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Abstract – Recent advancements in Deep Learning (DL) have revolutionized the waywe can efϔiciently tackle complex opti‑
mization problems. However, existing DL‑based solutions are often considered as black boxes with high inner complexity. As a
result, there is still certain skepticismamong the networking industry about their practical viability to operate data networks.
In this context, explainability techniques have recently emerged to unveil why DL models make each decision. This paper fo‑
cuses on the explainability of Graph Neural Networks (GNNs) applied to networking. GNNs are a novel DL family with unique
properties to generalize over graphs. As a result, they have shown unprecedented performance to solve complex network
optimization problems. This paper presents NetXplain, a novel real‑time explainability solution that uses a GNN to interpret
the output produced by another GNN. In the evaluation, we apply the proposed explainability method to RouteNet, a GNN
model that predicts end‑to‑end QoS metrics in networks. We show that NetXplain operates more than 3 orders of magnitude
faster than state‑of‑the‑art explainability solutions when applied to networks up to 24 nodes, whichmakes it compatible with
real‑time applications; while demonstrating strong capabilities to generalize to network scenarios not seen during training.
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1. INTRODUCTION
In recent years, Deep Learning (DL) has revolutionized 
the way we are able to solve a vast number of problems 
by ϐinding meaningful patterns on large amounts of data. 
This acquired knowledge then enables us to make highly 
accurate predictions, leading to systematically outper‑ 
forming state‑of‑the‑art solutions in many different prob‑ 
lems [1, 2]. However, in the ϐield of networking, DL‑based 
techniques still pose an important technological barrier 
to achieve market adoption. In general, Machine Learning 
(ML) solutions provide probabilistic performance guar‑ 
antees, which typically degrade as the data deviates from
the distribution observed during training. Moreover, neu‑ 
ral networks have very complex internal architectures, of‑ 
ten with thousands or even millions of parameters not in‑ 
terpretable by humans. As a result, they are treated as
black boxes [3]. This limits the viability of these solutions
to be applied to networks, as these are critical infrastruc‑ 
tures where it is essential to deploy fully reliable solu‑ 
tions. Otherwise, a potential misconϐiguration could lead
to temporal service disruptions with serious economic
damages for network operators.
In this vein, we do need mechanisms that can delimit the
safe operational ranges of DL models. This makes it fun‑ 
damental to understand why and in what situations a DL‑ 
based solution can fail. This can be achieved by producing
human‑readable interpretations of the decisions made by
these models (e.g., interpret a routing decision given a
trafϐic matrix and a network topology). This would not
only enable us to achieve more mature and reliable DL
solutions but also to enhance their performance by mak‑
ing ad-hoc adjustments for a particular network scenario
(e.g., hyper-parameter tuning).

In this context, explainability solutions [4] have recently 
emerged as practical tools to interpret systematically the 
decisions produced by DL models. Particularly, these 
recently proposed solutions analyze trained DL models 
from a black‑box perspective (i.e., they only analyze their 
inputs and outputs) and aim to discover which elements 
mainly drive the output produced by these models. As a 
result, they can eventually determine what are the most 
critical input elements to reach the ϐinal decisions. These 
kinds of techniques have been intensely examined in the 
ϐield of computer vision, showing promising results [5].
At the same time, the last few years have seen the explo‑ 
sion of Graph Neural Networks (GNNs) [6], a new neural 
network family that has attracted large interest given its 
numerous applications to different ϐields where the in‑ 
formation is fundamentally represented as graphs (e.g., 
chemistry [7], physics [8], biology [9], information sci‑ 
ence [10, 11]). This newly introduced mechanism has 
proven, to date, to be the only DL technique capable of 
generalizing with high accuracy to graphs of different 
sizes and structures not seen during the training phase.
In this context, GNNs have shown good properties to be 
applied in the ϐield of computer networks, as many key 
components in network control and management prob‑ 
lems are fundamentally represented as graphs (e.g., topol‑ 
ogy, routing). Indeed, we have already witnessed some 
successful GNN‑based applications to network modeling 
and optimization [12, 13, 14, 15]. However, the fact that 
we are not able to understand the inner architecture of
GNNs presents nowadays a major barrier that may 
hinder its adoption in real-world networks.
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Explainability of GNNs has been recently explored in two 
main works. A ϐirst work emerging from the ML commu‑ 
nity [10] analyzes a well‑known GNN model applied to a 
chemistry problem to quantify the impact of the differ‑ 
ent input elements (atoms, bonds) on the ϐinal model pre‑ 
dictions (molecular properties). Likewise, the network‑ 
ing community has made a ϐirst attempt to apply a simi‑ 
lar solution to several network optimization use cases 
[3]. However, both solutions are based on costly iterative 
optimization algorithms that need to be executed for each 
sample on which we want to obtain interpretations. 
Hence, they do not meet the requirements to make com‑ 
prehensive analysis over large data sets and, more impor‑ 
tantly, to be used in real‑time applications. To address 
these limitations, this paper proposes NetXplain, a novel 
real‑time explainability solution for GNNs. NetXplain in‑ 
troduces a novel approach where we use a GNN that 
learns, from Tabula Rasa, how to interpret the outputs of 
another GNN trained for a speciϐic task (e.g., routing op‑ 
timization). NetXplain produces human‑understandable 
interpretations of GNNs comparable to those of state‑of‑ 
the‑art solutions [10, 3]. However, it makes this at a much 
more limited cost. In our evaluation, we apply NetXplain 
to RouteNet [12], a GNN model that predicts the per‑path 
delay given a network snapshot as input (i.e., topology + 
routing + trafϐic matrix). To this end, we ϐirst train NetX‑ 
plain on a data set with samples produced by Metis [3]. 
This training is done over a data set of limited size –5 to 
10% of the original data set used in RouteNet [12]. Then, 
we validate the generalization power of our GNN‑based 
method, by applying it to network scenarios fundamen‑ 
tally different from those seen during training. The evalu‑ 
ation results reveal the feasibility to train NetXplain over 
a small dataset produced by costly explainability solutions 
(e.g., [10, 3]), and be able to apply it over a wide variety 
of network scenarios. This eventually enables us to meet 
the needed requirements to make a comprehensive anal‑ 
ysis of the safe operational range of GNN solutions at a 
limited cost. In this context, we show that NetXplain far 
outperforms state‑of‑the‑art algorithms in terms of com‑ 
putational cost, running more than 3 orders of magnitude 
faster on average than Metis [3] when applied to samples 
of three real‑world network topologies up to 24 nodes. 
As an example, this explainability solution can be used 
as follows: given a GNN‑based solution and a network 
scenario, NetXplain points to the particular network ele‑ 
ments (e.g., devices, links, paths) that mostly affected the 
output  decisions  of  the  GNN model. This can be help‑ 
ful for many different use cases, including: (𝑖) test & 
troubleshooting of GNN‑based solutions, (𝑖𝑖) reverse en‑ 
gineering, or (𝑖𝑖𝑖) improving network optimization solu‑ 
tions.
The remainder of this paper is structured as follows. First, 
Section 2 introduces the fundamental principles of GNNs 
and their application to networking. Then, Section 3 
presents the related work on explainability for GNNs. 

