 1

𝑀𝐾𝐿𝑟
||Y′

w||2𝐹 . (20)

3.4 Sparse Bayesian learning
In this step, our goal is to reϐine the channel estimatesout‐
put by the MLGS procedure. For convenience, we recall
the measurement equation:

Yw = 𝚽w�̂�H
v + Nw , (21)

Input: Yw, 𝚽w, �̃�,
𝑁 , 𝑆, Δ𝜃, Δ𝜙

Initialize: ÂR = ∅, ÂT = ∅, Y′
w = Yw

Set �̂� = �̃�

̂𝑖 = arg max𝑖 ∑𝐾
𝑘=1 ∣(𝚽w�̂�[∶, 𝑖])

∗
y′

w[𝑘]∣

Extract AoA 𝜙 ̂𝑖, AoD 𝜃 ̂𝑖
Update �̂� = 𝑓(𝜙 ̂𝑖, 𝜃 ̂𝑖, Δ𝜃, Δ𝜙)

ÂR = [ÂR aR(𝜙 ̂𝑖)], ÂT = [ÂT aT(𝜃 ̂𝑖)]
Compute �̂� = ( ̄̂AT ⊗ ÂR)

Channel Estimate: Ĥv = (𝚽w�̂�)
†
Yw,

Residual: Y′
w = Yw − 𝚽w�̂�Ĥv

Output: ÂR, ÂT, Y′
w

𝑁 times

𝑆 times

Fig. 2 – Flow diagram of MLGS.

where �̂� = ( ̄̂AT ⊗ ÂR) is the dictionary output by MLGS.
We adopt a statistical inference approach to infer the
posterior distribution of Hv given the measurements Yw,
measurement matrix 𝚽w�̂�, and noise variance �̂�2

𝑛.

We use sparse Bayesian learning, a type‐II maximum like‐
lihood estimation procedure to obtain the channel esti‐
mate [26, 27]. In this method, we consider Hv as a hid‐
den variable, and obtain its posterior statistics given the
observations. We impose a parameterized complex Gaus‐
sian prior on each column of the channel as 𝒞𝒩(0, 𝚪),
where 𝚪 = diag(𝛾). Using a common hyper‐parameter
𝛾 across all the columns ofHv aids in promoting common
row sparsity in the solution. Now, we need to obtain the
posterior distribution of Hv, and the hyper‐parameter 𝛾.
Since the prior and the noise are both Gaussian, obtain‐
ing the posterior statistics of Hv is straightforward. But,
computing 𝛾 requires computing the marginal probabil‐
ity distribution 𝑝(Yw; 𝛾) and maximizing it w.r.t. 𝛾, which
is called evidence maximization or type‐II maximum like‐
lihood estimation.

To solve this, we use the Expectation Maximization (EM)
algorithm, which works by lower bounding the logarithm
of the evidence 𝑝(Yw; 𝛾), and maximizing it iteratively.
We treat Hv as a hidden variable. In the expectation (E)
step, we compute the expectation of the log likelihood of
(Yw,Hv) w.r.t. 𝑝(Hv|Yw, 𝛾). In the maximization (M) step,
we compute the hyper‐parameter 𝛾 by maximizing the
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Input: Yw, 𝚽w, �̂�, �̂�𝑛

Initialize: 𝛾1, … , 𝛾𝑆2 ,
𝚪 = diag(𝛾1, … , 𝛾𝑆2)

�̂�w = 𝚽w�̂�

𝚺Y = �̂�2
𝑛I𝑀𝐿𝑟

+ �̂�w𝚪�̂�∗
w

𝚺H = 𝚪 − 𝚪�̂�∗
w𝚺Y

−1�̂�w𝚪

Channel Estimate:
Ĥv = 1

�̂�2𝑛
𝚺H�̂�∗

wYw

Hyper‐parameter update: For 𝑛 = 1, … , 𝑆2,
𝛾𝑛 = 1

𝐾 ∑𝐾
𝑘=1 |Ĥv[𝑛, 𝑘]|2 + 𝚺H[𝑛, 𝑛],

𝚪 = diag(𝛾1, … , 𝛾𝑆2)

Converged?

Output: Ĥv, {𝛾1, … , 𝛾𝑆2}

No

Yes

Ĥv,

the of e �̂�Ĥv.

Fig. 3 – Flow diagram of MSBL.

function obtained in the E step. More details of SBL and 
type‐II ML estimation can be found in [26, 28]. We pro‐
vide a ϐlow diagram of Multiple Measurement Vector SBL 
(MSBL) to compute the posterior mean and covariance of 
the channel, and the hyper‐parameters, in Fig. 3. Speciϐi‐
cally, in Fig. 3, the E‐step of the EM algorithm corresponds
to the computation of 𝚺Y, 𝚺H and Ĥv, and the M‐step cor‐
responds to the computation of 𝚪. We also elaborate on 
the E‐ and M‐steps, albeit in the slightly different context 
of pattern‐coupled sparse Bayesian learning, in Section 4.

Once we obtain the frequency domain channel estimate 
we estimate the support of the row sparse matrix and 

the channel coefϐicients using the hyper‐parameters ob‐
tained using SBL. We estimate the noise variance using

Frobenius norm th residual Ỹw = Yw − 𝚽w

3.5 Denoising
By analyzing the training dataset, we observed that the 
channel is sparse in both the virtual beamspace and de‐
lay domains. We exploited the beamspace sparsity and 
obtained the frequency domain channel estimates using 
MLGS and SBL. In this ϐinal step, we exploit the delay 

2
𝑛

domain sparsity to denoise the channel to further reduce 
the MSE between the original and estimated channels.

For each subcarrier 𝑘, we compute (Ā̂T ⊗ ÂR)Hv[∶, 𝑘], and 
reshape it to form 𝑘th subcarrier’s channel matrix of size 
𝑁𝑟 × 𝑁𝑡. Then, for each transmit and receive antenna 
pair, we compute a 𝐾‐point inverse DFT to obtain a delay‐
domain channel estimate. We retain the 𝑃 dominant taps 
in the delay‐domain channel estimate, and set the other 
𝐾 − 𝑃 taps to 0. We ϐix 𝑃 based on the estimated noise 
variance, and the number of training frames 𝑀 . The 
value of 𝑃 is inversely proportional to �̂� , and the train‐
ing dataset is used to choose an appropriate 𝑃 . From our 
experiments on the training dataset, we found that this 
denoising step leads to an approximately 2 dB reduction 
in NMSE.

This concludes the description of the MLGS‐SBL ap‐
proach, and we will describe the second approach in the 
next section.

4. PCSBL‑DDT
In this section, we present another SBL based approach 
to the site‐speciϐic hybrid MIMO channel estimation prob‐
lem. In this method, we adapt and extend the pattern‐
coupled SBL in [29] to our problem, by introducing spar‐
sity connections (or couplings) between the consecutive 
AoAs and AoDs. We also impose a common sparsity 
model on the hyper‐parameters such that all the delay 
taps share a common support. We will show that, to‐
gether, these two innovations result in accurate channel 
estimates.

Recall that, in (12), the matrix 𝚽 ∈ ℂ𝑀𝐿𝑟×𝑁𝑡𝑁𝑟 is known, 
and we are given the received signals y[𝑘] for 𝑘 = 1, … , 𝐾 . 
We use a ϐixed grid, although the grid points are different 
for training and testing stages. Hence, the dictionary ma‐
trix 𝚿 is also known in this method.

The lag‐domain representation of the channel is of length 
𝐾 , with 𝑁𝑐 ≪ 𝐾 nonzero taps, which makes the chan‐
nel sparse in the time‐domain. Furthermore, the nonzero 
taps occur in clusters. To exploit the sparsity in the time‐
domain, we apply the pattern‐coupled SBL algorithm on 
the time‐domain signals. As a ϐirst step, we take the in‐
verse DFT of the received signal sequence and scale it ap‐
propriately to keep the noise variance the same, i.e.,

ỹ[𝑑] = 1√
𝐾

(
𝐾−1
∑
𝑘=0

y[𝑘] exp (𝑗2𝜋𝑘𝑑
𝐾 ))

=𝚽𝚿h̃𝑣[𝑑] + ñ𝑐[𝑑], 𝑑 ∈ 𝒟, (22)

where h̃𝑣[𝑑] = 𝑣𝑒𝑐(𝚫𝑣
𝑑), and the noise ñ𝑐[𝑑] has the same

distribution as n𝑐[𝑘]. Here, 𝒟 ⊂ {0, … , 𝐾 − 1} denotes
the set of indices of the dominant delay taps. This set is
determined heuristically by a simple threshold on the to‐
tal energy of the received signals ỹ[𝑑], for 𝑑 = 0, … , 𝐾 −1.
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This operation is done to increase the SNR by eliminating
possibly all‐noise samples.

As a next step, we apply a whitening ϐilter as in the pre‐
vious approach. The whitened time‐domain signal is ob‐
tained similar to (16) as

ỹw[𝑑] = D−∗
w ỹ[𝑑] = D−∗

w 𝚽𝚿h̃𝑣[𝑑] + ñw[𝑑], (23)

where ñw[𝑑] = D−∗
w ñ𝑐[𝑑] ∼ 𝒞𝒩(0, 𝜎2I𝑀𝐿𝑟

).

Note that the following approach is ϐirst applied to the
true channels from the training data by regularizing it
with a very small variance white Gaussian noise and uni‐
form grids for AoAs and AoDs. Then, in the testing stage,
the grid points are reϐined based on the joint AoA/AoD
pattern that is extracted from the training data. Since the
sparse model and overall procedure is the same in the
training and testing phases except for the measurement
matrices (there is an additional matrix D−∗

w 𝚽 multiplying
the true channels from the left in testing stage in (23)),
we directly present the method used in the testing stage.
The channel estimator in both phases operates on the re‐
ceived signals ỹw[𝑑], for 𝑑 ∈ 𝒟.

The pattern‐coupled SBL method in [29] assumes noisy
measurements of the form of

y = Ax+ n, (24)

where y is the observed vector,A is the measurement ma‐
trix, and the x is the sparse signal with some unknown
block‐sparsity patterns. The vector n is the zero‐mean
Gaussian noise with scaled identity covariance matrix.
Hence, the model is in accordance with the one in (23).
Let us deϐine A = D−∗

w 𝚽𝚿, y𝑑 = ỹw[𝑑], x𝑑 = h̃𝑣[𝑑] and
n𝑑 = ñw[𝑑]. Then, we have all the measurements from
(23) for 𝑑 ∈ 𝒟 in the form

y𝑑 = Ax𝑑 + n𝑑, 𝑑 ∈ 𝒟. (25)

Let us express the sparse vector x𝑑 ∈ ℂ𝐺𝑡𝐺𝑟 in the follow‐
ing form with special indices:

x𝑑 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑥𝑑
1,1
⋮

𝑥𝑑
𝐺𝑟,1
𝑥𝑑

1,2
⋮

𝑥𝑑
𝐺𝑟,2
⋮

𝑥𝑑
1,𝐺𝑡
⋮

𝑥𝑑
𝐺𝑟,𝐺𝑡

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, 𝑑 ∈ 𝒟. (26)

Note that the elements of n𝑑 are independent and iden‐
tically distributed zero‐mean complex Gaussian random
variables with variance 𝜎2.

4.1 Proposed pattern‐coupled hierarchical
model

To exploit both the block‐sparse structure along AoAs,
AoDs, and the common sparsity for all the delay taps, we
deϐine a prior over x ≜ {x𝑑 ∶ 𝑑 ∈ 𝒟} as

𝑝(x|𝜶) =
𝐺𝑟

∏
𝑔𝑟=1

𝐺𝑡

∏
𝑔𝑡=1

∏
𝑑∈𝒟

𝒞𝒩 (𝑥𝑑
𝑔𝑟,𝑔𝑡

|0, 𝜂−1
𝑔𝑟,𝑔𝑡

) . (27)

To model the pattern‐coupled block sparsity, we express
the common parameter 𝜂𝑔𝑟,𝑔𝑡

among the delay taps as

𝜂𝑔𝑟,𝑔𝑡
=𝛼𝑔𝑟,𝑔𝑡

+ 𝛽𝑟𝛼𝑔𝑟−1,𝑔𝑡
+ 𝛽𝑟𝛼𝑔𝑟+1,𝑔𝑡

+ 𝛽𝑡𝛼𝑔𝑟,𝑔𝑡−1 + 𝛽𝑡𝛼𝑔𝑟,𝑔𝑡+1, (28)

where 𝜶 = {𝛼𝑔𝑟,𝑔𝑡
} are the hyper‐parameters con‐

trolling the sparsity of x. The parameters 𝛽𝑟 ∈ [0, 1]
and 𝛽𝑡 ∈ [0, 1] indicate the pattern relevance be‐
tween 𝑥𝑑

𝑔𝑟,𝑔𝑡
and its neighboring coefϐicients and they

are taken as known constants in accordance with the re‐
lated works. Different from [29], we do not impose any
Gamma prior for the hyper‐parameters {𝛼𝑔𝑟,𝑔𝑡

}. Instead,
we consider these hyper‐parameters to be deterministic
and unknown, which is equivalent to assuming a non‐
informative prior. In our experiments, we ϐind that this
approach works better than imposing the Gamma prior.

Note that in the testing stage, the noise variance is not
given explicitly. Instead a range information is provided.
So, we assume that we do not know 𝛾 = 1/𝜎2, but we in‐
troduce a uniform prior on 𝛾, i.e., 𝛾 ∼ 𝒰[𝛾low, 𝛾upp] where
the bounds are provided along with the test data. This as‐
sumption also differs from the Gamma distribution that is
considered in [29].

We utilize an EM algorithm for learning the sparse signal
x and the hyper‐parameters Θ ≜ {𝜶, 𝛾}. In the EM for‐
mulation, the signal x is treated as a hidden variable, and
we iteratively maximize a lower bound on the posterior
probability 𝑝(Θ|y) (this lower bound is also referred to
as the Q‐function). The algorithm alternates between an
E‐step and an M‐step. We explain these two steps below.

4.2 E‐Step
In the E‐step, we need to compute the posterior distribu‐
tion of x conditioned on the observed data and the hyper‐
parameters estimated from the 𝑠th iteration, i.e.,

𝑝 (x|y, Θ(𝑠)) ∝ 𝑝 (x|𝜶(𝑠)) 𝑝 (y|x, 𝛾(𝑠)) . (29)

The posterior probability can be computed as a multivari‐
ate Gaussian distribution with mean and covariance ma‐
trix for x𝑑 as

𝝁𝑑(𝑠) = 𝛾(𝑠) (𝛾(𝑠)A∗A+ D(𝑠))−1
A∗y𝑑, 𝑑 ∈ 𝒟 (30)

𝝌𝑑(𝑠) = (𝛾(𝑠)A∗A+ D(𝑠))−1 , 𝑑 ∈ 𝒟 (31)
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from [29] where D(𝑠) ∈ ℝ𝐺𝑟𝐺𝑡×𝐺𝑟𝐺𝑡 is a diagonal matrix
with the diagonal elements 𝜂(𝑠)

𝑔𝑟,𝑔𝑡 that are ordered accord‐
ing to the indexing in (26). Let 𝜇𝑑

𝑔𝑟,𝑔𝑡

(𝑠)
and 𝜒𝑑

𝑔𝑟,𝑔𝑡

(𝑠)
de‐

note the elements of 𝝁𝑑(𝑠)
and 𝝌𝑑(𝑠)

corresponding to the
index ordering in (26).

4.3 M‐Step
In the M‐step, the hyper‐parameters Θ = {𝜶, 𝛾} are es‐
timated by treating x as hidden variables and iteratively
maximizing the Q‐function, i.e.,

Θ(𝑠+1) = arg max
Θ

𝑄 (Θ|Θ(𝑠))

= arg max
Θ

𝔼x|y,Θ(𝑠) [ln 𝑝(Θ|x, y)] , (32)

where the expectation is with respect to the posterior dis‐
tribution 𝑝(x|y, Θ(𝑠)). We can express the above maxi‐
mization with respect to Θ as

maximize
Θ

𝔼x|y,Θ(𝑠) [ln 𝑝(𝜶)𝑝(x|𝜶)]

+ 𝔼x|y,Θ(𝑠) [ln 𝑝(y|x, 𝛾)𝑝(𝛾)] . (33)

We can implement the iterative updates in an alternating
manner as follows:

1) Update for 𝜶:
Following a similar approach in [29], we can obtain a sub‐
optimal update for 𝜶 as (the optimal update is not avail‐
able in closed form due to the coupled variables):

𝛼𝑑
𝑔𝑟,𝑔𝑡

(𝑠+1) = |𝒟|
𝜔(𝑠)

𝑔𝑟,𝑔𝑡

, 𝑑 ∈ 𝒟, 𝑔𝑟 = 1, … , 𝐺𝑟,

𝑔𝑡 = 1, … , 𝐺𝑡, (34)

where

𝜔(𝑠)
𝑔𝑟,𝑔𝑡 = ∑

𝑑∈𝒟
( ∣𝜇𝑑

𝑔𝑟,𝑔𝑡

(𝑠)∣
2

+ 𝜒𝑑
𝑔𝑟,𝑔𝑡

(𝑠)

+ 𝛽𝑟 (∣𝜇𝑑
𝑔𝑟−1,𝑔𝑡

(𝑠)∣
2

+ 𝜒𝑑
𝑔𝑟−1,𝑔𝑡

(𝑠))

+ 𝛽𝑟 (∣𝜇𝑑
𝑔𝑟+1,𝑔𝑡

(𝑠)∣
2

+ 𝜒𝑑
𝑔𝑟+1,𝑔𝑡

(𝑠))

+ 𝛽𝑡 (∣𝜇𝑑
𝑔𝑟,𝑔𝑡−1

(𝑠)∣
2

+ 𝜒𝑑
𝑔𝑟,𝑔𝑡−1

(𝑠))

+ 𝛽𝑡 (∣𝜇𝑑
𝑔𝑟,𝑔𝑡+1

(𝑠)∣
2

+ 𝜒𝑑
𝑔𝑟,𝑔𝑡+1

(𝑠)) ),

𝑔𝑟 = 1, … , 𝐺𝑟, 𝑔𝑡 = 1, … , 𝐺𝑡. (35)

2) Update for 𝛾:
The hyper‐parameter 𝛾, which is the inverse of the
noise variance and has a uniform prior distribution on
[𝛾low, 𝛾upp] can be updated by adapting the derivation in
[30] to the uniform prior considered here, as follows:

𝛾(𝑠+1) = arg max
𝛾

𝔼z|y,Θ(𝑠) [ln 𝑝(𝛾)𝑝(y|z, 𝛾)] . (36)

Algorithm1 EM Algorithm for the Sparse Estimation of x
Input: The set of indices of the dominating delay taps:
𝒟. The measurement matrix: A. The noisy measurement
vectors: y𝑑, 𝑑 ∈ 𝒟. The pattern relevance parameters:
𝛽𝑟 and 𝛽𝑡. The solution accuracy: 𝜖EM. The minimum and
maximum iteration numbers: 𝑠min and 𝑠max. Initial hyper‐
parameters: Θ(0) = {𝜶(0), 𝛾(0)}. The lower and upper
bounds for 𝛾: 𝛾low and 𝛾upp.
Initialize the iteration index 𝑠 ← 0.

1: repeat
2: Compute {𝜂(𝑠)

𝑔𝑟,𝑔𝑡} according to (28) using 𝜶(𝑠).

3: Update 𝝁𝑑(𝑠)
and 𝝌𝑑(𝑠)

, for 𝑑 ∈ 𝒟 according to (30)‐
(31) using {𝜂(𝑠)

𝑔𝑟,𝑔𝑡} and 𝛾(𝑠).
4: Update 𝜶(𝑠+1) and 𝛾(𝑠+1) according to (34) and (37)

using 𝝁𝑑(𝑠)
and 𝝌𝑑(𝑠)

, for 𝑑 ∈ 𝒟.
5: Set 𝑠 ← 𝑠 + 1.
6: until 𝑠 = 𝑠max or 𝑠 ≥ 𝑠min with

∑𝑑∈𝒟 ∥𝝁𝑑(𝑠−1) − 𝝁𝑑(𝑠−2)∥
2

∑𝑑∈𝒟 ∥𝝁𝑑(𝑠−1)∥
2 ≤ 𝜖EM. (39)

Output: ̂x𝑑 = 𝝁𝑑(𝑠−1)
, for 𝑑 ∈ 𝒟.

Using the uniform prior, we can obtain 𝛾(𝑠+1) as (37) at
the top of the next page, where

Π𝛾(𝑥) =
⎧{
⎨{⎩

𝛾low if 𝑥 ≤ 𝛾low

𝑥 if 𝛾low < 𝑥 ≤ 𝛾upp

𝛾upp if 𝑥 > 𝛾upp

. (38)

The overall EM algorithm is implemented by applying the
updates iteratively until the difference between 𝝁𝑑(𝑠)

and
𝝁𝑑(𝑠−1)

is negligible. At the ϐinal iteration, the sparse vec‐
tor estimate ̂x𝑑 is set to 𝝁𝑑(𝑠)

, for 𝑑 ∈ 𝒟. The overall algo‐
rithm is summarized in Algorithm 1. After multiplying ̂x𝑑

with the dictionary matrix 𝚿, we obtain the time‐domain
channel estimates at the dominant delay taps in 𝒟. Then,
we take the 𝐾‐point DFT of the time channels and scale
them by 1/

√
𝐾 to obtain the ϐinal frequency channel esti‐

mates.

We describe the overall method in the next section in
more detail.

4.4 Learning the joint relations between AoAs
and AoDs

As a ϐirst step, we construct the dictionary matrix 𝚿 by 
𝐺𝑟 = 96 AoA and 𝐺𝑡 = 24 AoD grid points that are uni‐
formly selected from [0, 𝜋]. We only consider this angle 
range since the array steering vectors for the other angles 
are the same as those with the angles in [0, 𝜋]. Then using 
10, 000 true frequency channels provided in the training 
data set, we add a white Gaussian complex noise 
to the time-domain channels to obtain  the  sparse model
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𝛾(𝑠+1) = Π𝛾
⎛⎜⎜⎜⎜
⎝

𝑀𝐿𝑟|𝒟|
∑𝑑∈𝒟 (∥y𝑑 − A𝝁𝑑(𝑠)∥

2
+ (𝛾(𝑠))−1 (𝐺𝑟𝐺𝑡 − tr (𝝌𝑑(𝑠)D(𝑠))))

⎞⎟⎟⎟⎟
⎠

(37)

y𝑑
training = 𝚿x𝑑

training + n𝑑
training. (40)

Note that the variance of the noise is selected as a very
small value, e.g., 10−4. The motivation is to regularize
the model and apply the EM algorithm described previ‐
ously without any numerical issues. We apply the EM al‐
gorithm in the previous section by keeping the inverse
noise variance 𝛾 = 104 ϐixed in all the 10, 000 models
obtained from the training dataset. Then, using all the
sparse estimates ̂x𝑑

training, we estimate the power distri‐
bution along 2𝐺𝑟 = 192 AoA points and 2𝐺𝑡 = 48 AoD
points as in Fig. 4. Here, we apply a linear interpolation
to both the AoA and AoD axes since we will utilize this in
the grid construction algorithm in the testing stage. As
Fig. 4 shows, some AoA/AoD grid points are more proba‐
ble for the given simulation site. To exploit this learned in‐
formation, we propose a grid construction algorithm, i.e.,
Algorithm 2, to locate the grid points more densely in the
yellow regions compared to the blue regions.

We ϐirst start with a uniform grid for both AoA and AoD
in [0, 𝜋] with 96 ⋅ 24 points in total. Then, we assign ad‐
ditional 96 ⋅ 8 grid points to the most yellow regions in
Fig. 4 by sorting the power values in decreasing order. In
the next stage, we change the locations of the points to
move them to the places where the power of the sparse
vectors obtained from the training data is greater. At the
same time, we try to prevent the neighboring grid points
from being far away via judicious tuning and adjustments.
For this, we consider six different distance thresholds that
correspond to the maximum allowable distance between
two consecutive grid points in horizontal and vertical di‐
rections. If the logarithm of the mean power value at a
particular grid point is high, then a smaller (more restric‐
tive) distance threshold is used. The motivation behind
using logarithm is that the power differences across the
AoA/AoD grid points are observed to be more empha‐
sized after applying logarithm operation. In the end, the
constructed grid point map is shown in Fig. 5 where the
yellow points denote the selected 96 ⋅ 32 grid points to
be utilized in constructing the dictionary matrix in the
testing stage. Note that the minimum distance threshold
value in the vector d is two instead of one since there is
already an interpolation by a factor of two. The number
of power levels, i.e., six, is chosen heuristically.

In the testing stage, after constructing the dictionary ma‐
trix 𝚿 according to the pattern in Fig. 5, we also modify
the pattern‐coupling relations accordingly. For this new
grid structure, the AoA and AoD pattern‐coupled block
sparsity relations in (28) and (35) are modiϐied such that
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Fig. 4 – Heatmap for the power distribution of the sparse vector among
AoA and AoD grid points.

the consecutive AoA and AoD gird points in Fig. 5 are con‐
structed as coupled by keeping only the pairs with some
distance threshold, i.e., not being far away more than two
grid points. The updates in the EM algorithm are the same
except for the indices according to the pattern‐coupled
block sparsity pattern.

This concludes the description of the PCSBL‐DDT algo‐
rithm, and we will describe the third and last approach
in the next section.

5. PC‑OMP
In this section, we present the Projection Cuts Orthogonal
Matching Pursuit (PC‐OMP) approach for the site‐speciϐic
hybrid MIMO channel estimation problem. This method
makes use of the sparsity of the mm‐wave channel and
extracts paths parameters one by one using an OMP algo‐
rithm. A novel, custom detection method is used to detect
paths, which is optimized using training data.

We express the frequency‐domain channel at the 𝑘th sub‐
carrier in (5) as

𝐇[𝑘] =
𝐿

∑
ℓ=1

̃𝛼ℓ exp (−𝑗2𝜋𝜏ℓ𝑘) aR(𝜙ℓ)a∗
T(𝜃ℓ), (41)

where the effect of pulse shaping and other scaling factors
except the delay of the ℓth path, i.e., 𝜏ℓ in (3), are embed‐
ded into ̃𝛼ℓ. Using the identity 𝑣𝑒𝑐(𝐚𝐛𝑇 ) = 𝐛 ⊗ 𝐚, 𝐇[𝑘]
vectorizes into

𝐡𝑘 =
𝐿

∑
ℓ=1

̃𝛼ℓ exp (−𝑗2𝜋𝜏ℓ𝑘) āT(𝜃ℓ) ⊗ aR(𝜙ℓ) (42)
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Fig. 5 – Non‐uniform grid pattern for AoA and AoD in testing stage of
the algorithm. The yellow pixels correspond to the selected 96 ⋅ 32 grid
points.

and can be horizontally stacked into the matrix from (13)
as

�̂� = 𝚿Hv =
𝐿

∑
ℓ=1

̃𝛼ℓ(āT(𝜃ℓ) ⊗ aR(𝜙ℓ))𝐚𝑇
F (𝜏ℓ) (43)

with [𝐚F(𝜏ℓ)]𝑘 = exp(−𝑗2𝜋𝜏ℓ𝑘). Then the stacked mea‐
surements in (13) can be expressed as

𝐘 = 𝚽�̂� + 𝐍𝑐. (44)

To obtain independent and identically distributed noise
entries, we apply the whitening given in (17), i.e.,

Yw = 𝚽w�̂� + Nw. (45)

To ease the notation, we willdeϐine the spatial component
of a path as

𝐚R−T(𝜙ℓ, 𝜃ℓ) = āT(𝜃ℓ) ⊗ aR(𝜙ℓ) (46)

and the channel component of a path as

𝐚R−T−F(𝜙ℓ, 𝜃ℓ, 𝜏ℓ) = 𝐚F(𝜏ℓ) ⊗ 𝐚R−T(𝜙ℓ, 𝜃ℓ). (47)

5.1 Approach

Our strategy capitalizes on the fact that �̂� is a very sparse
matrix in the sense that the number of paths 𝐿 is much
smaller than the maximum matrix rank min(𝑁r𝑁t, 𝐾).
Hence, the path components 𝐚F(𝜏ℓ) ⊗ āT(𝜃ℓ) ⊗ aR(𝜙ℓ) are
nearly orthogonal to each other, i.e.,

⟨𝐚R−T−F(𝜙ℓ, 𝜃ℓ, 𝜏ℓ), 𝐚R−T−F(𝜙ℓ′ , 𝜃ℓ′ , 𝜏ℓ′)⟩ ≈ 0, ∀ℓ ≠ ℓ′.
(48)

Our algorithm consists of extracting the path parameters
(𝜙ℓ, 𝜃ℓ, 𝜏ℓ) one by one and then subtracting their contri‐
bution in an OMP algorithm. Two key aspects here are

Algorithm 2 Grid Construction Algorithm Using the
Power Distribution of the Sparse Vectors
Input: The interpolated power distribution of { ̂x𝑑

training}
along 2𝐺𝑟 = 192 AoA points and 2𝐺𝑡 = 48 AoD
points. Set 𝒫min = 0 and 𝒫max = ∞. Construct the
vector of logarithms of the six power levels that
are equally spaced between the logarithms of min‐
imum and maximum power value in the AoA/AoD
power distribution. Denote this vector by p. Con‐
struct the corresponding distance threshold vector
d = [7 6 5 4 3 2]𝑇 .

1: Select the points in the uniform grid for both AoA and
AoD in [0, 𝜋] with 96 ⋅ 24 points in total.

2: Select additional 96 ⋅ 8 grid points with the greatest
power values.

3: repeat
4: For each grid point, compute the mean power

of the three consecutive vertical and horizontal
points with the considered point being at the cen‐
ter. Denote this mean power by 𝑝𝑔𝑟,𝑔𝑡

for grid point
(𝑔𝑟, 𝑔𝑡).

5: Count the number of entries in p which are less
than or equal to the logarithm of 𝑝𝑔𝑟,𝑔𝑡

for each
grid point (𝑔𝑟, 𝑔𝑡). Set the corresponding distance
threshold 𝑑𝑔𝑟,𝑔𝑡

as the element of d at this index,
i.e., the number of entries.

6: Update 𝒫max by the maximum of the mean val‐
ues computed above among the non‐selected grid
points. Set the corresponding grid point as a candi‐
date for inclusion.

7: Update 𝒫min by the minimum of the mean values
computed above among the selected grid points
whose removal will not alter the maximum allow‐
able distance 𝑑𝑔𝑟,𝑔𝑡

between consecutive horizon‐
tal and vertical selected points. Set the correspond‐
ing grid point as a candidate for removal.

8: Remove the grid point found in Step 7 from the grid
pattern and add the grid point found in Step 6 to the
grid pattern.

9: until𝒫min > 𝒫max
Output: The updated non‐uniform grid pattern

(a) how to set the dictionary for determining the path pa‐
rameters and (b) how to know when to stop the OMP it‐
erations. Key to the success of our algorithm lies in the
way we address these two aspects, i.e., how we search for
path parameters by using projections and how we detect
the presence of a new path. We describe these in the se‐
quel.

At each step of OMP, we want to obtain the best matching
channel component, i.e., we want to solve

max
𝜙ℓ,𝜃ℓ,𝜏ℓ

∣⟨𝑣𝑒𝑐(𝚽𝐚R−T(𝜙ℓ, 𝜃ℓ)𝐚𝑇
F (𝜏ℓ)), 𝑣𝑒𝑐(𝐘w)⟩∣ (49)

which can be simpliϐied into

max
𝜙ℓ,𝜃ℓ,𝜏ℓ

|𝐚∗
R−T(𝜙ℓ, 𝜃ℓ)𝚽∗𝐘w �̄�F(𝜏ℓ))|, (50)

ITU Journal on Future and Evolving Technologies, Volume 2 (2021), Issue 4

18 © International Telecommunication Union, 2021



where we have used ⟨𝑣𝑒𝑐(A), 𝑣𝑒𝑐(B)⟩ = 𝑡𝑟(A∗B) and the
cyclic shift property of the trace.

The above maximization problem can be solved by
searching over a discretized set of values of the path pa‐
rameters, (𝜙ℓ, 𝜃ℓ, 𝜏ℓ). We start by considering a small set
of values for the path parameters equally spaced in their
domains. We choose a resolution of 4𝐾 values for 𝜏ℓ
and of 𝑁r/2 (𝑁t/2) values for 𝜙ℓ (𝜃ℓ). Since we are con‐
sidering a smaller resolution for the angles than that re‐
quired for them to cover the entire angular spectrum, we
substitute each 𝐚R(𝜙ℓ) by a sector beam‐pattern �̂�R(𝜙ℓ)
of width 4𝜋/𝑁r. The same manipulation applies to the
phase angles at the transmitter, and thus we can deϐine
�̂�R−T(𝜙ℓ, 𝜃ℓ) = ̄�̂�T(𝜃ℓ) ⊗ �̂�R(𝜙ℓ). The sector beam‐pattern
we consider is the same as the one deϐined in [31]. With
this deϐinition, we can extract a coarse version of the path
parameters (𝜙ℓ, 𝜃ℓ, 𝜏ℓ) by maximizing

𝑑𝜙ℓ,𝜃ℓ,𝜏ℓ
= |�̂�∗

R−T(𝜙ℓ, 𝜃ℓ)𝚽∗𝐘w �̄�F(𝜏ℓ)|. (51)

5.2 Detection

∗
R

Now we want to know if those parameters can be con‐
sidered as a path detection. To this end, we take into 
account the null hypothesis of 𝐇 = 0, in that case all 
elements of 𝐘w are independent white noise and thus
�̂� −T(𝜙ℓ, 𝜃ℓ)𝚽∗𝐘w �̄�F(𝜏ℓ) is also comprised of white noise 
components. Consequently, 𝑑𝜙ℓ,𝜃ℓ,𝜏ℓ 

follows a Rayleigh 
distribution, which has the cumulative distribution 
funtion

𝐹(𝑑𝜙ℓ,𝜃ℓ,𝜏ℓ
) = 1 − exp (−

𝑑2
𝜙ℓ,𝜃ℓ,𝜏ℓ

2𝜎2 ) . (52)

Since there is a channel contribution only for a smallnum‐
ber of path parameters, we have that the median of all
computed values of 𝑑𝜙ℓ,𝜃ℓ,𝜏ℓ

should be close to that of the
Rayleigh distribution 𝜎√2 ln(2). This insight is key to our
algorithm. Then, 𝜎 can be approximated as

𝜎 ≃ 𝜇(𝑑𝜙ℓ,𝜃ℓ,𝜏ℓ
)/√2 ln(2). (53)

In this case, the cumulative function of max 𝑥𝑘 can be com‐
puted as 𝐹max(𝑥) = ∏ 𝐹𝑘(𝑥). Explicitly, it is given by

𝐹max(max(𝑑𝜙ℓ,𝜃ℓ,𝜏ℓ
)) =

(1 − exp (−
max(𝑑𝜙ℓ,𝜃ℓ,𝜏ℓ

)2

2𝜎2 ))
𝑁r𝑁t𝐾

.

(54)

Using this, we can compute a detection threshold corre‐
sponding to a conϐidence level of 𝛿 as

𝜇(𝑑𝜙ℓ,𝜃ℓ,𝜏ℓ
)√− log2(1 − (𝛿) 1

𝑁r𝑁t𝐾 ). (55)

We compare the optimal value of 𝑑𝜙ℓ,𝜃ℓ,𝜏ℓ
obtained by

solving (51) with the above threshold to decide whether

the path is sufϐiciently signiϐicant to be included in the
model, or whether to stop the OMP iterations. The value
of 𝛿 is optimized using the dataset information as de‐
scribed later in Section 6.3.

5.3 Reϐinement
Once a path has been detected, we proceed to reϐine the
path components by iterative projections. We do this by
freezing two of the variables and increasing the resolution
of the third, in an alternating fashion.

First steps: First, we adapt our estimation to handle a
higher resolution due to the manipulation we did with the
angular resolution.

We start by increasing the time resolution by comput‐
ing the maximum of |�̂�∗

R−T(𝜙ℓ, 𝜃ℓ)𝚽∗𝐘w �̄�F(𝜏ℓ))| for ϐixed
(𝜙ℓ, 𝜃ℓ) and 𝜏ℓ with a resolution of 32𝐾 equally spaced
points.

Then, by ϐixing 𝜏ℓ and using the identity 𝑣𝑒𝑐(𝐀∗𝐁𝐂) =
( ̄𝐂 ⊗ 𝐀)∗𝑣𝑒𝑐(𝐁),we can simplify the expression to

∣�̂�∗
R(𝜙ℓ)𝐇(𝜏ℓ)�̂�T(𝜃ℓ)∣ (56)

with 𝐇(𝜏ℓ) such that 𝑣𝑒𝑐(𝐇(𝜏ℓ)) = 𝚽∗𝐘w �̄�F(𝜏ℓ).

We then proceed to reϐine the angle components with the 
highest number of antennas. For simplicity, let us as‐
sume that 𝑁t > 𝑁r. By increasing the resolution of 𝜃ℓ to 
32𝑁t  equally spaced points, we do not need to use the 
sec‐tor beam‐pattern manipulation, thus we can simply 
maximize

∣�̂�∗
R(𝜙ℓ)𝐇(𝜏ℓ)𝐚T(𝜃ℓ)∣ (57)

over 𝜃ℓ while the other path parameters are ϐixed.
Finally, we reϐine the expression with respect to the re‐
maining angle. Again, the manipulation is not required,
and we can maximize

∣𝐚∗
R(𝜙ℓ)𝐇(𝜏ℓ)𝐚T(𝜃ℓ)∣ (58)

over 𝜃ℓ while the other path parameters are ϐixed.

Iteration steps: Now that with the ϐirst steps we re‐
moved the angle uncertainty caused by the sector beam‐
pattern, we can proceed to repeat the same steps itera‐
tively by substituting all sector beam‐patterns �̂� by array 
responses 𝐚.

Once the parameters of the path have been estimated,
(𝜙ℓ, 𝜃ℓ, 𝜏ℓ), we use them to reconstruct the path and sub‐
tract it from the received pilots, thereby altering the resid‐
ual. Then, the residual is updated, and the next path is ob‐
tained following the same steps. The residual is updated 
until a stopping condition is reached, as discussed in 
Section 5.2. How to obtain the best stopping condition for 
our algorithm is discussed in Section 6.3.
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Fig. 6 – NMSE behavior over the decision threshold of the 3 training datasets.

Table 1 – NMSE table for training data

SNR (dB) Algorithm −15 −10 −5

Pilot Frames: 20
SW‐OMP −1.45 dB −5.70 dB −9.68 dB
MLGS‐SBL −4.29 dB −9.13 dB −12.34 dB
PCSBL‐DDT −8.16 dB −10.62 dB −11.07 dB
PC‐OMP −8.34 dB −12.36 dB −16.15 dB

Pilot Frames: 40
SW‐OMP −3.95 dB −7.95 dB −11.87 dB
MLGS‐SBL −7.55 dB −11.19 dB −14.15 dB
PCSBL‐DDT −10.56 dB −12.14 dB −12.62 dB
PC‐OMP −12.66 dB −16.33 dB −19.78 dB

Pilot Frames: 80
SW‐OMP −7.33 dB −11.60 dB −15.63 dB
MLGS‐SBL −13.02 dB −16.37 dB −18.94 dB
PCSBL‐DDT −11.90 dB −13.10 dB −13.63 dB
PC‐OMP −18.70 dB −21.49 dB −24.48 dB

Table 2 – NMSE table for test data

SNR (dB) Algorithm [−20, −11) [−11, −6) [−6, 0]

Pilot Frames: 20
MLGS‐SBL −7.66 dB −10.97 dB −12.34 dB
PCSBL‐DDT −8.94 dB −9.99 dB −10.31 dB
PC‐OMP −9.09 dB −12.45 dB −14.22 dB

Pilot Frames: 40
MLGS‐SBL −11.87 dB −12.79 dB −14.20 dB
PCSBL‐DDT −10.82 dB −11.33 dB −11.89 dB
PC‐OMP −13.79 dB −15.24 dB −16.79 dB

Pilot Frames: 80
MLGS‐SBL −13.62 dB −16.23 dB −20.08 dB
PCSBL‐DDT −11.74 dB −12.47 dB −12.98 dB
PC‐OMP −16.32 dB −19.07 dB −23.91 dB

6. NUMERICAL RESULTS

In this section, we discuss the NMSE performance of 
our proposed algorithms with the training and testing 
data generated using Raymobtime, a ray tracing based 
mmWave channel generation tool. We train the mmWave 
channel estimation algorithms using 10, 000 independent 
channel realizations, each consisting of 100 paths be‐
tween the Tx and Rx. More details about the channel 
generation methodology can be found in [24]. We used 
20, 40, and 80 pilot frames during both the training and 
testing phases of the proposed algorithms. For the train‐
ing phase, we used SNR values of {−15, −10, −5} dB. We 
benchmark the NMSE performance of our proposed al‐
gorithms with a reference state‐of‐the‐art model‐based
greedy search algorithm called SW-OMP [4].

We note that while the three new algorithms presented 
in this paper have been ϐine‐tuned based on the training 
dataset, the baseline algorithm, SW‐OMP, has been imple‐
mented as‐is from the literature. On the other hand, in our 
implementation of SW‐OMP, we consider the case where 
the true AoDs and AoAs are contained in the sparsifying 
dictionary. While the proposed algorithms do suffer from 
the off‐grid effects, the SW‐OMP algorithm is insulated 
from the performance degradation caused by them.
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6.1 MLGS‐SBL
Upon analyzing the training channels, we set the maxi‐
mum number of paths obtained from MLGS to 𝑆 = 10, 
and the number of levels in MLGS to 𝑁 = 5. We set the 
number of columns in the initial AoD/AoA steering ma‐
trices to 256. We use the estimated noise variance after 
SBL to threshold the number of dominant delay taps of the 
channel denoiser. As this approach is primarily a model‐
based method, and uses few statistics from the training 
data, it is suitable for general mmWave channel estima‐
tion problems also. Further, the thresholds are set keep‐
ing in mind the computational complexity of the MLGS‐
SBL algorithm. By increasing the number of paths out‐
put by MLGS, we can potentially improve the performance 
of the algorithm, but at the cost of higher computational 
complexity. We include the NMSE values obtained for the 
training and testing datasets in Table 1 and Table 2, re‐
spectively. The ϐinal performance score achieved, which 
is a weighted combination of the NMSE performance in 
Table 2 when the number of pilot frames is 20, using our 
proposed algorithm in the mmWave channel estimation 
challenge is −9.16 dB.