In Section 5 we describe NetXplain, the proposed explain‑ 
ability solution. Afterward, Section 6 presents an evalu‑ 
ation of the accuracy and cost of NetXplain with respect 
to the state of the art. Finally, Section 7 presents a discus‑ 
sion on possible applications of the proposed explainabil‑ 
ity method, and Section 8 concludes the paper.

2. BACKGROUND

2.1 Graph neural networks
Graph neural networks are a novel neural network fam‑ 
ily designed to operate over graph‑structured data, by 
capturing and modeling the inherent patterns in a graph. 
This has resulted in an unprecedented predictive power 
in many applications where data is structured as graphs. 
Despite the several variants of GNNs introduced in recent 
years, in this paper we focus on Message‑Passing Neural 
Networks (MPNN) [7], as they represent a generic GNN 
framework.
MPNN operates over a graph G, in which nodes 𝑣 ∈ 𝐺 are 
characterized with some initial features 𝑋𝑣.  First, the 
hidden‑state ℎ0

𝑣  of each  node  𝑣 ∈ 𝐺  are initialized us‑ 
ing their input node features 𝑋𝑣.  Once each element 𝑣 of 
the graph has its hidden‑state ℎ0

𝑣 initialized, they proceed 
to the message‑passing phase, which shall be repeated a 
given number of times 𝑇 . Fig. 1 illustrates how the mes‑ 
sage passing phase works. In each iteration 𝑡 of the algo‑ 
rithm, every node 𝑣 receives a message from each of its 
neighbors 𝑢 ∈ 𝑁(𝑣).  In MPNN, messages are generated 
using a function 𝑚(·) computed with the hidden state of 
the neighbor node. Then, once every node 𝑣 has received 
the messages from its immediate neighbors, these mes‑ 
sages are combined with an aggregation function 𝑎(·) pro‑ 
ducing a ϐixed‑size output (e.g., an element‑wise summa‑ 
tion).
Finally, the algorithm reaches the update phase, in which 
nodes use the aggregated information received from their 
neighbors to update their own hidden states via the up‑ 
date function 𝑢(·).
Formally, the message passing at a given iteration 𝑡 is de‑ 
ϐined as:

𝑚𝑣,𝑗 = 𝑚(ℎ𝑡
𝑣, ℎ𝑡

𝑗, 𝑒𝑣,𝑗) (1)

𝑀 𝑡+1
𝑣 = 𝑎({𝑚𝑣,𝑗 | 𝑗 ∈ 𝑁(𝑣)}) (2)

ℎ𝑡+1
𝑣 = 𝑢(ℎ𝑡

𝑣, 𝑀 𝑡+1
𝑣 ) (3)

In these equations, functions 𝑚(·) and 𝑢(·) can be com‑ 
puted through a universal function approximator, such as 
neural networks (e.g., feed‑forward NN or recurrent NN). 
After 𝑇 message passings, the hidden states of nodes typ‑ 
ically converge to some ϐixed values [6]. Thus, these ϐi‑ 
nal hidden states pass through a readout function 𝑟(·) that 
computes the output of the GNN model. 𝑟(·) automatically 
learns the mapping from hidden‑state representations to 
the output labels of the model 𝑦:

̂𝑦 = 𝑟(ℎ𝑇
𝑣 | 𝑣 ∈ 𝑉 ) (4)
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Fig. 1 – Message‑passing phase: (left) Message, (mid) aggregation and 
(right) update.