6.2 PCSBL‐DDT
In this approach, we adopted an EM‐based sparse 
Bayesian learning method to exploit the shared sparsity 
between different delay taps and possible sparsity pat‐
tern couplings between consecutive AoAs and AoDs. We 
applied the algorithm to the time‐domain received signals 
by only retaining the dominant delay taps to increase ef‐
fective SNR in the signal used to form the channel esti‐
mate. First, we used the pattern‐coupled Sparse Bayesian 
learning algorithm to the ground‐truth channels in the 
training dataset by adding a small noise to regularize the 
data. In this way, we obtained the sparse representations 
for all the channels in the provided dataset. Then, using 
the respective sparse vectors and exploiting the density 
map of joint AoA/AoD grids, we selected a non‐uniform 
grid and reϐined the pattern couplings between hyper‐
parameters. The algorithm is applied to the test dataset 
to obtain the channel estimates. The ϐinal performance 
score in the channel estimation challenge is −9.49 dB. 
The NMSE values for the speciϐic scenarios are shown 
in Table 2 for the testing dataset.

6.3 PC‐OMP

Before evaluating the performance of PC‐OMP we opti‐
mize the value of the detection threshold value 𝛿, de‐
scribed in Section 5.2, in order to improve the results. 
We create a speciϐic optimization method for the struc‐
tured problem that arises in our approach. This optimiza‐
tion method is focused on reducing the optimization time 
while being able to perform a high‐resolution grid search 
for the parameter values. We base our training algorithm 
on the fact that our approach is a greedy algorithm with 
a carefully chosen stopping condition. This means that

we can predict when a change in the solution will happen
based on the selected threshold. Knowing this, we create
a modiϐied version of our approach that saves all chan‐
nel iterations together with the computed threshold re‐
quired for them to pass up to a minimum threshold value,
in our case 0.7. Once outside the function, we can evalu‐
ate these channel estimations and compute the error as
a step‐wise function of the threshold. Then, we apply the
average operation to the error step‐wise functions for dif‐
ferent scenarios to get a better and smoother result of
the error behavior over different threshold values. Fig. 6
shows the smoothed step‐wise error function for the dif‐
ferent datasets. The selected threshold value is 𝛿 ≈ 0.98.
The algorithm with the custom detection method is ap‐
plied to the test data and the obtained results are shown
in Table 2. The PC‐OMP algorithm outperforms the other
two algorithms for the different data sets, as can be ob‐
served from the table. Specially, in lower SNRs where
the channel estimation performance is lower due to noise,
the PC‐OMP algorithm achieves gains of up to 3 dB com‐
pared with the other two algorithms. At higher SNRs, e.g.,
[−6, 0] dB,PC‐OMP outperforms the other two algorithms
by up to 4 dB.

The ϐinal performance score on the test dataset in the
channel estimation challenge of the PC‐OMP algorithm is
−10.64 dB, outperforming the MLGS‐SBL and the PCSBL‐
DDT methods by 1.48 dB and 1.15 dB, respectively. Also,
from Table 1, we can see that the PCSBL‐DDT and the
PC‐OMP algorithms are tuned better than the MLGS‐SBL
method for the training dataset that result in their bet‐
ter NMSE performances at SNR −15 dB and pilot frames
{20, 40}. But the performance gap between MLGS‐SBL
and PCSBL‐DDT reduces for the testing data for SNR
[−20, −11) dB and 20 pilot frames. Moreover, MLGS‐SBL
performs better than PCSBL‐DDT at SNR [−20, −11) dB
and 40 pilot frames. This can be attributed to the fact
that extracting more features from a training dataset may
result in an excellent performance during training but
slightly inferior performance while testing. This shows
that a goodmodel‐based signal processing solution has to
be combined with appropriate training, while taking into
account the training and testing performance trade‐off.

7. CONCLUSION

We have presented three novel signal processing ap‐
proaches to estimate an mmWave channel in a hybrid 
analog‐digital MIMO setup. We have adapted model‐
driven procedures to utilize the AoD, AoA, and channel 
gain information from a training dataset, and ϐine‐tuned 
the algorithms to reduce the NMSE in the testing dataset. 
We empirically showed that our algorithms unanimously 
performed better than a purely model‐based approach 
by a large margin on a given training data set. Hence, 
machine learning approaches can be potentially used 
in conjunction with model‐driven based approaches to 
ϐine‐tune them and thereby obtain better performance in
physical layer wireless communication problems in real-
istic channel environments.
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Abstract – COVID‑19 has made the immersive experiences such as video conferencing, virtual reality/augmented reality,
the most important modes of exchanging information. Despite much advancement in the network bandwidth and codec
techniques, the current system still suffers from glitches, lags and poor video quality, especially under unreliable network
conditions. In this paper, we propose the method of a video streaming pipeline to provide better video quality under erratic
network conditions. We propose an environment where the participants can interact with each other through video confer‑
encing by only sending the audio in the network. Wepropose aMultimodal AdaptiveNormalization (MAN)‑based architecture
to synthesize a talking person video of arbitrary length using as input: an audio signal and a single image of a person. The ar‑
chitecture uses multimodal adaptive normalization, keypoint heatmap predictor, optical ϔlow predictor and class activation
map‑based layers to learn movements of expressive facial components and hence generates a highly expressive talking‑head
video of the given person. We demonstrate the effectiveness of proposed streaming that dynamically controls the Quality of
Experience (QoE) as per the requirements.

Keywords – Audio to video generation, deep learning architecture, dynamic QoE control, GAN, multimodal adaptive
normalization, video streaming pipeline

1. INTRODUCTION
The ongoing COVID‑19 pandemic has forced people
to work, learn, and communicate remotely on an un‑
precedented scale. With more people in quarantine and
isolation, the demand for low latency applications, such
as video streaming, online games, and teleconferencing
has soared to the point that it has prompted some
countries to look at ways to curb streaming data to avoid
overwhelming the Internet. Several large companies
have already announced that this unintended pilot on
remote teleworking might become the norm.

Immersive media is likely to further exacerbate the
issues related to bandwidth and latency (even in the new
generation 5G networks), since all next‑generationmedia
types, either omnidirectional (360 degree) or multiview
or three‑dimensional, impose bandwidth requirements
and latency requirements that vastly surpass those of
traditional media.

With the emergence of 5G networks, ultrafast, ultra‑
reliable, and high bandwidth capable edge becomes
an attractive option to media services developers. For
immersive media, 5G is a crucial enabling technology,
since its targeted key performance indicators stipulated
by the architecture documents are essential to providing
good Quality of Experience (QoE) for the users. With
the 5G network, a videoconferencing pipeline in erratic
conditions can still be challenging and advancements will
be made to lower the latency and network bandwidth
and provide better user experience.

A lot of work has been done on the development and op‑
timization of novel video codecs to enhance the quality of
video streaming. Various codecs have been developed to
reduce the amount of streamed datawhilemaintaining as
much information as possible in the network.

Fig. 1 – Top: Typical video streaming pipeline. In the typical system, the
input video is encoded using video codecs and sent to the receiverwhich
decodes it in the form of a lossy reconstruction that preserves most of
the video features at a pixel level. Bottom : Proposed streaming pipeline
where the audio signal is sent through a general‑purpose WebRTC Dat‑
aChannel and at the receiver side, the proposed model converts the au‑
dio into the video signal.

In a typical system (Fig. 1), the data is ϐirst read from
a video source and compressed. The compressed data
is sent over a network to the receiving end, where a
decoding algorithm reconstructs a representation of
the original feed from the streamed data. Since most
of the codecs are lossy, the reconstruction process at
the receiver end does not create the original feed but
sufϐiciently close to the original with some distortions.
The compression techniques utilize the fact that not
all the information contained within a video frame is
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equally important and prioritize the preservation of
more important aspects of a feed over others in the
compression/decompression process. Despite these
advancements, a lot of work needs to be done in order
to give an enhanced videoconferencing experience in
unreliable network conditions [1] such as glitches, lags,
low internet bandwidth, etc.

In this paper, we propose the audio driven video con‑
ferencing methodology that helps in improving the
video quality in odd network scenarios. In the proposed
method, we have used a GAN‑based approach at the
receiver’s end to generate video with enhanced quality
under unreliable conditions. One of the possible con‑
cerns of this methodology is that it shifts the burden from
communication bandwidth to increased computation at
the receiver end. The use of a GAN‑based [2] approach
can increase the latency resulting in the lag of video
during streaming. But with the rapid improvement of
hardware capabilities in mobiles and personal comput‑
ers, this is unlikely to be amajor obstacle. With the recent
development of NVIDIA Maxine project [3], such hurdles
can be resolved and results into the practical system that
provides immense gains over the conventional methods.

Given an arbitrary image and an audio sample, we pro‑
pose multimodal adaptive normalization in the proposed
architecture to generate realistic videos. We have built
the architecture based on [4] to show how multimodal
adaptive normalization helps in generating highly expres‑
sive videos using the audio and person’s image as in‑
put. The proposedGANarchitecture consists of generator
and discriminator. The generator has two major compo‑
nents, namely multimodal adaptive normalization frame‑
work and class activation attention map. A multimodal
adaptive normalization framework feeds various features
such as optical ϐlow/keypoint heatmaps, single image, au‑
diomelspectrogram, pitch and energy of the audio frames
to the generator to produce realistic and expressive video.
A class activation attention map helps the generator to
produce global features such as eyes, nose, lips, etc and lo‑
cal features such asmovements of facial actionunits prop‑
erly which will increase the video quality. The discrim‑
inator used in the proposed method is multiscale with a
class activation attention layer to discriminate fake and
real frames at the global and local level.
Our main contributions are :

• The proposed speech driven facial video synthesis
architecture is aGAN‑basedapproach that consists of
a generator and discriminator in Section 4. The gen‑
erator incorporates the multimodal adaptive nor‑
malization framework (Fig. 9), optical ϐlow/keypoint
predictor and class activation map‑based attention
layer to generate the expressive videos. The discrim‑
inator uses multiscale patchGAN‑based discrimina‑
tor along with a class activation map‑based layer to
classify fake or real images.

• We have shown how the Quality of Experience (QoE)
in videoconferencing has improved in low band‑
width networks by the proposed architecture in Sec‑
tion 7.2.2. The proposed videoconferencing pipeline
helps in controlling the QoE based on the compute
resource, bandwidth availability and importance of
the speaker in the videoconference. It can further
be used in data privacy by synthesizing the video on
person or avatar. Noisy audio can be handled by the
proposedmodel and generates the expressive output
and gives a high quality of experience.

• Various experimental (Section 7.2) and ablation
studies (Section 7.3) have shown that the proposed
multimodal adaptive normalization is ϐlexible in
building the architecturewith various networks such
as 2DConvolution, partial2D convolution, attention,
LSTM, Conv1D for extracting and modeling the mu‑
tual information.

• The proposed multimodal adaptive normalization‑
based architecture for video synthesis using audio
and a single image as an input has shown supe‑
rior performance on multiple qualitative and quan‑
titative metrics such as Structural Similarity Index
(SSIM), Peak Signal to Noise Ratio (PSNR), Cumula‑
tive Probability of Blur Detection (CPBD), Word Er‑
ror Rate (WER), blinks/sec and Landmark Distance
(LMD) in tables 1, 2, 3 and 4. The generated videos
are given at 1.

2. BACKGROUND

2.1 Audio to video generation
Audio to video generation is an active area of research
due to its wide range of applications such as for the
entertainment industry, education, healthcare and many
more. Computer Generated Imagery (CGI) has become
an important part of the entertainment industry due to
its ability to produce high quality results in a controllable
manner.

Facial animation is an important part of CGI as it is
capable of conveying a lot of information not only about
the character but also about the scene in general. The
generation of realistic and expressive animation is highly
complex due to its multiple properties such as lip syn‑
chronization with audio, movements of a facial action
units for expressiveness and natural eye blinks. Facial
synthesis in CGI is traditionally performed using face
capture methods, which have seen drastic improvements
over the past years and can produce faces that exhibit a
high level of realism. However, these approaches require
expensive equipment and signiϐicant amounts of labour.
In order to drive down the cost and time required to pro‑
duce high quality, researchers are looking into automatic
1https://sites.google.com/view/itu2021
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face synthesis using machine learning techniques.

Machine learning methods could simplify the video gen‑
erationprocess by automatically producing it from the au‑
dio. Suchmethods could be applied in post‑production of
ϐilm making to achieve better lip synchronization. They
can be applied in the education sector to teach students
in a more realistic manner that can help reduce the cost
of teaching. Apart from that, such techniques can be used
to generate parts of the face that are occluded or missing
in a scene. This technology can improve band‑limited vi‑
sual telecommunications by either generating the entire
visual content based on the audio or ϐilling in dropped
frames.

2.2 Facial video
Facial video generation is a complex problem. It has sev‑
eral properties which make the video realistic.

• Semantic consistency ‑ The facial features such as
eyes, nose, lips, etc. should be consistent among each
other.

• Temporal consistency ‑ Video consists of several
frames. Each frame should be temporal smoother
with its previous and next frames, so that there
should not be any jitters, spikes or holes in the video.

• Expressiveness ‑ This property makes the video
more realistic and natural. Properties such as move‑
ment of facial action units, lip synchronization with
the audio and the blinking of eyes make the video
more realistic and visually appealing.

While generating the video from audio, the predicted
videos should inhibit such properties. Optical ϐlow and a
keypoint heatmap help in making the video semantically
and temporally consistent as well as more expressive.

2.2.1 Optical ϔlow
Optical ϐlow is the pattern of apparent motion of image
objects between two consecutive frames caused by the
movement of object or camera. It is a 2D vector ϐield
where each vector is a displacement vector showing the
movement of points from the ϐirst frame to the second.
Optical ϐlow hasmany applications in areas such as struc‑
ture from motion [5], video compression [6] and video
generation. The optical ϐlow helps in achieving the tem‑
porally smoother videos. Fig. 2 shows the optical ϐlows
between the two consecutive frames of any videos. The
optical ϐlow gives the temporal as well as spatial informa‑
tion based on the movement of the intensity values of the
frames.

2.2.2 Keypoint heatmap
Facial landmark detection is a well‑studied topic in the
ϐield of computer vision with many applications such

Fig. 2 – Top: Frames of the video. Bottom: Optical ϐlow of the video.

as face veriϐication [7], face recognition [8], and facial
attribute inference [9]. The high variability of shapes,
poses, lighting conditions, and possible occlusions makes
it a particularly challenging task even today. Such vari‑
abilities can be captures using the facial landmark key‑
points. We detect the landmark keypoints around the
cheeks, nose, eyes, lips to capture the movement of face
while speaking or giving expressions using deep learning
techniques. The heatmap of keypoints helps in giving a
coarser view of these keypoint locations. Such heatmaps
help the model to focus on the regions around the lips,
noise, eyes and cheeks such that it captures the expres‑
siveness of the image. Fig. 3 shows the landmark points
of the images on the upper part of the image. The lower
part shows the heatmap of the keypoints which gives the
information about the expressiveness of the images.

Fig. 3 – Top: facial keypoints. Bottom: keypoint heatmap of the face.

2.3 Audio
Modeling audio is a complex problem. Several aspects of
the synthesized speech, such as a speaker’s voice, speak‑
ing style/prosody and noise comes into play to better in‑
corporate the audio into modeling. The range of prosody
in the dialogue must encompass a large range of human
conversation, from neutral expression to extremely emo‑
tional, while always sounding perfectly natural. Here,
prosody refers to the variation of several speech related
phenomena such as intonation, stress, rhythm and style
of the speech. Traditionally, prosody modeling is based
on schematizing and labeling prosodic phenomena and
developing rule‑based systems or statistical models from
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the derived data. However, the prosodic attributes are
difϐicult and time consuming to annotate. The prosody
of speech is best captured by pitch, energy and melspec‑
trogram of the audio frames. Such features help the deep
learning model to incorporate natural and expressive au‑
dio tomeet the end tasks such as generation of expressive
video.

2.3.1 Pitch
Pitch is the fundamental frequency of an audiowaveform,
and is an important parameter in the analysis and synthe‑
sis of speech andmusic. Normally only voiced speech and
harmonic music have well‑deϐined pitch. But we can still
use pitch as a low‑level feature to characterize the fun‑
damental frequency of any audio waveform. The typical
pitch frequency for human speech is between 50 and 450
Hz, whereas the pitch range for music is much wider.

2.3.2 Energy
Energymodels the excitation pattern on the basilarmem‑
brane by simulating the acoustic signal transformations
in the ear according to the perceptualmodel of the human
auditory system. Short‑term speech energy is closely re‑
latedwith activation or arousal dimension of the emotion,
its usage in the conventional features contributes to the
classiϐication of emotions.

2.3.3 Melspectrogram
A melspectrogram is a spectrogram where the frequen‑
cies are converted to the mel scale.This mel scale is con‑
structed such that sounds of equal distance from each
other on themel scale, also “sound” to humans as they are
equal in distance from one another. In contrast to the Hz
scale, where the difference between 500 and 1000 Hz is
obvious, whereas the difference between 7500 and 8000
Hz is barely noticeable.

2.4 Generative adversarial network
The Generative Adversarial Network (GAN) [10] consists
of the generative model and discriminative model. The
GAN framework naturally takes up a game‑theoretic ap‑
proach. The word “adversarial” is chosen as the two net‑
works, i.e., generator and discriminator are in constant
conϐlict and compete with each other. The generative
model can be thought of as analogous to a team of coun‑
terfeiters, trying to create money similar to the real ones
while the discriminator acts as police, trying to detect
the counterfeit currency. Competition in this game drives
both teams to improve theirmethods by constantly giving
knowledge and feedback until the counterfeits are indis‑
tinguishable from the genuine articles.
The generative model generates samples by passing
random noise through a multilayer perceptron, and the
discriminative model is also a multilayer perceptron. We
can train both models using only the highly successful

Fig. 4 – Architecture of Generative Adversarial Network (GAN)

back propagation and dropout algorithms and sample
from the generative model using only forward propaga‑
tion.

Fig. 4 shows the general architecture of GAN. To learn the
generator’s distribution 𝑝𝑔 over data 𝑥, we deϐine a prior
on input noise variables 𝑝𝑧(𝑧), then represent a mapping
to data space as𝐺(𝑧;𝜃𝑔), where𝐺 is a differentiable func‑
tion represented by a multilayer perceptron with param‑
eters 𝜃𝑔. We also deϐine a second multilayer perceptron
𝐷(𝑥;𝜃𝑑) that outputs a single scalar. 𝐷(𝑥) represents the
probability that 𝑥 came from the data rather than 𝑝𝑔. We
train 𝐷 to maximize the probability of assigning the cor‑
rect label to both training examples and samples from 𝐺.
We simultaneously train𝐺 tominimize log(1−𝐷(𝐺(𝑧))):
In other words, 𝐷 and 𝐺 play the following two‑player
minimax game with value function 𝑉 (𝐺,𝐷):

min
𝐺

max
𝐷

𝑉 (𝐷,𝐺) = 𝔼𝑥∼𝑝data(𝑥)[log𝐷(𝑥)]+

𝔼𝑧∼𝑝𝑧(𝑧)[log(1−𝐷(𝐺(𝑧)))].

2.5 Normalization
The normalization framework has become the integral
part of neural network training. It has gained success due
tomany reason such as a higher learning rate, faster train‑
ing, regularization effects, smoothing of loss landscape,
etc. The variants of normalization are discussed in the
following subsections. One of the ϐirst normalization ar‑
chitecture proposed was batch normalization [11] which
helps the deep learning community understand the effect
of normalization.

2.5.1 Batch normalization
In traditional deep networks, a too‑high learning rate
may result in the gradients that explode or vanish, as
well as getting stuck in poor local minima. Batch normal‑
ization [11] helps address such issues. By normalizing
activations throughout the network, it prevents small
changes to the parameters from amplifying into larger
and suboptimal changes in activations in gradients; for
instance, it prevents the training from getting stuck in
the saturated regimes of nonlinearities.
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The Dropout [12] is typically used to reduce overϐitting
but in a batch‑normalized network it can be either
removed or reduced in strength and helps in better gen‑
eralization of the network. Batch normalization reduces
the photometric distortions because batch normalized
networks train faster and observe each training example
fewer times, we let the trainer focus on more “real”
images by distorting them less.

Equation (4) is the batch normalized output with
input(𝑥1 ⋯𝑥𝑛) used to calculate the mean (Equation (1))
and variance (Equation (2)) which is used to get the
normalized output ( ̂𝑥1 ⋯ ̂𝑥𝑛) (Equation (3)). Need of nor‑
malization occurs as distribution invariance assumption
is not satisϐied at local level. Without normalization, the
model has to runmore steps for parameters to adapt. Use
of scale (𝛾) and bias (𝛽) in Equation (4) gives ϐlexibility
to work with normalized input and also with scaled
normalized input, if there is a need, thus increasing the
representation power.

𝜇𝐵 = 1
𝑚

𝑚
∑
𝑖=1

𝑥𝑖 (1)

𝜎2
𝐵 = 1

𝑚
𝑚

∑
𝑖=1

(𝑥𝑖 −𝜇𝐵)2 (2)

̂𝑥𝑖 = 𝑥𝑖 −𝜇𝐵
√𝜎2

𝐵 +𝜖
(3)

𝑦𝑖 = 𝛾 ̂𝑥𝑖 +𝛽 (4)

2.5.2 Variants of normalization
Variants of normalization have been used to capture 
various information such as style, texture, shape, etc. 
Instance Normalization (IN) [13] is a representative ap‑ 
proach which was introduced to discard instance‑speciϐic 
contrast information from an image during style transfer. 
Inspired by this, adaptive instance normalization [14] 
provided a rational interpretation that IN performs a 
form of style normalization, showing that by simply 
adjusting the feature statistics, namely the mean and 
variance of a generator network, one can control the 
style of the generated image. IN dilutes the information 
carried by the global statistics of feature responses 
while leaving their spatial conϐiguration only, which can 
be undesirable depending on the task at hand and the 
information encoded by a feature map. To handle this, 
Batch‑Instance Normalization(BIN) [15] normalizes the 
styles adaptively to the task and selectively to individual 
feature maps. It learns to control how much of the 
style information is propagated through each channel 
of features leveraging a learnable gate parameter. For 
style transfer across the domain, UGATIT [16] has used 
adaptive instance and Layer Normalization (LN) [17] 
which adjusts the ratio of IN and LN to control the amount 
the style transfers from one domain to other domains.

For style transfer tasks, a popular methodology is trying 
the denormalization to the learned afϐine transformation 
that is parameterized based on a separate input image 
(the style image). SPADE [18] makes this denormaliza‑ 
tion spatially sensitive. SPADE normalization boils down 
to ”conditional batch normalization which varies on a 
per‑pixel basis”. In world‑consistent video to video syn‑ 
thesis [19], they have used optical features and semantic 
maps in the normalization to learn the afϐine parameters 
to generate the realistic and temporally smoother videos.

We have proposed multimodal adaptive normalization to 
incorporate the higher‑order statistics of multimodal 
fea‑ tures (image and audio) through afϐine parameters 
of nor‑ malization i.e. scale (𝛾)  and shift (𝛽) .

3. RELATED WORK
There have been many years of research on video codecs 
for various applications such as AV1 [20] and VVC [21] 
codecs. Researchers are working on improving the codes 
using machine learning techniques either by end to 
end approaches or working on speciϐic parts of video 
streaming pipelines.

In one of the approaches , face detection/mesh extraction 
[22, 23, 24, 25] and on body pose tracking [26, 27, 28], 
focusing on both 3D and 2D meshes, generally based on 
neural networks are used to encode the video streams 
and sent to the data channel. The ϐinal video is then 
reconstructed back by using body pose along with mesh 
at the receiver side to make the video streaming pipelines 
in erratic network conditions.

There was some work on video compression and recon‑ 
struction based on facial landmarks in [29, 30], which are 
promising in extremely low bitrates, but did not demon‑ 
strate real‑time conferencing capabilities.

3.1 Audio to realistic video generation
The earliest methods for generating videos relied on Hid‑ 
den Markov Models which captured the dynamics of au‑ 
dio and video sequences. Simons and Cox [31] used the 
Viterbi algorithm to calculate the most likely sequence of 
the mouth shape given particular utterances. Such meth‑ 
ods are not capable of generating quality videos and lack 
emotions.

3.1.1 Phoneme and visemes generation of
videos

Phoneme and viseme‑based approaches have been 
used to generate videos. Real‑Time Lip Sync for Live 
2D Animation [32] has used an LSTM‑based approach 
to generate live lip synchronization on 2D character 
animation.
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Some of these methods target rigged 3D characters or 
meshes with predeϐined mouth blend shapes that corre‑ 
spond to speech sounds [33, 34, 35, 36, 37, 38] which 
have primarily focused on mouth motions only and show 
a ϐinite number of emotions, blinks, facial action units 
movements.

3.1.2 Deep learning techniques for video gener‑
ation

CNN‑based architectures for audio to video genera‑
tion: A lot of work has been done on CNN to generate
realistic videos given an audio and static image as input.
[39](Speech2Vid) has used encoder‑decoder architec‑
ture to generate realistic videos. They have used L1 loss
between the synthesized image and the target image. Our
approach has used multimodal adaptive normalization in
GAN‑based architecture to generate realistic videos.

Synthesizing Obama: Learning lip sync from audio [38] is
able to generate quality videos of Obama speaking with
accurate lip‑sync using RNN‑based architecture. They
can generate only a single person video whereas the
proposed model can generate videos on multiple images
in GAN‑based approach.

GAN‑based architectures for audio to video gener‑
ation: Temporal Gan [40] and generating videos with
scene dynamics [41] have done the straightforward
adaptation of GANs for generating videos by replacing
2D convolution layers with 3D convolution layers. Such
methods are able to capture temporal dependencies but
require constant length videos. The proposed model
is able to generate videos of variable length with a low
word error rate.

Realistic Speech‑Driven Facial Animation with GANs
(RSDGAN) [42] used a GAN‑based approach to produce
quality videos. They used identity encoder, context
encoder and frame decoder to generate images and
used various discriminators to take care of different
aspects of video generation. The proposed method has
used multimodal adaptive normalization along with
class activation layers and an optical ϐlow predictor and
keypoint heatmap predictor in the GAN‑based setting to
generate expressive videos.

The X2face [43] model uses a GAN‑based approach to
generate videos given a driving audio or driving video
and a source image as input. The model learns the
face embeddings of source frame and driving vectors of
driving frames or audio bases which generate the videos.
In X2face, the video is processed at 1fps whereas the
model generate the video at 25fps. The quality of output
video is not good as compared to our proposed method
with audio as an input.

MoCoGAN [44] uses RNN‑based generator with separate
latent spaces for motion and content. A sliding window
approach is used so that the discriminator can handle
variable‑length sequences. This model is trained to gen‑
erate disentangled content and motion vectors such that
they can generate audios with different emotions and
content. Our approach usesmultimodal adaptive normal‑
ization to generate expressive videos.
[45] extracts the expression and pose from an audio
signal and a 3D face is reconstructed on the target
image. The model renders the 3D facial animation into
video frames using the texture and lighting information
obtained from the input video. Then they ϐine‑tune
these synthesized frames into realistic frames using a
novel memory‑augmented GAN module. The proposed
approach uses multimodal adaptive normalization with
predicted optical ϐlow/keypoint heatmap as an input to
learn the movements and facial expressions on the target
image with audio as an input. CascadedGAN [46] have
used the L‑GAN and T‑GAN for motion (landmark) and
texture generation. They have used a noise vector for
blink generation. Model Agnostic Meta Learning (MAML)
[47] is used to generate the videos on an unseen person
image. The proposed method has used multimodal
adaptive normalization to generate realistic videos.

[48] uses an Audio Transformation network (AT‑net) for
audio to landmark generation anda visual generationnet‑
work for facial generation. [49] uses audio, identity en‑
coder and a three‑streamGANdiscriminator for audio, vi‑
sual and optical ϐlow to generate lip movement based on
input speech. [50] enables arbitrary‑subject talking face
generation by learning disentangled audiovisual repre‑
sentation through an associative‑and‑adversarial training
process. [51] uses a generator that contains three blocks:
(i) Identity Encoder, (ii) Speech Encoder, and (iii) Face
Decoder. It is trained adversarially with a visual qual‑
ity discriminator and pretrained architecture for lip au‑
dio synchronization. [49, 50, 51] are limited to lip move‑
ments whereas the proposed method uses multimodal
adaptive normalization to generate different facial action
units of an expressive video. [52] uses Asymmetric Mu‑
tual Information Estimator (AMIE) to better express the
audio information into generated video in talking face
generation. They have AIME to capture mutual infor‑
mation to learn the cross‑modal coherence whereas we
have usedmultimodal adaptive normalization to incorpo‑
rate multimodal features into our architecture to gener‑
ate the expressive videos. [4] have used deep speech fea‑
tures into the generator architecture with spatially adap‑
tive normalization layers in it along with lip frame dis‑
criminator, temporal discriminator and synchronization
discriminator to generate realistic videos. They have lim‑
ited blinks and lip synchronizationwhereas the proposed
method used multimodal adaptive normalization to cap‑
ture the mutual relation between audio and video to gen‑
erate expressive video.
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Fig. 5 – Proposed architecture for audio to video synthesis

Fig. 6 – Generator architecture

4. ARCHITECTURAL DESIGN OF SPEECH
DRIVEN VIDEO SYNTHESIS

Given an arbitrary image and an audio sample, the pro‑
posed method is able to generate speech synchronized
realistic video on the target face. The proposed method
uses multimodal adaptive normalization technique to
generate realistic expressive videos. The proposed
architecture is GAN‑based which consists of a generator
and a discriminator; see Fig. 5.

The architecture consists of 4 important subparts i.e.
Generator, Discriminator, Multimodal Adaptive Normal‑
ization and Features Extractor Modules. The role of the
generator is to generate realistic video frames (Fig. 6).
The discriminator distinguishes between real and fake
images and helps the generator to produce more realistic
images (Fig. 14). The multimodal adaptive normaliza‑
tion provides necessary information/features i.e. pitch,
energy and Audio Melspectrogram Features (AMF) from
audio domain & static image and Optical Flow (OF)/facial
Keypoint Heatmap (KH) features from video domain to
the generator (ϐigures 7, 10, 11). The feature extractor
modules consists of various predictor modules such op‑
tical ϐlow predictor, keypoint heatmap predictors, pitch,
energy and audio melspectrogram extractors that extract
necessary features such as Optical Flow (OF)/facial Key‑
points Heatmap (KH), pitch, energy and melspectrogram

features which go into the normalization framework.

4.1 Generator
Fig. 6 shows the generator architecture to generate re‑ 
alistic images. It consists of convolution layers, several 
layers having multimodal adaptive normalization‑based 
Resnet [53] block (MANResnet) along with a class acti‑ 
vation map layer. Fig. 7 shows the residual architec‑ 
ture around Multimodal Adaptive Normalization (MAN) 
along with 2d convolution and Relu [54] activation lay‑ 
ers. The audio and video features namely person’s image, 
predicted optical ϐlow/predicted keypoint heatmap, mel‑ 
spectrogram features, pitch and energy go into the mul‑ 
timodal adaptive normalization network. Figures 10 and 
11 show the multimodal adaptive normalization architec‑ 
ture which takes various features of audio and video do‑ 
main and calculates the afϐine parameters i.e, scale, 𝛾 and 
a shift, 𝛽 for normalization.

Class Activation Map (CAM)‑based layer: This layer 
is employed as a layer of generator to capture the global 
and local features of the face. In class activation map [55], 
the concatenation of adaptive average pooling and adap‑ 
tive max pooling of feature map create the CAM features 
which capture global and local facial features respectively. 
It helps the generator to focus on the image regions that 

ITU Journal on Future and Evolving Technologies, Volume 2 (2021), Issue 4

33© International Telecommunication Union, 2021



Fig. 7 – Multimodal adaptive normalization residual architecture

Fig. 8 – Class activation map layer architecture in generator

Fig. 9 – Higher level architecture of multimodal adaptive normalization

are more discriminative such as eyes, mouth and 
cheeks (Fig. 8).

4.2 Multimodal adaptive normalization
Fig. 9 shows the higher‑level architectural design of mul‑ 
timodal adaptive normalization. The afϐine parameters 
i.e, scale, 𝛾 and a shift, 𝛽 are typically used to learn the 
higher‑order statistics of image features corresponding 
to style, texture, etc. to generate the required output as 
depicted in various previous work [13, 56, 18, 16, 19, 
15]. We are the ϐirst ones to propose how afϐine param‑ 
eters help to learn the higher‑order statistics of multiple 
domains. The respective afϐine parameters i.e. 𝛾 and 𝛽 
are dynamically controlled by learnable parameters, 𝜌’ s 
whose sum will be 1 constrained by the softmax function 
(Equation (6)). The idea behind using multimodal adap‑ 
tive normalization is that various features in the multi‑ 
modal domain are correlated. Multimodal adaptive nor‑ 
malization opens the non‑trivial path to capture the mu‑ 
tual dependence between various domains. Generally,

various encoder architectures [42] are used to convert
the various features of multiple domains into latent vec‑
tors, and then the concatenated vectors are fed to the de‑
coder to model the mutual dependence and generate the
required output. The proposedmultimodal adaptive nor‑
malization helps in reducing the number ofmodel param‑
eters required to incorporate multimodal mutual depen‑
dence into the architecture.
In themultimodal adaptive normalization where we have
used the pitch, energy and Audio Melspectrogram Fea‑
tures (AMF) (Figure 11) from audio domain & static im‑
age andOptical Flow(OF)/facial KeypointsHeatmap (KH)
features from video domain (Figure 10) in the normaliza‑
tion to compute the different afϐine parameters in multi‑
modal adaptive normalization setup. Multimodal adap‑
tive normalization gives the ϐlexibility of using various ar‑
chitectures namely 2D convolution, partial convolution
and attention model for video related features and 1D
convolution and the LSTM layer for audio features, as
shown in Table 6.
(Equation (5)) shows the combined equation of the mul‑
timodal adaptive normalized output where 𝑥𝐼𝑁 is the
instance normalized with mean and variance calculated
across batch and channel.Various 𝛾’s and 𝛽’s aremodeled
and linearly combined under an equation. The parameter
𝜌’s is used to combine these parameters (Equation (6)).
The value of 𝜌’s is constrained to the range of [0, 1] by us‑
ing the softmax function (Equation (6)).

𝑦 = 𝜌1(𝛾𝐼𝑚𝑎𝑔𝑒𝑥𝐼𝑁 +𝛽𝐼𝑚𝑎𝑔𝑒)+𝜌2(𝛾𝑂𝐹/𝐾𝐻𝑥𝐼𝑁 +𝛽𝑂𝐹/𝐾𝐻)
+𝜌3(𝛾𝐴𝑀𝐹 𝑥𝐼𝑁 +𝛽𝐴𝑀𝐹 )+𝜌4(𝛾𝑝𝑖𝑡𝑐ℎ𝑥𝐼𝑁 +𝛽𝑝𝑖𝑡𝑐ℎ)

+𝜌5(𝛾𝑒𝑛𝑒𝑟𝑔𝑦𝑥𝐼𝑁 +𝛽𝑒𝑛𝑒𝑟𝑔𝑦) (5)

𝜌1 +𝜌2 +𝜌3 +𝜌4 +𝜌5 = 1 (6)

4.3 Feature extractor modules
This section consists of various feature extractormodules
which extract the various features such as pitch, energy
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Fig. 10 – Architecture to calculate the afϐine parameters from video features in multimodal adaptive normalization

Fig. 11 – Architecture to calculate the afϐine parameters from audio features in multimodal adaptive normalization

and Audio Melspectrogram Features (AMF) from audio
domain & static image and Optical Flow (OF)/facial Key‑
points Heatmap (KH) features from video domain. There
are various feature extractor modules such as keypoint
heatmap predictor which predicts the keypoint heatmap
having the information of various facial parts, e.g., up‑
per left eyelid and nose bridge. Another module is Op‑
tical Flow Predictor which predicts the optical ϐlow of the
frameneeded tomaintain the temporal consistency in any
video.
Fig. 7 shows that block level diagram of how the vari‑
ous features of the audio and video domain go into the
multimodal adaptive normalisation through the afϐine pa‑
rameters i.e, scale, 𝛾 and a shift, 𝛽 .Fig. 10 shows that
the video features such as predicted optical ϐlow or key‑
point heatmaps and single image go into a few layers of
2D convolution/2D partial convolution/2D convolution‑
attention layers to generate the corresponding 𝛾’s and 𝛽’s
and then go to the normalization layers of the generator.
Fig. 11 shows that various features such as pitch, energy
andmelspectrogram go to the various layers of 1D convo‑
lution/LSTM to generate the corresponding 𝛾’s and 𝛽’s.

4.3.1 Keypoint heatmap predictor

The predictor model is based on Hourglass architecture
[57] that, from the input image, estimatesKheatmaps𝐻𝐾
∈ [0, 1]H×W, one for each keypoint, each of which rep‑

resents the contour of a speciϐic facial part, e.g., upper
left eyelid and nose bridge. It captures the spatial con‑
ϐiguration of all landmarks, and hence it captures pose,
expression and shape information. We have used a pre‑
trained model2 to calculate the ground truth of heatmap
and have applied mean square error loss between pre‑
dicted heatmaps and ground truth. Fig. 12 shows the
architectural diagram the of the keypoint heatmap pre‑
dictor which takes the previous 5 frames andmelspectro‑
gram of audio signal and feed it to the model to predict
the heatmaps of the frames. Hourglass architecture [57]
is used after two layers of convolutionwhich helps in gen‑
erating better facial heatmaps.
In the experiments, we have used the 15 channel
heatmaps and input and output sizes are (15, 96, 96).
We have done the joint training of keypoint predictor ar‑
chitecture along with the generator architecture and fed
the output of keypoint predictor architecture in themulti‑
modal adaptive normalization network to learn the afϐine
parameters and have optimized it with mean square er‑
ror loss with the output of a pretrained model. The input
of the keypoint predictor model is the previous 5 frames
alongwith 256 audiomel spectrogram featureswhich are
concatenated along the channel axis. This is optimization
with mean square error loss with a pretrained facial key‑
point detection model.

2https://github.com/raymon-tian/hourglass-facekeypoints-detection
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Fig. 12 – Keypoint heatmap predicted architecture

4.3.2 Optical ϔlow predictor

The architecture is based on an encoder‑decoder model
(Fig. 13)to predict the optical ϐlow of the next frame.
We are giving the previous frames and current audiomel‑
spectrogram as an input to the model with KL loss and
reconstruction loss. The pretrained model is then used
in the generator to calculate the afϐine parameters. The
input of the optical ϐlow is previous 5 frames along with
256 audio melspectrogram features and is jointly trained
along with the generator architecture and is optimized
with mean square loss with the actual optical loss.

4.3.3 Pitch extractor

Weextracted the pitch contour,𝐹0 using PyWorldVocoder
tool [58] and quantized each frame to 256 possible values
and encode them into a sequence of one‑hot vectors as a
pitch vector.

4.3.4 Energy extractor

We compute L2‑norm of the amplitude of each Short‑
Time Fourier Transform (STFT) frame as the energy given
by (Equation (8)) and thenwe add it to the expanded hid‑
den sequence coming similar to pitch.

𝑋(𝑚,𝑘) =
𝑁−1
∑
𝑛=0

𝑥[𝑛−𝑚𝐻]𝑤[𝑛]𝑒𝑥𝑝(−2𝜋𝑖𝑘𝑛/𝑁) (7)

where X(m,k) is the STFT of raw waudio waveform x[n]
with window w[n] and m is the frame index , 𝑘 ∈ [0 ∶ 𝐾]
and for every frame,m there are 𝐾 +1 spectral vectors.

𝐸𝑛𝑒𝑟𝑔𝑦(𝑚) = (
𝐾

∑
𝑘=0

(|𝑥(𝑚,𝑘)|)2)
1/2

(8)

4.3.5 Audio melspectrogram extractor

We transfer the raw waveform into melspectrograms by
setting the frame size and hop size to 1024 and 256 with
respect to the sample rate of 22050 Hz.

4.4 Multiscale frame discriminator
We have used multiscale frame discriminator [59] to dis‑
tinguish the fake and real image at the ϐiner and coarser
level. The class activation map‑based layer is also used
to distinguish the real or fake image by visualizing local
and global attentionmaps. We have applied the adversar‑
ial loss (Equation (14)) on the information from the CAM
output, nDt

at different scale of the discriminator so that it
will help the generator and discriminator to focus on local
and global features and help in generating a more realis‑
tic image. Thismultiscale frame discriminator is based on
Pix2PixHD [60].

𝐿cam = 𝐸y∼Pt [log(𝑛Dt
(𝑦))]+𝐸x∼Ps [log(𝐷(1−𝑛Dt

(𝐺(𝑥))))]
(9)

5. LOSSES
The proposed method is trained with different losses to
generate realistic videos as explained below.

5.1 Adversarial loss
Adversarial loss is used to train the model to handle ad‑
versarial attacks and ensure the generation of high qual‑
ity images for the video. The loss is deϐined as:

𝐿GAN(𝐺,𝐷) = 𝐸x∼Pd [log(𝐷(𝑥))]+𝐸z∼Pz [log(𝐷(1−𝐺(𝑧)))]
(10)

where G tries to minimize this objective against an adver‑
sarial D that tries to maximize.

5.2 Reconstruction loss
Reconstruction loss [61] is used on the lower half of the
image to improve the reconstruction in the mouth area.
L1 loss is used for this purpose as described below:

𝐿RL = ∑
𝑛𝜖[0,𝑊]∗[𝐻/2,𝐻]

(𝑅n −𝐺n) (11)

where, Rn and Gn are the real and generated frames re‑
spectively.
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Fig. 13 – Optical ϐlow predictor architecture

Fig. 14 – Discriminator architecture

5.3 Feature loss
Feature‑matching loss [59] ensures the generation of
natural‑looking high quality frames. We take the L1 loss
between generated images and real images for different
scale discriminators and then sum it all. We extract fea‑
tures from multiple layers of the discriminator and learn
to match these intermediate representations from the
real and the synthesized image. This helps in stabilizing
the training of the generator. The feature matching loss,
LFM(G,Dk) is given by:

𝐿FM(𝐺,𝐷k) = 𝐸(x,z)

𝑇
∑
𝑛=1

[ 1
𝑁 i

||𝐷k
(𝑖)(𝑥)−𝐷k

(𝑖)(𝐺(𝑧))||1]
(12)

where, 𝑇 is the total number of layers and 𝑁𝑖 denotes the
number of elements in each layer.

5.4 Perceptual loss
The perceptual similarity metric is calculated between
the generated frame and the real frame. This is done by
using features of a VGG19 [62] model trained for ILSVRC
classiϐication and VGGFace [63] data set. The perceptual
loss [64], (LPL) is deϐined as:

𝐿PL = 𝜆
𝑁

∑
𝑛=1

[ 1
𝑀 i

||𝐹 (𝑖)(𝑥)−𝐹 (𝑖)(𝐺(𝑧))||1] (13)

where, 𝜆 is the weight for perceptual loss and 𝐹 (𝑖) is the
ith layer of VGG19networkwith𝑀𝑖 elements of VGG layer.