Such a function 𝑟(·) can also be implemented as a neural 
network, typically a feed-forward NN, and can be used to 
produce either node‑level predictions by processing in‑ 
dividually each node hidden state, or make global pre‑ 
dictions of the graph by combining all the hidden states. 
In this latter case, hidden states are typically aggregated 
(e.g., element‑wise sum) before they are introduced into 
the readout function.
This technology has proven to generalize successfully 
over graphs of different sizes and structures, which was 
not possible with traditional neural network architec-
tures (e.g., feed‑forward NN, convolutional NN, recurrent NN).

2.2 Graph neural networks applied to
networking

The strong generalization capabilities of GNN over graphs
make these models interesting for applications in the
networking ϐield since the most natural way to formal‑
ize many network control and management problems in‑
volves the use of graphs (e.g., topology, routing, inter‑
ϐlow dependencies) [3]. Recently, several GNN‑based so‑
lutions have been proposed to tackle different use cases
in the ϐield of computer networks (e.g., network mod‑
eling [12, 16], automatic routing protocols [13]). In
this section, for illustrative purposes, we focus only on
RouteNet [12], as it is quite representative of how GNN‑
based solutions represent and process network‑related
data to solve complex problems.
RouteNet targets the problem of modeling the per‑path
QoS metrics (e.g., delay, jitter) of a computer network. For
this purpose, a network snapshot is provided as input:
a network topology, a routing conϐiguration, and a traf‑
ϐic matrix. To this end, this model makes a transforma‑
tion of the physical network scenario into a more reϐined
graph representation in which physical and logical ele‑
ments are explicitly represented –paths and links in this
case. More speciϐically, every link of the physical network
topology is transformed into a node in the input graph of
the GNN. Likewise, each source‑destination path is also
converted into a node. Finally, edges connect links with
paths according to the routing conϐiguration. Thus, each
path is connected to those links that it traverses given the
input routing scheme. This process is illustrated in Fig. 2,
where we can observe how a physical network scenario
with two paths and three links is transformed into the in‑
put graph of RouteNet. This graph representation enables
us to model the complex relationships between the state

Fig. 2 – Transformation from the physical network scenario to the graph 
representation of RouteNet.

of paths and links, and how they relate to the output per‑ 
path performance metrics (e.g., delay).
In this regard, applying explainability over this model 
would enable us to identify the most critical edges of its 
internal graph (i.e., path‑link relations). We refer to crit‑ 
ical edges as the set of path‑link pairs that better explain 
the QoS metrics obtained by the model. Thus, with this 
solution, we can extract relevant knowledge of the pro‑ 
cessing made by the GNN given a network scenario, which 
can have many diverse applications, as later discussed in 
Section 7.

3. RELATED WORK
Recent years have attracted increasing interest in pro‑ 
ducing explainability solutions for neural network mod‑ 
els (e.g., Convolutional Neural Networks [5]). Despite this, 
explainability techniques for GNN have been scarcely ex‑ 
plored so far. In this context, GNNExplainer [17] is, to the 
best of our knowledge, the ϐirst proposal approaching this 
problem.
GNNExplainer is given as input a target GNN model and a 
sample graph 𝐺 = (𝑉 , 𝐸), with input features 𝐹 . GNNEx‑ 
plainer, then, outputs a subset containing the connections 
𝐸′ ⊂ 𝐸 and the node features 𝐹 ′ ⊂ 𝐹 , that affect most 
critically the output of the target GNN (see Fig. 3). This is 
done by computing a set of weights 𝑊 , formally deϐined 
in Eq. (5), that represents how critical are the pair‑wise 
connections of input graphs to the prediction accuracy of 
the target GNN.

𝑊 = {𝑤𝑖,𝑗 | (𝑖, 𝑗) ∈ 𝐸} (5)

Particularly, the most relevant connections are those that 
have more impact on the loss function used to train the 
model (e.g., mean squared error for regression tasks). 
The number of relevant connections produced by the al‑ 
gorithm can be tuned by setting a threshold on the result‑ 
ing weights 𝑤𝑖,𝑗 ∈ 𝑊 .
Overall, GNNExplainer is a generic solution proposed 
from the ML community that targets only at producing 
explainability representations of GNNs used for global 
graph classiϐication, node‑level classiϐication, or link pre‑ 
diction. However, this solution does not support GNN‑ 
based models used for regression. In this context, a pos‑ 
terior solution proposed from the networking commu‑ 
nity presents Metis [3], a similar approach adapted to 
GNN models trained for regression problems, particularly
showcasing its use in several networking applications.
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Fig. 3 – Schematic description of explainability solutions for GNN (e.g.,
GNNExplainer)

Fig. 4 – Explainability mask of an input graph.

Although GNNExplainer [17] and Metis [3] are able to 
produce quality explainability solutions for a vast range 
of problems, both have an important limiting factor. To 
compute 𝐸′ and 𝐹 ′ for each input sample, these solu‑ 
tions use an iterative convex optimization method, which 
is very time‑consuming. For instance, producing a sin‑ 
gle explainability solution can take up to hundreds of sec‑ 
onds in scenarios with topologies between 14 and 24 
nodes, as shown later in Section 6. This fact arguably pre‑ 
vents these methods to be applied for real‑time operation. 
Moreover, their high cost makes them impractical to per‑ 
form a comprehensive test analysis of GNN‑based solu‑ 
tions, covering a wide range of network scenarios, before 
these tools are released to the market.

4. PRELIMINARIES
This section ϐirstly introduces a detailed description of 
the representations produced by graph‑based explain‑ 
ability methods, which are commonly referred to as ex‑ 
plainability masks. Then, we present the general overview 
on how state‑of‑the‑art explainability solutions produce 
explainability masks on graphs.

4.1 Explainability mask
We refer to the explainability mask as an n×n  matrix that 
deϐines the relevance of each connection of an input graph 
𝐺 = (𝑉 , 𝐸) on the output produced by the target GNN, 
where 𝑛 = |𝑉 |.  This mask enables us to interpret which 
are the main graph elements that affect most the predict‑ 
ing power of the GNN in each case.
Formally, given an input graph 𝐺 = (𝑉 , 𝐸),  state‑of‑the‑ 
art explainability methods aim to produce an explainabil‑ 
ity mask 𝑊 ∈ {0, 1}𝑛×𝑛,  where each element deϐines a 
weight 𝑊𝑖,𝑗 indicating the importance of the connection 
between node 𝑖 and node 𝑗 on the overall accuracy of the 
target GNN. Fig. 4 illustrates how the explainability mask 
is built from an input (undirected) graph 𝐺.  Particularly, 
this matrix contains a weight for each pair (𝑖, 𝑗) connected 
in the graph.

Note that when applying GNN to network‑related prob‑
lems, input graphs 𝐺 may contain a wide variety of el‑
ements and connections that do not necessarily corre‑
spond to physical network elements (e.g., forwarding de‑
vices, links). For instance, some proposals like [12, 16]
introduce complex hypergraphs including logic network
entities (e.g., end‑to‑end paths).

4.2 Generating explainability masks
Current explainability solutions are based on iterative op‑
timization methods, which work as follows:
Given a target GNN and an input graph 𝐺 = (𝑉 , 𝐸), ex‑
plainability algorithms apply an iterative (costly) gradi‑
ent descent method to compute the explainability mask
𝑊 that best explains the accuracy of the model (i.e., it
deϐines the set of weights 𝑊 (see Eq. (5))) that repre‑
sents the impact of each graph edge on the loss func‑
tion of the target GNN. More speciϐically, the calculation
of the explainability mask is driven by the loss function
of Eq. (6), which depends on three factors: (𝑖) predictive
loss, (𝑖𝑖) entropy of the values in the mask, and (𝑖𝑖𝑖) L1
regularization computed over the mask. The predictive
loss quantiϐies how the accuracy of the target GNN (𝑌𝐼)
degrades when weighting the hidden states according to
𝑊 (𝑌𝑊 ). Note that the predictive loss function greatly de‑
pends on the speciϐic problem we aim to solve (e.g., re‑
gression or classiϐication). The entropy factor (Eq. (7))
controls the trade‑off between too homogeneous or too
sparse values in the resulting mask 𝑊 . Finally, the 𝐿1
regularization controls the number of connections that
will have high values. More in detail, as the regulariza‑
tion factor has more importance, the mask will be driven
towards having less critical connections (i.e., less high‑
value weights), which can be more useful for human in‑
terpretability. Moreover, notice that both entropy and
regularization loss are weighted according to two hyper‑
parameters (i.e., 𝛼, 𝛽) that can be ϐine‑tuned according to
the problem’s needs.
Through a gradient descent method, these algorithms
gradually converge to the optimal mask 𝑊 ∗ that mini‑
mizes the loss function ℓ(𝑊).

ℓ(𝑊) = 𝑃(𝑌𝐼 , 𝑉𝑊 ) + 𝛼𝐻(𝑊) + 𝛽||𝑊||𝐿1 (6)

𝐻(𝑊) = − ∑
𝑖,𝑗

(𝑊𝑖,𝑗 log(𝑊𝑖,𝑗) + (1 − 𝑊𝑖,𝑗) log(1 − 𝑊𝑖,𝑗)) (7)

5. NETXPLAIN: PROPOSED EXPLAINABILITY
METHOD

In this section, we introduce NetXplain, a novel explain‑
ability method for GNN, compatible with real‑time opera‑
tions, that addresses the performance limitations of exist‑
ing solutions (Section 3). NetXplain is able to produce the
same output as state‑of‑the‑art solutions, based on costly
iterative optimization algorithms [17, 3], while operating
at a much limited cost (at the scale of a few milliseconds
in our experiments in Section 6). This not only enables us
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Fig. 5 – High‑level workϐlow of NetXplain.

to perform real‑time troubleshooting of GNN‑based solu‑
tions applied to networks but also opens the possibility
of combining these solutionswith automatic optimization
algorithms (e.g., local search, reinforcement learning) to
solve more efϐiciently online optimization problems, as
discussed later in Section 7. To this end, NetXplain uses a
GNN that learns how to interpret a target GNN model that
has been trained for a particular task. As shown in Fig. 5,
the proposed GNN‑based solution is trained with an ex‑
plainability data set generated by an iterative optimiza‑
tion algorithm [3] and, once trained, the resulting model
can make one‑step explainability predictions for each in‑
put sample of the target GNN. Note that thanks to the
generalization capabilities of GNN over graph‑structured
information, once NetXplain is trained over a particular
target GNN solution, it can be applied to different input
graphs not included in the training data set. In prac‑
tice, when applied to GNN‑based networking solutions,
NetXplain is able to generalize to network scenarios with
topologies of variable size and structure not seen in ad‑
vance, as shown later in the experiments of Section 6. The
following subsections describe in more detail the main
components of this solution.