5.5 Class activation loss
We have used the class activation‑based adversarial loss
in the generator and discriminatorwhich helps themodel
to learn local and global facial features and helps in cheek
movement, blinks as well as image reconstruction.

𝐿cam = 𝐸y∼Pt [log(𝑛Dt
(𝑦))]+𝐸x∼Ps [log(𝐷(1−𝑛Dt

(𝐺(𝑥))))]
(14)

where 𝑛𝐷𝑡
is the class activation‑based logits from the

real and fake image.

5.6 Mean square loss
We have optimized the keypoint heatmap predictor
and optical ϐlow predictor using mean square loss be‑
tween the generated keypoint heatmap and pretrained
model [65] and generated optical ϐlow and ground truth
farneback [66] optical ϐlow output.

6. QUALITY OF EXPERIENCE (QOE)

In order to avoid the spectators from quitting, thus in‑
creasing the revenue , the proposed model is able to con‑
trol the quality of experience. We derive our QoE model
from [67]. Using subjective Mean Opinion Score (MOS)
measurements, they derive QoE as a second degree func‑
tion of the image PSNR and Frame Rate (FR), ϐitted to the
MOS:
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𝑄𝑜𝐸 =−8.97 +0.056 ⋅FR+0.41 ⋅PSNR−0.0038 ⋅PSNR2

−0.001 ⋅FR2 +0.00079 ⋅FR ⋅PSNR
(15)

Knowing the average PSNR and frame size, we use this
model to calculate each receiver's QoE at present and es‑
timate their QoE in the future for different proϐiles.
The total QoE for each receiver, which aims to reϐlect their
satisfaction with the whole video streaming experience,
will be a function of the individual QoE corresponding to
each player.
The QoE metric has several advantages:

• Due to erratic network connectivity or low band‑
width, the Quality of Experience (QoE) can be low.
With the proposed model we can signiϐicantly im‑
prove the QOE by sending the audio signal and syn‑
thesizing the video at the receiver's end, thus im‑
proving the PSNR.

• The proposed video streaming pipeline helps in dy‑
namically using the proposed video generation ar‑
chitecture when the quality of experience goes be‑
low the threshold PSNR level. It thus gives the ϐlex‑
ibility to control the QOE based on the compute re‑
source, bandwidth availability and importance of the
speaker in the video conference.

7. EXPERIMENTS

7.1 Implementation details
7.1.1 Data sets
We have used the GRID [68], LOMBARD GRID [69],
Crema‑D [70] and VoxCeleb2 [71] data sets for the ex‑
periments and evaluation of different metrics.

GRID: GRID [68] is a largemulti‑talker audiovisual sen‑
tence corpus to support joint computational‑behavioral
studies in speech perception. In brief, the corpus consists
of high quality audio and video (facial) recordings of 1000
sentences spoken by each of the 34 talkers (18 male, 16
female). Sentences are of the form ”put red at G9 now”.

LOMBARD GRID: Lombard GRID [69] is a bi‑view au‑
diovisual Lombard speech corpus that can be used to
support joint computational‑behavioral studies in speech
perception. The corpus includes 54 talkers, with 100 ut‑
terances per talker (50Lombard and50plain utterances).
This data set follows the same sentence format as the au‑
diovisual GRID corpus, and can thus be considered as an
extension of that corpus.

CREMA‑D: CREMA‑D [70] is a data set of 7,442 origi‑
nal clips from 91 actors. These clips were from 48 male

and 43 female actors between the ages of 20 and 74 com‑
ing from a variety of races and ethnicities (African Amer‑
ican, Asian, Caucasian, Hispanic, and Unspeciϐied). Ac‑
tors spoke from a selection of 12 sentences. The sen‑
tenceswere presented using one of six different emotions
(Anger, Disgust, Fear, Happy, Neutral, and Sad) and four
different emotion levels (Low, Medium, High, and Un‑
speciϐied).

VOXCELEB2: VoxCeleb2 [71] is a very large‑scale
audio‑visual speaker recognition data set collected from
open‑source media. Voxceleb2 contains over 1 million
utterances for over 6,000 celebrities, extracted from
videos uploaded to YouTube. The data set is fairly gender
balanced, with 61 % of the speakers male.

7.1.2 Preprocessing steps
Videos are processed at 25fps and frames are resized
into 256X256 size and audio features are processed at
16khz. The ground truthof optical ϐlow is calculatedusing
the farneback optical ϐlow algorithm [66]. To extract the
keypoint heatmaps, we have used the pretrained hour‑
glass face keypoint detection [65]. Every audio frame is
centered around a single video frame. To do that, zero
padding is done before and after the audio signal and use
the following formula for the stride.

𝑠𝑡𝑟𝑖𝑑𝑒 = audio sampling rate
video frames per sec

We extract the pitch, F0 using using PyWorldVocoder [72]
from the raw waveform with the frame size of 1024 and
hop size of 256 sampled at 16khz to obtain the pitch of
each frame and compute the L2‑norm of the amplitude of
each STFT frame as the energy. We quantize the F0 and
energy of each frame to 256 possible values and encode
them into a sequence of one‑hot vectors as p and e respec‑
tively and then feed the value of p, e and 256 dimensional
melspectrogram features in the proposed normalization
method.

7.1.3 Metrics
To quantify the quality of the ϐinal generated video, we
use the following metrics. Peak Signal to Noise Ra‑
tio (PSNR), Structural Similarity Index (SSIM), Cumula‑
tive Probability Blur Detection (CPBD) and Average Con‑
tent Distance (ACD). PSNR, SSIM, and CPBD measure the
quality of the generated image in terms of the pres‑
ence of noise, perceptual degradation, and blurriness re‑
spectively. ACD [44] is used for the identiϐication of
the speaker from the generated frames by using Open‑
Pose [73]. Along with image quality metrics, we also
calculate Word Error Rate (WER) using pretrained Lip‑
Net architecture [74], Blinks/sec using [75] and Land‑
mark Distance (LMD) [76] to evaluate our performance
of speech recognition, eye‑blink reconstruction and lip re‑
construction respectively.
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1. PSNR‑ Peak Signal to Noise Ratio: It computes the
peak signal to noise ratio between two images. Thehigher
the PSNR the better the quality of the reconstructed im‑
age.

2. SSIM‑ Structural Similarity Index: It is a percep‑
tualmetric that quantiϐies image quality degradation. The
larger the value the better the quality of the reconstructed
image.

3. CPBD‑ Cumulative Probability Blur Detection: It
is a perceptual based no‑reference objective image sharp‑
ness metric based on the cumulative probability of blur
detection developed at the image.

4. WER‑ Word error rate: It is a metric to evaluate the
performance of speech recognition in a given video. We
have used LipNet architecture [74] which is pretrained
on the GRID data set for evaluating theWER. On the GRID
data set, Lipnet achieves 95.2 percent accuracywhich sur‑
passes the experienced human lipreaders.

5. ACD‑ Average Content Distance ([44]): It is used
for the identiϐication of speakers from the generated
frames using OpenPose [73]. We have calculated the Co‑
sine distance and Euclidean distance of representation of
the generated image and the actual image fromOpenpose.
The distance threshold for the OpenPosemodel should be
0.02 for Cosine distance and 0.20 for Euclidean distance
[77]. The lesser the distances the more similar the gener‑
ated and actual images.

6. LMD ‑ Landmark Distance ([76]): To ensure real‑
istic and accurate lip movement, ensuring good perfor‑
mance on speech recognition we use this metric. We cal‑
culate the landmark points [78] on both real and gener‑
ated images at the scale of 256*256 and use the lip re‑
gion points i.e., points 49‑68 and call then as LR and LF
respectively. LR refers to lip region from ground truth im‑
age and LF corresponds to lip region from generated/fake
image. T is the number of frames. Then, we calculate the
euclidean distance between each corresponding pairs of
landmarks on LR and LF. The LMD is deϐined as:

𝐿𝑀𝐷 = 1
𝑇 ∗ 1

𝑃
𝑇

∑
𝑡=1

𝑃
∑
𝑝=1

||𝐿𝑅t,p −𝐿𝐹 t,p|| (16)

7. Blinks/sec: To capture the blinks in the video, we
are calculating the blinks/sec so that we can better un‑
derstand the quality of animated videos. Fig. 15 shows
the 6pointswhich are used to calculate the EyeAspect Ra‑
tio (EAR) given in Equation (17). We have used SVM and
eye landmarks along with Eye Aspect Ratio (EAR) used
in Real‑Time Eye Blink Detection using Facial Landmarks
[75] to detect the blinks in a video.

Fig. 15 – Description of the 6 eye points

𝐸𝐴𝑅 = ||𝑝2−𝑝6||+ ||𝑝3−𝑝5||
||𝑝1−𝑝4|| (17)

7.1.4 Training and inference
Our model is implemented in pytorch and takes approx‑ 
imately 7 days to run on 4 Nvidia V100 GPUs for train‑ 
ing. In the training stage, the model is trained with a mul‑ 
tiscale frame discriminator with adversarial loss (Equa‑ 
tion (6)), class activation map‑based loss (Equation (14)) 
and feature matching loss (Equation (12)). The generator 
is trained with adversarial loss (Equation (6)), class ac‑ 
tivation map‑based loss (Equation (14)), reconstruction 
loss (Equation (11)), perceptual loss (Equation 5.4), and 
key‑point predictor/optical ϐlow‑based mean square er‑ 
ror loss are also used to ensure generation of natural‑ 
looking, high quality frames.
We have taken the Adam optimizer [79] with learning rate
= 0.002 and 𝛽1= 0.0 and 𝛽2 = 0.90 for the generator and 
discriminators.

7.2 Implementation results
7.2.1 Quantitative results
Tables 1,2,3,4 compare the proposed method with its 
competitors and shows better SSIM, PSNR, CPBD, Word 
Error Rate (WER), blinks/sec and LMD on GRID [68], 
Crema‑D [70], GRID‑Lombard [69] and Voxceleb2 [71] 
data sets, suggesting highly expressive and realistic video 
synthesis. The proposed method has shown superior re‑ 
sults on most of the metrics in all the mentioned data sets.

7.2.2 QoE metric
We have computed the QoE metric for various data sets 
using Equation (15). For our experiments we have taken 
the 25fps for synthesizing the video. Table 5 shows the 
QoE metric for various data sets when synthesizing the 
video from audio using the proposed method. The higher 
the QoE metric is, the better the model is. We can dynam‑ 
ically control the QoE based on the need of the video 
conferencing and during erratic network conditions.
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Table 1 – Comparison of the proposed method(MAN‑keypoint and MAN‑optical) with other previous works for GRID data set

Method SSIM↑ PSNR↑ CPBD↑ WER↓ ACD‑C↓ ACD‑E↓ blinks/sec LMD↓
FOMM[80] 0.833 26.72 0.214 38.21 0.004 0.088 0.56 0.718

OneShotA2V[4] 0.881 28.571 0.262 27.5 0.005 0.09 0.15 0.91
RSDGAN[42] 0.818 27.100 0.268 23.1 ‑ 1.47x10−4 0.39 ‑

Speech2Vid[39] 0.720 22.662 0.255 58.2 0.007 1.48x10−4 ‑ ‑
ATVGnet[48] 0.83 32.15 ‑ ‑ ‑ ‑ ‑ 1.29
X2face[43] 0.80 29.39 ‑ ‑ ‑ ‑ ‑ 1.48

CascadedGAN[46] 0.81 27.1 0.26 23.1 ‑ 1.47x10−4 0.45 ‑
MAN‑optical 0.908 29.78 0.272 23.7 0.005 1.41x10‑4 0.45 0.77
MAN‑keypoint 0.887 29.01 0.269 25.2 0.006 1.41x10−4 0.48 0.80

Table 2 – Comparison of the proposed method(MAN‑keypoint and MAN‑optical) with other previous works for CREMA‑D data set

Method SSIM↑ PSNR↑ CPBD↑ WER↓ ACD‑C↓ ACD‑E↓ blinks/sec LMD↓
FOMM[80] 0.654 20.74 0.186 NA 0.007 0.12 ‑ 1.041

OneShotA2V[4] 0.773 24.057 0.184 NA 0.006 0.96 ‑ 0.632
RSDGAN[42] 0.700 23.565 0.216 NA ‑ 1.40x10‑4 ‑ ‑

Speech2Vid[39] 0.700 22.190 0.217 NA 0.008 1.73x10‑4 ‑ ‑
MAN‑optical 0.826 27.723 0.224 NA 0.004 1.62x10−4 ‑ 0.592
MAN‑keypoint 0.841 28.01 0.228 NA 0.003 1.38x10‑4 ‑ 0.51

Table 3 – Comparison of the proposed method(MAN‑keypoint and MAN‑optical) with other previous works for GRID Lombard data set

Method SSIM↑ PSNR↑ CPBD↑ WER↓ ACD‑C↓ ACD‑E↓ blinks/sec LMD↓
FOMM[80] 0.804 22.97 0.381 NA 0.003 0.078 0.37 1.09

OneShotA2V[4] 0.922 28.978 0.453 NA 0.002 0.064 0.1 0.61
Speech2Vid[39] 0.782 26.784 0.406 NA 0.004 0.069 ‑ 0.581
MAN‑optical 0.895 26.94 0.43 NA 0.001 0.048 0.21 0.588
MAN‑keypoint 0.931 29.62 0.492 NA 0.001 0.046 0.31 textbf0.563

Table 4 – Comparison of the proposed method(MAN‑keypoint and MAN‑optical) with other previous works for VOXCELEB2 data set

Method SSIM↑ PSNR↑ CPBD↑ WER↓ ACD‑C↓ ACD‑E↓ blinks/sec LMD↓
OneShotA2V[4] 0.698 20.921 0.103 NA 0.011 0.096 0.05 0.72
MAN‑optical 0.714 21.94 0.118 NA 0.008 0.067 0.21 0.65
MAN‑keypoint 0.732 22.41 0.126 NA 0.004 0.058 0.28 0.47

Table 5 – Average QoE on proposed method

Method QoE ↑
MAN‑optical(GRID) 1.232
MAN‑keypoint(GRID) 1.074

MAN‑optical(GRID‑Lombard) 0.624
MAN‑keypoint(GRID‑Lombard) 1.20

MAN‑optical(CREMA‑D) 0.797
MAN‑keypoint(CREMA‑D) 0.860
MAN‑optical(VoxCeleb2) ‑0.595
MAN‑keypoint(VoxCeleb2) ‑0.472

7.2.3 Qualitative results

Expressive aspect: Fig. 16 displays the lip synchro‑ 
nized frames of a speaker speaking the word ’bin’ and 
’please’ as well as the blinking of the eyes. Fig. 17 
shows the comparison of the proposed model with 

previous work [52] where the proposed model shows 
better image reconstruction and lip synchronization. 
The generated videos are given at 3.

Fig. 16 –Top: The speaker speaking theword ’bin’ , Middle : The speaker
speaking the word ’please’, Bottom: The speaker blinking his eyes

3https://sites.google.com/view/itu2021
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Fig. 17 – Top: Actual frames of voxceleb2 [71] data set , Middle : Pre‑
dicted frames from proposed method, Bottom: Predicted frame from
[52]

Architecture analysis: Fig. 18 shows the optical ϐlow
map and class activation‑based heatmaps at different ex‑
pressions of the speakers while speaking. The optical
ϐlow map has a different color while speaking and the
opening of eyes as compared to closing of mouth and the
blinking of eyes. The CAM‑based heatmap shows the at‑
tention regions in theheatmapwhich captures the local as
well as global features during video generation. The bot‑
tompart of the ϐigure shows the predicted keypoints from
the keypoint predictor calculated using the max operator
to ϐind the coordinates of themaximum value in each pre‑
dicted heatmap (15, 96, 96).

Fig. 18 – Top: The speaker with different expressions, Middle1 : CAM‑
based attention map, Middle2: Predicted optical ϐlow from the optical
ϐlow generator architecture, Bottom: Predicted Key‑points from Key‑
point predictor architecture

Eye blinks: The average human blink rate of 0.28
blinks/second, especiallywhen considering that the blink
rate increases to 0.4blinks/second during conversation.
Fig. 19 shows the sharp decline in the eye aspect
ratio [75] at the centre which justiϐies the generation
of blinks in the predicted videos. Table 1 shows the
blinks/sec of 0.45 on the GRID data set.

Fig. 19 – A blink is detected at the location where a sharp drop occurs
in the EAR signal (blue dot). We consider the start (green dot) and end
(red dot) of the blink to correspond to the peaks on either side of the
blink location (Color ϐigure online).

Comparison with video to video synthesis architec‑
ture: We have compared the proposed method with
First Order Motion Model (FOMM) for image animation
[80] on the GRID data set which generates the video se‑
quences so that anobject in a source image is animatedac‑
cording to the motion of a driving video. The comparison
is done to seehoweffectively driving audio signals instead
of driving video helps in reconstructing the expressive
video as shown in Fig. 20. Tables 1, 2, 3 compare the vari‑
ous metrics between FOMM and the proposed model and
show better image reconstruction metrics (SSIM, PSNR,
CPBD,LMD) and WER but FOMM has more blinks/sec as
compared to the proposed method. The reason for bet‑
ter WER is a limited number of utterances in the GRID
data set and faster speaking style of the speakerwhich the
proposedmethod is better able to capture as compared to
FOMM.

7.3 Ablation study

To study the effectiveness of the proposed model and its
novel multimodal adaptive normalization approach. We
have shown that multimodal adaptive normalization is
ϐlexible to incorporate the various architecture shown in
Section 7.3.1 and its effectiveness in the generation of re‑
alistic videos.We have also studied the incremental effect
of audio and video features such as optical ϐlow, melspec‑
trogram, pitch and energy in Section 7.3.2.
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Fig. 20 – Top: Actual frames of speaker of GRID data set. Middle: Pre‑
dicted frames from proposed method with keypoints predicted from
keypoint predictor. Bottom: Predicted frames from the FOMM method
[80]

7.3.1 Network analysis in multimodal adaptive
normalization

We have done the ablation study on three architectures,
namely 2D convolution, partial 2D convolution [81, 82]
and 2D convolution+Efϐicient Channel Attention (ECA)
[83] for extracting video features and two architectures
namely 1D convolution and LSTM for audio features
as shown in Fig. 10 and Fig. 11 to study its effect on
multimodal adaptive normalization with optical ϐlow
predictor in the proposed method. Table 6 shows that
2DConv+ECA+LSTM has improved the reconstruction
metrics such as SSIM, PSNR and CPBD as well as word
error rate and blinks/sec as compared to other networks.
The image quality reduced with the use of partial 2D
convolution which demonstrates that since the predicted
optical ϐlow is dense, holes in the optical ϐlow has some
spatial relation with other regions which are better
captured by other networks.

Table 6 – Ablation study of different networks of multimodal adaptive
normalization on GRID data set

Method SSIM↑ PSNR↑ CPBD↑ blinks/sec WER↓
2DConv+1dConv 0.875 28.65 0.261 0.35 25.6

Partial2DConv+1dConv 0.803 28.12 0.256 0.15 29.4
2DConv+ECA+1dConv 0.880 29.11 0.263 0.42 23.9

2DConv+LSTM 0.896 29.25 0.086 0.260 24.1
Partial2DConv+LSTM 0.823 28.12 0.258 0.12 28.3
2DConv+ECA+LSTM 0.908 29.78 0.272 0.45 23.7

7.3.2 Incremental effect of multimodal adap‑
tive normalization

We study the incremental effect of multimodal adaptive
normalization of the proposed model with the Optical
Flow Predictor (OFP) and 2DConv+ECA+LSTM combi‑
nation in multimodal attention normalization on a GRID
data set. Table 7 shows the impact of the addition of
melspectrogram features, pitch, predicted optical ϐlow
in multimodal adaptive normalization. The base model
consists of generator and discriminator architecture with
a static image in the adaptive normalization.

Table 7 – Incremental study of multimodal adaptive normalization on
GRID data set

Method SSIM↑ PSNR↑ CPBD↑ blinks/sec WER↓
Base Model(BM) 0.776 27.99 0.213 0.02 57.9
BM + OFP+mel 0.878 28.43 0.244 0.38 27.4

BM + OFP+mel+pitch 0.881 28.57 0.264 0.41 24.1
BM+OFP+mel+pitch+energy 0.908 29.78 0.272 0.45 23.7

8. PSYCHOPHYSICAL ASSESSMENT

Results are visually rated (on a scale of 5) individually
by 25 persons, on three aspects, lip synchronization, eye
blinks and eyebrow raises and quality of video on a GRID
data set. The subjects were shown anonymous videos at
the same time for the different audio clips for side‑by‑side
comparison. Table 8 clearly shows that MAN‑based pro‑
posed architecture performs signiϐicantly better in qual‑
ity and lip synchronization which is of prime importance
in videos.

Table 8 – Psychophysical evaluation (in percentages) based on users
rating on GRID daatset

Method Lip‑Sync↑ Eye‑blink↑ Quality↑
MAN 91.8 90.5 79.6

OneShotA2V[4] 90.8 88.5 76.2
RSDGAN[42] 92.8 90.2 74.3

Speech2Vid[39] 90.7 87.7 72.2

9. TURING TEST

To test the naturalism of the generated videoswe conduct
an online Turing test on a GRID data set 4. Each test con‑
sists of 20 questions with 10 fake and 10 real videos. The
user is asked to label a video real or fake based on the aes‑
thetics and naturalism of the video. Approximately 300
user data is collected and their score of the ability to spot
fake video is displayed in Fig. 21.

Fig. 21 – Distribution of user scores for the online Turing test

4https://forms.gle/DM1DRcTToQFvUpTa7
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10. CONCLUSIONS AND FUTUREWORK
We have seen that the proposed video streaming pipeline
with multimodal adaptive normalization‑based architec‑
ture to generate the video helps in reducing the network
bandwidth in unreliable Internet conditions. The pro‑
posed video streaming pipeline can control the quality
of experience based on the compute resource and band‑
width availability. It helps in data privacy by synthesizing
the video on the avatar of that person.
Although this implementation provides a proof of con‑
cept for the underlying idea, further work is needed to
implement a full body low latency, low bandwidth video
streaming environment to further enhance the quality of
experience. With the rapid improvement of hardware ca‑
pabilities in mobiles and personal computers, this is un‑
likely to be a major obstacle. As evidenced by the recent
announcement of the NVIDIA Maxine project [3], hurdles
are surmountable and these ideas can be translated into
a practical system that provides immense gains over the
conventional methods.
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Tulyakov, Elisa Ricci, and Nicu Sebe. “First Order
Motion Model for Image Animation”. In: (2020).
arXiv: 2003.00196 [cs.CV].

[81] Guilin Liu, Kevin J. Shih, Ting‑Chun Wang, Fitsum
A. Reda, Karan Sapra, Zhiding Yu, Andrew Tao,
and Bryan Catanzaro. “Partial Convolution based
Padding”. In: arXiv preprint arXiv:1811.11718.
2018.

[82] Guilin Liu, Fitsum A. Reda, Kevin J. Shih, Ting‑Chun
Wang, Andrew Tao, and Bryan Catanzaro. “Image
Inpainting for Irregular Holes Using Partial Convo‑
lutions”. In: The European Conference on Computer
Vision (ECCV). 2018.

[83] Qilong Wang, Banggu Wu, Pengfei Zhu, Peihua Li,
Wangmeng Zuo, andQinghuaHu.ECA‑Net: Efϔicient
Channel Attention for Deep Convolutional Neural
Networks. Oct. 2019.

AUTHORS
Neeraj Kumar is currently
working as Senior Machine
Learning Scientist at Hike Pri‑
vate Limited, India. He is also a
PHD student at Indian Institute
of Technology, Delhi, India and
completed his B‑tech(ECE) from
Indian Institute of Technology,
Kharagpur, India. His current

area of interest is multimodal AI along with the foun‑
dation and theoretical aspect of machine learning. He
has published papers in top conferences such as CVPR,
Interspeech & IJCAI.

Dr. Ankur Narang is currently
the VP of AI technologies at Hike
Private Limited. He holds a
B.Tech. & Ph.D. from IIT Delhi in
CSE and has 40+ publications in
top international computer sci‑
ence machine learning confer‑

ences and journals, along with 15 granted US patents. He
was one amongst Top 10 data scientists in India in 2017
(Analytics IndiaMag) in recognition of solid scientiϐic and
industry contributions to the ϐield of data science and ar‑
tiϐicial intelligence. In 2018, he was given the Top 50 An‑
alytics Award at the MachineCon conference in recogni‑
tion of exemplary leadership and contributions to ML/AI
(Analytics India Magazine). He was also conferred Top
100 Innovative CIOAward in 2019, for distinguished lead‑
ership in innovative technologies based digital transfor‑
mation (CIO Axis). In 2002, he was awarded Sun Mi‑
crosystem’s prestigious “Innovation Leadership Award”
for signiϐicant contributions to the Hardware Accelera‑
tion Project.

Dr. Brejesh Lall is a profes‑
sor at Electrical Engineering De‑
partment at IIT Delhi and has
contributed to research& teach‑
ing in the general area of sig‑
nal processing. He is the head
of Bharti School of Telcom Tech‑
nology and Management, and

the coordinator of two centers of excellence, viz. Airtel IIT
Delhi Centre of Excellence in Telecommunications and Er‑
icsson IIT Delhi 5G Center of Excellence. He is also the in‑
charge of an IoT laboratory that he set up in collaboration
with Samsung. Besides this, he is the NCC co‑ordinator
of IIT Delhi. The areas in which he has been publishing
and doing sponsored research are centered on signal pro‑
cessing. The areas include object representation, track‑
ing and classiϐication, odometry, depth map generation,
representation and rendering. He is also exploring vector
sensor‑based underwater acoustic communications, and
performance issues inmolecular communications. Hehas
mentored 5 startups, in the areas of virtualization, ge‑
ofencing, UAV based solutions and recommendations and
data mining. He actively participates in building and de‑
ploying technology. He has also served as an expert in nu‑
merous government and private agencies in aspects re‑
lated to signal processing.

Nitish Kumar Singh is cur-
rently working in the area of 
speech, text and vision. He has 
completed his post graduation from 
Manipal Institute of Technology, 
Bangalore.

46 © International Telecommunication Union, 2021

ITU Journal on Future and Evolving Technologies, Volume 2 (2021), Issue 4



A DYNAMIC Q‑LEARNING BEAMFORMINGMETHOD FOR INTER‑CELL INTERFERENCE
MITIGATION IN 5G MASSIVE MIMO NETWORKS

Aidong Yang, Ph.D1, Xinlang Yue1, Mohan Wu, Ph.D1, Ye Ouyang, Ph.D1

1Telecom Artiϐicial Intelligence Lab, AsiaInfo Technologies, Beijing, China

NOTE: Corresponding author: Aidong Yang, Ph.D, yangad@asiainfo.com

Abstract – Beamforming is an essential technology in 5G Massive Multiple‑Input Multiple‑Output (MMIMO) communica‑
tions, which are subject to many impairments due to the nature of wireless transmission channel. The Inter‑Cell Interference
(ICI) is one of themain obstacles faced by 5G communications due to frequency‑reuse technologies. However, ϔinding the opti‑
mal beamforming parameter to minimize the ICI requires infeasible prior network or channel information. In this paper, we
propose a dynamic Q‑learning beamformingmethod for ICImitigation in the 5G downlink that does not require prior network
or channel knowledge. Compared with a traditional beamformingmethod and other industrial Reinforcement Learning (RL)
methods, the proposed method has lower computational complexity and better convergence efϔiciency. Performance analy‑
sis shows the quality of service improvement in terms of Signal‑to‑Interference‑plus‑Noise‑Ratio (SINR) and the robustness
towards different environments.

Keywords – 5G beamforming, inter‑cell interference, massive MIMO, reinforcement learning

1. INTRODUCTION
Massive Multiple‑Input Multiple‑Output (MMIMO) tech‑ 
nology in 5G is a competent solution that signiϐicantly 
improves system capacity, signal coverage and spectral‑ 
efϐiciency by conϐiguring hundreds of Antenna Elements 
(AEs) at the Base Station (BS) to shape effective beam‑ 
forming [1, 2]. However, the quality of MMIMO beam‑ 
forming depends on accurate Channel State Information 
(CSI), pilot contamination and ICI estimation [3]. More‑ 
over, the MMIMO beamforming complexity becomes a 
challenge as the number of AEs at the BS increases. There‑ 
fore, it is necessary to explore an effective and efϐicient 
beamforming method for ICI mitigation with low power 
and low complexity [4].

In recent years, the accurate MMIMO beamforming has 
attracted extensive research [3, 4, 5, 6, 7], which almost 
follow two main directions: with and without CSI. Hy‑ 
brid beamforming [3, 4, 5] is the representative of the for‑ 
mer. It aims to reduce the expense of Radio Frequency 
(RF) chains and decrease the complexity of beamforming 
compared to conventional methods [2], but it needs to up‑ 
date beams frequently when pilots are received continu‑ 
ally at the BS. A smart pilot assignment scheme, which is 
effective in mitigating interference but is aimed at a sin‑ 
gle cell, is proposed in [5] to reduce pilot contamination 
by smartly assigning orthogonal pilots to users. The lat‑ 
ter mainly includes the ϐirst Monte Carlo (MC) method, 
which searches the optimal beamforming parameters but 
suffers from increasing computational complexity, and 
second supervised Deep Learning (DL) methods. One of 
them is reported in [7] to research the characters of wire‑ 
less spatial channels and explore preferable pilot assign‑ 
ments for better channel estimation and beamforming,
but supervised methods require model training before- 
hand and time-consuming sample data collection.

In this paper, an RL‑assisted full dynamic beamform‑ 
ing method is developed to efϐiciently acquire the op‑ 
timal beamforming parameters in the MMIMO system 
to address ICI issues. We fully consider the microcell 
and macro‑cell multi‑path transmission channels which 
present radio features with high user density and trafϐic 
loads focusing on pedestrian and vehicular users (Dense 
Urban‑eMBB) scenarios [1, 2, 5], such as buildings, moun‑ 
tains and rivers, where the distribution of User Equip‑ 
ments (UEs) changes infrequently; these factors signif‑ 
icantly impact coverage. To get optimal beamforming, 
ϐirstly, we utilize a Poisson Point distribution model to 
estimate the occurrences of UE in the target cells with a 
long‑term data statistical analysis; secondly, we apply an 
algorithm to fast search through huge volumes of param‑ 
eters and obtain optimal values. Lastly, we send the op‑ 
timal parameters into the BS beamforming simulator for 
the best SINR.

In summary, the main contribution of this work includes:

• The proposed RL beamforming method for an 
MMIMO system is meant to get the optimal beam‑ 
forming parameter, such a method with multi‑cell ICI 
is rarely discussed in literature. Besides, it does not 
need any prior network or channel information and 
it works for different UE distribution.

• Compared with the traditional beamforming method 
and other industrial RL methods, the proposed dy‑ 
namic Q‑learning method shrinks the action space 
during its process, thus it requires less time and com‑ 
putational complexity to operate.

• As proven in many simulation results, the proposed 
method performs better than the other methods. 
Moreover, it is robust to various starting states and 
different environments.
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Fig. 1 – Illustration of the proposed RL‑based beamforming (b) for MMIMO systems and the network layout (a) of 5G dense Urban‑eMBB cells, in which
the BS of target small cell #0 with 𝑁0(𝑘) mobile users chooses the optimal beamforming 𝑎∗(𝑘)

0 (c) to mitigate interference from the neighboring 𝑁𝑐𝑒𝑙𝑙
small cells at time slot 𝑘, and 𝑁0(𝑘) users return estimated SINRs 𝛾𝑁 (𝑘) to the BS.

The rest of the paper is organized as follows. In Section 2, 
related work on RL‑based ICI mitigation are presented. 
The system model and our proposed dynamic Q‑learning 
scheme are presented in Section 3 and Section 4. In Sec‑ 
tion 5, simulation results are presented and the conclu‑ 
sion follows in Section 6.

2. RELATED WORK
ICI control is a key issue in 5G MMIMO systems, intensive 
research has been carried out to address this. Surveys 
have been carried out on ICI mitigation techniques in LTE 
downlink networks [8, 9], and research on ICI coordina‑ 
tion techniques in 5G UFMC systems [10, 11].

RL‑based approaches have been extensively applied in 
an ICI mitigation problem. For instance, a Q‑learning‑ 
based power control scheme formulates the ICI coordi‑ 
nation issue as a cooperative multi‑agent control prob‑ 
lem to improve the performance of the cellular systems 
is proposed in [12]. An RL‑based power control scheme 
for ultra‑dense small cells to improve network through‑ 
put and save energy consumption is presented in [13], 
in which the BS selects the downlink transmit power to 
manage interference. A dynamic RL‑based ICI coordina‑ 
tion algorithm as developed in [14] smartly ofϐloads traf‑ 
ϐic to open access picocells and then improves the system 
throughput.

3. SYSTEM MODEL
ICI is caused by multiple sources transmitting signals with 
the same subcarrier and being received by a receiver. A 
user receives signals from the serving cell and neighbor‑ 
ing cells but at different power levels due to the path loss.

3.1 AOA‑based beamforming
The Angle‑Of‑Arrival(AOA)‑based beamforming is usually 
used in 5G MMIMO systems, where the BS is conϐigured
with an antennas array composed of 𝑊 AEs, and numbers of 
AEs are arranged as 𝑀 per row and 𝐿 per column [2].

In RF, the BS shapes beamforming for the 𝑘𝑡ℎ UE by con‑ 
ϐiguring weights on AEs according to AOA ⟨𝜃𝑘, 𝜑𝑘⟩ [15], 
where 𝜃𝑘 is the azimuth and 𝜑𝑘 is the vertical angle of the 
𝑘𝑡ℎ UE. The weights on the 𝑖𝑡ℎ AE in a row can be repre‑ 
sented as

𝜔𝑖𝑘 = 𝑒−𝑗2𝜋𝑖𝑑ℎ sin 𝜃𝑘 , 𝑤𝑖𝑘 ∈ 𝒞1∗𝑀 (1)

where 𝑑ℎ is the row AE distance. And the 𝑙𝑡ℎ AE in the
column can be obtained by

𝜉𝑙𝑘 = 𝑒−𝑗2𝜋𝑙𝑑𝑣 cos 𝜑𝑘 , 𝜉𝑙𝑘 ∈ 𝒞𝐿∗1 (2)

where 𝑑𝑣 is the column AE distance. From (1) and (2), the
ϐinal beamforming weights for the 𝑘𝑡ℎ UE can be derived
by

Π𝑘 = Ψ𝑘Ω𝑘 (3)

where
{ Ω𝑘 = [𝜔1𝑘, 𝜔2𝑘, … , 𝜔𝑀𝑘],

Ψ𝑘 = [𝜉1𝑘, 𝜉2𝑘, … , 𝜉𝐿𝑘]𝑇 .
Since the ϐinal weights in (3) depend on ⟨𝜃𝑘, 𝜑𝑘⟩,  the im‑ 
plementation complexity for ⟨𝜃𝑘, 𝜑𝑘⟩ estimation gets high 
as the perfect CSI needed, which is usually affected by ICI.

3.2 Search‑based beamforming
To mitigate the ICI with a low complexity, a search‑based 
beamforming algorithm is reported in [15], which uses 
MC to search the optimal weights rather than AOA estima-
tion in (3). In MC beamforming, the best weights are ob‑ 
tained by searching ⟨𝜃𝑘, 𝜑𝑘⟩ in all possible angles to min‑ 
imize the ICI, i.e.

⟨𝜃∗
𝑘, 𝜑∗

𝑘⟩ ⟵ arg 𝑚𝑖𝑛
⟨𝜃𝑘,𝜑𝑘⟩

𝑃𝑟(𝑆𝐼𝑁𝑅 < 𝑇𝑔|ℎ(𝑘)
𝑗 , 𝜌(𝑘)

𝑗 )

𝑠.𝑡. − 𝜋 < 𝜃𝑘, 𝜑𝑘 ≤ 𝜋
(4)

ℎ
where 𝑃𝑟 is the probability of SINRs weaker than the tar‑ 
get 𝑇𝑔 given the channel    𝑗

(𝑘) and UE density 𝜌𝑗
(𝑘),  and 

the SINR in (4) for the 𝑖𝑡ℎ UE located on the 𝑗𝑡ℎ cell can be 
expressed by [15]

𝑆𝐼𝑁𝑅𝑖,𝑗 = 𝑝𝑖,𝑗𝜍𝑖,𝑗
−𝜈

𝑁0𝐵 + ∑𝑁
𝑘=1,𝑘≠𝑗 𝑝𝑘𝜍𝑘

−𝜈
(5)
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where 𝜈 is the path‑loss exponent, 𝑝⋅𝑗 is the transmit
power of the serving enode 𝐵𝑗, 𝑁 is the number of neigh‑
boring enode 𝐵𝑠, 𝑝𝑘 is the transmit power from 𝐵𝑠, 𝜍⋅𝑗 is
the distance of the UE to the serving station, 𝜍𝑘 is the dis‑
tance of the UE to each of the neighboring stations, and
𝑁0𝐵 is the background noise with 𝑁0 the thermal noise
and 𝐵 the system bandwidth.

According to [16], the UE density 𝜌(𝑘)
0 in (4) is assumed to

follow the independently and identically distributed two‑
dimensional Poisson point process. The number of users
𝑁 (𝑘)

0 of the target cell with area 𝜑0 is given by

𝑃 𝑟{𝑁 (𝑘)
0 = 𝜆|𝜑0} = (𝜌(𝑘)

0 𝜑0)𝜆

𝜆! 𝑒−𝜌(𝑘)
0 𝜑0 (6)

∗
𝑘

From (4) to (6), the optimal parameters ⟨𝜃 , 𝜑∗
𝑘⟩ can be 

found, and the best weight Π𝑘 can be derived by substi‑ 
tuting (4)‑(6) into (1)‑(3).

4. THE PROPOSED REINFORCEMENT
LEARNING ASSISTED BEAMFORMING

Due to the lack of prior knowledge that is required to ϐind 
the theoretical optimal solution of (4), some research has 
been conducted over related surrogate RL optimization 
problems. Generally, apart from the MC method, Sarsa 
[17] and Q‑learning [13] are attempted. Those methods
lack convergence efϐiciency in practice even though their
convergence can be guaranteed [18].

In this section, a dynamic Q‑learning beamforming 
method is proposed to mitigate ICI and enhance conver‑ 
gence efϐiciency. Each BS exploits the user SINRs in a 
dense Urban‑eMBB transmission environment and esti‑ 
mates the Probability Density Function (PDF) of users’ oc‑ 
curences to achieve an optimal beamforming solution via 
trial without knowledge of the network and transmission 
channel.

4.1 RL‑based beamforming
In the RL‑based beamforming process as shown in Fig. 
1(a)(b), the BS in the target cell estimates the probability
density 𝜌0

(𝑡) of users’ occurrences in the target small cell
#0 by a long‑term data statistical analysis in (6) at time 
slot 𝑡. Once all served users send SINRs 𝛾(𝑡−1) at the time
slot (𝑡 − 1) to the BS, the state [𝜌0

(𝑡), 𝛾(𝑡−1)] observed by
the BS at the time slot 𝑡 is obtained, and then an RL‑based 
beamforming algorithm is applied for searching the op‑ 
timal parameters for the ICI mitigation and coverage op‑ 
timization. We formulate the beamforming optimization
problem under the MMIMO system context as an RL 
problem and therefore provide a dynamic Q-learning 
scheme to address the issue.

First, we deϐine the agent to be the MMIMO system, the 
set of states 𝑆 ≜ {𝑠𝑙}𝑙=0

𝑚−1 to be the levels of average re‑ 
gional SINR, the set of actions 𝐴 ≜ {𝑎𝑗}𝑗=0

𝑛−1 to be the 
possible combinations of antenna parameters. More pre‑ 
cisely, each 𝑠𝑙 is an interval of the SINR value, 𝑠0 is the 
optimal SINR value interval, i.e. the highest achievable 
SINR value derived from expert experiences in the 
current environment. Similarly, 𝑠𝑚−1 is the lowest SINR 
range. And as 𝑙 increases, the boundary values of 𝑠𝑙
decreases, thus a higher 𝑙 implies poorer signal 
performance state 𝑠𝑙.  Each action 𝑎𝑗 is an antenna 
parameter’s choice made by the MMIMO system, and 
consists of azimuth, vertical angle and beam width. The 
environment is a signal simulator, see Section 5.1 for 
more detail. The objective is to approach the optimal 
target SINR state 𝑠0 to achieve the best signal 
performance. It covers the probability in (4) of average 
regional SINR given by the simulator and guided by 
selected action 𝑎.  The environment (Fig. 1(c)) grants the 
agent a reward 𝑟𝑠,𝑎 after the latter takes an 𝑎 ∈ 𝐴 when it 
is in 𝑠 ∈ 𝑆.

Formally, we denote the state‑action value function, the 
expected discounted reward, as 𝑄(𝑠, 𝑎).  In the table Q ∈ 
𝑅𝑚×𝑛,  we use notation [19] 𝑄(𝑠, 𝑎) ≜ [Q]𝑠,𝑎 and update 
entries by:

𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼[𝑟𝑠,𝑎 + 𝛿 𝑚𝑎𝑥
𝑎′

𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎)]

(7) 

where 𝛼 ∶ 0 < 𝛼 < 1 is the learning rate and 𝛿 ∶ 0 < 𝛿 < 1 
is the discount factor and determines the importance of 
future rewards. 𝑠′ and 𝑎′ are the next state and action, 
respectively.

An episode is a period of time in which an interaction be‑ 
tween the environment and the agent takes place. Here, 
an episode is of (at most) 𝜏 transitional discrete time step 
𝑡. During an episode 𝑖 ∶ 𝑖 ∈ {0, 1, … , 𝜁}, the agent makes a 
decision to maximize the effects of actions decided by 
itself. To achieve this goal, we apply the 𝜖- greedy learning 
strategy to balance exploration and exploitation, where 
1 − 𝜖 ∶ 0 < 𝜖 < 1 is the exploration rate and serves as the 
threshold probability to select a random 𝑎 ∈ 𝐴, as op-
posed to selecting an action based on exploitation. To add 
randomness, the 𝜖 increases in every episode from 𝜖𝑚𝑖𝑛 
until it reaches a preset upper bound.

The 𝑆 space is constructed by partitioning the range of 
the process Cumulative Distribution Function (CDF), 
which is the probability of users with SINR under the 
given 𝑇𝑔 in (4). The components of 𝐴 space is shown in 
Table 1. Through a ϐinite series of 𝑎 ∈ 𝐴′ ∶= 𝐴 − C (will be 
discussed later), the agent attempts to approach 𝑠0 in 
response to simulated 𝑠𝑖 at step 𝑡 within an episode.
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Table 1 – Learning Parameters

Parameter Value

Learning rate 𝛼 0.01
Reward decay rate 𝛿 0.9
Minimum exploration rate 𝜖𝑚𝑖𝑛 0.9
Number of episodes 𝜁 22
Number of steps in each episode 𝜏 40
Number of states 30
Number of actions 855

4.2 Reward signals
4.2.1 Reward design with Q‑initialization
As discussed in [20], reward signals in our simulation en‑ 
vironment are crucial to the RL Markov Decision Process 
(MDP) since agents are expected to learn the optimal pol‑ 
icy under industrial criteria.