5.1 Explainability data set
To train NetXplain, we ϐirst need to generate the new ex‑
plainability data set, which we refer to as 𝐴. To this end,
we ϐirst randomly sample a subset 𝐷′ ⊆ 𝐷, where 𝐷 is
the original data set used to train the target GNN. Given
this subset 𝐷′, we now target the problem of producing,
for each input graph 𝐺 ∈ 𝐷′, its associated explainabil‑
ity mask 𝑊𝐺 when applied to the target GNN. Note that
this process ismade fromablack‑box perspective (i.e., the
explainability mask interprets the relevance of the input
graph connections by analyzing the input‑output correla‑
tions in the target GNN). For this task we can use speciϐic
state‑of‑the‑art iterative optimization algorithms, intro‑
duced in Section 3, and further described in Section 4.2,
depending on the particularities and the purpose of the
target GNN (e.g., regression, classiϐication).
Thus, we apply the process described in Section 4.2 for
each of the samples 𝐺 ∈ 𝐷′. Hereby, we eventually ob‑
tain the ϐinal explainability data set 𝐴, formally deϐined
in Eq. (8), which maps each of the selected graphs to its
corresponding optimal mask 𝑊 ∗

𝐺.
𝐴 = {(𝐺, 𝑊 ∗

𝐺) | 𝐺 ∈ 𝐷′} (8)

Note that due to the high cost of computing the explain‑
ability data set, it is crucial to ensure that |𝐷′|<<|𝐷|. For
instance, in our experiments, we observe that NetXplain
is able to converge to a valid solution using only 5‑10%

Fig. 6 – Adaptation of the readout function in NetXplain to produce the
explainability mask.

of the samples of the original data sets. Consequently,
the cost of generating the explainability data set becomes
much more affordable than applying the iterative opti‑
mization algorithm over all the samples of 𝐷.

5.2 Training the explainability GNN
Finally, we propose the use of an independent GNN
(NetXplain) to learn how to predict explainability masks
𝑊𝐺 over the target GNN for an input graph 𝐺 = (𝑉 , 𝐸).
First, we must deϐine the underlying architecture of the
NetXplain GNN, which we use for training. Particularly,
we mostly keep the same architecture of the target GNN.
The intuition behind this decision is that the complexity
for the target GNN to learn how tomake its output predic‑
tions should be similar to solving the explainability prob‑
lem over that GNN (i.e., explaining which connections af‑
fected most such predictions). However, it is needed to
make a minor change on the readout function 𝑟(·), in or‑
der to adapt it to produce the explainability mask 𝑀𝐺. As
illustrated in Fig. 6, for every edge (𝑖, 𝑗) ∈ 𝐸, we con‑
catenate their ϐinal hidden‑state vectors after themessage
passing phase is ϐinished (i.e., ℎ𝑇

𝑖 || ℎ𝑇
𝑗 ) and this is passed

as input to 𝑟(·), which predicts the mask weight for that
edge 𝑊𝑖,𝑗. Note that this operation can be computed in
parallel for each node pair (𝑖, 𝑗) ∈ 𝐸 of the input graph.
A key aspect of our proposal is to reduce as much as pos‑
sible the subset of samples randomly selected (𝐷′) used
to generate the samples of the explainability data set (𝐴),
which are ϐinally used to train NetXplain’s GNN. The rea‑
son is that typically producing explainabilitymasks for all
the samples of the original data set 𝐷 may be too costly
with state‑of‑the‑art explainability solutions. To achieve
this, we follow a transfer learning approach. Particularly,
we ϐirst initialize the explainability GNNwith the same in‑
ternal parameters (i.e., weights and biases) of the target
GNNmodel, except for the readout function, whose imple‑
mentation differs as explained before. This enables us to
effectively initialize the explainability GNN model, as the
message‑passing functions of this GNN are expected to be
close to those of the target GNN (e.g., similar graphs and
feature distributions). Thus, during training, themain ad‑
justment should be made over the readout function. To
this end, we ϐinally train the explainability model with a
reduced explainability data set 𝐴 generated by a refer‑
ence explainability algorithm, and this enables us to learn
how to produce accurately explainability masks.
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5.3 Generalization power of NetXplain
By analyzing the training process of NetXplain, we iden‑
tify the generation of the data set 𝐴 as the most computa‑
tionally costly task, even when considering that the num‑
ber of selected samples of 𝐷 is only a small portion of the
original data set 𝐷.
Note that our proposal aims to learn how to explain po‑
tentially any sample that our target GNN could face dur‑
ing operation. This motivates our choice of using a GNN
to explain a target GNN. To the best of our knowledge,
GNNs are the only technique that offers high generaliza‑
tion power over graph‑structured data. As a result, once
trained, the GNN explainability model generalizes to net‑
work scenarios not present in its training data set𝐴. This
means that NetXplain’s GNN can be trained over a small
data set to make predictions of the critical connections
from the perspective of the target GNN and, once trained,
it can predict in one step these critical connections over
arbitrary network scenarios (e.g., topologies of variable
size and structure). All this while offering an accuracy
comparable to state‑of‑the‑art costly solutions.