Since adding additional rewards follows the policy invari‑ 
ance [20], the reward function 𝑟(𝑠, 𝑎) within our problem 
setting consists of two main parts:

𝑟(𝑠, 𝑎) = 𝑟(𝑠0, 𝑎)𝑔𝑜𝑎𝑙 + 𝑟(𝑠, 𝑎)𝑖𝑛𝑡𝑒𝑟 (8)

𝑟(𝑠0, 𝑎)𝑔𝑜𝑎𝑙 is given to the agent if 𝑠0 is approached and
𝑟(𝑠, 𝑎)𝑖𝑛𝑡𝑒𝑟 works as intermediate reward in the training
process when 𝑠 ≠ 𝑠0.

We aim to construct reward shaping for 𝑟(𝑠, 𝑎)𝑖𝑛𝑡𝑒𝑟 us‑
ing the potential‑based method to help guide the agent in
MDP; the potential‑based shaping function is deϐined as
[20]:

Deϐinition 1 Let any𝑆, 𝐴, 𝛿 andany shaping reward func‑
tion 𝐹 ∶ 𝑆 × 𝐴 × 𝑆 → ℝ in MDP be given. 𝐹 is potential‑
based if there exists a real‑valued function Φ ∶ 𝑆 → ℝ 𝑠.𝑡.

𝐹 (𝑠, 𝑎, 𝑠′) = 𝛿Φ(𝑠′) − Φ(𝑠) (9)

for all 𝑠 ≠ 𝑠0, 𝑠′ ∈ 𝑆, 𝑎 ∈ 𝐴.

Therefore, based on the results in [20], such an 𝐹 can
guarantee consistency with the optimal policy that the
agent learned. Luckily, there is no need to construct the
shaping function from scratch [21], since the design of 𝐹
is equivalent to the initialization of [Q]𝑠,𝑎.

Suppose the optimal policies learnt in our model with and
without potential‑based 𝐹 are 𝜋′ and 𝜋, respectively. Let
initial 𝑄 function of 𝜋 be 𝑄(𝑠, 𝑎) = 𝑄0(𝑠, 𝑎) with shap‑
ing rewards 𝛿Φ(𝑠′) − Φ(𝑠), and initial 𝑄 function of 𝜋′ be
𝑄′(𝑠, 𝑎) = 𝑄0(𝑠, 𝑎) + Φ(𝑠) with no shaping rewards.

By (7), we have the update error:

{
𝑄𝑒𝑟𝑟𝑜𝑟 = 𝑟𝑠,𝑎 + 𝛿Φ(𝑠′) − Φ(𝑠) + 𝛿 𝑚𝑎𝑥

𝑎′
𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎)

𝑄′
𝑒𝑟𝑟𝑜𝑟 = 𝑟𝑠,𝑎 + 𝛿 𝑚𝑎𝑥

𝑎′
𝑄′(𝑠′, 𝑎′) − 𝑄′(𝑠, 𝑎)

(10)

and now insert Δ𝑄 and Δ𝑄′, the difference between cur‑
rent and initial values of 𝑄 and 𝑄′ respectively, into the
update error:

{ Δ𝑄(𝑠, 𝑎) = 𝑄(𝑠, 𝑎) − 𝑄0(𝑠, 𝑎)
Δ𝑄′(𝑠, 𝑎) = 𝑄′(𝑠, 𝑎) − 𝑄0(𝑠, 𝑎) − Φ(𝑠) (11)

we have

𝑄𝑒𝑟𝑟𝑜𝑟 = 𝑟𝑠,𝑎 + 𝛿Φ(𝑠′) − Φ(𝑠) + 𝛿 𝑚𝑎𝑥
𝑎′

(𝑄0(𝑠′, 𝑎′)

+ Δ𝑄(𝑠′, 𝑎′)) − 𝑄0(𝑠, 𝑎) − Δ𝑄(𝑠, 𝑎)
= 𝑟𝑠,𝑎 + 𝛿 𝑚𝑎𝑥

𝑎′
(Φ(𝑠′) + 𝑄0(𝑠′, 𝑎′) + Δ𝑄(𝑠′, 𝑎′))

− 𝑄0(𝑠, 𝑎) − Δ𝑄(𝑠, 𝑎) − Φ(𝑠)
= 𝑟(𝑠, 𝑎) + 𝛿 𝑚𝑎𝑥

𝑎′
𝑄′(𝑠′, 𝑎′) − 𝑄′(𝑠′, 𝑎′)

= 𝑄′
𝑒𝑟𝑟𝑜𝑟

(12)
Therefore, we investigate the relationship between 𝑟𝑖𝑛𝑡𝑒𝑟
and 𝑄0(𝑠, 𝑎) to decide the form of 𝑟𝑖𝑛𝑡𝑒𝑟. In the MDP prob‑
lem setting [18], the discounted return from time step 𝑡
is 𝐺𝑡 = ∑∞

𝑘=0 𝛿𝑘𝑟𝑡+𝑘+1, and since 𝛿 ∈ (0, 1), if 𝑟𝑖𝑛𝑡𝑒𝑟 is
formed as a bounded series based on the distance from
𝑠0 to 𝑠𝑙: 𝑟(𝑠, 𝑎)𝑖𝑛𝑡𝑒𝑟 ≤ 𝑟𝑏𝑜𝑢𝑛𝑑, where 𝑟𝑏𝑜𝑢𝑛𝑑 ≤ 1, we have

𝐺𝑡 =
∞

∑
𝑘=0

𝛿𝑘𝑟𝑡+𝑘+1

≤
∞

∑
𝑘=0

𝛿𝑘𝑟𝑏𝑜𝑢𝑛𝑑

≤ 𝑟𝑏𝑜𝑢𝑛𝑑
∞

∑
𝑘=0

𝛿𝑘

= 𝑟𝑏𝑜𝑢𝑛𝑑
1 − 𝛿

(13)

then for optimal policy 𝜋′ [18]

𝑚𝑎𝑥
𝑎

𝑄𝜋′(𝑠, 𝑎) = 𝐸[𝐺𝑡] ≤ 𝑟𝑔𝑜𝑎𝑙 (14)

we know 𝑟𝑖𝑛𝑡𝑒𝑟 and 𝑟𝑔𝑜𝑎𝑙 satisfy:

𝑟𝑏𝑜𝑢𝑛𝑑
1 − 𝛿 ≤ 𝑟𝑔𝑜𝑎𝑙 (15)

(15) gives an explicit gap between the two parts of 𝑟(𝑠, 𝑎) 
and also directly inϐluences the following initialization of 
𝑄(𝑠, 𝑎).

4.2.2 Q‑initialization setting
We rewrite the initial 𝑄 table of policy 𝜋′ and the ϐinal 

converged table as 𝑄0
𝜋′ and 𝑄𝑓

𝜋′
𝑖𝑛𝑎𝑙 respectively. By ((7)),

𝑄𝜋′(𝑠, 𝑎) ← 𝑄𝜋′
0 + 𝛼(𝑟𝑏𝑜𝑢𝑛𝑑 + 𝛿𝑄𝜋′

0 − 𝑄𝜋′
0 )

= 𝑄𝜋′
0 + 𝛼(1 − 𝛿)(𝑄𝜋′

𝑓𝑖𝑛𝑎𝑙 − 𝑄𝜋′
0 )

(16)

we can derive that

𝑄𝜋′
0 > 𝑄𝜋′

𝑓𝑖𝑛𝑎𝑙 = 𝑟𝑏𝑜𝑢𝑛𝑑
1 − 𝛿 (17)
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to guarantee the convergence of the model update.
And under the Q‑learning scheme, (17) always provide
chances of exploration for actions that have not been at‑
tempted.

In this end, we give reward signals for 𝑟(𝑠, 𝑎) as follows:

𝑟𝑠𝑙,𝑎 ∶=
⎧{{
⎨{{⎩

− 𝑒0.1⋅(𝑙−2)
𝑒2.8+1 𝑠𝑙 ≥ 𝑠2

− 0.01
𝑒2.8+1 𝑠𝑙 = 𝑠1

𝑒0.2⋅(30−𝑖)
𝑒2.8+1 𝑠𝑙 = 𝑠0

(18)

Algorithm 1 Optimal Action Selection Control

Input: Initial CDF state 𝑠𝑖𝑛𝑖𝑡 and target state 𝑠0.
Output: Optimal 𝑎 to approach 𝑠0 during episode 𝑖.

1: Deϐine customized 𝑆, 𝐴, 𝜖 and 𝛿.
2: Initialize C ∶= { }, Q ∶= 0|𝑆|×|𝐴|, 𝑖 ∶= 0
3: Initialize 𝑠 ∶= 𝑠𝑖𝑛𝑖𝑡, 𝑡 ∶= 0
4: repeat
5: while 𝑡 < 𝜏 do
6: 𝜖 ∶= 𝑚𝑎𝑥

𝑎′
(𝜖𝑚𝑖𝑛, 𝜖𝑚𝑖𝑛 + 𝛿 ⋅ 𝑡/(𝜏 ⋅ 𝜁))

7: Sample 𝑘1, 𝑘2 ∼ 𝒰(0, 1)
8: if 𝑘1 ≤ 𝜖 then
9: if 𝑘2 > 𝛿(1 − 𝜖) then

10: Select 𝑎 ∈ 𝐴 − C, 𝑎 = arg 𝑚𝑎𝑥
𝑎′

𝑄(𝑠, 𝑎′)
11: else
12: Select 𝑎 ∈ 𝐴, 𝑎 = arg 𝑚𝑎𝑥

𝑎′
𝑄(𝑠, 𝑎′)

end
13: else
14: Select 𝑎 ∈ 𝐴 − C randomly

end
15: Perform 𝑎 in the simulator obtain 𝑠′, 𝑟(𝑠, 𝑎)
16: Update the entry 𝑄(𝑠, 𝑎) as in (7)
17: 𝑠 ← 𝑠′, 𝑡 ← 𝑡 + 1
18: if 𝑠 ≠ 𝑠0 then
19: Append 𝑎 in C
20: else
21: Early stopping
22: return 𝑎
23: end
24: end while
25: until 𝑠 = 𝑠0 otherwise proceed to episode 𝑖 + 1

4.3 Dynamic Q‑Learning algorithm
Considering the computational and equipment cost in an
MMIMO system, the delaying effect of reward should be
minimized. Then after each step 𝑡, we use twice 𝜖‑greedy
strategy, the controller to help avoid the action that is un‑
related to 𝑠0 to dynamically shrink the 𝐴 space in order

to make up for the delay in (18). Therefore, the controller 
plays a highly efϐicient role as the penalty signal in our re‑ 
ward and serves as a reinforced mechanism to assist the 
selection. The upper bound of the time complexity for the 
dynamic Q‑learning method is in 𝒪(𝑚𝑛) [22].

For a total of at most 𝑛 trials in 𝜁 episodes with a ϐixed 
initial environment setting, algorithm 1 will stop training 
the agent once 𝑠0 is approached rather than continuing 
the process due to the reward signals design in our model:

Controller C: As shown in Algorithm 1, controller C will 
shrink the action space related to 𝑠 in every step 𝑡 based 
on the double 𝜖- greedy principle. This operation enables 
the optimal action selection with higher and higher prob‑ 
ability as 𝑡 goes on.

Reward 𝑟𝑠,𝑎:  (18) guarantees the agent learns a global op-
timum, our target action, instead of continuously jumping 
on some local optimum for meaningless rewarding [23].

Reward signals and controller C attempt to guide the 
agent by avoiding redundant scoring and long term penal‑ 
ties. The agent itself continuously updates the learning 
policy under the guidance of both of them.

4.4 Other existing methods
For the not too large 𝑆×𝐴 space deϐined in Section 4.1, 
the MC exhaustion algorithm often serves as a baseline 
solution for the problem in Section 3. It requires testing 
on all possible 𝑎 ∈ 𝐴 to ensure the best action among 
space 𝐴.

Therefore, we apply classical model‑free RL methods: Q‑ 
learning (off‑policy) and Sarsa (on‑policy) [18] in this 
problem setting. They differ mainly in the Q function up‑ 
dating style, while Q‑learning holds ((7)), Sarsa follows 
the update below:

𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼[𝑟𝑠,𝑎 + 𝛿𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎)] (19)

Parameters for these models are set the same as in Table 1. 
Unsurprisingly, off‑policy based methods are superior to 
on‑policy methods [18] in the experiment discussed 
later.

With the experience gained from Algorithm 1, Algorithm 2 
is proposed to test the trained agent’s policy with any 
randomized given 𝑠𝑖𝑛𝑖𝑡.

5. SIMULATIONS AND DISCUSSIONS
To thoroughly investigate the performance of the pro‑ 
posed RL‑assisted full dynamic beamforming method and 
validate the effectiveness of the theoretical analysis previ‑ 
ously, we present statistical results of SINRs and compu‑ 
tational complexity of the proposed algorithm compared 
to other industrial methods. We implement Algorithm 1 
within the environment below with preset parameters 
shown in both Table 1 and Table 2.

here 𝑠𝑙 ≥ 𝑠2 means 𝑙 ≥ 2 and set 𝑟𝑏𝑜𝑢𝑛𝑑 = − 𝑒2.8
0.01

+1
from (18) to follow the conditionswederived in (13), (15).
Therefore, we can initialize the 𝑄 function as [Q]𝑠,𝑎 ∶=
0|𝑆|×|𝐴| to satisfy (17).
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Table 2 – Environment components

Simulation Parameter Value Simulation Parameter Value

Antenna 3dB‑Bandwidth in Azimuth (∘) 15 ∼ 110 Number of Observed UEs 𝐾0 100
Antenna 3dB‑Bandwidth in Elevation (∘) 0 ∼ 30 Receiver Bandwidth (MHz) 20
Antenna Tilt Angle (∘) −3 ∼ 15 Receiver Height (m) 1.5
Carrier Frequency (GHz) 3.5 MM Array Type URA
Height of BS (m) 25 MM Array Size 8×8
Transmit Power (dBm) 44 MM Mechanical Downtilt 15

Algorithm 2 Evaluation Algorithm

Input: Target state 𝑠0 and Q from Algorithm 1.
Output: Optimal 𝑎, target 𝑠 with rewards for 𝑍 episodes.

1: Load the experienced Q ∶= [Q]𝑠,𝑎, 𝑧 ∶= 0
2: repeat
3: Randomize 𝑠𝑖𝑛𝑖𝑡
4: Choose 𝑎 = arg 𝑚𝑎𝑥

𝑎′
𝑄(𝑠𝑖𝑛𝑖𝑡, 𝑎′)

5: Perform 𝑎 in the simulator and obtain 𝑠′, 𝑟𝑠𝑖𝑛𝑖𝑡
, 𝑡

6: Update (𝑠 ∶= 𝑠′, 𝑎, 𝑟𝑠𝑖𝑛𝑖𝑡
, 𝑡)𝑧

7: 𝑧 ← 𝑧 + 1
8: until 𝑧 = 𝑍

5.1 Environment setting
We use the three following metrics to set up the simula‑
tion environment and help compare:

• The simulation is based on the guidelines de�ined in
[24] for evaluating 5G radio technologies in an ur‑ 
ban macro‑cell test environment which presents a 
radio channel with high user density and traf�ic loads 
focusing on pedestrian and vehicular users (Dense 
Urban‑eMBB) [25].

• As shown in Fig. 1(a), the environment layout con‑ 
sists of 19 sites placed in a hexagonal layout, each 
with 3 cells, and the Inter‑Site Distance (ISD) is 
200 m.

• To visualize SINR for the simulation scenario we use 
the Close‑In (CI) propagation path loss model [26], 
which calculates the path loss of transmitted power 
in 5G urban microcell and macro‑cell scenarios. This 
model produces an RSRP (Reference Signal Receiv‑ 
ing Power) map and a SINR map that shows reduced 
interference effects compared to other beamforming 
methods.

5.2 Computational complexity
The agent learns from the environment for 1000 epochs
of all randomized 𝑠𝑖𝑛𝑖𝑡 and stores policy experience in the
Q‑table described in Algorithm 1. In this stage, our model
performs faster and is more stable than other methods
mentioned above. We utilize the three following metrics
to help compare:

Normalized Iteration Expectation ℐ𝐸: it indicates the
scaled steps expectation to approach 𝑠0 in 1000 epochs
of training.

Computational Ef�icienc y (CE) ℰ∗: we de�ine the ratio be‑
low to re�lect computational cost saving:

ℰ∗ ≜ ℐE for Baseline MC
ℐE for method i

(20)

where 𝑖 ∈ {Dynamic Q, Q‑learning, Sarsa}.

Reward Scoring: This metric indicates how the dynamic 
Q method is different from other methods in speed and 
convergence when achieving reward.

Fig. 2(a) displays the ℐ𝐸 with standard deviation, which 
implies stability in 1000 epochs, of how the dynamic Q 
model acts differently from Q‑learning, Sarsa and MC. 
It takes the lowest normalized ℐ𝐸 needed to meet 𝑠0 
with the highest computational ef�iciency  ℰ∗ (highlighted 
stars) and even doubles ℰ∗ compared to the baseline MC.
(b) indicates the agility of our model in adapting to the en-
vironment. Given randomized 𝑠𝑖𝑛𝑖𝑡, the 95% con�idence 
interval shadow indicates within 1000 epochs of training, 
the range and convergence rate of reward scoring for the 
dynamic Q model differs from other RL methods. Our 
model is able to fully train its agent in 10 episodes (with‑ 
out early stopping) with robustness and obtain the high‑ 
est reward while other methods are still unstable under 
the two criteria.

5.3 SINR performance
We show our model’s shifting effect on SINR coverage in 
Fig. 2(c)(d) compared to other methods. With the opti‑ 
mal parameters derived from four models, respectively, 
within 10 episodes in (b) and sent into the simulator, (c) 
indicates ours is of the smallest weak SINR coverage that 
is lower than 0dB. The dynamic Q model suf�icientl y shifts 
the SINR coverage towards a strong SINR direction, and it 
enlarges the SINR coverage larger than 0 dB to over 50% of 
the total population in the Region of Interest (ROI). Specif‑ 
ically, (d) discloses that our model has the smallest proba‑ 
bility density of users with weak SINR, for example, when 
SINR ∈ (−5, 0],  the probability is 23% with the dynamic 
Q model while it is 74%, 58%, 38% with the rest of the 
methods, respectively.
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(a) The complexity of iteration expectation (b) The best reward of �ix ed iteration 𝑁𝑖𝑡 = 10

(c) The CDF of SINRs (d) The PMF of SINRs

Fig. 2 – Comparison of computational complexity and SINR improvements of the proposed dynamic Q algorithm with other industrial methods: MC
(Baseline), Q‑Learning and Sarsa. (a) shows the total iteration number for the optimal parameters; (b) displays their best reward when the iterate
number is �ix ed to 𝑁it = 10, each point on the mean curve of rewards is averaged across 1000 epochs with random 𝑠𝑖𝑛𝑖𝑡 , the shadow is the 95%
con�idence interval across 40 episodes of three models setting; (c) and (d) give the CDF and PMF of their SINRs.

(a) Baseline:
�̄� = −2.036𝑑𝐵

(b) SARSA:
�̄� = −1.724𝑑𝐵

(c) Q‑learning:
�̄� = 1.488𝑑𝐵

(d) Dynamic Q
�̄� = 6.319𝑑𝐵

Fig. 3 – The average SINRs of different RL‑based ICI mitigation algo‑ 
rithms in 5G MMIMO system, with parameters fed from Fig. 2(b). White 
circles are ROI. 𝑊 = 64, 𝑁𝑐𝑒𝑙𝑙 = 57, 𝐾0 = 100.

Fig. 3 displays the application when the optimal action 
is sent into the simulator of different models in 10 train‑ 
ing episodes. The dynamic Q model is of the best average 
SINR of 𝛾 = 6.319 dB in the ROI among all models.

In Table 3, we compare the average SINRs, across 6 dif‑ 
ferent scenarios, for the dynamic Q model against MC, 
SARSA, and Q‑Learning with parameters fed from Fig. 
2(b). It is clear that the dynamic Q model improves the 
UE SINRs across 6 different environments, particularly in 
comparison with MC, where we achieve the average SINR 
improvements of around 8.3 dB, 10.4 dB, 12.2 dB 11.2 dB 
and 11.8 dB, respectively.

6. CONCLUSION
In this paper, we propose an RL (i.e. dynamic Q‑learning) 
assisted full dynamic beamforming algorithm for the ICI 
mitigation in 5G MMIMO systems. This algorithm miti‑ 
gates the ICI and reduces the computational complexity 
of the BS without knowledge of the network and trans‑ 
mission channel. Simulation results show the implemen‑ 
tation complexity is lower and UE SINRs are signi�icantly 
improved compared to other industrial methods. For ex‑ 
ample, in the dense Urban‑eMBB scenario, the probability 
of weak SINRs in the target cell is about 60% lower and 
computational complexity is reduced by more than 50% 
compared to the benchmark.
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Table 3 – Application scenarios

BS location RL‑based ICI mitigation algorithms

Longitude Latitude MC Sarsa Q‑learning Dynamic Q

116.395659 39.959522 –2.036 –1.724 1.488 6.319
117.212147 39.161901 –4.732 –2.543 0.563 5.783
111.713038 40.832723 –7.931 –3.472 –1.239 4.374
111.710787 40.832027 –6.293 –2.174 0.897 4.978
111.709219 40.837586 –6.517 –2.573 1.296 5.381
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Abstract – Recent advancements in Deep Learning (DL) have revolutionized the waywe can efϔiciently tackle complex opti‑
mization problems. However, existing DL‑based solutions are often considered as black boxes with high inner complexity. As a
result, there is still certain skepticismamong the networking industry about their practical viability to operate data networks.
In this context, explainability techniques have recently emerged to unveil why DL models make each decision. This paper fo‑
cuses on the explainability of Graph Neural Networks (GNNs) applied to networking. GNNs are a novel DL family with unique
properties to generalize over graphs. As a result, they have shown unprecedented performance to solve complex network
optimization problems. This paper presents NetXplain, a novel real‑time explainability solution that uses a GNN to interpret
the output produced by another GNN. In the evaluation, we apply the proposed explainability method to RouteNet, a GNN
model that predicts end‑to‑end QoS metrics in networks. We show that NetXplain operates more than 3 orders of magnitude
faster than state‑of‑the‑art explainability solutions when applied to networks up to 24 nodes, whichmakes it compatible with
real‑time applications; while demonstrating strong capabilities to generalize to network scenarios not seen during training.

Keywords – AI/ML for networks, explainability, graph neural networks

1. INTRODUCTION
In recent years, Deep Learning (DL) has revolutionized 
the way we are able to solve a vast number of problems 
by ϐinding meaningful patterns on large amounts of data. 
This acquired knowledge then enables us to make highly 
accurate predictions, leading to systematically outper‑ 
forming state‑of‑the‑art solutions in many different prob‑ 
lems [1, 2]. However, in the ϐield of networking, DL‑based 
techniques still pose an important technological barrier 
to achieve market adoption. In general, Machine Learning 
(ML) solutions provide probabilistic performance guar‑ 
antees, which typically degrade as the data deviates from 
the distribution observed during training. Moreover, neu‑ 
ral networks have very complex internal architectures, of‑ 
ten with thousands or even millions of parameters not in‑ 
terpretable by humans. As a result, they are treated as 
black boxes [3]. This limits the viability of these solutions 
to be applied to networks, as these are critical infrastruc‑ 
tures where it is essential to deploy fully reliable solu‑ 
tions. Otherwise, a potential misconϐiguration could lead 
to temporal service disruptions with serious economic 
damages for network operators.
In this vein, we do need mechanisms that can delimit the 
safe operational ranges of DL models. This makes it fun‑ 
damental to understand why and in what situations a DL‑ 
based solution can fail. This can be achieved by producing 
human‑readable interpretations of the decisions made by 
these models (e.g., interpret a routing decision given a 
trafϐic matrix and a network topology). This would not 
only enable us to achieve more mature and reliable DL 
solutions but also to enhance their performance by mak‑
ing ad-hoc adjustments for a particular network scenario 
(e.g., hyper-parameter tuning).

In this context, explainability solutions [4] have recently 
emerged as practical tools to interpret systematically the 
decisions produced by DL models. Particularly, these 
recently proposed solutions analyze trained DL models 
from a black‑box perspective (i.e., they only analyze their 
inputs and outputs) and aim to discover which elements 
mainly drive the output produced by these models. As a 
result, they can eventually determine what are the most 
critical input elements to reach the ϐinal decisions. These 
kinds of techniques have been intensely examined in the 
ϐield of computer vision, showing promising results [5].
At the same time, the last few years have seen the explo‑ 
sion of Graph Neural Networks (GNNs) [6], a new neural 
network family that has attracted large interest given its 
numerous applications to different ϐields where the in‑ 
formation is fundamentally represented as graphs (e.g., 
chemistry [7], physics [8], biology [9], information sci‑ 
ence [10, 11]). This newly introduced mechanism has 
proven, to date, to be the only DL technique capable of 
generalizing with high accuracy to graphs of different 
sizes and structures not seen during the training phase.
In this context, GNNs have shown good properties to be 
applied in the ϐield of computer networks, as many key 
components in network control and management prob‑ 
lems are fundamentally represented as graphs (e.g., topol‑ 
ogy, routing). Indeed, we have already witnessed some 
successful GNN‑based applications to network modeling 
and optimization [12, 13, 14, 15]. However, the fact that 
we are not able to understand the inner architecture of
GNNs presents nowadays a major barrier that may 
hinder its adoption in real-world networks.
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Explainability of GNNs has been recently explored in two 
main works. A ϐirst work emerging from the ML commu‑ 
nity [10] analyzes a well‑known GNN model applied to a 
chemistry problem to quantify the impact of the differ‑ 
ent input elements (atoms, bonds) on the ϐinal model pre‑ 
dictions (molecular properties). Likewise, the network‑ 
ing community has made a ϐirst attempt to apply a simi‑ 
lar solution to several network optimization use cases 
[3]. However, both solutions are based on costly iterative 
optimization algorithms that need to be executed for each 
sample on which we want to obtain interpretations. 
Hence, they do not meet the requirements to make com‑ 
prehensive analysis over large data sets and, more impor‑ 
tantly, to be used in real‑time applications. To address 
these limitations, this paper proposes NetXplain, a novel 
real‑time explainability solution for GNNs. NetXplain in‑ 
troduces a novel approach where we use a GNN that 
learns, from Tabula Rasa, how to interpret the outputs of 
another GNN trained for a speciϐic task (e.g., routing op‑ 
timization). NetXplain produces human‑understandable 
interpretations of GNNs comparable to those of state‑of‑ 
the‑art solutions [10, 3]. However, it makes this at a much 
more limited cost. In our evaluation, we apply NetXplain 
to RouteNet [12], a GNN model that predicts the per‑path 
delay given a network snapshot as input (i.e., topology + 
routing + trafϐic matrix). To this end, we ϐirst train NetX‑ 
plain on a data set with samples produced by Metis [3]. 
This training is done over a data set of limited size –5 to 
10% of the original data set used in RouteNet [12]. Then, 
we validate the generalization power of our GNN‑based 
method, by applying it to network scenarios fundamen‑ 
tally different from those seen during training. The evalu‑ 
ation results reveal the feasibility to train NetXplain over 
a small dataset produced by costly explainability solutions 
(e.g., [10, 3]), and be able to apply it over a wide variety 
of network scenarios. This eventually enables us to meet 
the needed requirements to make a comprehensive anal‑ 
ysis of the safe operational range of GNN solutions at a 
limited cost. In this context, we show that NetXplain far 
outperforms state‑of‑the‑art algorithms in terms of com‑ 
putational cost, running more than 3 orders of magnitude 
faster on average than Metis [3] when applied to samples 
of three real‑world network topologies up to 24 nodes. 
As an example, this explainability solution can be used 
as follows: given a GNN‑based solution and a network 
scenario, NetXplain points to the particular network ele‑ 
ments (e.g., devices, links, paths) that mostly affected the 
output  decisions  of  the  GNN model. This can be help‑ 
ful for many different use cases, including: (𝑖) test & 
troubleshooting of GNN‑based solutions, (𝑖𝑖) reverse en‑ 
gineering, or (𝑖𝑖𝑖) improving network optimization solu‑ 
tions.
The remainder of this paper is structured as follows. First, 
Section 2 introduces the fundamental principles of GNNs 
and their application to networking. Then, Section 3 
presents the related work on explainability for GNNs. 

In Section 5 we describe NetXplain, the proposed explain‑ 
ability solution. Afterward, Section 6 presents an evalu‑ 
ation of the accuracy and cost of NetXplain with respect 
to the state of the art. Finally, Section 7 presents a discus‑ 
sion on possible applications of the proposed explainabil‑ 
ity method, and Section 8 concludes the paper.

2. BACKGROUND

2.1 Graph neural networks
Graph neural networks are a novel neural network fam‑ 
ily designed to operate over graph‑structured data, by 
capturing and modeling the inherent patterns in a graph. 
This has resulted in an unprecedented predictive power 
in many applications where data is structured as graphs. 
Despite the several variants of GNNs introduced in recent 
years, in this paper we focus on Message‑Passing Neural 
Networks (MPNN) [7], as they represent a generic GNN 
framework.
MPNN operates over a graph G, in which nodes 𝑣 ∈ 𝐺 are 
characterized with some initial features 𝑋𝑣.  First, the 
hidden‑state ℎ0

𝑣  of each  node  𝑣 ∈ 𝐺  are initialized us‑ 
ing their input node features 𝑋𝑣.  Once each element 𝑣 of 
the graph has its hidden‑state ℎ0

𝑣 initialized, they proceed 
to the message‑passing phase, which shall be repeated a 
given number of times 𝑇 . Fig. 1 illustrates how the mes‑ 
sage passing phase works. In each iteration 𝑡 of the algo‑ 
rithm, every node 𝑣 receives a message from each of its 
neighbors 𝑢 ∈ 𝑁(𝑣).  In MPNN, messages are generated 
using a function 𝑚(·) computed with the hidden state of 
the neighbor node. Then, once every node 𝑣 has received 
the messages from its immediate neighbors, these mes‑ 
sages are combined with an aggregation function 𝑎(·) pro‑ 
ducing a ϐixed‑size output (e.g., an element‑wise summa‑ 
tion).
Finally, the algorithm reaches the update phase, in which 
nodes use the aggregated information received from their 
neighbors to update their own hidden states via the up‑ 
date function 𝑢(·).
Formally, the message passing at a given iteration 𝑡 is de‑ 
ϐined as:

𝑚𝑣,𝑗 = 𝑚(ℎ𝑡
𝑣, ℎ𝑡

𝑗, 𝑒𝑣,𝑗) (1)

𝑀 𝑡+1
𝑣 = 𝑎({𝑚𝑣,𝑗 | 𝑗 ∈ 𝑁(𝑣)}) (2)

ℎ𝑡+1
𝑣 = 𝑢(ℎ𝑡

𝑣, 𝑀 𝑡+1
𝑣 ) (3)

In these equations, functions 𝑚(·) and 𝑢(·) can be com‑ 
puted through a universal function approximator, such as 
neural networks (e.g., feed‑forward NN or recurrent NN). 
After 𝑇 message passings, the hidden states of nodes typ‑ 
ically converge to some ϐixed values [6]. Thus, these ϐi‑ 
nal hidden states pass through a readout function 𝑟(·) that 
computes the output of the GNN model. 𝑟(·) automatically 
learns the mapping from hidden‑state representations to 
the output labels of the model 𝑦:

̂𝑦 = 𝑟(ℎ𝑇
𝑣 | 𝑣 ∈ 𝑉 ) (4)
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Fig. 1 – Message‑passing phase: (left) Message, (mid) aggregation and 
(right) update.

Such a function 𝑟(·) can also be implemented as a neural 
network, typically a feed-forward NN, and can be used to 
produce either node‑level predictions by processing in‑ 
dividually each node hidden state, or make global pre‑ 
dictions of the graph by combining all the hidden states. 
In this latter case, hidden states are typically aggregated 
(e.g., element‑wise sum) before they are introduced into 
the readout function.
This technology has proven to generalize successfully 
over graphs of different sizes and structures, which was 
not possible with traditional neural network architec-
tures (e.g., feed‑forward NN, convolutional NN, recurrent NN).

2.2 Graph neural networks applied to
networking

The strong generalization capabilities of GNN over graphs
make these models interesting for applications in the
networking ϐield since the most natural way to formal‑
ize many network control and management problems in‑
volves the use of graphs (e.g., topology, routing, inter‑
ϐlow dependencies) [3]. Recently, several GNN‑based so‑
lutions have been proposed to tackle different use cases
in the ϐield of computer networks (e.g., network mod‑
eling [12, 16], automatic routing protocols [13]). In
this section, for illustrative purposes, we focus only on
RouteNet [12], as it is quite representative of how GNN‑
based solutions represent and process network‑related
data to solve complex problems.
RouteNet targets the problem of modeling the per‑path
QoS metrics (e.g., delay, jitter) of a computer network. For
this purpose, a network snapshot is provided as input:
a network topology, a routing conϐiguration, and a traf‑
ϐic matrix. To this end, this model makes a transforma‑
tion of the physical network scenario into a more reϐined
graph representation in which physical and logical ele‑
ments are explicitly represented –paths and links in this
case. More speciϐically, every link of the physical network
topology is transformed into a node in the input graph of
the GNN. Likewise, each source‑destination path is also
converted into a node. Finally, edges connect links with
paths according to the routing conϐiguration. Thus, each
path is connected to those links that it traverses given the
input routing scheme. This process is illustrated in Fig. 2,
where we can observe how a physical network scenario
with two paths and three links is transformed into the in‑
put graph of RouteNet. This graph representation enables
us to model the complex relationships between the state

Fig. 2 – Transformation from the physical network scenario to the graph 
representation of RouteNet.

of paths and links, and how they relate to the output per‑ 
path performance metrics (e.g., delay).
In this regard, applying explainability over this model 
would enable us to identify the most critical edges of its 
internal graph (i.e., path‑link relations). We refer to crit‑ 
ical edges as the set of path‑link pairs that better explain 
the QoS metrics obtained by the model. Thus, with this 
solution, we can extract relevant knowledge of the pro‑ 
cessing made by the GNN given a network scenario, which 
can have many diverse applications, as later discussed in 
Section 7.

3. RELATED WORK
Recent years have attracted increasing interest in pro‑ 
ducing explainability solutions for neural network mod‑ 
els (e.g., Convolutional Neural Networks [5]). Despite this, 
explainability techniques for GNN have been scarcely ex‑ 
plored so far. In this context, GNNExplainer [17] is, to the 
best of our knowledge, the ϐirst proposal approaching this 
problem.
GNNExplainer is given as input a target GNN model and a 
sample graph 𝐺 = (𝑉 , 𝐸), with input features 𝐹 . GNNEx‑ 
plainer, then, outputs a subset containing the connections 
𝐸′ ⊂ 𝐸 and the node features 𝐹 ′ ⊂ 𝐹 , that affect most 
critically the output of the target GNN (see Fig. 3). This is 
done by computing a set of weights 𝑊 , formally deϐined 
in Eq. (5), that represents how critical are the pair‑wise 
connections of input graphs to the prediction accuracy of 
the target GNN.

𝑊 = {𝑤𝑖,𝑗 | (𝑖, 𝑗) ∈ 𝐸} (5)

Particularly, the most relevant connections are those that 
have more impact on the loss function used to train the 
model (e.g., mean squared error for regression tasks). 
The number of relevant connections produced by the al‑ 
gorithm can be tuned by setting a threshold on the result‑ 
ing weights 𝑤𝑖,𝑗 ∈ 𝑊 .
Overall, GNNExplainer is a generic solution proposed 
from the ML community that targets only at producing 
explainability representations of GNNs used for global 
graph classiϐication, node‑level classiϐication, or link pre‑ 
diction. However, this solution does not support GNN‑ 
based models used for regression. In this context, a pos‑ 
terior solution proposed from the networking commu‑ 
nity presents Metis [3], a similar approach adapted to 
GNN models trained for regression problems, particularly
showcasing its use in several networking applications.
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Fig. 3 – Schematic description of explainability solutions for GNN (e.g.,
GNNExplainer)

Fig. 4 – Explainability mask of an input graph.

Although GNNExplainer [17] and Metis [3] are able to 
produce quality explainability solutions for a vast range 
of problems, both have an important limiting factor. To 
compute 𝐸′ and 𝐹 ′ for each input sample, these solu‑ 
tions use an iterative convex optimization method, which 
is very time‑consuming. For instance, producing a sin‑ 
gle explainability solution can take up to hundreds of sec‑ 
onds in scenarios with topologies between 14 and 24 
nodes, as shown later in Section 6. This fact arguably pre‑ 
vents these methods to be applied for real‑time operation. 
Moreover, their high cost makes them impractical to per‑ 
form a comprehensive test analysis of GNN‑based solu‑ 
tions, covering a wide range of network scenarios, before 
these tools are released to the market.

4. PRELIMINARIES
This section ϐirstly introduces a detailed description of 
the representations produced by graph‑based explain‑ 
ability methods, which are commonly referred to as ex‑ 
plainability masks. Then, we present the general overview 
on how state‑of‑the‑art explainability solutions produce 
explainability masks on graphs.

4.1 Explainability mask
We refer to the explainability mask as an n×n  matrix that 
deϐines the relevance of each connection of an input graph 
𝐺 = (𝑉 , 𝐸) on the output produced by the target GNN, 
where 𝑛 = |𝑉 |.  This mask enables us to interpret which 
are the main graph elements that affect most the predict‑ 
ing power of the GNN in each case.
Formally, given an input graph 𝐺 = (𝑉 , 𝐸),  state‑of‑the‑ 
art explainability methods aim to produce an explainabil‑ 
ity mask 𝑊 ∈ {0, 1}𝑛×𝑛,  where each element deϐines a 
weight 𝑊𝑖,𝑗 indicating the importance of the connection 
between node 𝑖 and node 𝑗 on the overall accuracy of the 
target GNN. Fig. 4 illustrates how the explainability mask 
is built from an input (undirected) graph 𝐺.  Particularly, 
this matrix contains a weight for each pair (𝑖, 𝑗) connected 
in the graph.

Note that when applying GNN to network‑related prob‑
lems, input graphs 𝐺 may contain a wide variety of el‑
ements and connections that do not necessarily corre‑
spond to physical network elements (e.g., forwarding de‑
vices, links). For instance, some proposals like [12, 16]
introduce complex hypergraphs including logic network
entities (e.g., end‑to‑end paths).

4.2 Generating explainability masks
Current explainability solutions are based on iterative op‑
timization methods, which work as follows:
Given a target GNN and an input graph 𝐺 = (𝑉 , 𝐸), ex‑
plainability algorithms apply an iterative (costly) gradi‑
ent descent method to compute the explainability mask
𝑊 that best explains the accuracy of the model (i.e., it
deϐines the set of weights 𝑊 (see Eq. (5))) that repre‑
sents the impact of each graph edge on the loss func‑
tion of the target GNN. More speciϐically, the calculation
of the explainability mask is driven by the loss function
of Eq. (6), which depends on three factors: (𝑖) predictive
loss, (𝑖𝑖) entropy of the values in the mask, and (𝑖𝑖𝑖) L1
regularization computed over the mask. The predictive
loss quantiϐies how the accuracy of the target GNN (𝑌𝐼)
degrades when weighting the hidden states according to
𝑊 (𝑌𝑊 ). Note that the predictive loss function greatly de‑
pends on the speciϐic problem we aim to solve (e.g., re‑
gression or classiϐication). The entropy factor (Eq. (7))
controls the trade‑off between too homogeneous or too
sparse values in the resulting mask 𝑊 . Finally, the 𝐿1
regularization controls the number of connections that
will have high values. More in detail, as the regulariza‑
tion factor has more importance, the mask will be driven
towards having less critical connections (i.e., less high‑
value weights), which can be more useful for human in‑
terpretability. Moreover, notice that both entropy and
regularization loss are weighted according to two hyper‑
parameters (i.e., 𝛼, 𝛽) that can be ϐine‑tuned according to
the problem’s needs.
Through a gradient descent method, these algorithms
gradually converge to the optimal mask 𝑊 ∗ that mini‑
mizes the loss function ℓ(𝑊).

ℓ(𝑊) = 𝑃(𝑌𝐼 , 𝑉𝑊 ) + 𝛼𝐻(𝑊) + 𝛽||𝑊||𝐿1 (6)

𝐻(𝑊) = − ∑
𝑖,𝑗

(𝑊𝑖,𝑗 log(𝑊𝑖,𝑗) + (1 − 𝑊𝑖,𝑗) log(1 − 𝑊𝑖,𝑗)) (7)

5. NETXPLAIN: PROPOSED EXPLAINABILITY
METHOD

In this section, we introduce NetXplain, a novel explain‑
ability method for GNN, compatible with real‑time opera‑
tions, that addresses the performance limitations of exist‑
ing solutions (Section 3). NetXplain is able to produce the
same output as state‑of‑the‑art solutions, based on costly
iterative optimization algorithms [17, 3], while operating
at a much limited cost (at the scale of a few milliseconds
in our experiments in Section 6). This not only enables us
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Fig. 5 – High‑level workϐlow of NetXplain.

to perform real‑time troubleshooting of GNN‑based solu‑
tions applied to networks but also opens the possibility
of combining these solutionswith automatic optimization
algorithms (e.g., local search, reinforcement learning) to
solve more efϐiciently online optimization problems, as
discussed later in Section 7. To this end, NetXplain uses a
GNN that learns how to interpret a target GNN model that
has been trained for a particular task. As shown in Fig. 5,
the proposed GNN‑based solution is trained with an ex‑
plainability data set generated by an iterative optimiza‑
tion algorithm [3] and, once trained, the resulting model
can make one‑step explainability predictions for each in‑
put sample of the target GNN. Note that thanks to the
generalization capabilities of GNN over graph‑structured
information, once NetXplain is trained over a particular
target GNN solution, it can be applied to different input
graphs not included in the training data set. In prac‑
tice, when applied to GNN‑based networking solutions,
NetXplain is able to generalize to network scenarios with
topologies of variable size and structure not seen in ad‑
vance, as shown later in the experiments of Section 6. The
following subsections describe in more detail the main
components of this solution.