6. EVALUATION
In this section, we ϐirst evaluate the accuracy of the pre‑
dictions made by NetXplain with respect to the state‑of‑
the‑art solutions (Metis [3]). Second, we quantify the
speed‑up when using NetXplain compared to Metis. In
our experiments, we train an explainability model that
makes interpretations over RouteNet [12], a GNN model
used tomakeQoS inference in networks, previously intro‑
duced in more detail in Section 2.2.
All these experiments are evaluated over the same data
sets used in RouteNet [12], which are publicly available
at [18].

6.1 Generating the explainability model
First, we need to generate the explainability data set and
deϐine an architecture for the explainability GNNmodel:

6.1.1 Explainability data set
To train aNetXplain explainabilitymodel for RouteNetwe
ϐirst need to generate the explainability data set 𝐴 (Sec‑
tion 5.1). In this case, we generate this data set using
Metis [3].
To this end, we ϐirst train RouteNet as the target GNN
model, using 300k samples simulated in the NSFNet net‑
work, including scenarioswith various routing conϐigura‑
tions and trafϐic matrices [18].
Before generating the explainability data set 𝐴, we ran‑
domly sample a subset 𝐷′ ⊆ 𝐷 from the original data
sets [18]. Note that the different experiments made in
this section use different subsets 𝐷′ to generate the ex‑
plainability data sets 𝐴, ϐinally used to train the NetX‑
plain’s GNN models. This is then speciϐied in the respec‑
tive sections. In general, our experimentation shows that

Algorithm 1: Architecture of the NetXplain’s ex‑
plainability GNN applied to RouteNet
input : x𝑝, x𝑙,ℛ
output: ℎ𝑇

𝑣 , ℎ𝑇
𝑒 , ℎ𝑇

𝑝 , 𝑊
begin

// Initialize states of paths and links
foreach 𝑝 ∈ ℛ do ℎ0

𝑝 ← [𝑥𝑝, 0 … , 0] ;
foreach 𝑙 ∈ 𝒩 do ℎ0

𝑙 ← [𝑥𝑙, 0 … , 0] ;
for 𝑡 = 1 to 𝑇 do

// Message passing from links to paths
foreach 𝑝 ∈ ℛ do

𝑚𝑡
𝑝 = {ℎ𝑡−1

𝑙 | 𝑙 ∈ 𝑝}
ℎ𝑡

𝑝 ← 𝑅𝑁𝑁𝑝(ℎ𝑡−1
𝑝 , 𝑚𝑡

𝑝)
end
// Message passing from paths to links
foreach 𝑙 ∈ 𝒩 do

𝑚𝑡
𝑙 ← ∑𝑝∶𝑙∈𝑝 ℎ𝑡

𝑝
ℎ𝑡

𝑙 ← 𝑅𝑁𝑁𝑙 (ℎ𝑡−1
𝑙 , 𝑚𝑡

𝑙)
end

end
// Readout function
foreach 𝑝 ∈ ℛ do

foreach 𝑙 ∈ 𝑝 do
𝑞𝑙,𝑝 ← (ℎ𝑇

𝑙 | ℎ𝑇
𝑝 )

𝑊𝑙,𝑝 ← 𝑟( q𝑙,𝑝 )
end

end
end

this subset 𝐷′ needs only ≈ 5% of samples randomly ex‑
tracted from the original data set 𝐷 (i.e., approximately
15k samples) to ensure that NetXplain learns properly.
Afterward, we generate with Metis the ϐinal explainabil‑
ity data set 𝐴, as described in Section 5.2. In this process
Metismaps each of the selected samples𝐺 ∈ 𝐷′ to its cor‑
respondingmask𝑊𝐺, using as a target GNN the RouteNet
model previously trainedon samples ofNSFNet. Note that
Metis [3] is an iterative optimization algorithm. Hence,
we limit it to run 2,000 iterations per sample, after ob‑
serving this was sufϐicient to ensure convergence.
Finally, to train our NetXplain model, we make a random
split of the explainability data set 𝐴 (80%, 10%, and 10%)
to produce the training, validation, and test data sets re‑
spectively.

6.1.2 Architecture of the explainability GNN
As previously mentioned in Section 5.2, we use for the ex‑
plainability GNN a similar architecture to the target GNN,
RouteNet [12] in this case. The only change introduced
with respect to the original formulation of RouteNet is in
the readout function. Algorithm 1 provides a detailed de‑
scription of the NetXplain’s explainability GNN when ap‑
plied to RouteNet (see scheme of Fig. 2). In this case, the
readout function outputs a weight 𝑊𝑙,𝑝 for each link‑path
connection (𝑙, 𝑝). To this end, we concatenate the corre‑
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sponding hidden states of the link (ℎ𝑙)  and the path 
(ℎ𝑝),  and introduce this as input of the readout function. 
Thus, the resulting weight 𝑤𝑙,𝑝 can be interpreted as 
quantifying the importance for RouteNet of a particular 
src‑dst path 𝑝 as it passes through a certain link 𝑙 of the 
network.