5.1 Explainability data set
To train NetXplain, we ϐirst need to generate the new ex‑
plainability data set, which we refer to as 𝐴. To this end,
we ϐirst randomly sample a subset 𝐷′ ⊆ 𝐷, where 𝐷 is
the original data set used to train the target GNN. Given
this subset 𝐷′, we now target the problem of producing,
for each input graph 𝐺 ∈ 𝐷′, its associated explainabil‑
ity mask 𝑊𝐺 when applied to the target GNN. Note that
this process ismade fromablack‑box perspective (i.e., the
explainability mask interprets the relevance of the input
graph connections by analyzing the input‑output correla‑
tions in the target GNN). For this task we can use speciϐic
state‑of‑the‑art iterative optimization algorithms, intro‑
duced in Section 3, and further described in Section 4.2,
depending on the particularities and the purpose of the
target GNN (e.g., regression, classiϐication).
Thus, we apply the process described in Section 4.2 for
each of the samples 𝐺 ∈ 𝐷′. Hereby, we eventually ob‑
tain the ϐinal explainability data set 𝐴, formally deϐined
in Eq. (8), which maps each of the selected graphs to its
corresponding optimal mask 𝑊 ∗

𝐺.
𝐴 = {(𝐺, 𝑊 ∗

𝐺) | 𝐺 ∈ 𝐷′} (8)

Note that due to the high cost of computing the explain‑
ability data set, it is crucial to ensure that |𝐷′|<<|𝐷|. For
instance, in our experiments, we observe that NetXplain
is able to converge to a valid solution using only 5‑10%

Fig. 6 – Adaptation of the readout function in NetXplain to produce the
explainability mask.

of the samples of the original data sets. Consequently,
the cost of generating the explainability data set becomes
much more affordable than applying the iterative opti‑
mization algorithm over all the samples of 𝐷.

5.2 Training the explainability GNN
Finally, we propose the use of an independent GNN
(NetXplain) to learn how to predict explainability masks
𝑊𝐺 over the target GNN for an input graph 𝐺 = (𝑉 , 𝐸).
First, we must deϐine the underlying architecture of the
NetXplain GNN, which we use for training. Particularly,
we mostly keep the same architecture of the target GNN.
The intuition behind this decision is that the complexity
for the target GNN to learn how tomake its output predic‑
tions should be similar to solving the explainability prob‑
lem over that GNN (i.e., explaining which connections af‑
fected most such predictions). However, it is needed to
make a minor change on the readout function 𝑟(·), in or‑
der to adapt it to produce the explainability mask 𝑀𝐺. As
illustrated in Fig. 6, for every edge (𝑖, 𝑗) ∈ 𝐸, we con‑
catenate their ϐinal hidden‑state vectors after themessage
passing phase is ϐinished (i.e., ℎ𝑇

𝑖 || ℎ𝑇
𝑗 ) and this is passed

as input to 𝑟(·), which predicts the mask weight for that
edge 𝑊𝑖,𝑗. Note that this operation can be computed in
parallel for each node pair (𝑖, 𝑗) ∈ 𝐸 of the input graph.
A key aspect of our proposal is to reduce as much as pos‑
sible the subset of samples randomly selected (𝐷′) used
to generate the samples of the explainability data set (𝐴),
which are ϐinally used to train NetXplain’s GNN. The rea‑
son is that typically producing explainabilitymasks for all
the samples of the original data set 𝐷 may be too costly
with state‑of‑the‑art explainability solutions. To achieve
this, we follow a transfer learning approach. Particularly,
we ϐirst initialize the explainability GNNwith the same in‑
ternal parameters (i.e., weights and biases) of the target
GNNmodel, except for the readout function, whose imple‑
mentation differs as explained before. This enables us to
effectively initialize the explainability GNN model, as the
message‑passing functions of this GNN are expected to be
close to those of the target GNN (e.g., similar graphs and
feature distributions). Thus, during training, themain ad‑
justment should be made over the readout function. To
this end, we ϐinally train the explainability model with a
reduced explainability data set 𝐴 generated by a refer‑
ence explainability algorithm, and this enables us to learn
how to produce accurately explainability masks.
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5.3 Generalization power of NetXplain
By analyzing the training process of NetXplain, we iden‑
tify the generation of the data set 𝐴 as the most computa‑
tionally costly task, even when considering that the num‑
ber of selected samples of 𝐷 is only a small portion of the
original data set 𝐷.
Note that our proposal aims to learn how to explain po‑
tentially any sample that our target GNN could face dur‑
ing operation. This motivates our choice of using a GNN
to explain a target GNN. To the best of our knowledge,
GNNs are the only technique that offers high generaliza‑
tion power over graph‑structured data. As a result, once
trained, the GNN explainability model generalizes to net‑
work scenarios not present in its training data set𝐴. This
means that NetXplain’s GNN can be trained over a small
data set to make predictions of the critical connections
from the perspective of the target GNN and, once trained,
it can predict in one step these critical connections over
arbitrary network scenarios (e.g., topologies of variable
size and structure). All this while offering an accuracy
comparable to state‑of‑the‑art costly solutions.

6. EVALUATION
In this section, we ϐirst evaluate the accuracy of the pre‑
dictions made by NetXplain with respect to the state‑of‑
the‑art solutions (Metis [3]). Second, we quantify the
speed‑up when using NetXplain compared to Metis. In
our experiments, we train an explainability model that
makes interpretations over RouteNet [12], a GNN model
used tomakeQoS inference in networks, previously intro‑
duced in more detail in Section 2.2.
All these experiments are evaluated over the same data
sets used in RouteNet [12], which are publicly available
at [18].

6.1 Generating the explainability model
First, we need to generate the explainability data set and
deϐine an architecture for the explainability GNNmodel:

6.1.1 Explainability data set
To train aNetXplain explainabilitymodel for RouteNetwe
ϐirst need to generate the explainability data set 𝐴 (Sec‑
tion 5.1). In this case, we generate this data set using
Metis [3].
To this end, we ϐirst train RouteNet as the target GNN
model, using 300k samples simulated in the NSFNet net‑
work, including scenarioswith various routing conϐigura‑
tions and trafϐic matrices [18].
Before generating the explainability data set 𝐴, we ran‑
domly sample a subset 𝐷′ ⊆ 𝐷 from the original data
sets [18]. Note that the different experiments made in
this section use different subsets 𝐷′ to generate the ex‑
plainability data sets 𝐴, ϐinally used to train the NetX‑
plain’s GNN models. This is then speciϐied in the respec‑
tive sections. In general, our experimentation shows that

Algorithm 1: Architecture of the NetXplain’s ex‑
plainability GNN applied to RouteNet
input : x𝑝, x𝑙,ℛ
output: ℎ𝑇

𝑣 , ℎ𝑇
𝑒 , ℎ𝑇

𝑝 , 𝑊
begin

// Initialize states of paths and links
foreach 𝑝 ∈ ℛ do ℎ0

𝑝 ← [𝑥𝑝, 0 … , 0] ;
foreach 𝑙 ∈ 𝒩 do ℎ0

𝑙 ← [𝑥𝑙, 0 … , 0] ;
for 𝑡 = 1 to 𝑇 do

// Message passing from links to paths
foreach 𝑝 ∈ ℛ do

𝑚𝑡
𝑝 = {ℎ𝑡−1

𝑙 | 𝑙 ∈ 𝑝}
ℎ𝑡

𝑝 ← 𝑅𝑁𝑁𝑝(ℎ𝑡−1
𝑝 , 𝑚𝑡

𝑝)
end
// Message passing from paths to links
foreach 𝑙 ∈ 𝒩 do

𝑚𝑡
𝑙 ← ∑𝑝∶𝑙∈𝑝 ℎ𝑡

𝑝
ℎ𝑡

𝑙 ← 𝑅𝑁𝑁𝑙 (ℎ𝑡−1
𝑙 , 𝑚𝑡

𝑙)
end

end
// Readout function
foreach 𝑝 ∈ ℛ do

foreach 𝑙 ∈ 𝑝 do
𝑞𝑙,𝑝 ← (ℎ𝑇

𝑙 | ℎ𝑇
𝑝 )

𝑊𝑙,𝑝 ← 𝑟( q𝑙,𝑝 )
end

end
end

this subset 𝐷′ needs only ≈ 5% of samples randomly ex‑
tracted from the original data set 𝐷 (i.e., approximately
15k samples) to ensure that NetXplain learns properly.
Afterward, we generate with Metis the ϐinal explainabil‑
ity data set 𝐴, as described in Section 5.2. In this process
Metismaps each of the selected samples𝐺 ∈ 𝐷′ to its cor‑
respondingmask𝑊𝐺, using as a target GNN the RouteNet
model previously trainedon samples ofNSFNet. Note that
Metis [3] is an iterative optimization algorithm. Hence,
we limit it to run 2,000 iterations per sample, after ob‑
serving this was sufϐicient to ensure convergence.
Finally, to train our NetXplain model, we make a random
split of the explainability data set 𝐴 (80%, 10%, and 10%)
to produce the training, validation, and test data sets re‑
spectively.

6.1.2 Architecture of the explainability GNN
As previously mentioned in Section 5.2, we use for the ex‑
plainability GNN a similar architecture to the target GNN,
RouteNet [12] in this case. The only change introduced
with respect to the original formulation of RouteNet is in
the readout function. Algorithm 1 provides a detailed de‑
scription of the NetXplain’s explainability GNN when ap‑
plied to RouteNet (see scheme of Fig. 2). In this case, the
readout function outputs a weight 𝑊𝑙,𝑝 for each link‑path
connection (𝑙, 𝑝). To this end, we concatenate the corre‑
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sponding hidden states of the link (ℎ𝑙)  and the path 
(ℎ𝑝),  and introduce this as input of the readout function. 
Thus, the resulting weight 𝑤𝑙,𝑝 can be interpreted as 
quantifying the importance for RouteNet of a particular 
src‑dst path 𝑝 as it passes through a certain link 𝑙 of the 
network.

6.2 Evaluation of the accuracy
We evaluate the accuracy achieved by the NetXplain 
model on samples simulated in three real‑world topolo‑ 
gies [18]: NSFNet (14 nodes), GEANT2 (24 nodes), and 
GBN (17 nodes). Concretely, for each topology we ran‑ 
domly pick 1,000 samples (with different routing con‑ 
ϐigurations, and trafϐic matrices), and produce explain‑ 
ability masks with the NetXplain GNN model described in 
Section 6.1.2. Fig. 7 depicts the Cumulative Distri‑ bution 
Function (CDF) of the relative error produced by 
NetXplain’s predictions with respect to those obtained 
by Metis [3], acting as the ground truth. We observe that 
our explainability model achieves a Mean Relative Error 
(MRE) of 2.4% when it is trained and evaluated over ex‑ 
plainability data sets 𝐴 with samples of the NSFNet 
topol‑ ogy (14 nodes). We then repeat the same 
experiment training and evaluating the model with 
samples of Geant2 (24 nodes), and obtain an MRE of 
4.5%.  Note that de‑ spite NetXplain’s GNN being trained 
and evaluated over samples of the same topology, the 
network scenarios (i.e., routing and trafϐic matrices) are 
different across the train‑ ing and evaluation samples, 
which means that the input graphs seen by the GNN in 
the evaluation phase are dif‑ ferent from those observed 
during training. Finally, we further test the 
generalization capabilities of NetXplain by training the 
explainability GNN with samples from NSFNet and 
GEANT2, but in this case, we evaluate the model on 
samples of a different network: GBN (with 17 nodes). As 
a result, NetXplain achieves an MRE of 11%over this 
network topology unseen in advance (dashed line in Fig. 
7). All these values are in line with the general‑ ization 
results already observed in the target GNN model 
(RouteNet [12]).

These results together show that using NetXplain we can 
achieve a similar output to a state‑of‑the‑art solution 
based on iterative optimization (Metis [3]), even when 
our solution was tested over network scenarios not seen 
during training.

Table 1 – Execution time of NetXplain with respect to Metis, evaluated 
on three real‑world network topologies

Topology Method Mean (s) Std deviation (s)
NSFNet Benchmark (Metis) 98.139 2.455

NetXplain 0.012 0.001
GBN Benchmark (Metis) 150.83 1.79

NetXplain 0.0214 0.005
GEANT2 Benchmark (Metis) 191.46 2.76

NetXplain 0.029 0.002

Fig. 7 – CDF of the relative error of NetXplain evaluated on three real‑ 
world network topologies.

6.3 Evaluation of the execution cost
In this section, we evaluate the computational time of 
NetXplain with respect to the original solution used to 
generate the explainability data set (Metis [3]). We thus 
measured the time to produce the output explainability 
masks using both solutions. This was done by randomly 
selecting 500 samples from each of the three topologies 
previously used in the experiments of Section 6.2: NSFNet 
(14 nodes), GEANT2 (24 nodes), and GBN (17 nodes) [18]. 
Table 1 shows the execution times per sample during in‑ 
ference (in seconds), differentiated over the three consid‑ 
ered data sets. Note that both solutions were executed in 
CPU and in equal conditions (they were applied over the 
same samples). We can observe that Metis takes ≈98 sec‑ 
onds on average to produce an explainability mask for an 
input sample of NSFNet (14 nodes). In contrast, NetXplain 
produced each mask in 12 ms on average. This constitutes 
a mean speed‑up of ≈8,178x in the execution time. As we 
can observe, similar results are obtained for the samples 
of the other two network topologies, resulting in an av‑ 
erage speed‑up of ≈7,200x across all the topologies (i.e., 
more than 3 orders of magnitude faster).
This shows the beneϐits of NetXplain with respect to state‑ 
of‑the‑art solutions, as it can be used to make extensive 
explainability analysis at a limited cost (e.g., to delimit the 
safe operational range of the target GNN). More impor‑ 
tantly, its operation at the scale of milliseconds makes it 
compatible with real‑time networking applications.

7. DISCUSSION ON POSSIBLE APPLICA‑
TIONS

As previously mentioned, GNNs have been mainly
leveraged for global network control and management
tasks [3], as these scenarios typically involve modeling
complex (and mutually recursive) relationships between
different network elements (e.g., devices, links, paths)
to then produce the system’s output (e.g., end‑to‑end
QoS metrics [12], routing decisions [15, 13]). In this
section, we draw a taxonomy with three main use case
categories where the application of GNN‑based explain‑
ability solutions can be especially beneϐicial (Fig. 8):
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(𝑖) test & troubleshooting, (𝑖𝑖) reverse engineering, and 
(𝑖𝑖𝑖) improving optimization tasks. Particularly, we put 
the focus on the advantages of leveraging the fast and 
low‑cost interpretations of NetXplain with respect to 
state‑of‑the‑art explainability methods.

7.1 Test & troubleshooting
In order to achieve GNN‑based products for networking, 
we need guarantees that they will work optimally when 
deployed in real‑world networks. In this context, ven‑ 
dors would typically need to make extensive tests to their 
GNN solutions to check how they respond under differ‑ 
ent network conditions. Using NetXplain would enable us 
to collect human‑readable interpretations of the internal 
data processing made by GNNs. For instance, if we have 
a GNN model that performs trafϐic engineering, we can 
identify the network elements that mainly drive the deci‑ 
sions made by the model, which are given by the explain‑ 
ability mask of NetXplain, and then observe if the proper‑ 
ties of the selected elements are consistent across similar 
network scenarios. This would be a good indicator that 
the model generalizes well and, consequently, it is reliable 
for deployment. In this vein, with extensive testing we 
can ϐind the safe operational range of models, which is es‑ 
sential for vendors to offer guarantees before selling their 
products (e.g., this product works optimally in networks 
up to 100 nodes and link capacities up to 40Gbps). Other‑ 
wise, operators would not take the risk of deploying such 
solutions on their networks, as they are critical infras‑ 
tructures where misconϐigurations are not acceptable. In 
this context, making such a comprehensive analysis us‑ 
ing state‑of‑the‑art solutions would result in large costs 
for vendors; while the limited cost of NetXplain would en‑ 
able us to reduce dramatically both the cost and the time 
needed before releasing the product to the market. 
Moreover, this testing process would enable us to trou‑ 
bleshoot GNN models by identifying particular scenarios 
where they are not focusing on the expected elements, or 
simply their behavior is not consistent with other simi‑ 
lar scenarios. In this context, understanding where and 
why a model failed is crucial to reϐine it through an itera‑ 
tive training‑testing process. For instance, it can help ϐind 
deϐiciencies in the internal message‑passing architecture 
that make the model less robust to particular network
scenarios  or  identify  a  lack  of  samples  in  the training 
data sets.

Fig. 8 – Possible applications of NetXplain.

7.2 Reverse engineering
One interesting application of ML‑based solutions is to ex‑ 
tract information about the knowledge learned during the 
training phase (i.e., reverse engineering). In this context, 
the explainability interpretations produced by NetXplain 
would enable us to understand what are the main net‑ 
work elements that GNNs consider before making their 
decisions. As a result, this may enable us to obtain non‑ 
trivial knowledge that can be leveraged to then design 
and implement efϐicient optimization algorithms and/or 
heuristics with deterministic and predictable behavior. 
These kinds of solutions are often perceived as more valu‑ 
able by network operators, as nowadays there is a cer‑ 
tain skepticism on applying ML‑based solutions to real‑ 
world networks, mainly due to the critical nature of these 
infrastructures and the probabilistic guarantees typically 
offered by ML solutions.

7.3 Improving network optimization 
solutions

Network optimization problems often require dealing 
with very large spaces of possible actions (e.g., all the 
valid src‑dst routing combinations in a network). As a re‑ 
sult, optimization tools can only evaluate a small portion 
of conϐigurations before they make a ϐinal decision. Thus, 
the exploration strategy used by these tools has a critical 
impact on the performance they can eventually achieve. 
In this context, explainability methods can provide 
meaningful interpretations of the current network state 
that can be useful to guide more efϐiciently optimiza‑ 
tion algorithms (e.g., reinforcement learning [15], local 
search [19]). For instance, using a NetXplain model 
trained over RouteNet, as the one of Section 6, would en‑ 
able us to point to critical paths and links that are mostly 
affecting the network performance (e.g., end‑to‑end de‑ 
lays). This could be highly beneϐicial for optimization al‑ 
gorithms to explore alternative conϐigurations targeting 
speciϐically these critical points (e.g., re‑routing speciϐic 
paths to avoid the critical points selected by NetXplain). 
In this context, computational efϐiciency is a must for op‑ 
timization tools, as it directly affects the number of con‑ 
ϐigurations that can be evaluated before producing the ϐi‑ 
nal decision. Thus, counting on solutions compatible with 
real‑time operation, like NetXplain, offers an important 
competitive advantage with respect to state‑of‑the‑art ex‑ 
plainability solutions.

8. CONCLUSIONS
In this paper, we proposed NetXplain, an efϐicient explain‑ 
ability solution for Graph Neural Networks (GNNs). Par‑ 
ticularly, this solution uses a GNN that learns how to pro‑ 
duce accurate interpretations over the outputs produced
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by another GNN model. In contrast to state‑of‑the‑art 
solutions based on costly optimization algorithms, the 
proposed solution can be integrated into network con‑ 
trol and troubleshooting systems operating in real time. 
We tested NetXplain over RouteNet, a GNN model that 
predicts per‑source‑destination delays in computer net‑ 
works, and showed that our solution can produce an out‑ 
put equivalent to state‑of‑the‑art solutions with an exe‑ 
cution time more than 3 orders of magnitude faster in 
networks up to 24 nodes. Moreover, we discussed the 
potential applications that can have this GNN‑based ex‑ 
plainability solution when applied to networking. As fu‑ 
ture work, it would be interesting to show experimentally 
the potential applications of the proposed lightweight ex‑ 
plainability method to different networking use cases, 
such as those described in Section 7, as well as making 
a deep analysis on the knowledge extracted by NetXplain 
on different target GNN models.
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Francesc Wilhelmi1, David Góez2, Paola Soto3, Ramon Vallés1, Mohammad Alfaiϐi4, Abdulrahman Algunayah4,
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Abstract – With the advent of Artiϔicial Intelligence (AI)‑empowered communications, industry, academia, and standard‑
ization organizations are progressing on the deϔinition of mechanisms and procedures to address the increasing complexity
of future 5G and beyond communications. In this context, the International Telecommunication Union (ITU) organized the
ϔirst AI for 5G Challenge to bring industry and academia together to introduce and solve representative problems related to
the application of Machine Learning (ML) to networks. In this paper, we present the results gathered from Problem State‑
ment 13 (PS‑013), organized by Universitat Pompeu Fabra (UPF), whose primary goal was predicting the performance of
next‑generation Wireless Local Area Networks (WLANs) applying Channel Bonding (CB) techniques. In particular, we pro‑
vide an overview of the ML models proposed by participants (including artiϔicial neural networks, graph neural networks,
random forest regression, and gradient boosting) and analyze their performance on an open data set generated using the
IEEE 802.11ax‑oriented Komondor network simulator. The accuracy achieved by the proposed methods demonstrates the
suitability of ML for predicting the performance of WLANs. Moreover, we discuss the importance of abstracting WLAN inter‑
actions to achieve better results, andwe argue that there is certainly room for improvement in throughput prediction through
ML.

Keywords – Channel bonding, IEEE 802.11 WLAN, ITU Challenge, machine learning, network simulator

1. INTRODUCTION

The utilization of Artiϐicial Intelligence (AI) and Machine 
Learning (ML) techniques is gaining momentum to ad‑ 
dress the challenges posed by next‑generation wireless 
communications. The fact is that networks are nowa‑ 
days facing unprecedented levels of complexity due to 
novel use cases including features such as spatial multi‑ 
plexing, multi‑array antenna technologies, or millimeter 
wave (mmWave) communications. While these features 
allow providing the promised performance requirements 
in terms of data rate, latency, or energy efϐiciency, their 
implementation entails additional complexity (especially 
for crowded and highly dynamic deployments), thus mak‑ 
ing hand‑crafted solutions unfeasible.

IEEE 802.11 Wireless Local Area Networks (WLANs) are 
one of the most popular access solutions in the unlicensed 
band, and they represent a prominent example of increas‑ 
ing complexity in wireless networks. The optimization 
of WLANs underlines particular challenges due to the 
decentralized nature of these types of networks, which 
mostly operate using Listen‑Before Talk (LBT) transmis‑ 
sion procedures. If to this we add that WLAN deploy‑ 
ments are typically unplanned, dense, and highly dy‑ 
namic, the complexity is even increased. 

To address the optimization of next-generation WLANs, 
the usage of AI/ML emerges as a compelling solution by 
leveraging   useful   information  obtained   across   data,

which allows deriving models from experience. Never‑ 
theless, the adoption of AI/ML in networks is still in its 
initial phase, and a lot of work needs to be done. In 
this regard, standardization organizations are undertak‑ 
ing signiϐicant efforts towards fully intelligent networks. 
An outstanding example can be found in the Interna‑ 
tional Telecommunication Union (ITU)’s ML‑aware archi‑ 
tecture [1], which lays the foundations of pervasive ML 
for networks.

Another aspect essential for the prosperity of AI/ML in 
communications is data availability and openness. In this 
context, the ITU AI/ML in 5G Challenge [2] was set in mo‑ 
tion to encourage industry, academia, and other stake‑ 
holders to collaborate and exchange data for solving rel‑ 
evant problems in the ϐield. This initiative entailed a big 
step forward in bringing open source closer to standards.

As a contribution to the ITU challenge, and aligned with 
WLANs optimization, in this paper, we present the re‑ 
sults obtained from problem statement “Improving the 
capacity of IEEE 802.11 Wireless Local Area Networks 
(WLANs) through Machine Learning” (referred to as PS‑ 
013 in the context of the challenge), whereby participants 
were called to design ML models to predict the perfor‑ 
mance of  next‑generation Wi‑Fi deployments. In this  
article, we gather all the work done in the context of 
the  above‑mentioned  problem  statement   and   provide
a compilation of the proposed ML models used 
to  address  the  problem  of  CB  in  WLANs.  
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To carry out the ITU AI for 5G challenge, an open data 
set with WLAN measurements obtained from a 
network simulator was made available. As later 
discussed, network simulators are gaining importance to 
enable future ML‑aware communications by acting as ML 
sandboxes. In the context of the challenge, synthetic data 
was used for training ML models.
In summary, based on the proposed problem statement 
and the solutions provided by participants, we discuss 
the feasibility of predicting the throughput of complex 
WLAN deployments through ML. To the best of our 
knowledge, this is an under‑researched subject with 
high potential. Accurate performance predictions may 
open the door to novel real‑time self‑adaptive 
mechanisms able to enhance the performance of wireless 
networks by leveraging spectrum resources 
dynamically. For instance, given a change in the network 
conϐiguration, predictions about future performance 
values can be used as a heuristic to guide the choices 
made by algorithms that operate in decentralized 
self‑conϐiguring environments [3].
Table 1 brieϐly summarizes all the models proposed by 
the participants of the challenge and the main motivation 
behind them. For instance, the model proposed by the 
ATARI team aims to exploit the graph structure inherent in 
WLAN deployments. Alternatively, the solution provided by 
Ramón Vallés is focused on abstracting different categories 
of features (e.g., signal quality, bandwidth usage) and 
generate predictions based on them.

Table 1 – Summary of the ML models proposed by the participants of 
the challenge.

Team Proposed Model Motivation Ref.

ATARI Graph Neural
Network

Exploit graph
representation
of WLANs

[29]

Ramon
Vallés

Feed‑forward
Neural Network

Abstract problem
characteristics by
categories

[31]

STC Gradient Boosting
High performance,
ϐlexibility, and ease
of deployment

[35]

UC3M
NETCOM

Feed‑forward
Neural Network

Learn throughput
function exhaustively [36]

NET
INTELS

Random Forest
Regression

Address problem’s
non‑linearity and
reduce dimensionality

[37]

The results presented in this paper showcase the feasi‑ 
bility of applying ML to predict the performance of next‑ 
generation WLANs. In particular, some of the proposed 
models have been shown to achieve high prediction accu‑ 
racy in a set of test scenarios. Moreover, we have identi‑ 
ϐied the main potential and pitfalls of the proposed mod‑ 
els, thus opening the door to new contributions that im‑ 
prove the baseline results shown in this paper. The data 
set is available online [4], and we expect it can be used for
benchmarking other ML methods in the future.

The remainder of this paper is structured as follows: ϐirst, 
Section 2 presents the CB problem for next‑generation 
WLANs and describes the data set provided for through‑ 
put prediction in dense deployments. Then, Section 3 
gives an overview of the ML‑based solutions proposed by 
the ITU challenge participants, for which the results are 
provided in Section 4. Finally, Section 5 concludes the pa‑ 
per with ϐinal remarks.

2. CHANNEL BONDING IN NEXT‑
GENERATIONWLANS

In this section, we ϐirst describe the CB problem in WLANs 
and underscore the need for ML models for performance 
prediction. Then, we introduce the data set provided for 
the ITU challenge, which is open to any researcher inter‑ 
ested in this topic.

2.1 Channel bonding in IEEE 802.11 WLANs
Next‑generation IEEE 802.11 WLANs are called to face 
the challenge of providing high performance under com‑ 
plex situations, e.g., to provide high throughput in mas‑ 
sively crowded deployments where multiple devices co‑ 
exist within the same area. To fulϐill the strict require‑ 
ments derived from novel use cases, features such as 
Multiple‑Input Multiple‑Output (MIMO), Spatial Reuse 
(SR), or multi‑Access Point (AP) coordination are be‑ 
ing developed and incorporated into the newest amend‑ 
ments, namely IEEE 802.11ax (11ax) and IEEE 802.11be 
(11be) [5, 6].

One of the features that are receiving more attention is 
Channel Bonding (CB) [7, 8], whereby multiple frequency 
channels can be bonded with the aim of increasing the 
bandwidth of a given transmission, thus potentially im‑ 
proving the throughput. Since its introduction to the 
802.11n amendment, where up to two basic channels of 
20 MHz could be bonded to form a single one of 40 MHz, 
the speciϐication on CB has evolved and currently allows 
for channel widths of 160 MHz (11ac/11ax). Moreover, 
CB is expected to support up to 320 MHz channels in the 
11be amendment.

Fig. 1 – U‑NII‑1 and U‑NII‑2 sub‑bands of the 5 GHz Wi‑Fi channels.
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Fig. 1 shows a snapshot of the 5GHz band inWi‑Fi (partic‑
ularly, U‑NII‑1 and U‑NII‑2 bands are shown), where ba‑
sic 20 MHz channels can be bonded to form wider chan‑
nels of up to 160 MHz. Each allowed channel is repre‑
sented by an identiϐier. For instance, channel 36 is the
ϐirst 20 MHz channel in the U‑NII‑1 band. As can be ap‑
preciated, the number of combinations for bonding chan‑
nels is high, even for a small portion of the available
spectrum1 and under the constraint that only contigu‑
ous channels can be bonded. Moreover, novel bonding
techniques combine Orthogonal Frequency Multiple Ac‑
cess (OFDMA) with preamble puncturing [9] to use non‑
contiguous channels. With all this, given the number of
Basic Service Sets (BSSs) and devices in crowded deploy‑
ments (see Fig. 2), we can say that CB is a problem with a
combinatorial action space.

Fig. 2 – Dense WLAN deployment with multiple CB conϐigurations. Each 
number in the list of channels represents one basic 20 MHz channel.

2.2 Policies for dynamic channel bonding
To harness the available spectrum within the CB opera‑ 
tion, Dynamic CB (DCB) mechanisms [7, 8] are applied to 
decide the set of channels for transmitting on a per‑packet 
basis, thus potentially improving performance. In [8], the 
following DCB policies were proposed and analyzed:
• Static Channel Bonding (SCB): a transmitter is al‑ 
lowed to use the entire set of channels only, thereby
limiting the election of any subset of channels. While
such a policy may optimize the performance in iso‑ 
lated deployments, it lacks the necessary ϐlexibility
to deal with inter‑BSS interference.

• Always‑Max (AM): in this case, the widest combina‑ 
tion of channels is picked upon having sensed them
free during the back‑off procedure. While such a
policy seems to properly harness the available spec- 
trum, it has also been shown to generate starvation
and other issues as a result of inter-BSS interactions.

1In the 5 GHz and 6 GHz bands, there are six and fourteen non‑
overlapping channels of 80 MHz, respectively.

• Probabilistic Uniform (PU): as an alternative to
SCB and AM, PU is introduced to add some random‑
ness in the process of picking free channels, so that
any combination is chosen with the same probabil‑
ity. This policy has been shown to improve both SCB
and AM in some scenarios in which ϐlow starvation
was present due to inter‑BSS interactions.

To better illustrate the behavior of CB policies, Fig. 3
shows a simpliϐication of the transmission procedure that
a Station (STA) follows when implementing AM. In par‑
ticular, CB may be applied over channels 1‑4. Based on
the AM policy, at time 𝑡1, the STA can transmit only over
channel 2, which is the only one that is sensed free at
the moment of initiating a transmission. Similarly, in 𝑡2,
both channels 1 and 2 are found free, so the transmission
is performed over those two channels. Finally, provided
that the entire spectrum is free, a transmission over chan‑
nels 1‑4 is performed at 𝑡3. Notice that, if applying SCB,
the STA would have not been able to transmit until 𝑡3. Al‑
ternatively, regarding PU, any combination of free chan‑
nels could have been selected in 𝑡2 and 𝑡3.

Channel busy

Ch 1

Ch 2

STA's transmission

STA

t1 t2

Ch 3

Ch 4

t3

Fig. 3 – Dynamic channel selection for transmitting when applying DCB.

Through the analysis conducted in [8], it was shown that 
the right channel choice is not always trivial (i.e., selecting 
the widest channel does not necessarily entail achieving 
the highest performance). First of all, using wider chan‑ 
nels entails spreading the same transmit power over the 
selected channel width, which can potentially affect the 
data rate used for the transmission, and therefore the ca‑ 
pabilities of the receiver on decoding data successfully. 
Moreover, the potential gains of DCB in crowded deploy‑ 
ments are hindered by the interactions between Wi‑Fi de‑ 
vices, which may provoke contention or collisions. The 
fact is that WLAN deployments are unplanned and op‑ 
erate under Carrier Sense Multiple Access (CSMA). From 
the perspective of a given transmitter‑receiver pair, such 
a lack of coordination leads to uncontrolled interference 
that can potentially degrade their performance.

Other DCB mechanisms were proposed in [10, 11, 12, 13], 
which include collision‑detection, carrier sensing adap‑ 
tation, or trafϐic load awareness. More recently, ML and
game theory have been applied to address CB as an 
online  decision-making  problem  involving  multiple 
agents [14, 15].
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In view of the complexity of selecting the best conϐigura‑ 
tion of channels, the proposed problem statement had the 
goal of shedding light on the potential role of ML in DCB. 
In particular, it served to gather participants’ proposals 
of ML models able to predict the performance of differ‑ 
ent CB conϐigurations. This information can be used by 
a decision‑making agent to choose the best conϐiguration 
of channels before initiating a transmission. Through‑ 
put prediction in WLANs has been widely adopted for 
performance analysis through mathematical models, in‑ 
cluding the well‑known Bianchi model [16], Continuous‑ 
Time Markov Networks (CTMNs) [17], or stochastic ge‑ 
ometry [18]. However, these well‑known models lack ap‑ 
plicability for online decision‑making because they fail to 
capture important phenomena either on the PHY or the 
MAC, or they entail a high computational cost. Thus, mod‑ 
eling high‑density complex deployments through these 
models may be highly inaccurate or simply intractable.

In this regard, we envision ML models to assist the CB 
decision‑making procedure in real time. The fact is that 
ML can exploit complex characteristics from data, thus 
allowing to solve problems that are hard to solve by 
hand‑programming (see, for instance, its success in im‑ 
age recognition). Moreover, ML models can be trained of‑ 
ϐline and then improve their accuracy with measurements 
acquired online. To the best of our knowledge, this is an 
under‑researched subject. While ML has been applied for 
predicting aspects related to Wi‑Fi networks, such as traf‑ 
ϐic and location prediction [19, 20], it has been barely ap‑ 
plied for explicitly predicting their performance. In this 
context, the work in [21] provided an ML‑based frame‑ 
work for Wi‑Fi operation, which includes the application 
of Deep Learning (DL) for waveforms classiϐication, so 
that WLAN devices can identify the medium as idle, busy, 
or jamming. Closer in spirit to our work, [22] proposed 
an ML‑based framework for WLANs’ performance predic‑ 
tion.

2.3 Introduction to the data set
To motivate the usage of ML for predicting WLANs’ per‑ 
formance, we provide an open data set2 obtained with the 
Komondor simulator.3 Komondor is an open‑source IEEE 
802.11ax‑oriented simulator, whose fundamental opera‑ 
tion has been validated against ns‑3 in [23]. Komondor 
was conceived to cost‑effectively simulate complex next‑ 
generation deployments implementing features such as 
channel bonding or spatial reuse [24]. Furthermore, it in‑ 
cludes ML agents, which allows simulating the behavior 
of online learning mechanisms to optimize the operation
of WLANs during the simulation.

2The data set has been made publicly available at https://zenodo.org/
record/4059189, for the sake of openness.

3https://github.com/wn‑upf/Komondor, Commit: d330ed9.

The data set generated with Komondor has been used for 
training and validating ML models in the context of the 
ITU AI for 5G Challenge. The assets provided comprise 
both training and test data sets corresponding to mul‑ 
tiple random WLAN deployments at which different CB 
conϐigurations are applied. As for training, two separate 
enterprise‑like scenarios, namely, training1 and train‑ 
ing2, have been characterized. In each case, a different 
ϐixed number of BSSs coexist in the same area, according 
to users’ density.

In training1, there are 12 APs, each one with 10 to 20 as‑ 
sociated STAs. Regarding training2, it contains 8 APs with 
5 to 10 STAs associated with each one. For both train‑ 
ing scenarios, three different map sizes have been consid‑ 
ered (a, b, and c), where STAs are placed randomly. Simi‑ 
larly to training scenarios, the test data set includes a set 
of random deployments depicting multiple CB conϐigura‑ 
tions and network densities. In this case, four different 
scenarios have been considered according to the number 
of APs (4, 6, 8, and 10 APs). Note, as well, that, for each 
type of scenario, 100 and 50 random deployments have 
been generated for training and testing, respectively. In 
all the cases, downlink UDP trafϐic was generated in a full‑ 
buffer manner (i.e., each transmitter always has packets 
to be delivered). Table 2 summarizes the entire data set 
in terms of the simulated deployments.

Table 2 – Summary of the simulated deployments used for generating 
both training and test data sets.

Scenario id Map width # APs # STAs

Training

training1a 80 x 60 m
12 10‑20training1b 70 x 50 m

training1c 60 x 40 m
training2a 60 x 40 m

8 5‑10training2b 50 x 30 m
training2c 40 x 20 m

Test

test1
80 x 60 m

4
2‑10test2 6

test3 8
test4 10

With respect to input features, these are included in the
ϐiles used for simulating each randomdeployment. Inpar‑
ticular, themost relevant information to be used for train‑
ing ML models is:

1. Type of node: indicates whether the node is an AP
or an STA.

2. BSS id: identiϐier of the BSS to which the node be‑ 
longs.

3. Node location: {x,y,z} coordinates indicating the po‑ 
sition of the node in the map.

4. Primary channel: channel at which carrier sensing
is performed.
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5. Channels range: minimum and maximum channels 
allowed for bonding.

6. Transmit power: power used for transmitting 
frames.

7. Sensitivity threshold: used for detecting other 
transmissions and assess the channels’ availability.

8. Received Signal Strength Indicator (RSSI): power 
detected at receivers from their corresponding trans‑ 
mitters.

9. Inter‑BSS interference: power sensed from other 
ongoing transmissions.

10. Signal‑to‑Interference‑plus‑Noise Ratio (SINR): 
average SINR experienced during packet receptions.

Regarding output labels, we provide the throughput ob‑
tained by each device during the simulation, being the
APs’ throughput the aggregate throughput of each BSS
(i.e., the sum of all the individual STAs’ throughput in
a given BSS). Moreover, the airtime per AP is provided,
which indicates the percentage of time each BSS has oc‑
cupied each of its assigned channels.

3. MACHINE LEARNING SOLUTIONS FOR
THROUGHPUT PREDICTION

In this section, we give an overview of the solutions pro‑
posed by the participating teams of PS‑013 in ITU AI for
5G Challenge: ATARI (University of Antwerp and Univer‑
sidad de Antioquia), Ramon Vallés (Universitat Pompeu
Fabra), STC (Saudi Telecom), UC3M NETCOM (Universi‑
dad Carlos III de Madrid), and Net Intels (PES Univer‑
sity). From these teams, ATARI, Ramon Vallés, and STC
succeeded to advance to the Grand Finale, where teams
from all the problem statements competed for winning
the global challenge [25].

3.1 ATARI
Wireless networks can be represented by graphs G=(V, E),
where V is the set of nodes, i.e., STAs and APs, and E rep‑
resent wireless links. Typically, DL approaches deal with
graph‑structured data by processing the data into simpler
structures, e.g., vectors. However, nodes and links in high‑
density WLAN deployments are characterized by a set of
high‑dimensional features, thus complicating the graph‑
like structure of the problem and therefore hindering the
application of deep learning.

To overcome the problem of data representation, Graph
Neural Networks (GNNs) have been proposed as neural
networks that operate on graphs intending to achieve re‑
lational reasoning and combinatorial generalization [26].
Accordingly, the wireless interactions between STAs and
APs (connectivity, interference, among others) can be
easily captured via a graph representation.

Therefore, we select a GNN approach to predict the
throughput of the devices in a WLAN. In particular, each
deployment is considered as a directed graphwhere STAs
and APs are the graph’s nodes. Additionally, we deϐine
two typesof nodespresent in thedata set, eachonehaving
generic or speciϐic features. For instance, parameters like
channel conϐiguration are related to both types of nodes,
while SINR is only related to STAs, and airtime is exclusive
for APs. Furthermore, the edges are deϐined based on the
type of wireless interaction derived from the data set. We
consider two types of interactions, namely AP‑AP interac‑
tions (represented by the interference map), and AP‑STA
interactions (represented by the RSSI values). For com‑
pleteness, we deϐine an additional edge feature based on
the distance of every transmitter‑receiver pair. The fea‑
tures considered for training the proposed GNN are sum‑
marized in Table 3.

Table 3 – Features used by ATARI team to train a GNN.

Feature Preprocessing

Node

Node type AP=0, STA=1
Position (x,y) None

Primary channel Combined into a
categorical variable

using one‑hot encoding
Min. channel
Max. channel

SINR None
Airtime Mean

Edge

Edge type AP‑AP=0, AP‑STA=1
Distance Computed from (x,y)
RSSI None

Interference None

Concerning the GNN model, we have used an implemen‑ 
tation of the Graph Network Block (GNB), as proposed 
in [27]. A GNB contains three update functions and three 
aggregation functions where the computation is done 
from the edge to nodes, and then to global parameters. 
So ϐirst, the edge’s features are updated and aggregated 
into the node features, then the node features are updated 
having taken into account the vicinity within depth/range 
deϐined by the number of GNBs, and lastly, the global pa‑ 
rameters are updated according to the state of the nodes. 
Our model follows a layered approach, similar to DL, 
where each layer is a GNB. The input of the model is a 
graph representing the deployment, and the output is the 
predicted throughput of the devices in that deployment. 
A general overview of our model’s architecture is shown 
in Fig. 4.

The implementation of the GNB is referenced as a meta‑ 
layer in PyTorch Geometric [28], a geometric deep learn‑ 
ing extension library for PyTorch. We deϐined an edge 
model that uses two dense layers using a Rectiϐied Linear 
Unit (ReLU) as an activation function in a typical Multi‑ 
Layer Perceptron (MLP) conϐiguration. A node model is 
also deϐined by two MLPs, one for aggregating the edge 
features into the node features and the second to update
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Fig. 4 – GNN model proposed by ATARI.

nodes’ states based on their neighbors. Note that, follow‑ 
ing the formal deϐinition of a GNB in [27], global param‑ 
eters were not used. Our implementation is available in 
GitHub [29].

To train the model, we have considered splitting the pro‑ 
vided data set (80% for training and 20% for validation). 
As each deployment is considered to be represented by 
a graph, 480 graphs have been used for training, and 
120 for validation purposes. The loss function consid‑ 
ered to assess the performance of our model is the Root 
Mean Squared Error (RMSE). The error obtained across 
all the predictions is used to compare the accuracy of our 
model’s predictions to the actual results. However, initial 
results showed that the model mostly focused on predict‑ 
ing the throughput of the APs, given that the error is min‑ 
imized on large values. Therefore, we proposed a masked 
loss provided that AP’s throughput should be equal to the 
sum of the associated STAs’ throughput. The RMSE is cal‑ 
culated using the STAs’ predicted and the APs’ computed 
throughput.

3.2 Ramon Valleś
To address the throughput prediction problem in CB‑ 
compliant WLANs, we propose a deep neural network 
where the information of each BSS is processed inde‑ 
pendently, thus following the idea of Multi‑Layer Percep‑ 
tron (MLP) [30]. More speciϐically, the proposed model is 
a feed‑forward deep learning algorithm implemented in 
Python with the support of the PyTorch libraries.4

Our model aims to predict the aggregate throughput of 
each BSS, rather than the individual throughput at STAs. 
The fact is that predicting the throughput per STA is very 
challenging because of the dynamic channel bonding pol‑ 
icy used in complex scenarios, which contributes to gen‑ 
erating multiple interactions among nodes that cannot be 
captured at a glance. Accordingly, to derive an overall rep‑ 
resentation of each BSS, the features from individual STAs 
are preprocessed so that we consider only their global dis‑ 
tribution (mean, and standard deviation). To do so, our 
model is divided into three main blocks performing
different tasks:
4The code used to implement the method proposed by Ramon Vallés is
open access [31].

1. Signal quality: The ϐirst block is meant to abstract
the interactions among APs and STAs in the RF do‑
main. To achieve this, we consider two separate lay‑
ers, which process the RSSI, SINR, distance among
nodes, and SINR. A Parametric Rectiϐied Linear Unit
(PReLU) activation function is used together with 1‑
dimensional batch normalization.

2. APbandwidth: The second block analyzes the avail‑
able bandwidth of the APs, and it consists of a single
linear layer, which receives as input a vector with the
corresponding airtime for all the available channels.
This layer outputs a 3‑dimensional array and is acti‑
vated with a PReLU function.

3. Output: Finally, the last block takes the output from
both the signal quality and AP bandwidth blocks and
computes the ϐinal prediction value. For this ϐinal
layer, we employ a simple ReLU (instead of a PReLU)
to avoid negative throughput predictions.

With this structure, we have built a much more efϐicient 
model than if we had used a fully‑connected NN with all 
the STA features. Notice that the proposed model needs 
far fewer neurons (and thus, less computational force) 
to capture the most relevant information of each sce‑ 
nario. In our opinion, an excess of neurons in such a 
complex scenario would result in overϐitting, thus making 
the model less accurate for predicting the performance of 
new deployments.

As for training the MLP model, we have considered the 
following key features: the type of device (AP or STA), its 
location, the minimum, and maximum channel through 
which it is allowed to transmit, the RSSI, the SINR, and 
the airtime. The training was performed using 80% of the 
data set (keeping the 20% left for validation), following an 
evaluation criterion based on the RMSE of the predicted 
throughput with respect to the real value. The Adam op‑ 
timizer has been used to optimize the training process, 
which is straightforward to implement, computationally 
efϐicient, and memory‑efϐicient. For the training phase, 
several experiments had been made by modulating the 
hyper‑parameters. The best results were achieved with 
a learning rate of 0,025 and a total of 700 epochs.

3.3 STC
Our proposal includes popular ML regression algorithms 
such as MLP, Support Vector Machine (SVM), Random 
Forest, and eXtreme Gradient Boosting (XGboost). These 
algorithms are backed by rich research, known to do well 
on regression problems, ease of implementation and de‑ 
ployment, which are important characteristics from the 
business perspective.
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From all the above-mentioned methods, XGBoost [32] was 
selected for competing in the challenge because it of-
fered the highest performance on both the training and 
validation stages compared with the other models. XG‑ 
boost is a gradient boosting framework available for mul‑ 
tiple platforms, thus providing high portability.
To train our model, we have analyzed the variance of the 
variables in the data set, and discarded the features with 
low or moderate variability. Some of the considered fea‑ 
tures are the position of nodes, the primary channel, the 
distance among nodes, or the power received by neigh‑ 
boring devices. To preprocess the selected features, we 
have applied Yeo‑Johnson transformation [33] and nor‑ 
malization. These steps were done for predictors to im‑ 
prove their utility in the models.
The training data set was split into training and valida‑ 
tion, so that we could train the model on the whole train‑ 
ing data set using a 10‑fold cross‑validation procedure. 
Further, we used 100 and 300 combinations, respectively, 
with 10‑fold cross‑validation.
As for the hyper‑parameter setting (e.g., max depth or 
minimum child weight), we tuned hyper‑parameters us‑ 
ing a grid search. More speciϐically, the hyper‑parameter 
values were set using Latin Hypercube Sampling, while 
their maximum and lower range value for each hyper‑ 
parameter were mostly predetermined using default val‑ 
ues from tidymodels [34].
Finally, signiϐicant efforts have been put to deploy our 
model. In particular, we have used docker to make our 
model easy to (re)train and deploy. All the code and doc‑ 
umentation has been made publicly available [35].

3.4 UC3M NETCOM
We formulate the throughput forecasting in WLANs as a 
linear regression problem, which assumes a linear rela‑ 
tionship between the features and label(s) of a given data
set {𝑦𝑖,  𝑥𝑖,1,  𝑥𝑖,2,  ..., 𝑥𝑖,𝑁 }, and a set of unknown parameters 
𝑤 to be learned (being 𝑤0 the bias).

Our solution (named Gossip) is based on a linear regres‑ 
sion method, and it aims to predict the throughput of an 
STA  in  a  given  WLAN  deployment  where CB is ap‑ 
plied [36]. Based on STAs’ individual throughput, we de‑ 
rive the performance of each AP by aggregating the 
values of their associated STAs. In particular, Gossip 
derives the unknown bias and weight parameters 𝑤 by (i) 
processing the WLAN data set, and (ii) applying a neural 
network to perform regression.
As for the processing part, Gossip takes the input fea‑ 
tures generated by the Komondor simulator, and se‑ 
lects/generates the most relevant ones: the position of 
the STA, the AP to which the STA is associated, the RSSI, 
the SINR, the set of nodes using the same primary channel, 
and the set of allowed channels. After processing the

features, each STA of every deployment is characterized by a
feature vector (𝑥𝑖, …,𝑥21+3𝑘 ), with 𝑘 denoting the 
number of wireless channels. Note, as well, that the 
entire data set is considered for training, thus combining 
STAs from different deployments. The rationale is that 
features such as the number of neighbors in the primary 
channel, the SINR, and the interference should 
differentiate STAs from different deployments.
When it comes to the regression problem, Gossip uses a 
feed‑forward neural network with four layers. The input 
layers pass the input features to two fully connected lay‑ 
ers of neurons with a ReLU activation unit. Finally, a sin‑ 
gle neuron receives the output of the hidden layers and 
generates the prediction of the throughput. As a remark, 
the last neuron has a linear activation. It is important to 
remark that the proposed neural network is mostly meant 
to tackle linear regression problems. Nevertheless, even if 
the throughput prediction problem for WLANs is not lin‑ 
ear, we expect our model to properly identify local min‑ 
imum/maximum points that allow providing reasonable 
prediction results.
To train the proposed neural network, we have used 
the RMSprop gradient descend method, considering the 
Mean Squared Error (MSE) as a loss function. Moreover, 
50 training episodes and a batch size of 50 STAs have been 
considered. Thanks to Gossip design, the training data set 
is populated with every STA of every deployment present 
among all scenarios.

3.5 Net Intels
To address the objective of predicting the throughput of 
APs and STAs in typical dense environments, we explore 
a set of popular regression techniques. With the help of 
these techniques, we aim to build complex mathematical 
relationships among features and labels from the data set, 
so that performance of WLANs can be predicted at unseen 
deployments. In particular, we propose using the follow‑ 
ing techniques:5

1. Artiϐicial Neural Network (ANN): The ANN method
is selected chieϐly due to its potential and versatil‑ 
ity to model nonlinear and complex relationships in
OBSS data elegantly. The proposed ANN is built using
Tensorϐlow and Keras libraries in Python [38]. The
NN model is designed with one input layer, 7 hidden
layers, and 1 output layer (see Fig. 5). The ReLU func‑ 
tion is employed to activate hidden layers. In each of
the ϐirst six hidden layers, there are 1024 nodes. For
the seventh hidden layer, there are 512 nodes. The
model is trained using an Adam optimizer. The batch
size and number of epochs for training, after multiple
trials, were set to 250 and 1000 respectively.

5The code used to implement all the proposed methods by Net Intels is
available in Github [37].
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namics of interrelations between entities of OBSS
rely predominantly on the relative positioning of
AP/STAs. To abstract such complexity in a cost‑
effective manner, KNN is selected, which is char‑
acterized by its simplicity, speed, and protection
against high variance and bias. The KNN model is
built using the Scikit Learn library in Python [39].
The inbuilt KNearestRegressor function is directly
used, where neighbor number is ϐixed to 10. The al‑
gorithm for structuring the k‑dimensional space of
the data set (Ball Tree, KDTree, or Brute Force) is au‑
tomatically selected based on input values.

3. Random forest regression: Motivated by the fact
that the interrelationship between the features is
non‑linear, we propose dividing the data set dimen‑
sional space into smaller subspaces. To generalize
the data and for better feature importance, an en‑
semble of trees forming a random forest is used.
Random forest mechanisms are useful to reduce the
spread and diversion of predictions. The proposed
random forest regression is built using Scikit Learn,
an ensemble module of the Sklearn library. The de‑
fault number of trees was set to 100, which split
is performed according to the mean squared error
function. Themaximumdepth of the tree is set to 10.

X(m)
Y(m)

P. ch.
Min. ch.

Max. ch.

RSSI
SINR

...

...

...

...

...

...

Predicted
Throughput

Input layer

Hidden layers

Output layer

Fig. 5 – Net Intels’ ANN architecture.

For all the proposed methods, we have ϐirst preprocessed 
the data set comprising six hundred different random de‑ 
ployments. In particular, static features such as the Con‑ 
tention Window (CW) were not included for training pur‑ 
poses. As for the rest of the features, we noticed a low 
correlation degree (see Fig. 6), so we have used all the 
features with higher variability from one simulation to 
another, including the node type (used when consider‑ 
ing both APs and STAs during training), X and Y coordi‑ 
nates, primary channel, minimum and maximum channel 
allowed, SINR, and RSSI values.

The data was normalized before being fed into the regres‑ 
sion models. Only data for STAs (stations) are considered 
for training and the throughput values of STAs are pre‑ 
dicted using the models. The sum of the throughputs of

Fig. 6 – Correlation among input features.

STAs gives the throughput of the respective AP. For train‑ 
ing purposes of all the three methods, the data is split 
(80% for training and 20% for validation).

4. PERFORMANCE EVALUATION
In this section, we show the results obtained by the par‑ 
ticipants’ models presented in Section 3. In the context of 
the ITU AI for 5G Challenge, a test data set was released to 
assess the performance of each model, without revealing 
the actual throughput obtained through simulations. Par‑ 
ticipants were asked to predict the performance in Mbps 
of each BSS in the test scenarios.

The test data set consists of random deployments with 
different characteristics than the ones provided in the 
training data set, ranging from low to high density in 
terms of the number of BSSs and users. In total, test 
scenarios consist of 200 random deployments contain‑ 
ing 1.400 BSSs and up to 8.431 STAs (randomly gener‑ 
ated). To assess the participants’ model accuracy, we fo‑ 
cused on the throughput of the BSSs in each deployment 
(i.e., the throughput of each AP). Speciϐically, we used both 
the RMSE and the Mean Absolute Error (MAE) as refer‑ 
ence performance metrics. Accordingly, Fig. 7 shows the 
MAE in Mbps obtained by each team in each type of test 
scenario.
As shown, for the aggregate BSS performance, most of 
the models offer low accuracy for the less dense scenar‑ 
ios (namely, test1 and test2), whereas higher accuracy is 
achieved for the densest deployments (namely, test3 and 
test4). The fact is that denser deployments are much more 
similar to the training scenarios than the sparser ones. As 
a result, models behave pessimistically in low‑density de‑ 
ployments by assuming lower performance even if inter‑ 
ference is low. As an exception, we ϐind the model pro‑ 
vided by Ramon Vallés, a feed‑forward neural network 
with three blocks. The main difference of this model with 
respect to the others is that it separates the features re‑ 
lated to signal quality and interference, and processes

K-Nearest Neighbor (KNN) regression: For OB- 
SSs involving several AP-STA combinations, the dy-

2.
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Fig. 7 – Mean absolute error obtained by each team, for each of the test 
scenarios of the data set. The aggregate throughput of all the BSSs is 
considered.

them apart from the rest. As a result, it is able to gener‑ 
alize well, even for new deployments with characteristics 
unseen in the training phase.

Although the prediction error is high for some test sce‑ 
narios, it is important to remark that the performance 
of WLANs applying CB can be up to a few hundreds of 
Mbps (especially in sparse scenarios with low competi‑ 
tion). To better illustrate the accuracy of the proposed 
models, we now show the prediction results obtained on 
a per‑STA basis. Notice that the following results corre‑ 
spond to the solutions provided by three teams (ATARI, 
STC, and Net Intels), whose solution was based on pre‑ 
dicting the throughput of STAs, and providing the aggre‑ 
gate performance afterward. Note, as well, that the tar‑ 
get of the challenge was predicting the aggregate through‑ 
put in each BSS. In particular, Fig. 8 shows the histogram 
of the individual throughput predictions at STAs obtained 
across all the random test deployments.

Fig. 8 – Histogram of the per‑STA prediction error achieved by ATARI, 
STC, and NET INTELS.

As shown, the proposed ML mechanisms provide general
accurate predictions; most of the error values are in the 
range of 0 to 10 Mbps. This means that, even in the pres‑ 
ence of outliers, the predictions provided by the ML mod‑ 
els are suitable for a signiϐicant percentage of the deploy‑ 
ments. The accuracy of the different models proposed by 
ATARI, STC, and NET INTELS can be further observed in 
Table 4, which shows the percentage of the throughput 
predictions for STAs achieving an error below 10 Mbps.

Table 4 – Percentage of per‑STA predictions achieving <10 Mbps error. 
Information is provided for ATARI, STC, and NET INTELS results.

test1 test2 test3 test4
ATARI 36.97% 55.81% 67.01% 77.40%
STC 55.97% 56.27% 56.74% 60.67%

NET INTELS 38.09% 42.15% 44.01% 49.77%

For completeness, Fig. 9 shows the actual throughput
achieved by STAs in all the test scenarios. As shown, the
median is around 20 Mbps, but maximum values of up
to 40 Mbps are also likely. Furthermore, several outliers
were noticed, leading to up to 50 Mbps in some STAs.

Fig. 9 – Boxplot of the mean throughput achieved by STAs for each test 
scenario.

Finally, to provide some insight on the computational 
needs required by the types of ML methods discussed in 
this paper, Table 5 contains the time required for train‑ 
ing each model used by the team Net Intels, as well as the 
amount of computational resources employed. As shown, 
the training times are acceptable for providing near‑real‑ 
time solutions.

Table 5 – Training time and computational resources used by the ML 
models proposed by Net Intels.

Training time RAM/GPU used
ANN 349 s 8 Gb RAM / 1.3 Gb GPU
Random forest 69 s 55 Gb RAM/ No GPU usage
KNN 122 s 5.3 Gb RAM/ No GPU usage
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5. DISCUSSION

5.1 Contributions
With contributions from participants around the globe, 
the ITU AI for 5G Challenge has unprecedentedly estab‑ 
lished a platform for addressing important problems in 
communications through ML. As for the performance pre‑ 
diction problem in CB WLANs (referred to as PS‑013), the 
challenge has allowed us to glimpse the potential of ML 
models for addressing it.

This paper provides a compendium of ML models pro‑ 
posed for throughput prediction in WLANs, including 
popular models such as neural networks, linear regres‑ 
sion, or random forests. In particular, we have provided 
an overview of the proposed models and analyzed their 
performance in the context of the challenge. By opening 
the data set used during the competition, we encourage 
the development of mechanisms that improve the base‑ 
line performance shown by the ML models presented in 
this work.

5.2 Lessons learned
From the performance evaluation done in this paper, we 
have drawn the following conclusions:

1. First, even if the data set was not particularly big,6 

some of the proposed ML models achieved good re‑ 
sults. This is quite a positive result since it opens the
door to ML models that can be (re)trained fast, thus
becoming suitable for (near)real‑time solutions.

2. Second, most of the proposed DL‑based models have
shown higher accuracy for the denser and more com‑ 
plex deployments (which more closely match the
training scenarios) than for the sparser ones. While
capturing complex situations is quite a positive re‑ 
sult, the pitfalls observed in simpler deployments
also suggest that out‑of‑the‑box DL methods may fail
at capturing the relationship between interference
and performance of WLANs. In this regard, well‑ 
known models characterizing WLANs (e.g., SINR‑ 
based models [40]) can potentially be incorporated
into the ML operation for the sake of improving ac‑ 
curacy, thus leading to hybrid model‑based and data‑ 
driven mechanisms.

3. Third, and related to the previous point, GNNs have
been shown to be particularly useful to capture the
complex interactions among devices in WLANs, both
in terms of interference and neighboring activity. In
particular, we have realized the importance of pre‑ 
processing the data set in order to obtain accurate
prediction results. Deriving information speciϐic to
the problem (i.e., signal quality, interference) has
turned out to be essential for the sake of generalization.

6Youtube‑8M Data set (http://research.google.com/youtube8m/) con‑
sists of 350.000 hours of video, while only six hundred different ran‑
dom deployments have been used in this paper for training purposes.

4. Finally, we remark the importance of cost‑effectively
predicting the performance in WLANs, which may
open the door to novel mechanisms using these pre‑
dictions as heuristics for online optimization. The in‑
corporation of these kinds of models toWLANs is ex‑
pected to be enabled by ML‑aware architectural so‑
lutions [41].

5.3 The role of network simulators in ML‑
aware communications

The availability of data for training is key for the success of 
ML application to future 5G/6G networks. Given the cur‑ 
rent limitations in acquiring data from real networks, sim‑ 
ulators emerge as a practical solution to generate comple‑ 
mentary synthetic data for training ML models. The fact 
is that data may be scarce because, among other reasons, 
measurement campaigns are costly, data from networks 
involves privacy concerns, or data tenants are not willing 
to share their data.

Through the problem statement discussed in this paper, 
we have contributed to showcase how synthetic data can 
be used to train ML models for networks. A notorious ad‑ 
vantage is that network simulators allow characterizing 
complex deployments, sometimes representing unknown 
situations, so they help to train and validate ML models.

Beyond generating data for training, network simulators 
are envisioned to serve as secure platforms for testing, 
training, and evaluating ML models before being applied 
to operative networks [42]. In consequence, we fore‑ 
see the adoption of simulators into future ML‑aware net‑ 
works as a key milestone for enhancing both reliability 
and trustworthiness in ML mechanisms.
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Abstract – Existing network topology planning does not fully consider the increasing network traffic and 
problem of uneven link capacity utilization, resulting in lower resource utilization and unnecessary 
investments in network construction. The AI-based network topology optimization system introduced in this 
paper builds a Long Short-Term Memory (LSTM) model for time series traffic forecasting, which uses 
NetworkX, a Python library, for graph analysis, dynamically optimizes the network topology by edge 
deletion or addition based on traffic over nodes, and ensures network load balancing when node traffic 
increases, mainly introducing the LSTM forecasting model building process, parameter optimization 
strategy, and network topology optimization in some detail. As it effectively enhances resource utilization, 
this system is vital to the optimization of complex network topology. The end of this paper looks forward to 
the future development of artificial intelligence, and suggests the possibility of how to cooperate with 
operator networks and how to establish cross-border ecological development. 

Keywords –Artificial intelligence, capacity utilization, communication network, traffic forecast, network 
topology 

1. INTRODUCTION

With the development of 5G technology, operators 
need to rebuild or expand their transport networks, 
as their existing network topology planning does 
not fully consider the increasing network traffic and 
problem of uneven link capacity utilization [1]. The 
utilization of more than 40% of the transmission 
links of the existing networks is low [2,3], which 
increases operators' network construction costs. 
Therefore, how to optimize the network structure 
to make it adapt to future network changes and how 
to improve resource utilization to save construction 
costs have greatly challenged today's operators [7].  

For complex networks, topology analysis requires 

exponential computing [4,5], making manual 
network topology optimization very difficult. With 
the development of Artificial Intelligence (AI) 
technology, Machine Learning (ML) algorithms 
offer a helping hand to resolve complex issues [6,7]. 
A new ecosystem which needs to be established to 
advance such technical developments as applying 
AI and big data technologies to networks is new to 
the industry, and the "AI-ML in 5G Challenge" 
organized by ITU paves the way for such study. This 
paper introduces an AI-based network topology 
optimization system that makes in-depth analysis of 
network topology and proposes a solution to 
maintain high resource utilization when network 
traffic keeps growing [2]. It is especially crucial for 
the optimization of complex network topology. 

Fig. 1 – Complicated network topology analysis 
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2. LSTM MODEL FOR TRAFFIC 
FORECASTING 

Network traffic forecasting is made based on 
network elements and affected by various factors 
such as the location of network elements, weather, 
and traffic on different base stations. Forecasting is 
mainly implemented via Gompertz models or time 
series forecasting models like LSTM and Prophet 
models [8,9,10]. The traffic forecast made based on 
traditional Extended Gompertz Models (EGMs) 
cannot reflect traffic differences between working 
days and holidays. However, the traffic predicted 
based on time series forecasting models with deep 
learning is more accurate, as history data can be 
learned and used during the traffic forecast [11]. 

2.1 Traffic forecasting model with deep 
learning 

The short-term traffic forecast predicts the data of 
the next few days. As daily traffic features strong 
periodicity, traffic curves of the days in weeks with 
similar attributes are almost the same. In view of 
that, this paper proposes an LSTM model [10,11], a 
recurrent neural network architecture that gives 
full play to the correlation of traffic at different 
times, for traffic forecasting. The model is trained 
with time-stamped traffic (for example, traffic of 
working days or holidays), and outputs more 
accurate predicted data through iteration 
technologies [12]. 

2.2 Establishment of the LSTM model 

In the study, the LSTM model was built with 
TensorFlow2.0 and traffic per hour was taken as a 
sample. The traffic samples of the last 20 days were 
processed first, and the traffic over each network 
element was listed by time series after processing 
[13,14]. The following four steps describe how the 
LSTM model was built and traffic forecasting was 
conducted. 

1) Make data sets: The traffic samples of the first 
15 days were used for training and testing, and 
those of the remaining 5 days were used for 
result verification. The training data set 
included 75% traffic samples of the first 15 
days, and the testing data set contained the 
other 25%. The initial default time sliding 
window was 24. 

2) Establish the LSTM model: Add two LSTM 
layers to the LSTM model for traffic forecasting. 

 
3) Train the model: Input training data and test 

data into the LSTM model, and set epochs and 
batch_size to 50 and 32 respectively. 

4) Conduct traffic forecasting: Forecast the traffic 
of the next hour through iteration technologies 
based on the time sliding window. Enhance the 
forecasting efficiency via multiprocessing 
technologies and concurrent processes. 

2.3 Optimization of the LSTM model 

At the beginning of the study, the traffic forecasted 
with the default parameters of the model was quite 
different from the data (traffic of the last five days) 
which remained for result verification. After 
repeated comparison and analysis, the most proper 
epochs, batch_size, and slide_window were 
determined. The following shows the way that we 
used in the study to determine those parameters. 

First, set the batch_size and slide_window to fixed 
values, and the epochs to 50, 100, 200 and 400 
respectively. Then, evaluate the impact of each 
epoch’s value on the errors in traffic forecasting in 
terms of the Root Mean Square Error (RMSE) and 
running time. The results indicate that 
"epochs=200" is the optimal choice. 

After the model was trained for 50, 100, 200, and 
400 times respectively, the RMSE generated 
accordingly, predicted traffic volume, and the time 
that training costs were recorded in the following 
table.  

Table 1 – Optimization of the model's epochs 

Times RMSE 
Predicted 

Traffic 
Volume (GB) 

Running 
Time(s) 

50 16.246 251.3 55 

100 3.714 279.9 85 

200 1.9 292.4 148 

400 2.3 293 305 

As Table 1 shows, when the model was trained for 
200 times, it generated the smallest RMSE and cost 
the shortest time. However, when the training was 
conducted for 50, 100, and 400 times, both the 
RMSEs that were generated accordingly, and the 
running time of each training failed to meet the 
requirements. Therefore, the model was finally 
trained for 200 times to ensure both high efficiency 
and accuracy. 
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When epochs were set to 200 and slide_window to 
a fixed value, the result of repeated comparison of 
the errors caused by configuring different 
batch_size showed that batch_size=64 is the best 
choice.  

When epochs=200 and batch_size=64, 
"slide_window=48" causes the minimum error in 
traffic forecast. 

Fig. 2 shows the errors in traffic forecast when the 
model is configured with different parameter values. 

 
Fig. 2 – Model set with different parameter value

 

In view of accuracy of the forecast and running 
efficiency, the parameter values of the traffic 
forecasting model were selected through multiple 
rounds of testing. The final values used in the 
system ensure that the average error in traffic 
forecast is under 3%, as shown in Fig. 3 below. 

 

Fig. 3 – Comparison between predicted data and the data for 
result verification 

After optimization, we input the same sample into 
the new LSTM model (which was named Our-LSTM) 
and other five well-known models respectively, 
namely ARIMA, LightGBM, Prophet, LSTM, and 
DeepAR, and made some comparisons. For specific 
information, refer to Table 2. 

 

Table 2 - Comparisons of traffic forecasting models 

Model 
Absolute 

Accuracy (%) 
Relative 
Accuracy 

ARIMA 18.36 2.6721 

LightGBM 20.31 1.8742 

Our-LSTM 3.01 0.6552 

Prophet 8.88 2.3516 

LSTM 15.02 1.7471 

DeepAR 16.3 1.6913 

As Table 2 shows, both the absolute and relative 
accuracy achieved through Our-LSTM are better 
than those achieved based on the initial LSTM, 
proving that the hyper-parameters of Our-LSTM 
after optimization are more suitable for the 
network. When compared with other time series 
forecasting models listed in the above table, Our-
LSTM with the highest absolute accuracy and 
relative accuracy is superior to them in short-term 
time series forecasting. 
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3. NETWORK TOPOLOGY ANALYSIS FOR 
OPTIMIZATION 

Topology optimization is quite complicated. 
Existing network topology planning can hardly 
satisfy future traffic increase or solve the problem 
of uneven load balancing, as it is made based on the 
current network load. Our research is to resolve this 
problem through dynamic network topology 
optimization. Specifically, the topology 
optimization system introduced in this paper 
enables network load balancing and makes the 
topology satisfy future traffic growth. 

NetworkX, a Python library for studying graphs and 
networks, is an effective tool for analyzing network 
topology, building network models, designing new 
network algorithms, and plotting network graphs. 
In this system, NetworkX is used to plot the network 
graph [15]. 

3.1 Network topology reshaping 

3.1.1 Define nodes and links 

As per different functions, significance, and capacity, 
the nodes in the network topology to be optimized 
can be classified into three types, namely, nodes G, 
H, J [16,17,18]. There are also three types of links, 
namely, main links, sub-links, and hanging links. 

Link: A link in the network topology can be made of 
one main link, zero or multiple sub-links, and zero 
or multiple hanging links. The total number of 
nodes on each link does not exceed 30. 

Main link: Each main link has the following features: 
1) Its end nodes are node G/H. 2) Its intermediate 
nodes are node H or J. 3) The capacity of each 
intermediate node is the same. 4) The total number 
of nodes on one main link equals to or is less than 
15. 

Sub-link: Each sub-link complies with the following 
requirements: 1) Its end nodes are node G/H/J on 
main links (When the types of the start node and 
end node are different, they can only be node G/H), 
and intermediate nodes should be node J. 2) The 
capacity of a node J is smaller than or equal to that 
of either end node of the sub-link. 

Hanging link: The link connects with a node G, or H, 
or J on one main link or sub-link through one edge 
only. The capacity of each node on a hanging link is 
smaller than or equal to that of the node where it 
connects, as shown in Fig. 4 below. 

 

Fig. 4 – Structure of network topology 

3.1.2 Introduction of neighbor links and 
neighbor nodes for faster topology analysis 

Neighbor nodes and neighbor links in the network 
graph created with NetworkX can be defined [19]. 
As for neighbor nodes, one node on a specified link 
is adjacent not only to the appropriate node on the 
same link, but also to the nodes within a certain 
distance. Neighbor links refer to the links where 
two neighbor nodes (on different links) locate. The 
network topology in full status indicates that all 
neighbor nodes in this topology are connected. Such 
topology includes both existing links and all 
potential neighbor links. Network topology in 
optimized status refers to the network graph that 
we achieve by removing appropriate edges. 
Topology in full status and in optimized status can 
be mutually transformed. 

Neighbor nodes and neighbor links become the only 
two factors that one needs to figure out when any 
node or link is to be analyzed, making iteration 
more simplified and topology analysis more 
efficient, as shown in Fig. 5 below. 

 

Fig. 5 – Full and optimized status 

3.2 Innovative "Node-Removing Method" for 
highly efficient topology recovery 

The network topology solution proposed in this 
paper is implemented based on edge reshaping. 
Specifically, links in the network topology need to 
be sorted out and saved in a link library. 

 

ITU Journal on Future and Evolving Technologies, Volume 2 (2021), Issue 4

84 © International Telecommunication Union, 2021



 

First, find the main links whose end nodes are G or 
H via the DFS algorithm [20,21], and save all such 
main links in the link library. For cross-connected 
main links, select the one that is comparatively 
longer than the others in accordance with 
constraint rules on cross-connected links. 

Regarding the sub-links and hanging links, the 
innovative "Node-Removing Method" is applied to 
sort them out when all main links have been 
identified. Specifically speaking, after main links in 
the network topology are removed, the related sub-
links and hanging links will be disconnected 
accordingly. In this way, all the links in this network 
topology can be sorted out by category, and all the 
links of the topology will be recorded in the library 
by category. 

1) Select one main link from the link library, and 
then remove it by using NetworkX. 

2) Execute the connected_components() method 
to identify all connected sub-graphs [15]. 

3) Review all these sub-graphs and remove the 
sub-graphs that are not related to the current 
main link in accordance with the existing node 
connections. 

4) Associate the sub-links and hanging links in the 
sub-graphs that have been removed in step 3 
with the correct main link, and update the 
collection of neighbors’ links in the link library. 

5) Continue to remove other main links in the 
same way until all the sub-links and hanging 
links in the graph are associated with 
appropriate main links, as shown in Fig. 6 
below. 

 

Fig. 6 – Node removing method 

3.3 Evaluation of network topology 

The following formula describes how the effect of 
network topology optimization is evaluated based 

on the network service rules, rules for assessing 
node levels [22,23], and the requirements for link 
load balancing.   

max object_ratioavg – (Eavg+Emin+Emax) – α · sub_ratio 
-β · hang_ratio (1) 

Explain: 

object_ratioavg: Daily average of the ratio of links 
whose bandwidth utilization is optimized to the 
target range per hour  

Eavg: Daily average of the E-value per hour that 
indicates network load balancing  

Emin: Minimum E-value per hour of each day  

Emax: Maximum E-value per hour of each day 

sub_ratio: Proportion of nodes on sub-links to those 
on the entire link (daily average of values per hour) 

hang_ratio: Proportion of nodes on hanging links to 
those on the entire links (daily average of values per 
hour) 

α,β: Constant coefficients that are set to 0.02 and 
0.05 respectively. 

Edge addition: Distance between two nodes that are 
to be connected by adding an edge for topology 
optimization should be within 500 meters.  

Number of nodes on each link: Maximally 30 nodes 
on each link. 

Target range of link bandwidth utilization: 

[
3

5
 𝜇 ,    

7

5
 𝜇] 

Formula used to calculate E-value: 

𝑓𝑝 =
∑ 𝑓𝑥𝑖

𝑛𝑜𝑑𝑒𝑠 𝑛𝑢𝑚𝑏𝑒𝑟
𝑖

A
  (2) 

"E" is the variance of the link bandwidth utilization 
(fp) of all links in the network topology.   

"μ" is the average of bandwidth utilization of all the 
links in the network topology. In the formula, fx is 
the traffic on the nodes (excluding the start and end 
nodes) on the link, and A stands for the maximum 
node capacity that one node (excluding the start 
and end nodes) on the link can possess.  

3.4 Build and complete network topology 
optimization and find the optimal 
solution through iteration 

Network topology optimization for load balancing can 
be implemented in three different ways [24,25,26,27], 
including link combination, partial link optimization, 
and the optimization by node transfer. 
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Identify links with heavy or low load based on their 
link utilization, check the link library to search for 
their neighbor links that carry low load or whose 
link utilization is within the target range, confirm 
whether any link combination can be conducted in 
accordance with the rules for link optimization, and 
combine the links that comply with the rules. 

In the case where links cannot be optimized in the 
above way, partial link optimization can be 
implemented. 1) Identify the links adjacent to the 
sub-links or hanging links of the links with heavy 
load; 2) Opt for one appropriate neighbor link and 
connect those sub-links or hanging links with the 
neighbor link in accordance with the related rules. 

 

The optimization by node transfer is applicable to 
all the links (including those whose link bandwidth 

utilization is within the target range). Specifically, 
the links are optimized through the transfer of some 
nodes with heavy load on these links to other links. 
It reduces the variance in the utilization of all links. 

During network topology optimization, the 
iteration of network topology is carried out every 
hour, which is 24 times a day.  

Regarding the topology optimization system, the 
network topology iteration carries out every hour 
after the first topology recovery. Therefore, each 
day, 25 scores on link ‘status calculated’ based on 
the evaluation formula can be achieved. During the 
topology iteration, the previous day's network 
topology with the highest score is used to start the 
next round of network topology optimization. 
Finally, the result of the optimization showed that 
the proportion of links with balanced load increased 
by 86%, as shown in Fig. 7 below.

 

Fig. 7 – Network topology optimization process 

3.5 Unique network topology restructuring 
for better topological structure 

Network topology restructuring is to optimize the 
links that carry heavy or low load for a long time 
when basic network topology optimization is 
completed [28,29]. 

First, identify links with a heavy or low load for a 
long time. Second, split the link with heavy load into 
two links through either of the following two ways. 
One is to connect the link with two neighbor nodes 
(node G or H) respectively by adding two new edges. 
The other is to connect it with another main link 
that carries low load. By doing so, the iteration of 
the new topology carried out afterwards based on 
the new structure improves the utilization of all 
links [30]. 

The network topology restructuring aims to 
optimize network topology in a more complete way. 
In other words, it changes the status of the links that 
carry unbalanced load for a long time. In the study, 
we extended the distance between two neighbor 
nodes to 1000 meters and witnessed a 169% 
increase in the proportion of the links with a 
balanced load through the network topology 
restructuring [31,32], as shown in Fig. 8 below. 
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Fig. 8 – Proportion of links with balanced load in different 
optimization stages 

The above-mentioned solution introduces a 
complete network topology optimization system for 
effective resolution of network topology problems, 
as shown in Fig. 9 below. 

 

Fig. 9 – A complete network topology optimization system 

4. CONCLUSION 

Traffic forecasting and network load balancing are 
always under the spotlight of operators. During the 
study, all tests prove that the forecast accuracy and 

efficiency of the optimized LSTM are higher than 
those of ARIMA, LightGBM, Prophet, and DeepAR. 
Therefore, it can provide better support for 
operators' resource investment. The network 
topology optimization model proposed in this paper 
is optimized based on the actual size of the network 
that we worked on in the study. In view of different 
locations, periods of time, network sizes, and 
network characteristics, the model needs to be 
optimized in accordance with different topology 
reshaping rules tailored based on the nodes and 
routing of the network to be optimized. This model 
is vital to network topology optimization, as it can 
enhance the resource utilization by over 30%.  

 

In this paper, a brand-new AI-based network 
topology optimization system is proposed. By 
analyzing future network traffic development 
trends via a traffic forecast model and refining 

network structures through a network topology 
optimization model, this system enhances the 
utilization of network resources and reduces 
operators' investments. The advent of the 5G era 
brings the world booming network traffic and more 
complicated network structures, and AI-based 
network topology optimization is superior to other 
methods for its outstanding capability and 
practicability in dealing with complex networks. It 
ensures sustainable network development and 
guarantees the return on investment ratio for 
operators. The AI-based network topology 
optimization system introduced in this paper is 
proposed based on ITU AI standards, and features: 

1) Creativity: It addresses difficulties and 
promotes the development of intelligent 
networks by applying cutting-edge AI 
technologies to operator networks.  

2) Enhanced traffic forecast algorithm: It enables 
more accurate traffic forecasting. 

3) A complete network topology analysis and 
optimization structure: The concepts of 
neighbor, node removing method, and three-
step network topology optimization that are 
introduced for the first to the industry 
effectively accelerate the network topology 
analysis. Moreover, the network restructuring 
fixes the defects of existing network topologies, 
paving the way for future network topology 
optimization. 

The challenge organized by ITU has offered a great 
opportunity for building a cross-field ecosystem, 
and operators and ITU should continue to make 
joint efforts (e.g. encourage crowd-funding AI 
algorithms) to resolve common problems. For 
example, building a middleware platform to open 
data and solve problems together, organizing more 
competitions and building the ecosystem for 
developers for closer collaboration. 
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Abstract – Nowadays, telecommunications have become an indispensable part of our life, 5G technology 
brings better network speeds, helps the AR and VR industry, and connects everything. It will deeply change 
our society. Transmission is the vessel of telecommunications. While the vessel is not so healthy, some of 
them are overloaded, meanwhile, others still have lots of capacity. It not only affects the customer experience, 
but also affects the development of communication services because of a resources problem. A transmission 
network is composed of transmission nodes and links. So that the possible topology numbers equal to node 
number multiplied by number of links means it is impossible for humans to optimize. We use Al instead of 
humans for topology optimization. The AI optimization solution uses an ITU Machine Learning (ML) 
standard, Breadth-First Search (BFS) greedy algorithm and other mainstream algorithms to solve the 
problem. It saves a lot of money and human resources, and also hugely improves traffic absorption capacity. 
The author comes from the team named"No Boundaries". The team attend ITU AI/ML in 5G Challenge and 
won the Gold champions (1st place). 

Keywords – 5G, artificial intelligence (Al), data handling, intelligence level,machine learning (ML)  

 
1. BACKGROUND 

Nowadays, telecommunications have become an 
indispensable part of people’s lives. We connect to 
the Internet through mobile phones for social 
networking (Facebook, Weibo, etc.), entertainment 
(YouTube, mobile games, etc.), e-shopping (Amazon, 
eBay, etc.) and work (remote office OA, etc.), and the 
upcoming 5G network has expanded from people-
to-people communication to people-to-things, and 
things-to-things communication. Therefore, the 
future network will be more deeply embedded in 
our society and life. Assuming that a tele-
communication system is a human body, 
transmission is as important as a vessel system 
which sends our data (also known as traffic) to the 
place it is needed. To construct a highly efficient 
network, each node should be used efficiently to 
form the transmission network. 

However, just as a large number of diseases are 
related to a blood vessel ， the situation of the 

transmission network is not optimistic in the actual 
communication network. 

Due to the characteristics of mobile 
communications, increasingly complex mobile 
Internet services, and increasing traffic, the 
utilization rate of the transmission network is 
generally unbalanced. Congestion is caused by the 
overload of a small number of key nodes, and about 
half of the nodes are under low load. Take the China 

Mobile Kaili PTN network as an example. Among the 
913 links in the entire network, high-load links 
account for 9% while low-load links reach 53%. 
Operations staff need to optimize the network 
topology. 

 

Fig. 1 – Link utilization 

A transmission network is composed of 
transmission nodes and links. So that the possible 
topology numbers equal the node number 
multiplied by the number of links, taking Kaili as an 
example, the possibility of all topologies exceeds 2.9 
million, which is impossible for humans to optimize. 

So, at present, we can only adopt two methods, one 
is to adjust only one link locally. We optimize some 
of the chains with ultra-high utilization rates by 
experience or artificial prediction to reduce the 
number of nodes and load on a single link. And the 
other is to directly upgrade the hardware, which 
increases the bandwidth capacity of the entire link 
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by expanding hardware boards and ports to reduce 
link utilization (traffic/bandwidth). Due to the 
shortcomings and limitations of the current scheme, 
it is difficult to improve the current unbalanced 
transmission network. 

 

Fig. 2 – Solution1:Local(Ring) Adjustment: "big-to-small" 
optimization for some links, reducing the number of nodes 

and load 

 

Fig. 3 – Solution2:Node expansion: Increase bandwidth of the 
link by upgrading hardware, and reduce link utilization 

To solve this problem more effectively, the No 
Boundaries team has read a lot of literature, but 
there is no mature solution.  

Qianyin Rao believes that applying the new SDN 
technology of 5G transmission network to 
transmission network can only solve the problems 
of delay and local optimization, and cannot support 
global topology optimization[1]. Intelligent control 
is still insufficient. 

Lin Guo believes that wireless devices are the edges of 
networks, which differ from the nature of the 
transmission equipment[2] [3]. So a wireless network 
topology optimization scheme cannot be adopted.  

Zhouwei Gang believes that the number of nodes in 
the data center and Internet scenarios is far less 
than that of the transmission network and cannot 
be applied[4] [5] [6]. 

Although no mature solution was found, the team 
was inspired to use machine learning instead of 
humans for topology optimization. 

2. SOLUTION 

2.1 Simulated environment 

In order to explore the optimization of network 
topology based on machine learning, China Mobile 
selected more than 2,000 pieces of node topology 
information in three cities A, B, and C from the real 
network and the traffic situation of the nodes in the 
previous 20 days as the basic data of the contest, 
and the comprehensive evaluation indexes of 
topology optimization results (single day) are as 
follows: 
max object_ratioavg − (Eavg + Emin + Emax) − α ∙ sub_ratio − β ∙ hang_ratio 

object_ratioavg: the hourly daily average value of the 

ratio of link bandwidth utilization optimized to the 
target range; 

Eavg : hourly daily average value of the network 

topology load balancing E value; 

Emin: hourly daily minimum value of the network 
topology load balancing E value; 

Emax : hourly and daily maximum value of the 
network topology load balancing E value; 

sub_ratio : ratio of the number of nodes on the 
secondary link in each link to the number of nodes 
in the entire link (hourly daily average); 

hang_ratio : the ratio of the number of nodes 
hanging in each link to the number of nodes in the 
entire link (hourly daily average); 

α，β:Constant coefficients (α=0.02, β =0.05 ). 

The specific algorithm of the evaluation index is as 
follows: 

Target range of link bandwidth utilization: 

[
3

5
× 𝜇，

7

5
× 𝜇] 

The calculation method of the load balancing E 
value is as follows: 

E value = variance of the fp value of all links in the 
network topology 

Link bandwidth utilization𝑓𝑃 =
∑ 𝑓𝑋 𝑖

nodes
𝑖

𝐴
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The μ in the upper and lower limits of the target 
range is the average value of bandwidth utilization 
of all links in the network topology. 

In the 𝑓𝑃  calculation formula, 𝑓𝑋  is the flow 
value of the network element nodes in the link 
except the link head and tail nodes, and 𝐴 is the 
maximum value of the 𝐴 value of the other nodes 
in the link except the link head and tail nodes. 

2.2 Architecture design 

Through team analysis, Qian Deng found ITU's 
machine learning framework in the future network 
(mainly containing three components, ML sandbox 
system, ML pipeline subsystem and management 
subsystem), and believed that the ML pipeline 
subsystem met the needs of this competition. 