6.2 Evaluation of the accuracy
We evaluate the accuracy achieved by the NetXplain 
model on samples simulated in three real‑world topolo‑ 
gies [18]: NSFNet (14 nodes), GEANT2 (24 nodes), and 
GBN (17 nodes). Concretely, for each topology we ran‑ 
domly pick 1,000 samples (with different routing con‑ 
ϐigurations, and trafϐic matrices), and produce explain‑ 
ability masks with the NetXplain GNN model described in 
Section 6.1.2. Fig. 7 depicts the Cumulative Distri‑ bution 
Function (CDF) of the relative error produced by 
NetXplain’s predictions with respect to those obtained 
by Metis [3], acting as the ground truth. We observe that 
our explainability model achieves a Mean Relative Error 
(MRE) of 2.4% when it is trained and evaluated over ex‑ 
plainability data sets 𝐴 with samples of the NSFNet 
topol‑ ogy (14 nodes). We then repeat the same 
experiment training and evaluating the model with 
samples of Geant2 (24 nodes), and obtain an MRE of 
4.5%.  Note that de‑ spite NetXplain’s GNN being trained 
and evaluated over samples of the same topology, the 
network scenarios (i.e., routing and trafϐic matrices) are 
different across the train‑ ing and evaluation samples, 
which means that the input graphs seen by the GNN in 
the evaluation phase are dif‑ ferent from those observed 
during training. Finally, we further test the 
generalization capabilities of NetXplain by training the 
explainability GNN with samples from NSFNet and 
GEANT2, but in this case, we evaluate the model on 
samples of a different network: GBN (with 17 nodes). As 
a result, NetXplain achieves an MRE of 11%over this 
network topology unseen in advance (dashed line in Fig. 
7). All these values are in line with the general‑ ization 
results already observed in the target GNN model 
(RouteNet [12]).

These results together show that using NetXplain we can 
achieve a similar output to a state‑of‑the‑art solution 
based on iterative optimization (Metis [3]), even when 
our solution was tested over network scenarios not seen 
during training.

Table 1 – Execution time of NetXplain with respect to Metis, evaluated 
on three real‑world network topologies

Topology Method Mean (s) Std deviation (s)
NSFNet Benchmark (Metis) 98.139 2.455

NetXplain 0.012 0.001
GBN Benchmark (Metis) 150.83 1.79

NetXplain 0.0214 0.005
GEANT2 Benchmark (Metis) 191.46 2.76

NetXplain 0.029 0.002

Fig. 7 – CDF of the relative error of NetXplain evaluated on three real‑ 
world network topologies.

6.3 Evaluation of the execution cost
In this section, we evaluate the computational time of 
NetXplain with respect to the original solution used to 
generate the explainability data set (Metis [3]). We thus 
measured the time to produce the output explainability 
masks using both solutions. This was done by randomly 
selecting 500 samples from each of the three topologies 
previously used in the experiments of Section 6.2: NSFNet 
(14 nodes), GEANT2 (24 nodes), and GBN (17 nodes) [18]. 
Table 1 shows the execution times per sample during in‑ 
ference (in seconds), differentiated over the three consid‑ 
ered data sets. Note that both solutions were executed in 
CPU and in equal conditions (they were applied over the 
same samples). We can observe that Metis takes ≈98 sec‑ 
onds on average to produce an explainability mask for an 
input sample of NSFNet (14 nodes). In contrast, NetXplain 
produced each mask in 12 ms on average. This constitutes 
a mean speed‑up of ≈8,178x in the execution time. As we 
can observe, similar results are obtained for the samples 
of the other two network topologies, resulting in an av‑ 
erage speed‑up of ≈7,200x across all the topologies (i.e., 
more than 3 orders of magnitude faster).
This shows the beneϐits of NetXplain with respect to state‑ 
of‑the‑art solutions, as it can be used to make extensive 
explainability analysis at a limited cost (e.g., to delimit the 
safe operational range of the target GNN). More impor‑ 
tantly, its operation at the scale of milliseconds makes it 
compatible with real‑time networking applications.

7. DISCUSSION ON POSSIBLE APPLICA‑
TIONS

As previously mentioned, GNNs have been mainly
leveraged for global network control and management
tasks [3], as these scenarios typically involve modeling
complex (and mutually recursive) relationships between
different network elements (e.g., devices, links, paths)
to then produce the system’s output (e.g., end‑to‑end
QoS metrics [12], routing decisions [15, 13]). In this
section, we draw a taxonomy with three main use case
categories where the application of GNN‑based explain‑
ability solutions can be especially beneϐicial (Fig. 8):
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(𝑖) test & troubleshooting, (𝑖𝑖) reverse engineering, and 
(𝑖𝑖𝑖) improving optimization tasks. Particularly, we put 
the focus on the advantages of leveraging the fast and 
low‑cost interpretations of NetXplain with respect to 
state‑of‑the‑art explainability methods.