The ML pipeline subsystem consists of 7 parts, but 
the data has been provided for this competition, and 
the optimization results are given in the form of a 
table and do not need to be directly connected to the 
equipment. Therefore, SRC, C, D, and SINK are not 
involved in the development. The result mainly 
consists of three parts: PP for data cleaning, M for 
topology restoration and traffic prediction[9], and P 
for optimization of the topology according to 
optimization rules and predicted traffic strategy. 

 

Fig. 4 – Mapping ITU architecture 

2.3 Algorithm selection 

Since the data comes from the real network, there 
are certain deficiencies, so the data preprocessing 
mainly considers two aspects of data integrity and 
ease of use: 

Data integrity: Zezhong Feng uses pandas to check 
the integrity of key fields (traffic, latitude, longitude, 
connection relationship, etc.) and fill in missing data 
to ensure normal operation of subsequent 
predictions and optimizations. 

Ease of use: Lin Xi believes that data is based on 
nodes. To restore the connection of nodes in the 
network topology, it is necessary to transform the 
data structure to facilitate subsequent calls. 

Compared with the adjacency table, using an 
adjacency matrix to store the connection 
relationships of nodes can improve query efficiency. 

  

Fig. 5 – Node structure  

2.4 Modeling 

Regarding the Topology Restoration Model (TRM) 
and Traffic Forecast Model (TFM), Zhouwei Gang 
believes that the essence of topology restoration is 
to organize and form a new data set according to the 
specified conditions from the original data set. 
Therefore, search algorithms can be used for 
processing. Traffic forecasting is based on the 
changes of things in the past, mining the law of 
change, predicting the future, and there is a strong 
correlation with time, so the time series prediction 
algorithm is used for processing [10][11]. 

 

Fig. 6 – Time series prediction algorithm 

Before TRM, Data Preprocessing (DPP) had 
converted the node connection relationship into a 
graph representation. Therefore, the process of 
finding a set of links in the topology that meets the 
specified conditions (topology restoration or 
topology optimization) is essentially a graph search 
problem. The most commonly used search 
algorithms for graphs are Breadth-First Search (BFS) 
and Depth-First Search (DFS) algorithms. Lin Xi said 
that this project has certain requirements for 
convergence time, so the breadth-first search 
algorithm is adopted for higher search efficiency. 

 

Fig. 7 – BFS and DFS 
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However, traditional BFS cannot visit the visited 
node, and there is a situation in which the node is 
visited multiple times in the simulation data. To 
solve this problem, Lin Xi modified the BFS search 
status part so that the improved algorithm can 
repeatedly visit the node and adapt the search of the 
link set. 

 

Fig. 8 – Improved BFS  

For TFM,mainstream time series prediction 
algorithms include multiple linear regression, 
Autoregressive differential Moving Average (ARIMA) 
and Long-Short-Term Memory network (LSTM) 
model [7]. By analyzing the characteristics and data 
of this research, the influence between the data is 
almost non-linear. Among the above prediction 
models, the LSTM model is designed with a special 
structure to memorize and filter the changes in 
traffic on the time scale. Therefore, we choose the 
LSTM recurrent neural network model for 
prediction to meet the requirements of this 
prediction scenario. 

 
Fig. 9 – LTSM adopted  

Zezhong Feng believes that the bottleneck for 
improving the accuracy of traffic forecasting is that 
there are few samples and few influencing factors, 
many nodes of different types, so the model is in two 
layers to reduce overfitting and under-fitting. We 
build a model for each node and increase the flow 
information carried by each neuron from 1 to 24, so 
that the model can fit more flow changes. In the end, 
the average accuracy of TFM increased from 91.7% 
to 95.3%. 

 
Fig. 10 – Improved input 

In order to further improve the prediction accuracy, 
Zezhong Feng tried to add more features to improve 
the traffic forecast model. In the time dimension, we 
add the two features of the day’s weather and the 
weekend to make it have traffic and weekend 
features; in the space dimension, we add the node 
traffic at a certain distance around the node as a 
feature, and we analyze that it is within a certain 
range (tentative 2 Km) where nodes have an impact 
on the node traffic of the current link, and such node 
traffic is added to features. 

Zezhong Feng’s experimental results indicate that:  

By adding weather features, the average forecast 
accuracy of the model is increased by 0.4%； 

by adding the features of working day/off day, the 
average forecast accuracy of the model is increased 
by 1.6%； 

by adding the traffic chrematistics of surrounding 
nodes, the average forecast accuracy of the model is 
increased by 1.8%； 

after all three features were added, the average 
forecast accuracy of the model increased from 
91.7% to 95.3%. 

 
Fig. 11 

2.5 Optimization strategy  

In terms of Topology Optimization Strategy (TOP), 
Zhouwei Gang proposed an optimization strategy of 
"(ultra-low)*3". First calculate the utilization rate of 
all links and the average value of the entire network, 
and set a threshold to divide all links into three 
categories: overload, low load and normal. The 
overload links are processed first, and then the low-
load links are processed. After finishing, adjust the 
threshold value, do it twice again, and finally obtain 
the optimized topology by completing three 
threshold adjustments. 

 

Fig. 12 – Topology optimization strategy 
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Zhouwei Gang completed the optimization rules for 
overload and low-load links, and Lin Xi realized the 
aggregation of low-load links with the same head 
and tail nodes. 

Overload link optimization scheme： 

Calculate the utilization rate of all links and the 
average value of the entire network based on the 
predicted node traffic, search for all overloaded 
links to form a set, and select a link, as shown in the 
red link on the left. Along the link sequence, each 
node is judged according to rules, whether it can 
establish a link with other link nodes, and the 
results are formed into a set. According to the load 
of the original link and the load of the new link, find 
a pair of nodes from the set, disconnect them, and 
connect them to other links to form a new link. 

The low-load link optimization rules are similar and 
will not be elaborated. 

 
Fig. 13 – Link adjustment 

L stands for link, J stands for J node. Through the "(ultra 
low)*3" TOP (optimization strategy refers to the 
calculation of three operations repeated three times): 
1. Optimize overloaded links 
2. Optimize low-load links 
3. Adjust the threshold and recalculate the overload 
link and the low-load link 

The algorithm can complete topology optimization in 
55.5 minutes. Lin Guo used Qunee (Web graphics 
component solution) to complete the topology map. 
The left picture of the figure below is the original 
topology of City C, and the right picture is the optimized 
topology. Green nodes indicate adjusted nodes. 

 
Fig. 14 – Node load reduction 

But the "(ultra-low) *3" TOP (topology optimization 
strategy) is still the topology optimization of the 
link granularity, can it be further refined to the node 
granularity? 

Lin Xi introduced a greedy algorithm to improve the 
optimization strategy. The core strategy is to refer 
to the index score when optimizing overloaded 
links and low-load links, and always move the nodes 
to get the highest index score. In this way, the node 
is moved to the optimal link. 

The calculation of the index score is mainly related 
to the link optimization ratio, the average, minimum, 
and maximum value of link bandwidth utilization, 
and the ratio of secondary links and downstream 
nodes in the link. Using the optimization strategy of 
the greedy algorithm, the nodes are not randomly 
moved to other links, but selectively moved to the 
links that make the index score higher, and the 
optimization granularity is refined from the link 
level to the node level, thereby improving the 
overall optimization effect, with the link 
optimization ratio increased by 0.4. Although the 
calculation time doubled, it did not exceed 15 
minutes, and the optimization evaluation score 
increased by about 10%. 

At the same time, Lin Xi has tested the genetic 
algorithm. For the topic of network topology 
optimization, the genetic algorithm involves more 
debugging such as parameter coding, selection, 
crossover, mutation, etc. For example, topology 
optimization is difficult to map and transform in the 
parameter coding part, and it involves rule 
constraints during crossover, considering the entire 
genetic algorithm for topology optimization is 
actually very complicated, finally only the greedy 
algorithm is used. 

 

Fig. 15 – Greedy algorithm 
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Fig. 16 – Increased 11% 

2.6 Real-world scenario 

Qianyin Rao introduced the results into Kaili City, 
with 913 chains composed of 3191 network 
elements, and an AI optimization algorithm output 
of 60 high-load solutions, of which 29 have passed 
the expert review and are qualified for 
implementation. In order to ensure safety, the 
operation is carried out in batches. Each 
optimization does not exceed 50 nodes, and the 
scope of influence is controlled within 10 links. 
After the operation is completed, observe the 
stability of the network for 3 days before 
proceeding to the next operation. Up to now, 11 
batches of adjustments have been completed, and 
16 high-load links have restored reasonable loads. 

 

Fig. 17 – PTN ring utilization 

For these 16 overloaded links, compared with the 
traditional solution, this network topology 
optimization saves construction costs by 2.6 million 
RMB, reduces personnel investment by 17 man-days, 
and increases network absorption traffic by 79TB/day. 

 

Fig. 18 – Economic performance 

2.7 Standard packaging and rapid promotion 

Lin Guo said, ‘In order to meet the needs of rapid 
replication and promotion, according to ITU ML 
architecture and recommendations, the 
requirements in ITU recommendations are 
implemented by docker and Kubernetes’. Docker 
container is a standard unit of software that 
packages up code and all its dependencies so the 
application runs quickly and reliably from one 
computing environment to another K8s, is an open-
source system for automating deployment, scaling, 
and management of containerized applications. 
According to the test, the development time is 
shortened by 70%, data sharing is applied to reduce 
50% storage, and fault self-healing is realized. 
Finally, the overall architecture is completed on the 
basis of integration with ITU architecture. 

3. RESULTS AND DISCUSSION 

3.1. Results 

In accordance with the ITU standard Lin Guo 
evaluated the results, the application results 
reached L3 in analysis, decision and demand 
mapping, and the data collection reached L2. Since 
the newly-built link in the transmission topology 
optimization involves physical entity operations 
and cannot be fully implemented by the software 
system, the action implementation only reaches L1. 

But the team believes that after the results continue to 
improve, the three parts of data collection, analysis 
and decision can be upgraded from the current L2 and 
L3 levels to L5. The demand mapping team believes 
that it needs to accumulate more expert experience to 
break through to L4. If the results are applied to other 
similar network topology optimizations that do not 
require physical adjustment, the team believes that L5 
can be achieved. 

 

Fig. 19 – Intelligent level 

At the same time, the team believes that there is still 
room for further evolution of this result. 
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First of all, continuing to optimize the algorithm is a 
good choice. At present, we only use the greedy 
algorithm, but there are actually many optimization 
algorithms that have not been tested and verified 
for similar problems. 

Secondly, conduct pilot projects in more locations to 
accumulate sample data to adjust and optimize 
strategies to improve accuracy. 

Finally, after the topology adjustment is completed, 
perform a certain period of observation, roll back, 
and analyze the reasons for those that have not 
reached expectations, and guide the improvement 
of the strategy. 

3.2. Discussion 

Through this research, with the support of ITU 
planning, our results have achieved breakthrough 
success. Compared with traditional operation and 
maintenance methods, we have obvious advantages. 
We think that this AI/ML application in the 
communications industry has positive significance 
in three aspects: 

The communication network before 5G mainly 
communicates between people, and the three 
typical scenarios in the 5G standard reflect that 5G 
has increased the communication between people 
and things, and between things. This type of 
communication will not only change the way of 
human life, but also change the mode of social 
operations. Facing this great prospect, ITU, global 
operators and equipment vendors are all vigorously 
promoting the construction and operation of 5G 
networks. But this also causes the complexity of the 
5G network to far exceed the previous network, and 
the construction cost and operation and 
maintenance cost have doubled. The results of this 
combination of communication operation and 
maintenance and AI can greatly reduce the cost of 
5G network construction and operation and 
maintenance, and accelerate the promotion of 5G. 
Therefore, it is recommended that the ITU 
continues to improve the integration of AI/ML 
technologies in the communication specifications to 
provide support for global operators and equipment 
vendors, so as to burst more intelligent operation 
and maintenance results, promote 5G networks to 
change society as soon as possible, and enable us to 
enter a better future. 

 

Fig. 20 – 5G for everything 

In China Mobile, an intelligent operation and 
maintenance ecosystem of developers + platform + 
standards have been formed. The "Nine days" 
intelligent intermediate platform created by China 
Mobile provides functions for developers and 
gathers the wisdom of developers who work in 
accordance with ITU standards. The result is 
screened by China Mobile and then promoted, 
forming an endless ecosystem. Relying on this 
ecosystem, China Mobile has cultivated many 
intelligent operation and maintenance results, 
supports China Mobile in building the world's 
largest 5G network, and constantly discovers new 
problems in construction, operation and 
maintenance, and new problems have become new 
goals for developers. In this way, we can realize the 
efficient operation and maintenance of complex 
networks. 

 

Fig. 21 – ecological environment 

Most of the current AI development is the to 
customer mode that focuses on serving users, based 
on user needs, and conforms to users' living habits. 
Based on the ITU specifications, this project has 
achieved the integration of the communications 
industry and AI. This is an exploration of the to 
business model of AI development serving the 
industry. It is developed based on industry needs 
and meets industry development specifications. It is 
foreseeable that more and more AI services will 
adopt the industry-to-B model in the future，this 

research will provide an example for them. 

 

Fig. 22 – AI to C and AI to B 
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Abstract – Stable and high‑quality Internet connectivity is mandatory for 5G mobile networks. However, the pandemic of
COVID‑19 has forced global and large‑scale staying at home and telecommuting in many countries. The increasing trafϔic
has induced more pressure on networks, devices and cloud data centers. It becomes an essential task for network opera‑
tors to enable their ability to automatically and rapidly detect network and device failures. We propose a highly practical
method based on highly practical technology. Our method has a high generalization ability that can efϔiciently extract fea‑
tures from large‑scale unstructured data and ensure high accuracy prediction. First, 997 useful features are extracted from
28GB‑per‑day network logs. Then, a differential approach is employed to preprocess the extracted features so as to highlight
the differences between normal and abnormal states. Third, those features are reϔined based on the feature importance we
calculated. According to our experiment, the proposed feature extraction and reϔinement method can reduce computation
without degrading the performance. Among the ϔive types of failures, we achieve a 100% recall rate in four types and the rest
can also reach 71%. Overall, the total average prediction accuracy of the proposed method is 94%.

Keywords – Core network, failure detection, route information, machine learning

1. INTRODUCTION
The pandemic of COVID‑19 has forced global and large‑
scale staying at home and telecommuting in many coun‑
tries. The implementation of social restrictions increases
Internet trafϐic, particularly the trafϐic of remote working,
webmeetings, and online education. For instance, Netϐlix
has faced a surge in subscriber numbers, with almost 16
million people signing up for accounts in the ϐirst three
months of 2020 [1]. Zoom’s daily active users spiked
to 200 million in March 2020, up from 10 million in De‑
cember 2019 [2]. Such increasing network trafϐic has in‑
duced more network and device failures than before. For
example, it is reported that Google has suffered an esti‑
mated $1.7M loss in advertisement revenues during their
“outage” in December 2020 [3]. Thus, how to automati‑
cally and rapidly detect network and device failures has
become an essential problem in daily operation.
Network technologies such as 5G, have dramatically
changed the telecommunication environment that brings
faster speed experience to us. 5G mobile networks re‑
quire stable, high‑quality Internet connectivity, but when
a failure happens, the consequences of that failure are ex‑
tremely serious. In addition, since the Internet is oper‑
ated mutually among ISPs, even if a failure occurs in a
certain ISP domain, the failure spreads rapidly all over
the world. However, only experienced ISPs can deal with
such a network failure that affects the world. It is de‑
sirable that anomaly detection could be performed au‑
tomatically and promptly. The IP backbone network of
one ISP is interconnectedwith others via Border Gateway
Protocol(BGP) routers. A BGP router needs to continu‑
ously update the route information from the received in‑

ternal/external route information and provide appropri‑
ate feedback. Thus, these BGP routers play very impor‑
tant roles in 5G services, and in order to maintain a cer‑
tain level of service, it is desirable to immediately detect
hardware and software defects and malfunctions. More‑
over, increasing network trafϐic also brings challenges to
data‑based optimization. Recent hot AI technologies pro‑
vide novel approaches that are able to migrate our focus
of work from fault handling to fault prediction, which al‑
lows operators to take precautions in advance.
Based on the data sets [4] provided by KDDI Corpora‑
tion, we propose an efϐicient method to predict network
and device failures from large amounts of unstructured
log ϐiles in real time. Our proposal contains three main
steps: Feature Extraction, Feature Reϔinement, and Fea‑
ture Reduction. In the Feature Extraction step, we ex‑
tract 997 features from 28GB per day of unstructured
log ϐiles, and merge tagged features from the follow‑
ing three kinds of JSON log ϐiles: physical‑infrastructure,
virtual‑infrastructure, and network‑devices. As for the
BGP‑related entries, we use the number of next‑hops in
each array and corresponding preϐixes as features.
In order to derive metrics that are changed when there is
an the occurrence of a failure, we highlight the difference
between normal and abnormal entries and deϐine a new
feature named Differential Data to reϐlect the variations
between abnormal data and normal data. After the data
processing, one CSV ϐile that could be utilized for training
or evaluation is generated.
For the sake of importance analysis, the XGBoost [5]
model is trained by us to calculate the importance scores
which work as the reference in the Feature Reduction
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phase via observing the changes in accuracy which are
trained by different numbers of features, we have two ob‑
servations: (1) The highest accuracy is 94% when the
number of features is more than 150; (2) Accuracy could
achieve 93% ifwe use only the top 30most important fea‑
tures, without obvious performance degradation.
According to our evaluation, we achieve a 100% re‑
call rate when detecting the following four network and
device failures: Node‑Down, Interface‑Down, Ixnetwork‑
BGP‑Injection, and packet loss & delay. There is a 71% re‑
call rate of Ixnetwork‑BGP‑Hijacking detection, while the
total average accuracy of our proposal is 94%. XGBoost,
Random Forest, and LightGBM [6] have been demon‑
strated in our experiments that they outperform other
methods in terms of training and inference time.
In summary, the main contributions in this paper are as
follows.

• First, we deϐine a staged method including feature
extraction from unstructured network logs, a differ‑
ential approach to highlight the differences between
normal and abnormal states and several ML models
to realize failure classiϐication.

• Then, we apply the staged method to six popu‑
lar machine learning algorithms, including Decision
Tree (DT), XGBoost, LightGBM, Multilayer Percep‑
tron (MLP), Random Forest (RF), and Support Vector
Machine (SVM). After a comparative evaluation, we
reveal that the tree‑based models (such as XGBoost)
outperform others in detecting network failures.

• Third, we employ amodel reϐinementmethod to sort
the features according to their importance score. We
conϐirm that with the most useful features we gain
computational speedwithout obviousdegradationof
accuracy.

• Finally, we also ϐind that latency and loss are con‑
fused according to the RF confusion matrix so that
they are hard to predict inherently.

The rest of this paper is structured as follows. Section 2 
describes the relevant research on network fault analysis. 
In Section 3, we present our extraction method from raw 
data and comparative analysis of ML‑based faults classiϐi‑ 
cation. Section 4 shows the experimental results obtained 
using our method and the evaluation of comparison re‑ 
sults. Finally, we provide a brief conclusion in Section 5.

2. RELATED WORK
There has been numerous literature concerning network 
faults detection. Most approaches rely on predeϐined 
rules, thresholds, and expert experiments. Mitchell et al. 
present a fault detection system for LAN networks [7]. 
The system is based on a set of rules deϐined on the data 
collected from the network monitoring process and the 
expertise of the network administrators. Although these 
methods can be realized automatically through scripts,

they are usually low inefϐiciency and high in human labor 
costs [8, 9]. Therefore, approaches including Finite State 
Machine (FSM) and probabilistic approaches have also 
been researched [10–12]. Authors in [10] propose an 
FSM‑based model and realize fault detection of partially 
observed data sequences. With the aid of FSM, [11] em‑ 
ploy a probability approach to choose to synchronize con‑ 
ditions and optimally develop adaptive strategies. How‑ 
ever, these traditional methods can hardly handle the fre‑ 
quent and dynamic changes in the network topology. On 
the other hand, the data volume obtained from managed 
entities is increasingly large in the era of 5G, and huge 
beneϐits can be leveraged from data‑driven fault detection 
methods.
With the spread of the usage of Machine Learning (ML) 
technology in many ϐields, more and more studies have 
been proposed on network fault analysis using ML. Net‑ 
working itself can also beneϐit from this promising tech‑ 
nology. IǚF Kilinçer et al. propose a Bayesian method for 
monitoring and diagnosing faults that may occur in the 
Internet line [13]. They extract data via edge switching 
devices in a network campus area and use the Bayesian 
method to classify. It has been found that the accuracy 
of the classiϐication results is over 90%. Ruiz et al. pro‑ 
pose a probabilistic failure localization algorithm based 
on Bayesian Networks (BN) to localize and to identify the 
most probable cause of failures impacting a given ser‑ 
vice [14]. The authors use time‑series monitoring data 
extracted from several light paths. When a service detects 
excessive errors, an algorithm uses the trained BN to lo‑ 
calize and identify the most probable cause of the errors 
at the optical layer. Sauvanaud et al. propose anomaly de‑ 
tection and root cause localization for VNF using a super‑ 
vised machine learning algorithm [15]. This approach de‑ 
tects Service Level Agreements’(SLA) violations based on 
monitoring data. It can pinpoint the root anomalous VNF 
VM causing SLA violations and achieve high recall, high 
precision, and low false alarm rate. Their experiments 
in [13, 14], and [15] show that the proposed algorithm 
can achieve high accuracy of fault classiϐication. However, 
they do not compare their method with multiple ML algo‑ 
rithms or other training conditions.
Srinikethan et al. compare three ML algorithms that in‑ 
clude SVM, MLP, and RF performance in terms of their link 
fault detection [16]. The authors develop a three‑stage 
Machine Learning‑based technique for Link Fault Identi‑ 
ϐication and Localization (ML‑LFIL) by analyzing the mea‑ 
surements captured from the usual trafϐic ϐlows, includ‑ 
ing aggregate ϐlow rate, end‑to‑end delay, and packet loss. 
Stadler et al. propose a method to predict service‑level 
metrics from network device statistics using ML [17]. The 
authors adopt a work‑regression tree and RF and inves‑ 
tigate their prediction performance. They also compare 
the performance under several training conditions. Ref‑ 
erences [16] and [17] compare the performance of multi‑ 
ple ML algorithms and seek to ascertain the effect of train‑ 
ing conditions. However, their ML model’s goal is fault 
detection and predictive service metrics, and it does not 
cover enough fault classification.
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Qader et al. compare the performance of faults clas‑ 
siϐication using K‑Means, Fuzzy C Means (FCM), and 
Expectation‑Maximization (EM) [18]. They use data sets 
obtained from a network with heavy and light trafϐic sce‑ 
narios in the routers and servers and build a prototype to 
demonstrate the network trafϐic faults classiϐication un‑ 
der given scenarios. The results show that FCM could 
achieve higher accuracy than K‑Means and EM. However, 
it requires more time to process data. The authors focus 
on the data related to the physical interface only. Thus 
there is insufϐicient research on faults classiϐication in an 
Network Function Virtualization(NFV) environment. 
Recently, KDDI presented an ML comparison framework 
for network analysis [4]. It includes four functional 
blocks: data set generator, preprocessor, ML‑based fault 
classiϐier, and evaluator. The data set generator can pe‑ 
riodically generate failure data, which can be used in 
the ML‑based fault classiϐication task. They use three 
algorithms [Multilayer Perceptron (MLP), Random For‑ 
est (RF), Support Vector Machine (SVM)] to train and 
evaluate. The result shows that RF provides the high‑ 
est performance even with a small amount of data, and 
SVM could improve its performance by increasing train‑ 
ing data, feature reduction, or balance adjustment of nor‑ 
mal/abnormal samples. However, the feature extraction 
method and training efϐiciency are not mentioned in their 
study. Training efϐiciency is an important metric for the 
evaluation of training models. Feature extraction is an es‑ 
sential step in achieving the excellent performance of an 
ML method. Especially for a large amount of network log 
data, efϐiciently extracting useful information from raw 
data can allow our model to perform better in a much 
shorter training time.

3. METHODOLOGY
This section introduces the data sets and shows how 
we extract features. Then we introduce several machine 
learning models used in this research.

3.1 Data preprocessing

Fig. 1 – Data collection principles [4].

As shown in Fig. 1, The data sets used for this study 
are created in the NFV‑based test environment simulated 
for a commercial IP core network. In this sense, syn‑ 
thetic data is similar to real data, resulting from the NFV‑

Table 1 – Four types of data sets for learning and evaluation

Category File Name Data Format
Label Label‑Failure Management json

Log Data Virtual‑Infrastructure json
Log Data Physical‑Infrastructure json
Log Data Network‑Device json

based test environment. The data sets consist of labels of
normal/abnormal trafϐic, performance monitoring data
sets such as trafϐic volume and CPU/Memory usage ratio,
and route information such as Border Gateway Protocols
(BGPs) static metrics and BGP route information.
The data collector from KDDI collects and stores data
sets every minute from the network. Once a failure is
intentionally caused or recovered, the network indicates
a failure or normal status after a transition period, cor‑
responding to failure data (orange arrows) and recovery
data (blue arrows).
The time interval between a failure and a recovery is 5
minutes (Fig. 1). The data sets for training and evaluation
provided by KDDI include four types, as in Table 1, which
are Label‑Failure Management, Virtual‑Infrastructure,
Physical‑Infrastructure and Network‑Device.
The trainingdata set consists of 8days of data, totaling ap‑
proximately 120G JSON ϐiles. The evaluation data set con‑
sists of 7 days of data, totaling about 100G of JSON ϐiles.

3.1.1 Data collection and merging method
The JSON ϐile’s content is enormous, andmost of the infor‑
mation is useless string description information. Sowe it‑
erate through each object, looking for objects of numeric
type. We extract these objects as features from log ϐiles
(in JSON format) and merge them with labels into a CSV
ϐile based on time (Fig. 2).
We utilize paths like ”key1/key1‑1/key1‑1‑1...” as keys to
extract features from physical, virtual, and network JSON
log ϐiles for all log ϐiles. For BGP‑related entries, we use
the number of next‑hops in each array and their preϐixes
as features.

Fig. 2 – Data mergence principles

3.1.2 Data differential method
This subsection explains how our comparison framework 
preprocesses Performance Management (PM) data to 
put into Machine Learning (ML) models for training.
As shown in Fig. 3, each failure generation cycle is 5min. 
In the failure generation cycle, the last‑minute data in the 
previous cycle is considered as regular data, and the last‑ 
minute data in the current cycle is considered as failure 
data. To  highlight  the  differences  between  normal  and
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abnormal data entries to derive metrics that have changed 
since a failure, the differential data between the abnormal 
data and normal data is used as input features. After that, 
we can get three types of ϐiles in the data set, which are 
physical, virtual, and networks. To train a uniϐied model 
for diverse network events, we merge all data sets into 
one CSV ϐile for putting into ML algorithms. The process 
is shown in Fig. 4. Finally, the data set for training consists 
of 930 lines with 996 features, and for evaluation consists 
of 840 lines with 996 features.

Fig. 3 – Data differential method

Fig. 4 – Data merging method

3.1.3 Label description
As shown in Table 2, we have ϐive categories of
labels for prediction, which are Type1: node‑down,
Type3: interface‑down, Type57: tap‑loss (delay), Type9:
ixnetwork‑bgp‑injection, and Type11: ixnetwork‑bgp‑
hijacking.

3.2 Machine learning methods
In the related work in [4], Multiplelayer Perceptron
(MLP), Support Vector Machine (SVM), and Random For‑
est (RF) are employed. In this study, as an extension of the
related work, three other kinds of tree‑basedmodels, De‑
cision Tree (DT), XGBoost (XGB), and LightGBM(LGBM)
are also utilized.

3.2.1 Multiplelayer Perceptron (MLP)
MLP is a feed‑forward artiϐicial neural network that maps
input data to the appropriate output. AnMLP is a network
of simple neurons called a perceptron which computes a
single output frommultiple real‑valued inputs. A Percep‑
tron forms a linear combination to its input weights and

puts the output through a nonlinear activation function.
The mathematical representation of MLP output is:

𝑦 = 𝜑(Σ𝑛
𝑖=1𝑤𝑖𝑥𝑖 + 𝑏) = 𝜑(𝑊 𝑇 𝑋 + 𝑏)

where𝑊 is the vector ofweights,𝑋 is the vector of inputs,
𝑏 is the bias, and 𝜑 is the activation function.
As a neural network based model, the MLP algorithm is a
general function approximation method that can ϐit com‑
plex functions and adequately approximate complex non‑
linear relationships. It has a wide range of applications
and has features of high accuracy. It is often used to solve
classiϐication problems. However, neural networks re‑
quire manual determination of a large number of param‑
eters, such as network topology, initial values of weights,
and thresholds. Learning may be not sufϐicient when the
parameter selection is inappropriate, and it is easy to fall
into local extremes. Besides, sinceMLP is a black‑box pro‑
cess, the learning process cannot be observed, and the
output is difϐicult to interpret, which can affect the credi‑
bility and acceptability of the results.

3.2.2 Support Vector Machine (SVM)
Support Vector Machine (SVM) is a linear machine work‑
ing in a high dimensional feature space. SVM employs a
nonlinear mapping to map the 𝑁 ‑dimensional input vec‑
tor 𝑥 into a 𝐾‑dimensional feature space (𝐾>𝑁). The
problem that SVM tries to solve is to ϐind an optimal hy‑
perplane that correctly classiϐies data points by separat‑
ing the points of two classes as much as possible. Both
classiϐication and regression tasks transform the learn‑
ing task into a quadratic problem, but the way of creating
SVM networks varies depending on the classiϐication and
regression tasks [19, 20]. Excellent introductions to SVM
can be found in [21].
The main advantages of SVM are (1) able to work with
high‑dimensional data; (2) high generalization perfor‑
mance without the need to add prior knowledge, even
when the dimension of the input space is very high.
Compared to MLP, SVM performs better in classiϐication
mode. And in regression mode, MLP has better general‑
ization ability. In most cases, the observed performance
difference is negligible [22].

3.2.3 Decision Tree (DT)
A decision tree is a supervised machine learning algo‑
rithm that canbeapplied toboth classiϐicationand regres‑
sion problems. Usually, it is top‑down tree‑like structures
that explain the decision‑making rules for prediction. The
node from where the tree starts is known as a root node.
The nodewhere the tree ends is called the leaf node. Each
internal node can have twoormore branches. A node rep‑
resents a particular characteristic, while a branch repre‑
sents a range of values. These ranges of values act as par‑
tition points for the set of values of the given characteris‑
tic. In Fig. 5, we provide an illustration of a decision tree,
which is also used in our experiments:
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Table 2 – Five categories of labels for prediction

Scenario TypeNo. Type Name Description
Network Element(NE) Failure 1 Node Down Unplanned reboot of a NE

Interface Failure 3 Interface Down Cause an interface down
Interface Failure 57 Packet Loss and Delay Cause the packet loss and delay on an interface

Route Information Failure 9 BGP Injection Inject the anomaly route from another SP
Route Information Failure 11 BGP Hijack Hijack the own origin route by another SP

Fig. 5 – Visualization of a decision tree

A decision tree is a very intuitive data structure. Visual‑
izing a decision tree can give valuable insights into the
model’s learning and how domain‑relevant the learning
is. In addition, the Decision Tree is fast and performswell
on large data sets. It is also unaffected by outliers.
However, there are some shortcomings of a Decision Tree
including:

• A decision tree might lead to overϐitting when a tree
is very deep. As the decision to split the nodes pro‑
ceeds, each attribute is taken into consideration. It
will try its best to ϐit all the training data accurately,
which leads it to learn toomuch about the features of
the training data and lose its ability of generalization.

• A decision tree is greedy and tends to ϐind the lo‑
cal optimal solution instead of considering the global
optimal solution. At each step, it uses some tech‑
nique to ϐind the best node. However, the local best
node may not be the global best node.

3.2.4 Random Forest (RF)
To overcome the shortcomings of DT, random forest 
comes to the rescue. It was ϐirst proposed by Tin Kam 
Ho in 1995 [23]. Random forest consists of a large num‑ 
ber of individual decision tree that operate as an ensem‑ 
ble. In the training process of RF, each individual tree in 
the RF spits out a class prediction and the class with the 
most votes becomes our model’s prediction (Fig. 6). Ran‑ 
dom forest models are so effective because a large num‑ 
ber of relatively uncorrelated models (trees) operating as 
a committee will outperform any of the individual con‑ 
stituent models.

Fig. 6 – Visualization of an RF model making a prediction

Different with the decision tree model, which employs all
the given data to determine the classiϐication rules, a ran‑ 
dom forest classiϐier can randomly sample from the given 
data and build more than one decision trees. By con‑ 
sidering the classiϐication results of the several decision 
trees employing different subsets of the original data, the 
random forest method can effectively avoid overϐitting. 
However, directly proportional to the model complexity, 
the training cost of random forest model would be higher 
than the decision tree model.

3.2.5 XGBoost (XGB)
XGBoost (XGB) is a successful machine learning model 
based on a gradient boosting algorithm proposed by 
Tianqi Chen [5]. Like random forests, gradient boosting 
is a set of decision trees. The two main differences are:

• Gradient boosting builds one tree at a time, while
random forests builds each tree independently.

• Gradient boosting combines the results along the
way, while random forests combines the results at
the end of the process.

XGBoost stands for extreme gradient boosting. It is a spe‑ 
ciϐic implementation of the gradient boosting method that 
delivers more accurate approximations using the second‑ 
order derivative of the loss function, advanced regulariza‑ 
tion, and parallel computing.
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The objective of XGBoost is to not only prevent overfitting but 
also optimize the computational resources. This is ob-
tained by simplifying the objective functions that combine 
predictive and regularization terms and maintain an op‑ 
timal computational speed.
The additive learning process in XGBoost is to ϐit the ϐirst 
learner to the whole space of input data and then to ϐit a 
second model to these residuals to tackle the drawbacks 
of a weak learner. This ϐitting process will be repeated a 
few times until the stopping criterion is met. The ultimate 
prediction of the model is obtained by the sum of the pre‑ 
diction of each learner. To learn the set of functions used 
in the model, XGBoost minimizes the following regular‑ 
ized objective.

𝑂𝑏𝑗 =
𝑁

∑
𝑖=1

𝐿(𝑦𝑖, ̂𝑦𝑖) +
𝑀

∑
𝑚=1

Ω(𝑓𝑚), 𝑓𝑚 ∈ 𝐹

Ω(𝑓) = 𝛾𝑇 + 1𝜆‖𝜔‖2

where 𝐿 is the loss function, 𝑛 is the number of observa‑ 
tions used, Ω is the regularization term, 𝜔 is the vector of 
scores in the leaves, 𝜆 is the regularization parameter, and 
𝛾 is the minimum loss needed to further partition the leaf 
node. Moreover, XGBoost can be extended to any user‑ 
deϐined loss function by deϐining a function that outputs 
the gradient and the Hessian (second‑order gradient) and 
passing it through the “objective” hyper‑parameter.
In addition, XGBoost implements several methods to in‑ 
crease the training speed of decision tree that are not di‑ 
rectly related to the accuracy of the ensemble. In par‑ 
ticular, XGBoost focuses on reducing the computational 
complexity to ϐind the best split. This is the most time‑ 
consuming part of decision tree algorithms. Split‑ϐinding 
algorithms typically list all possible candidate splits and 
select the one with the highest gain. This requires a lin‑ 
ear scan over each sorted attribute to ϐind the best split 
for each node. To avoid repeatedly sorting the data in 
each node, XGBoost uses a speciϐic compressed column‑ 
based structure in which the data is stored pre‑sorted. 
In this way, each attribute needs to be sorted only once. 
This column‑based storage structure allows ϐinding the 
best split for each considered attribute in parallel. Instead 
of scanning all possible candidate splits, XGBoost imple‑ 
ments a method based on percentiles of the data, testing 
only a subset of the candidate splits and calculating their 
gain using aggregated statistics. More detailed informa‑ 
tion and computational procedures of the XGBoost algo‑ 
rithm can be found in Tianqi Chen [5].

Fig. 7 – XGBoost level‑wise tree growth

Fig. 8 – LightGBM level‑wise tree growth

3.2.6 LightGBM (LGBM)
LightGBM is a gradient boosting framework that uses 
tree‑based learning algorithms [6]. It proposed to solve 
the problems of Gradient Boosting Decision Tree(GBDT) 
in mass data. The main difference is that the decision 
tree in LightGBM are grown leaf‑wise, as shown in Fig. 7 
and Fig. 8, instead of the traditional level‑wise that re‑ 
quires checking all of the previous leaves for each new 
leaf, which improves accuracy and prevents overϐitting. 
Moreover, LightGBM uses a histogram to identify the op‑ 
timal segmentation point. A histogram replaces the tra‑ 
ditional pre‑sorted, so in a sense, it sacriϐices accuracy 
for speed. There are three aspects of differences between 
LightGBM and XGBoost.

• First is the computational complexity. Compared 
with XGBoost, LightGBM develops two kinds of meth‑ 
ods to reduce the dimensions of input features so 
as to decrease the computational complexity. Based 
on the graph algorithm, LightGBM employs Exclusive 
Feature Bundling (EFB) to reduce the total number of 
input features. At the same time, LightGBM utilizes 
Gradient‑based One‑side Sampling (GOSS) to rank 
the samples according to the gradients. The propor‑ 
tion of features with large gradients increases by se‑ 
lecting the features with large gradients and com‑ 
bining some randomly selected features with smaller 
gradients.

• Second is the difference in strategy. LightGBM em‑ 
ploys a leaf‑wise strategy, while XGBoost employs a 
level‑wise one. Resource wasting exists in XGBoost 
for there are indiscriminate nodes split into all lay‑ 
ers even when the gain is minimal. On the other 
hand, LightGBM only splits leaf nodes with the great‑ 
est splitting gains. Such a greedy operation will also 
lead to overϐitting and extremely large tree depth, so 
the tree depth in LightBGM should be constrained.

• Third is the scale of parallelization operation. Com‑ 
pared with XGBoost which focuses on the parallelism 
of features, LightGBM can parallelly deal with the fea‑ 
tures, data processing, and voting operations, which 
makes it be able to handle a larger data set.

2
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3.2.7 Summary of machine learning methods
In this subsection, we give a brief summary of all the al‑ 
gorithms described above.
The MLP performs well when evaluating a probabilistic 
performance metric. However, it is not particularly better 
at handling high‑dimensional data sets than other meth‑ 
ods due to the large number of parameters that need to 
be tuned.
The main strengths of SVM are its effects on high‑ 
dimensional data and on data sets in which the number 
of features is greater than the number of observations. It 
takes less memory consumption due to the use of support 
vector and the use of various kernel functions, which are 
used in the decision function. However, SVM would over‑ 
ϐit the model if the differences between the number of fea‑ 
tures and observations is too big.
One of the Decision Tree’s major strengths is that it is easy 
to understand and to analyze. The disadvantage of the De‑ 
cision Tree is that it is prone to overϐitting and has low 
generalization performance.
Random Forest, XGBoost, and LightGBM all belong to en‑ 
semble methods. Ensemble methods combine the pre‑ 
dicted results of multiple base estimators. So the results 
are improved as compared to some individual estimators. 
There are two main kinds of ensemble methods. The ϐirst 
one, such as Random Forest, includes techniques that con‑ 
sider results from many individual estimators and com‑ 
bine their results using the average. The second one, such 
as LightGBM and XGBoost, includes techniques that com‑ 
bine many weak estimators to get a decisive result of an 
ensemble.

4. EXPERIMENTATION AND EVALUATION
In this section, we use the differential data as input fea‑ 
tures and train the ML model with multiple ML algo‑ 
rithms. After training, we use evaluation data and differ‑ 
ent evaluation metrics to evaluate the model prediction 
capacity.
Note that there is no way to know in advance the best val‑ 
ues for hyper‑parameters, so ideally we need to try all 
possible values to know the optimal values. Doing this 
manually could take a considerable amount of time and 
resources and thus we use GridSearchCV to automate the 
tuning of hyper‑parameters which improves the training 
efϐiciency.

4.1 Feature reduction
Using ensembles of decision tree methods like XGBoost 
may not perform well if the input features have much 
noise, as this can result in overϐitting. In the feature vec‑ 
tors we use, due to the large number of features, the 
model training is not efϐicient and the training time be‑ 
comes very long. Some features not only do not con‑ 
tribute to the modeling, but increase the complexity of the 
model. From the point of view of machine learning, the 
reason for feature reduction is to shorten the model com‑

putational time and to decrease the number of observa‑
tions needed for a statistically accurate model. In terms
of network management, reducing the feature set means
that we can reduce the overhead of network monitoring.
So trying to reduce the number of features becomes very
important.
Generally, theRFandXGBoost have abuilt‑in function that
evaluates the importance of features. Some of the fea‑
ture importance bar graphplots based onRF andXGBoost
modeling are shown in Fig. 9. The features are sorted
based on their importance.
In both RF and XGBoost, activities/prefixes,
sent/current-prefixes, prefixes/total-entries
and as-path/total-entries show signiϐicant impor‑
tance compared to the other features. And these feature
importance ranking results seem reasonable: 1) when
the network goes down or the device goes down, the
outgoing bytes deϐinitely change; 2) the decline in the
number of the activated links decreases the number of
preϐixes; 3) decrease of the preϐixes changes the total
number of the entries; 4) failures of the nodes absolutely
affect the network‑outgoing‑packets.
However, there are large differences between RF and XG‑
Boost feature importance ranking results. For example,
address-family/total-memory has the highest rank in
the result of feature ranking of the RF method, while it
is not a key feature in the XGBoost method. Also, feature
network-outgoing-bytes stands as an important role in
XGBoost, while it is ranked much lower than many other
features by the RF method. Some studies have reported
that the feature importance ranking built‑in function of
RF is biased and unreliable [24]. Considering that, we
choose to use the features that are ranked by XGBoost in‑
stead of ranking results by RF method.
Take the result of XGBoost ranking for consideration. If
we take the peer router down as an instance, when the
peer device is down, according to the default BGP conϐig‑
uration on the experiment routers, after 180 seconds, the
link is down. Consequently, the number of next‑hops is
deϐinitely changed, and also the total number of octets re‑
ceived in input packets from the speciϐied address family
includes those received in error. Thesewill not only affect
the incoming and outgoing bytes but also cause drops of
the packets and reduction of current preϐixes. Some dif‑
ferences in features importance ranking could be a result
of features dependency. However, in general, the feature
rankings obtained in this paper are reasonable and bene‑
ϐicial for future studies.
Dropping features with a low score (no contribution or
low contribution to the model) will not inϐluence the ac‑
curacy (Fig. 10 and Fig. 11) but beneϐit the model by re‑
ducing training time (Fig. 12). Fig. 10 shows the accuracy
and precision using different numbers of features and
Fig. 11 shows the accuracy and recall. As thenumberof in‑
put features changes, precision of the failures Node Down,
Interface Down, BGP Injection, and BGP Hijack have
maintained a relatively high accuracy rate, while Packet
Loss & Packet Delay are relatively low. Recall of the

ITU Journal on Future and Evolving Technologies, Volume 2 (2021), Issue 4

107© International Telecommunication Union, 2021



Fig. 9 – Feature score and importance ranking (Left: RF, Right: XGBoost)

Fig. 10 – Accuracy and precision with different features

failures Node Down, Interface Down, BGP Injection,
and Packet Loss & Packet Delay have maintained a
relatively high accuracy rate, while BGP Hijack are rel‑
atively low.
The top 150 important features get the best performance
which is 94.17% of average accuracy. Also, it can be seen
that there are abrupt reductions on Interface Down and
slight reductions on other failures after the number of fea‑
tures is reduced to 30. So we can use only 30 features to
achieve a good performance, almost the same as the best
performance, and for the following experimentation, we
use these 30 features for training.

𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇 𝑃
𝑇 𝑃 + 𝐹𝑃 (1)

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇 𝑃
𝑇 𝑃 + 𝐹𝑁 (2)

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 𝑠𝑐𝑜𝑟𝑒 = 2 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
𝑟𝑒𝑐𝑎𝑙𝑙 + 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (3)

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇 𝑃 + 𝑇 𝑁
𝑇 𝑃 + 𝐹𝑃 + 𝑇 𝑁 + 𝐹𝑁 (4)

4.2 Evaluation
To measure ML‑based classiϐiers’ performance, we use
the following evaluation metrics: Precision, Recall, F‑
measure, and Accuracy. These metrics are calculated by

Table 3 – Comparison of detection accuracy of different algorithms

No. Method Accuracy Training
Time(s)

1 XGBoost 0.9369 0.33
2 LightGBM 0.9333 2.81
3 Random Forest 0.9274 0.80
4 MLP 0.8131 1.52
5 Decision Tree 0.8095 0.38
6 SVM 0.7905 5.53

Table 4 – Test cases for different labels

TypeNo. Type Name Test Cases
1 Node Down 64
3 Interface Down 72
9 BGP Injection 156
11 BGP Hijack 180
57 Packet Loss and Delay 368

Eq ((1)), Eq ((2)), Eq ((3)), and Eq ((4)) assigned with the 
number of True Positive (TP), False Positive (FP), False 
Negative (FN), and True Negative (TN).

Accuracy is the most intuitive performance measure and 
it is simply a ratio of correctly predicted observation to 
the total observations. Precision is the ratio of correctly 
predicted positive observations to the total predicted pos‑ 
itive observations. High precision relates to the low false 
positive rate. The recall is the ratio of correctly pre‑ 
dicted  positive  observations  to  all  observations  in  the 
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Fig. 11 – Accuracy and recall with different features

Fig. 12 – Training time with different features

Table 5 – Comparison of experimental results of different machine learning methods

Method XGBoost LightGBM
Evaluation Criteria Precision Recall F‑measure Precision Recall F‑measure

1: node‑down 1.00 1.00 1.00 1.00 1.00 1.00
3: interface‑down 0.99 1.00 0.99 0.99 0.97 0.98

5, 7: tap‑loss (delay) 0.88 1.00 0.93 0.87 1.00 0.93
9: ixnetwork‑bgp‑injection 1.00 1.00 1.00 1.00 1.00 1.00
11: ixnetwork‑bgp‑hijacking 1.00 0.71 0.83 1.00 0.70 0.82

Method Random Forest Decision Tree
Evaluation Criteria Precision Recall F‑measure Precision Recall F‑measure

1: node‑down 1.00 1.00 1.00 1.00 0.86 0.92
3: interface‑down 0.97 1.00 0.99 0.82 0.89 0.85

5, 7: tap‑loss (delay) 0.88 0.97 0.92 0.85 0.73 0.78
9: ixnetwork‑bgp‑injection 1.00 1.00 1.00 1.00 1.00 1.00
11: ixnetwork‑bgp‑hijacking 0.94 0.72 0.82 0.58 0.76 0.66

Method SVM MLP
Evaluation Criteria Precision Recall F‑measure Precision Recall F‑measure

1: node‑down 0.97 0.97 0.97 1.00 0.83 0.91
3: interface‑down 0.92 0.65 0.76 0.92 0.61 0.73

5, 7: tap‑loss (delay) 0.68 0.99 0.81 0.71 1.00 0.83
9: ixnetwork‑bgp‑injection 0.99 0.54 0.70 1.00 0.65 0.79
11: ixnetwork‑bgp‑hijacking 1.00 0.58 0.73 0.97 0.65 0.78
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(a) XGBoost (b) LightGBM (c) Random forest

(d) Decision tree (e) SVM (f)MLP

Fig. 13 – Comparison of confusion matrix of different models

actual class. But the difference from the precision rate is 
that the recall rate focuses more on the proportion of sam‑ 
ples which are True Positive (TP) that are successfully 
predicted. The F1 score is the weighted average of pre‑ 
cision and recall. Therefore, this score takes both false 
positives and false negatives into account. The core idea 
of F1 score is to improve precision and recall as much as 
possible while also hoping that the differences between 
the two is as small as possible.
Table 3 shows the total accuracy of different models. XG‑ 
Boost shows the best performance of accuracy with the 
least training time, and then LightGBM and Random For‑ 
est. Decision Tree, MLP, and SVM relatively show lower 
accuracy. Results prove the stable and outstanding per‑ 
formance of tree‑structured models, as well as the lifting 
performance of the ensemble learning methods. We be‑ 
lieve that the reason for the low accuracy of the Decision 
Tree is the overϐitting of the training model. As for MLP, 
the ϐinal classiϐication performance strongly depends on 
whether the optimal solution can be found. However, the 
back propagation algorithm in MLP tends to converge to 
the local optimum, so the classiϐication accuracy cannot 
be ensured. SVM yields the longest training time but the 
lowest prediction accuracy. The reason may be concluded 
into the inherent computational complexity of SVM and 
the inϐluence of the unrelated features in the data.
Table 5 shows the precision, recall, and F‑measure results 
of each machine learning method on different failures. It 
can be seen that Node Down failure can be well predicted 
in every model with high precision and recall.
Fig. 13 shows the diagonal of the confusion matrix repre‑ 
sents the number of samples that are correctly classiϐied, 
while others are wrongly classiϐied.

5. CONCLUSION
In this paper, we employ a highly practical and reliable 
approach to solve the problem about how to automati‑ 
cally and rapidly detect network and device failures. First, 
we deϐine a staged method including feature extraction 
from unstructured network logs, a differential approach 
to highlight the differences between normal and abnor‑ 
mal states and several ML models to realize failure classi‑ 
ϐication. Then, we apply the staged method to six popu‑ 
lar machine learning algorithms, including Decision Tree 
(DT), XGBoost, LightGBM, Multilayer Perceptron (MLP), 
Random Forest (RF), and Support Vector Machine (SVM). 
After a comparative evaluation, we reveal that the tree‑ 
based models (such as XGBoost) outperform others in de‑ 
tecting network failures. Third, we employ a model re‑ 
ϐinement method to sort the features according to their 
importance score. We conϐirm that with the most useful 
features can gain computational speed without obvious 
degradation of accuracy. Finally, we also ϐind that latency 
and loss are confused according to the RF confusion ma‑ 
trix so that they are hard to predict inherently.
Overall, our results achieve a reliable method for detect‑ 
ing network failures: almost 100% accuracy when de‑ 
tecting network and device failures, 86% accuracy when 
detecting packet loss and delay, and a total average of 
94% accuracy. At the same time, the proposed feature ex‑ 
traction and reϐinement method can reduce computation 
without degrading the performance.
From the evaluation results of different types of models, 
we know that different methods are capable of learning 
some parts of the problem, but not the whole space of 
the problem. This may constitute the potential objects for 
future studies. We can build multiple different learners 
and  we  use  them  to  build  an  intermediate  prediction,
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one prediction for each learned model. Then we add a 
new model which learns from the intermediate 
predictions of the same target.

6. FUTURE WORK
As for future work, we are aiming to compare different 
machine learning methods, for example, DT, MLP, RF, XG‑ 
Boost, etc. with different data sets, not only KDDI’s, to ex‑ 
plore clearer boundaries of the most suitable range be‑ 
tween each method so that we could take the optimal 
solution for diverse failures. In addition, analyzing the 
topology and applying graphical convolution networks at 
the stage of determining the importance of features 
might prove a promising result.
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Abstract – Digital representations of the real world are being used in many applications, such as augmented reality. 6G
systems will not only support use cases that rely on virtual worlds but also beneϔit from their rich contextual information to
improve performance and reduce communication overhead. This paper focuses on the simulation of 6G systems that rely on
a 3D representation of the environment, as captured by cameras and other sensors. We present new strategies for obtain‑
ing paired MIMO channels and multimodal data. We also discuss trade‑offs between speed and accuracy when generating
channels via ray tracing. We ϔinally provide beam selection simulation results to assess the proposed methodology.

Keywords – 6G, artiϐicial intelligence, machine learning, MIMO, ray tracing

1. INTRODUCTION
Machine Learning (ML) and, more generally, Artiϐicial In‑
telligence (AI), are currently under investigation to op‑
timize the performance of future communication net‑
works [1]. The applications include, for instance: phys‑
ical layer (PHY) optimizations, networkmanagement and
self‑organization [2, 3]. Given the increasing importance
of ML/AI in communications, there are several initiatives
concerning ML/AI architectures, such as the one carried
out by ITU [4]. This trend should continue with 6G sys‑
tems, which are expected to support augmented real‑
ity, multisensory communications and high‑ϐidelity holo‑
grams [5]. One such application is autonomous driving,
where digital representations are used to generate sen‑
sors for hardware‑in‑the‑loop testing1. And because such
digital representations of the world will ϐlow through the
6G network, it is expected that ML/AI can leverage them.
Therefore, a speciϐic set of simulation tools for future net‑
works is characterized by the requirement of being able
not onlyof dealingwith communication channels, but also
the corresponding sensor data, matched to the scene.

This paper focuses on strategies for simulating 6G sys‑
tems that require a representation of the environment, as
captured by cameras and, eventually, additional modal‑
ities of sensors. More speciϐically, we consider Multiple
Input / Multiple Output (MIMO) systems and discuss the
required generation of channels that are consistent with
the scene at each time instant. A simulation that inte‑
grates communicationnetworks andartiϐicial intelligence
immersed in virtual or augmented reality can be com‑
putationally expensive, especially for time‑varying digital
worlds. Wediscuss two categories of simulations: the one
1https://www.ni.com/pt‑br/innovations/white‑papers/17/
altran‑and‑ni‑demonstrate‑adas‑hil‑with‑sensor‑fusion.html

in which the ML/AI model is executed within the virtual 
world simulation loop and the one in which the ML/AI 
model is out of the loop and the simulator can then write 
ϐiles to be later used for training ML/AI models. An exam‑ 
ple of the ϐirst category (INLOOP is going to be used as 
the UFPA Problem Statement [6] for the 2021 ITU AI/ML 
in 5G Challenge.

Concerning the channel generation, the requirement of 
having an associated digital world precludes the adoption 
of a class of modern channel models that are not related 
to any virtual world representation, such as the ones pre‑ 
sented in [7, 8]. We therefore adopt ray tracing (RT for 
MIMO channel generation, which is aligned with other re‑ 
cent work (see, e. g. [1] and references therein and allows 
the generation of site‑speciϐic communication channel re‑ 
sponses with temporal and spatial consistency.

Another motivation for this paper is to promote public 
datasets. In many ML application domains, the data is 
abundant or has a relatively low cost. For example, the 
deep learning‑based text‑to‑speech system presented in 
[9], which represents the state‑of‑the‑art, achieves qual‑ 
ity close to natural human speech after being trained with 
24.6 hours of digitized speech. In contrast, the research 
and development of 5G has to deal with a relatively lim‑ 
ited amount of data. Considering the 5G research on 
AI/ML applied to millimeter waves (mmWave MIMO, the 
lack of abundant data from measurements or simulations 
hinders some data‑driven lines of investigation. With 6G 
moving towards the use of even higher (Terahertz fre‑ 
quency bands [10], it becomes even more challenging 
to perform measurement campaigns for this frequency 
range [11], particularly for outdoor environments. Given 
that channel measurements for 6G will demand relatively 
expensive equipment, the simulation strategies for
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Fig. 1 – Block diagram of CAVIAR simulation with AI/ML in the simulation loop (INLOOP). In OUTLOOP simulations, the simulator can write ϐiles that
will be later used for designing and assessing AI/ML models.

modeling mobility and virtual worlds discussed in this paper 
can alleviate the problem. The generated datasets are es‑ 
pecially useful when spatial consistency and time evolu‑ 
tion are important to assess an AI/ML technique applied 
to the physical layer.

The contributions of this paper are:

• A discussion of strategies and software for simu‑ 
lating Communication networks and Artiϔicial intel‑ 
ligence immersed in VIrtual or Augmented Reality
(CAVIAR).

• A preview of a CAVIAR simulator that will be used in
the UFPA Problem Statement for the 2021 ITU AI/ML
in 5G Challenge, which consists of a Reinforcement
Learning (RL) problem with the decisions taken by
the RL agent changing the virtual world on‑the‑ϐly (as
the simulation evolves).

• Discuss a new methodology using photogrametric
data available from the Internet to improve the re‑ 
alism of ray‑tracing simulations by automatically as‑ 
signing electromagnetic properties to the materials
composing a scene, via semantic segmentation with
deep neural networks.

• Results exposing trade‑offs between speed and accu‑ 
racy when generating channels via ray tracing.

• Results of a reinforcement learning experiment in
beam selection realized in the CAVIAR environment.

• Source code and datasets to reproduce the baseline
of 2021 ITU AI/ML in 5G Challenge.2

2https://ai5gchallenge.ufpa.br/

The rest of the paper is organized as follows. Methods 
and software for CAVIAR simulation of 6G are presented 
in Section 2. Section 3 explains some improvements in the 
RT simulation methodology. Section 4 presents numer‑ 
ical results and their discussion. Finally, Section 5 con‑ 
cludes the paper.

2. 6G SIMULATION IN VIRTUAL WORLDS
Gaming and other industries are driving the develop‑ 
ment of sophisticated tools to create virtual worlds, com‑ 
posed of 3D models, physics engines and other compo‑ 
nents. The virtual world 3D scenery can be created from 
scratch by 3D design modelers, or from data imported 
from the real world. For instance, the new Cesium plug‑in 
for Epic Game’s Unreal Engine3 integrates photogrametric 
information obtained from drones into 3D models avail‑ 
able via Cadmapper4 and other sites. This complements 
tools such as Twinmotion,5 which facilitate the construc‑ 
tion of 3D virtual worlds. This paper promotes the vi‑ 
sion that 6G and beyond will beneϐit from the availabil‑ 
ity of virtual worlds to leverage ML/AI applied to com‑ 
munication networks. Current investigations of AI ap‑ 
plied to 5G aim at ϐinding how raw data from sensors such 
as LIDAR and cameras can optimize the communication 
performance [12, 13, 14, 15]. But the possibility of hav‑ 
ing realistic 3D models, physics engines and other virtual 
reality assets for simulations of communication systems, 
opens new horizons in terms of AI/ML applied to 6G and 
beyond.

3https://cesium.com/blog/2021/03/30/
cesium‑for‑unreal‑now‑available/.

4https://cadmapper.com.
5https://www.unrealengine.com/en‑US/twinmotion.
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As proposed in [16], the CAVIAR framework concerns
a speciϐic category of 6G simulations that rely on vir‑
tual worlds and incorporate two subsystems: wireless
communications and AI/ML. In the next paragraphs, we
brieϐly review the CAVIAR framework, depicted in Fig. 1,
and then focus on the important aspect of generating the
communication channel corresponding to a given scene
of the virtual world. We discuss how the Raymobtime
methodology [12] ϐits well to the demand for communi‑
cation channels imposed by 6G CAVIAR simulations.

A CAVIAR simulation generates multimodal data for each
discrete time 𝑡 ∈ ℤ, and is able to operate in two
modes, the ϐirst mode is focused on online learning, run‑
ning the simulation and the neural network simulta‑
neously, creating an environment where data is trans‑
mitted in real time, or in discrete samples with time
stamps deϐined by the user. The second mode of op‑
eration performs data recording in databases or text
ϐiles, working as a tool for creating datasets. Along
the simulation, the machine learning for communications
(ML4COMM) engine operates on data organized as an
episode 𝐸 = [(𝒫1, 𝒪1), … , (𝒫𝑆, 𝒪𝑆)], with a sequence of
𝑆 tuples (𝒫𝑡, 𝒪𝑡), 𝑡 = 1, … , 𝑆, of paired data, where 𝒫𝑡
and𝒪𝑡 are sets with the input AI/ML parameters and cor‑
responding outputs, respectively. In supervised learning,
𝒪𝑡 consists of desired labels for classiϐication or regres‑
sion, while for reinforcement learning 𝒪𝑡 consists of re‑
wards for the agents. The tuples (𝒫𝑡, 𝒪𝑡)denote evolution
over discrete‑time 𝑡. In our methodology, the outputs of
the simulators are periodically stored as “snapshots” (or
scenes) over time 𝑡𝑇sam, where𝑇sam is the sampling period
and 𝑡 ∈ ℤ.
The main steps in Fig. 1 can be summarized as follows.
The environment is composed of a 3D scenery with ϐixed
and mobile objects. These objects are created and placed
with specialized tools and data from the Internet, as de‑
scribed in [12] and [17]. The positions and interactions
among mobile objects are determined by a physics engine
(for instance, the Unreal engine or the Simulation of Ur‑
ban MObility (SUMO) trafϐic generator [18]).

Once the scene is complete, the environment is repre‑
sented via sensors, such as LIDAR, which is simulated
by Blensor and Blender software, returning point cloud
data (PCD) that maps the shapes of the 3D space around
the sensor. It is possible to adjust the resolution of the
PCD through a quantization process. A ray‑tracing soft‑
ware (Remcom’s Wireless InSite in Fig. 1) also captures
the communication channel for the given scene. The sen‑
sors output constitute the episode input 𝒫𝑡, and the cor‑
responding output 𝒪𝑡 is obtained by a signal process‑
ing module. These episodes are actually what is stored
in Raymobtime episodes [12] but in a CAVIAR simula‑
tion they can be created and used on‑the‑ϐly, if needed.
The CAVIAR 6G virtual world simulator also incorporates
a communication system that has some functionalities
driven by the ML4COMM engine. The ML4COMM engine

also relies on the scene description and can extract fea‑ 
tures from the raw sensor data to feed its AI/ML algo‑ 
rithms.

Fig. 1 illustrates the INLOOP CAVIAR framework with the 
AI/ML module within the simulation loop. When the deci‑ 
sions of this module do not affect the environment, it can 
be convenient to split the simulation into two stages, with 
the ϐirst one being an OUTLOOP CAVIAR simulation that 
writes episode ϐiles that will be later used for designing 
and assessing AI/ML models. The more evolved INLOOP 
simulation is required in cases such as a drone mission in 
which the AI/ML decisions will change the drone trajec‑ 
tory and, consequently, its wireless channel. In general, 
when the AI/ML model issues commands or actuator sig‑ 
nals that effectively change the trajectories of mobile en‑ 
tities, alter the environment or the communication sys‑ 
tem state (e.g., buffer occupation), the simulations may 
need to be INLOOP and communication channels gener‑ 
ated on‑the‑ϐly. In the simpler OUTLOOP simulation cat‑ 
egory, channels can be pre‑computed and the communi‑ 
cation simulation decoupled from the physical engine, as 
often used in AI/ML applied to beam selection [19, 12]. 
The next sections provide two examples to distinguish IN‑ 
LOOP and OUTLOOP CAVIAR simulations.

2.1 OUTLOOP CAVIAR simulation for beam 
selection

Beam selection is a classical application of AI/ML to com‑
munications [20, 21, 22]. The goal is to choose the best
pair of beams for analog beamforming, with both trans‑
mitter (Tx) and receiver (Rx) having antenna arrays with
only one Radio Frequency (RF) chain and ϐixed beam
codebooks. Fig. 2 illustrates beamforming from a Base
Station (BS) to both vehicles and drones.

Fig. 2 – Beamforming from BS to both vehicles and drones.
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𝑦𝑖 = w∗
𝑖Hf𝑖, (1)

and the optimal beam pair index ̂𝑖 is given by

̂𝑖 = arg max
𝑖∈{1,⋯,𝑀}

|𝑦𝑖|. (2)

The beam selection is then posed as a top‑𝑘 classiϐication
problem. At time 𝑡, the classiϐier inputs are features ob‑
tained from 𝒫𝑡 and the output is the beam pair 𝑖.

For the scenario presented in this section, the trajec‑
tory of vehicles and all mobile objects do not depend
on the AI/ML model, hence all the episodes can be pre‑
computed. Next, we discuss a simulation in which the
trajectories are determined by the AI/ML model and the
channels cannot be pre‑computed.

2.2 INLOOP CAVIAR simulation with drones
and reinforcement learning

Unmanned Aerial Vehicles (UAVs) are being used in many
connected applications, such as surveillance and prod‑
uct delivery. UAVs can also be used as mobile radio base
stations to extend reach or improve network capacity,
mainly in situations of disasters and accidents. In order
to meet the requirements of all these use cases, the net‑
work links need to obey particular requirements, ranging
fromvery low latency tohighdata rates [23]. All thismoti‑
vates intense research on 5G technologies for supporting
UAV‑based applications. However, there are currently few
simulation tools for testing and studying telecommunica‑
tion systems that involve UAV solutions and their corre‑
sponding channels. The CAVIAR framework is deeply in‑
tegrated with the Unreal Engine development kit and the
Airsim simulator [24], which bring realism to the physical
aspects of the simulations.

As part of the UFPA Problem Statement for the 2021 ITU
AI/ML in 5G Challenge, we designed an INLOOP CAVIAR
simulation in which RL is executed at the BS and used in
two problems: a) determine the drone trajectory and b)
beam selection along the downstream. In the challenge,
the drones need to deliver pizzas to distinct addresses in
a neighborhood. Fig 3 illustrates the scenario.

Fig. 3 – Scene from an INLOOP CAVIAR simulation in which a drone is
served by a BS and RL is used for beam selection and for determining
the drone trajectory.

The scenario depicted in Fig 3 allows us to investigate
several problems that relate communication with drones
path planning. One important issue is how to obtain the
channels on‑the‑ϐly. If the visualization is performed after
the whole simulation is ϐinished, the time to generate the
channel (via RT, for instance) may be longer. But in this
case the scenes need to be visualized along the simula‑
tions (as part of a game, for example), then the minimum
number of frames per second will impose a limit on the
time to generate the communication channels.

The next section discusses our Raymobtimemethodology
and the corresponding datasets. Other publicly available
RT‑based datasets are listed in Table 1. The ViWi dataset,
presented in [13], provides similar output data compared
to Raymobtime, including visual data. The DeepMIMO
dataset [25] is maintained by the same group as ViWi and
offers only wireless channel information. The dataset de‑
scribed in [1] does not have visual information as well.
One of the main differences between these three datasets
and Raymobtime is how mobility is handled. The Ray‑
mobtimemethodology simulates realistic trafϐicwith sev‑
eral moving vehicles using the SUMO software in order
to provide better spatial and temporal consistency, as
well as channel variability due to the moving scatterers.
ViWi [13] (in its ϐirst version), DeepMIMO and the map‑
based channel model in [1] use a ϐixed grid for Tx‑Rx po‑
sitions and therefore does not consider varying speeds
for moving transceivers. ViWi version 2 provides one
new scenario that includes several moving vehicles, each
equipped with an omnidirectional antenna.

3. IMPROVEMENTS ON RAYMOBTIME
METHODOLOGY

The Raymobtime methodology proposed in [12] aims at
providing a multimodal dataset, including RT channel in‑
formation and data from sensors, such as images, LIDAR
and location, as illustrated in Fig. 1. One major challenge
in building the Raymobtime datasets is to provide accu‑
rate wireless communication channel parameter through
the use of RT simulation software. In thiswork, Remcom’s
Wireless InSite (WI) RT software [26] was adopted given

We ϐirst assume beam selection for a vehicular to infras‑ 
tructure network, to illustrate an OUTLOOP CAVIAR sim‑ 
ulation. In this case the communication subsystem is a 
downstream MIMO system in which a BS with a Uniform 
Linear Array (ULA) of 𝑁𝑡 antennas communicates with 
cars  with  ULAs  of  𝑁𝑟  antennas.  ML  is  used  for  beam‑
selection.

Discrete Fourier Transform (DFT)𝑟 codebooks 𝒞𝑡 = 
{w̄ 1, ⋯ , w̄ 𝑁𝑡 

} and 𝒞𝑟 = {f1̄ , ⋯ , f�̄� } are used at the trans‑ 
mitter and the receiver sides, respectively. The beam pair 
[𝑝, 𝑞] is converted into a unique index 𝑖 ∈ {1, 2, ⋯ , 𝑀}, 
where 𝑀 ≤ 𝑁𝑡𝑁𝑟. For the 𝑖‑th pair, the equivalent chan‑ 
nel (without considering noise) can be calculated as
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Table 1 – Other publicly available RT datasets.

Dataset name Data Types Environment Frequency
(GHz) File format

ViWi [13] Image, depth‑map, wireless channel, and user location Outdoor 28 and 60 Matlab, JPEG
DeepMIMO [25] Wireless channel parameters Indoor and Outdoor 2.5, 3.5, 28, and 60 Matlab

Map‑based channel model [1] Wireless channel parameters Indoor and Outdoor 28 Matlab

its widespread use [1]. This section summarizes two im‑
provements toward more realistic datasets for AI/ML in‑
volvingMIMOchannels. More details can be found in [16].

The ϐirst improvement compared to previous versions of
the Raymobtimemethodology is the correction of the ori‑
entation of the antenna arrays mounted on moving vehi‑
cles, so that the array follows the direction of the vehi‑
cle. As mobile objects (vehicles, people, etc.) move in the
virtual world, previous versions of Raymobtime datasets
were not updating the orientation of the antenna array.

The other improvement is the simulation of antenna ar‑
rays inside the RT software. Previous versions of Ray‑
mobtime always considered omnidirectional antennas in‑
side the RT simulation. This procedure is called here Sin‑
gle Input, Single Output RT (SISO‑RT). MIMO channel ma‑
trices are obtained during post‑processing with the use
of the geometrical channel model [27]. This approach re‑
ducesprocessing timeandmake thedatasetmore ϐlexible,
as the user can deϐine the desired antenna arrays for all
transceivers during post‑processing, without the need to
runRT simulations for every antenna array conϐiguration.
However, the geometrical channelmodel assumes planar‑
wave propagation, which can be problematic when using
large antenna arrays [1]. Amore realistic, albeit computa‑
tionally expensive, alternative is to simulate the antenna
arrays inside the RT processing, called MIMO‑RT proce‑
dure in [16]. Each ray has its own time of arrival and
angle offsets, which is equivalent to the spherical‑wave
assumption [1]. As shown in [28], the difference in esti‑
matedMIMO channel capacity can be quite large between
the two approaches.

Table 2 presents a list of current Raymobtime datasets
and their features. The datasets s011 and s012 include
the improvements described in this section. TheRaymob‑
time datasets are divided in several episodes, each one
composed by a number of scenes. The smaller the time
between scenes, the more similar are consecutive scenes
within an episode and, consequently, the more correlated
are the communication channels of a given receiver along
with the scenes. Currently, RT simulations using Rem‑
com’sWireless InSite (WI) RT software [26] are limited to
sub‑THz frequencies (up to 100 GHz). More details about
the methodology can be found in [12].

The RT simulations demand the identiϐication of the ma‑
terial of the surfaces, in order to properly simulate the
electromagnetic interaction of thewaveswith the objects.
The disposition and diversity of these materials directly

impact the quality of the channels [29], making this as‑
signment manually a time‑consuming and laborious pro‑
cess, and usually results in few materials being actually
adopted. To optimize this procedure, the next paragraphs
describe ongoing research to develop a methodology to
automatically assign such materials to 3D objects via se‑
mantic segmentation with deep neural networks.

Fig. 4 – Analysis region image taken from Cesium database.

Fig. 5 – Segmented version using PyTorch of the Cesium image.

Semantic segmentation is a modern approach that per‑
forms classiϐication at pixel level, and allows us to deter‑
mine both the class of an object and the boundaries of
each object [30]. Current approaches of this method use
deep learning in order to overcome traditional object seg‑
mentation, allowing us to classify pixels not only by their
colors, but also considering the region context [31]. Due
to the fact that the 3D environment is built reproducing
real locations, it is possible to use databases such as Ce‑
sium and Google’s Street View to obtain detailed image
data from the analysis region. We are applying semantic
segmentation in images obtained via the Cesium plug‑in
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Table 2 – Some Raymobtime datasets.

Dataset name Frequency
(GHz)

Number of receivers
and type

Time between
scenes (ms)

Time between
episodes (s)

Number of
episodes

Number of scenes
per episode

Number of valid
channels

s001 60 10 Mobile 100 30 116 50 41 K
s005 2.8 and 5 10 Fixed 10 35 125 80 100 K
s006 28 and 60 10 Fixed 1 35 200 10 20 K
s008 60 10 Mobile ‑ 30 2086 1 11 K

s011 (new) 60 10 Mobile 500 6 76 20 13K
s012 (new) 60 10 Fixed 500 6 105 20 21K

Fig. 6 – Analysis region image from Google’s Street View.

Fig. 7 – Segmented version of the Google’s Street View image.

for Unreal in order to identify the different surface types
which composes the scenario.

Fig. 4 and Fig. 5 show an image taken from Cesium and
its segmentation, respectively. This segmentation used a
PyTorch implementation of semantic segmentation mod‑
els on theMIT ADE20K [32] scene parsing dataset. In this
example, it is possible to verify that the algorithmwas ca‑
pable of determining the contour of the asphalt. On the
other hand, the regions corresponding to buildings, cars
and vegetation were associated to the same class. This is
due to the bad quality of the images taken from Cesium,
where some regions of the ϐigure were rendered with de‑
formations and inadequate color assignment to objects,
as observed in the tree at the bottom right corner and the
objects at the sidewalks, for instance. This is a challeng‑
ing case for semantic segmentation. In Fig. 6 and Fig. 7,
it is possible to verify that there is a signiϐicant improve‑
ment in the segmentation performance (Fig. 7) compared
to the previous example (Fig. 5) when using images ob‑

tained from Google’s Street View due to the better quality
of the source image (Fig. 6). The segmentation was able
to identify cars, asphalt, sidewalks, vegetation and build‑
ings with a much better resolution, allowing us to classify
the materials with more diversity. Our research efforts
are now dedicated to mapping the stitched 2D images to
the 3D model and include semantic segmentation results
into RT simulations.

4. CAVIAR SIMULATION RESULTS
In this section, we discuss some key issues related to
CAVIAR simulations. We start by evaluating the compu‑
tational cost of RT. A snapshot of dataset s012 was sim‑
ulated with different parameters, assuming isotropic an‑
tennas for SISO‑RT simulations, andUniformLinearArray
(ULA) for MIMO‑RT simulations. The simulations include
one transmitter and 10 receivers, each with its own an‑
tenna or antenna array, depending on the scenario. The
aim is to analyze the impact of the ray spacing, the use
of Diffuse Scattering (DS) and the number of antenna el‑
ements in the ULA (for MIMO‑RT) on the RT simulation
time. DS is enabled in all SISO‑RT simulations where the
carrier frequency is above 6GHz (except for the datasets
s011 and s012, as they were designed for the comparison
between SISO‑RT andMIMO‑RT results. The later one has
an exponential increase in simulation time when running
with DS). For all the simulation results presented here, a
PC with an NVIDIA RTX 2070 was used.

In the RT simulations, the transmitter shoots rays in a
sphere through the scenario to ϐind viable paths between
transmitter and receiver. The minimum angle between
the rays is deϐined as the ray spacing. The values inTable 3
show that the ray spacing has a great impact in the to‑
tal simulation time. For SISO‑RT, a simulation using a ray
spacing of 0.1∘ takes 11 times longer than the onewith ray
spacing equal to 1∘. For MIMO‑RT, the simulation consid‑
ering 0.1∘ ray spacing is 6.2 times longer compared to ray
spacing of 1∘. For context, Wireless InSite recommends
setting ray spacing to 0.2∘ or less, for 500 m × 500 m ar‑
eas [33].

DS is a special type of ray interactionwith surfaces, allow‑
ing for the simulation of scattered paths caused by irreg‑
ularities in materials. It increases the number of simu‑
lated paths and, consequently, the number of calculations
and the run time. Table 3 presents results for simulations
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with DS enabled, both in SISO‑RT and MIMO‑RT scenar‑
ios, considering a ray spacing of 0.5∘. For SISO‑RT, the run
timewas 87 longerwhen enabling theDS compared to not
using it. For MIMO‑RT this value was even greater: DS in‑
creased the simulation time more than 600 times.

As described in Table 4, the simulation times depend on
the number of antenna elements in each Tx‑Rx pair. In‑
creasing the number of antenna elements in each Tx‑Rx
pair signiϐicantly raises the simulation time. A twelve‑fold
increase occurswhen using𝑁𝑡 = 64 and𝑁𝑟 = 64 ‑ where
𝑁𝑡 and𝑁𝑟 are the number of antenna elements in theULA
of the transmitter and receiver, respectively ‑ compared to
the baseline case where 𝑁𝑡 = 64 and 𝑁𝑟 = 2.

Table 3 – Simulation time increase factor for one RT simulation (s012)
for different ray spacing values, with and without diffuse scattering en‑
abled. The baseline time for SISO‑RT is 00:00:11.749 and for MIMO‑
RT (with 𝑁𝑡 = 64 and 𝑁𝑟 = 8) is 00:00:39.654. The time format is
(HH:MM:SS.ccc).

Simulation time increase factor
Ray Spacing (∘) SISO‑RT MIMO‑RT

1 1 0.7
0.5 1 1
0.25 2.4 1.5
0.1 11 4

0.5 (DS‑enabled) 84.7 412.9

Table 4 – Simulation time increase factor for one RT simulation (s012)
considering different numbers of antenna elements in the transmitter
and receiver antenna arrays. The baseline time is 00:00:18.437 (with
𝑁𝑡 = 64 and 𝑁𝑟 = 2). The time format is (HH:MM:SS.ccc).

𝑁𝑡 𝑁𝑟 Simulation time increase factor
64 2 1
64 8 2.2
64 64 12 𝛤

Asan illustrationof an INLOOPCAVIARsimulation,wede‑
veloped code for the Unreal Engine and AirSim to simu‑
late a BS serving a UAV. There are two RL agents: one for
determining the UAV trajectory and the other for beam
selection. We discuss only the latter agent in this pa‑
per. As the UAV ϐlies along its trajectory, the MIMO chan‑
nel is obtained according to the well‑known geometric
model, with parameters for three multipath components
obtained from probability distributions (see, e. g. [27,
16]). This simpler methodology was adopted to speed
up the simulations and allow for visualizing the UAV as
it ϐlies. In this speciϐic scenario, RT channel responses are
not used due to the required simulation time. TheBS used
a ULAwith𝑁𝑡 = 64 antennas, while the UAV uses a single
antenna. A DFT codebook is adopted.

At each time 𝑡, the UAV informs its position to the BS,
which can then calculate the Angle of Arrival (AoA) 𝜃 of
the beam at the UAV. This angle is used as the input for

two beam selection algorithms: one based in RL and a
simple baseline. To perform beam‑selection using RL, we
used a Deep Q Network (DQN) [34]. The Stable Baseline
API6 with default DQN parameters was adopted. The re‑
ward is the magnitude of the equivalent channel, as de‑
ϐined in Eq. (1). The baseline algorithm adopts the fol‑
lowing heuristic: it simply chooses the beam that points
to the straight path direction between the BS and the
UAV. For most of the UAV’s path, there is Line‑Of‑Sight
(LOS) and this heuristic achieves good results. As ex‑
pected, this strategy does not work well when the link
is Non‑LOS (NLOS), which occurs for the angular range
𝜃 ∈ [20, 30] degrees.
The results of this simple experiment is provided in Fig. 8.
The bottom plot shows the angle 𝜃 as the UAV takes off
(𝑡 ∈ [0, 25000]), reaches its destiny and lands (𝑡 > 76000).
During three time intervals (including a very short one)
the link between the UAV and BS was NLOS. The top plot
shows the magnitude of the equivalent channel |𝑦𝑖,𝑡|, in
which the 𝑖‑th codebook index was chosen at time 𝑡. The
optimum value, obtained by exhaustively trying all 𝑁𝑡 =
64 indices, is shown together with the values obtained by
theDQN(RL) andbaseline. While the optimumvalue is al‑
ways larger than 5 and has an average value of 6.81, both
baseline andRL struggle to reachgood results andachieve
average values E[|𝑦𝑖,𝑡|] = 1.7 and 2.3, respectively. It
should be noticed that in this case the RL agent should
choose one among 64 indices having a single input (angle
𝜃). In theUFPA Problem Statement for the 2021 ITU AI/ML
in 5G Challenge [6], a richer set of input features will be
adopted, allowing not only beam selection but also UAV
path planning.

5. CONCLUSIONS
This paper presented strategies and software for simulat‑
ing 6G systems that represent the surrounding environ‑
ment with images and other types of data. The so‑called
CAVIAR frameworkbeneϐits fromvirtual reality tools, em‑
phasizing the physical aspects of the movement of ob‑
jects. This visual information, coupled with MIMO chan‑
nels generated through RT methods, enables investigat‑
ing new AI/ML algorithms in 6G that rely on the environ‑
ment and learning from experience.

We also discussed how semantic segmentation and sen‑
sible RT parameters can improve generated MIMO chan‑
nels. We advocate that aiming at realistic simulations
is the natural path to gain a better understanding on
how ML/AI can make communication systems more efϐi‑
cient. The effort along the direction of larger and realistic
datasets is important for properly evaluating ML‑based
algorithms, and to avoid unfair comparisons to conven‑
tional signal processing.

6https://stable‑baselines.readthedocs.io/en/master.
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Fig. 8 – Beam selection results for a BS serving a UAV comparing RL versus a simple baseline algorithm. The optimal result (best beam pair) is also
included. The top plot presents the reward is the magnitude of the equivalent channel for the 𝑖‑th beam pair at the time 𝑡 (higher reward values are
better). The bottom plot shows the AoA 𝜃 at the UAV at each time 𝑡.
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[22] N. González‑Prelcic, A. Ali, V. Va, and R. W.
Heath. “Millimeter‑Wave Communication with
Out‑of‑Band Information”. In: 55.12 (Dec.
2017), pp. 140–146. ISSN: 0163‑6804. DOI:
10.1109/MCOM.2017.1700207.

[23] Cheng‑Xiang Wang, Ji Bian, Jian Sun, Wensheng
Zhang, and Minggao Zhang. “A survey of 5G chan‑
nel measurements andmodels”. In: IEEE Communi‑
cations Surveys & Tutorials 20.4 (2018), pp. 3142–
3168.

[24] Shital Shah, Debadeepta Dey, Chris Lovett, and
Ashish Kapoor. “Airsim: High‑ϐidelity visual and
physical simulation for autonomous vehicles”. In:
Field and service robotics. Springer. 2018, pp. 621–
635.

[25] A. Alkhateeb. “DeepMIMO: A Generic Deep Learn‑
ingDataset forMillimeterWave andMassiveMIMO
Applications”. In: Proc. of Information Theory and
Applications Workshop (ITA). San Diego, CA, Feb.
2019, pp. 1–8.

[26] REMCOM. Wireless InSite. 2019. URL: https : / /
www . remcom . com / wireless - insite - em -
propagation-software.

[27] David Tse and Pramod Viswanath. Fundamentals
of Wireless Communication. Cambridge University
Press, 2005. DOI: 10.1017/CBO9780511807213.

[28] Isabela Trindade, Francisco Müller, and Aldebaro
Klautau. “Accuracy Analysis of the Geometrical Ap‑
proximation ofMIMOChannels Using Ray‑Tracing”.
In: 2020 IEEE Latin‑American Conference on Com‑
munications (LATINCOM). IEEE. 2020, pp. 1–5.

[29] Felipe Bastos, Ailton Oliveira, João Borges, and
Aldebaro Klautau. “Effects of Environment Model
Complexity in Ray‑Tracing simulation for UAV
Channels”. In: X Conferência Nacional em Comuni‑
cações, Redes e Segurança da Informação (2020).

[30] B. Li, Y. Shi, Z. Qi, and Z. Chen. “A Survey on Seman‑
tic Segmentation”. In: 2018 IEEE International Con‑
ference on Data MiningWorkshops (ICDMW). 2018,
pp. 1233–1240. DOI: 10 . 1109 / ICDMW . 2018 .
00176.

ITU Journal on Future and Evolving Technologies, Volume 2 (2021), Issue 4

121© International Telecommunication Union, 2021

http://ita.ucsd.edu/workshop/18/files/paper/paper_3313.pdf
http://ita.ucsd.edu/workshop/18/files/paper/paper_3313.pdf
http://ita.ucsd.edu/workshop/18/files/paper/paper_3313.pdf
https://doi.org/10.1109/LWC.2019.2899571
https://doi.org/10.1109/SPAWC.2019.8815569
https://doi.org/10.1109/SPAWC.2019.8815569
https://doi.org/10.1109/TWC.2017.2773532
https://doi.org/10.1109/TVT.2017.2787627
https://doi.org/10.1109/TVT.2017.2787627
https://doi.org/10.1109/MCOM.2017.1700207
https://www.remcom.com/wireless-insite-em-propagation-software
https://www.remcom.com/wireless-insite-em-propagation-software
https://www.remcom.com/wireless-insite-em-propagation-software
https://doi.org/10.1017/CBO9780511807213
https://doi.org/10.1109/ICDMW.2018.00176
https://doi.org/10.1109/ICDMW.2018.00176


[31] Yanming Guo, Yu Liu, Theodoros Georgiou, and
Michael S. Lew. “A review of semantic segmen‑
tation using deep neural networks”. In: Interna‑
tional Journal of Multimedia Information Retrieval
7 (2018), pp. 87–93. ISSN: 1536‑1276. DOI: https:
//doi.org/10.1007/s13735-017-0141-z.

[32] MIT Computer Vision team. ADE20K dataset. URL:
http : / / groups . csail . mit . edu / vision /
datasets/ADE20K/. (accessed: 04.07.2021).

[33] Wireless InSite Reference Manual. Version Version
3.3.0. Remcom Inc.

[34] Volodymyr Mnih, Koray Kavukcuoglu, David Sil‑
ver, Alex Graves, Ioannis Antonoglou, Daan Wier‑
stra, and Martin Riedmiller. “Playing atari with
deep reinforcement learning”. In: arXiv preprint
arXiv:1312.5602 (2013).

AUTHORS
Ailton Oliveira is a B.Sc can‑
didate in electrical engineering
at Universidade Federal Pará,
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