7.1 Test & troubleshooting
In order to achieve GNN‑based products for networking, 
we need guarantees that they will work optimally when 
deployed in real‑world networks. In this context, ven‑ 
dors would typically need to make extensive tests to their 
GNN solutions to check how they respond under differ‑ 
ent network conditions. Using NetXplain would enable us 
to collect human‑readable interpretations of the internal 
data processing made by GNNs. For instance, if we have 
a GNN model that performs trafϐic engineering, we can 
identify the network elements that mainly drive the deci‑ 
sions made by the model, which are given by the explain‑ 
ability mask of NetXplain, and then observe if the proper‑ 
ties of the selected elements are consistent across similar 
network scenarios. This would be a good indicator that 
the model generalizes well and, consequently, it is reliable 
for deployment. In this vein, with extensive testing we 
can ϐind the safe operational range of models, which is es‑ 
sential for vendors to offer guarantees before selling their 
products (e.g., this product works optimally in networks 
up to 100 nodes and link capacities up to 40Gbps). Other‑ 
wise, operators would not take the risk of deploying such 
solutions on their networks, as they are critical infras‑ 
tructures where misconϐigurations are not acceptable. In 
this context, making such a comprehensive analysis us‑ 
ing state‑of‑the‑art solutions would result in large costs 
for vendors; while the limited cost of NetXplain would en‑ 
able us to reduce dramatically both the cost and the time 
needed before releasing the product to the market. 
Moreover, this testing process would enable us to trou‑ 
bleshoot GNN models by identifying particular scenarios 
where they are not focusing on the expected elements, or 
simply their behavior is not consistent with other simi‑ 
lar scenarios. In this context, understanding where and 
why a model failed is crucial to reϐine it through an itera‑ 
tive training‑testing process. For instance, it can help ϐind 
deϐiciencies in the internal message‑passing architecture 
that make the model less robust to particular network
scenarios  or  identify  a  lack  of  samples  in  the training 
data sets.

Fig. 8 – Possible applications of NetXplain.

7.2 Reverse engineering
One interesting application of ML‑based solutions is to ex‑ 
tract information about the knowledge learned during the 
training phase (i.e., reverse engineering). In this context, 
the explainability interpretations produced by NetXplain 
would enable us to understand what are the main net‑ 
work elements that GNNs consider before making their 
decisions. As a result, this may enable us to obtain non‑ 
trivial knowledge that can be leveraged to then design 
and implement efϐicient optimization algorithms and/or 
heuristics with deterministic and predictable behavior. 
These kinds of solutions are often perceived as more valu‑ 
able by network operators, as nowadays there is a cer‑ 
tain skepticism on applying ML‑based solutions to real‑ 
world networks, mainly due to the critical nature of these 
infrastructures and the probabilistic guarantees typically 
offered by ML solutions.

7.3 Improving network optimization 
solutions

Network optimization problems often require dealing 
with very large spaces of possible actions (e.g., all the 
valid src‑dst routing combinations in a network). As a re‑ 
sult, optimization tools can only evaluate a small portion 
of conϐigurations before they make a ϐinal decision. Thus, 
the exploration strategy used by these tools has a critical 
impact on the performance they can eventually achieve. 
In this context, explainability methods can provide 
meaningful interpretations of the current network state 
that can be useful to guide more efϐiciently optimiza‑ 
tion algorithms (e.g., reinforcement learning [15], local 
search [19]). For instance, using a NetXplain model 
trained over RouteNet, as the one of Section 6, would en‑ 
able us to point to critical paths and links that are mostly 
affecting the network performance (e.g., end‑to‑end de‑ 
lays). This could be highly beneϐicial for optimization al‑ 
gorithms to explore alternative conϐigurations targeting 
speciϐically these critical points (e.g., re‑routing speciϐic 
paths to avoid the critical points selected by NetXplain). 
In this context, computational efϐiciency is a must for op‑ 
timization tools, as it directly affects the number of con‑ 
ϐigurations that can be evaluated before producing the ϐi‑ 
nal decision. Thus, counting on solutions compatible with 
real‑time operation, like NetXplain, offers an important 
competitive advantage with respect to state‑of‑the‑art ex‑ 
plainability solutions.

8. CONCLUSIONS
In this paper, we proposed NetXplain, an efϐicient explain‑ 
ability solution for Graph Neural Networks (GNNs). Par‑ 
ticularly, this solution uses a GNN that learns how to pro‑ 
duce accurate interpretations over the outputs produced
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by another GNN model. In contrast to state‑of‑the‑art 
solutions based on costly optimization algorithms, the 
proposed solution can be integrated into network con‑ 
trol and troubleshooting systems operating in real time. 
We tested NetXplain over RouteNet, a GNN model that 
predicts per‑source‑destination delays in computer net‑ 
works, and showed that our solution can produce an out‑ 
put equivalent to state‑of‑the‑art solutions with an exe‑ 
cution time more than 3 orders of magnitude faster in 
networks up to 24 nodes. Moreover, we discussed the 
potential applications that can have this GNN‑based ex‑ 
plainability solution when applied to networking. As fu‑ 
ture work, it would be interesting to show experimentally 
the potential applications of the proposed lightweight ex‑ 
plainability method to different networking use cases, 
such as those described in Section 7, as well as making 
a deep analysis on the knowledge extracted by NetXplain 
on different target GNN models.
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