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Abstract – Modeling communication networks to predict performance such as delay and jitter is important for evaluat‑
ing and optimizing them. In recent years, neural networks have been used to do this, which may have advantages over
existing models, for example from queueing theory. One of these neural networks is RouteNet, which is based on graph
neural networks. However, it is based on simpliϐied assumptions. One key simpliϐication is the restriction to a single
scheduling policy, which describes how packets of different ϐlows are prioritized for transmission. In this paper we pro‑
pose a solution that supports multiple scheduling policies (Strict Priority, Deϐicit Round Robin, Weighted Fair Queueing)
and can handle mixed scheduling policies in a single communication network. Our solution is based on the RouteNet ar‑
chitecture as part of the ”GraphNeural Network Challenge”. We achieved amean absolute percentage error under 1%with
our extendedmodel on the evaluation data set from the challenge. This takes neural‑network‑based delay estimation one
step closer to practical use.
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1. INTRODUCTION

There has been an increasing use of machine learning
techniques for various kinds of problems in recent years.
Due to the variety of problems, many newmachine learn‑
ing algorithmshavebeendeveloped. Inparticular for data
that can be described by graphs, there has been an im‑
portant new development known as ”Graph Neural Net‑
works” [1]. Examples of such data are chemical elements
or communicationnetworks. We focus on the latter in this
paper. In this context, a communication network can be
characterized by nodes and edges, where the edges rep‑
resent the links between nodes. Additionally, there are
properties associatedwith each node and each edge. This
is the basic setting of Graph Neural Networks (GNNs).
GNNs use the so‑called ”Message Passing” algorithm [2]
and can express the notion of nodes and edges. However,
for communication networks it is also important to con‑
sider paths (and network ϐlows) along several consecu‑
tive links. RouteNet [3, 4] is an implementation of this
idea that allows expressing paths. The RouteNet archi‑
tecture consistsmainly of two gated recurrent neural net‑
works that are responsible for calculating path and link
properties, respectively.
The RouteNet architecture can be used to predict per‑
ϐlow performance metrics such as average delay and jit‑
ter. This can be useful for assessing networks with re‑
spect to different loads without needing to test them in
reality. Hence, it is possible to determine if a network
can handle a certain load with respect to a performance
metric such as average delay. An alternative to such a
prediction with neural networks is a simulation, using

simulators such as OMNeT++ [5]. However, such sim‑
ulations may be time‑consuming. If the communication
network itself or any settings are changed, the simula‑
tion has to be repeated. Thus, it becomes especially time‑
consuming when simulating the impact of a series of pa‑
rameter changes. In contrast, the time‑consuming train‑
ing of neural networks has to happen only once in general.
Hence, prediction with neural networks usually provides
a faster way to estimate the performance of networks.

2. RELATEDWORK
There are classical (i.e. non‑machine learning) methods
to predict delays in communication networks, like queu‑
ing theory [6], network calculus [7] and simulation‑based
approaches [5].
Boutaba et al. [8] provide a general overview on the appli‑
cation of machine learning to communication technolo‑
gies and network measurements. The approaches in par‑
ticular differ in whether the data used for learning comes
from network simulators (e.g. from OMNeT++ as in our
case) or from actual measurements. In addition, they can
be divided into supervised, unsupervised and reinforce‑
ment learning. The approach considered in this paper is
an example of supervised learning.
Mestres et al. [9] investigate modeling and prediction
of delays in communication networks with feed‑forward
neural networks. They predict the latency based on the
trafϐic conϐiguration. In contrast to the RouteNet archi‑
tecture, a neural network has to be trained for each spe‑
ciϐic communication network. Graph neural networks
and message passing were ϐirst introduced by Scarselli et
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Fig. 1 – Problem setting for the challenge

al. [1] and Gilmer et al. [10]. These concepts were applied
to the domain of communication technologies by Geyer
andCarle [11], where the authors use aGNN for automatic
network protocol design.
A different approach to deal with heterogeneous schedul‑
ing policies was recently proposed by Ferriol et al. [12].
They provide a GNN architecture with states for links,
paths and queues. This model reaches a mean relative
error of 3.88% in the German Backbone Network (GBN)
topology (which was not used for the training process).

3. SETTING
The solutionproposed in this paperwasdevelopedwithin
the GNN Challenge [13] provided by the ”Barcelona Neu‑
ral Networking Center” from the Universitat Politècnica
de Catalunya. This challenge was organized as part of the
”ITU Artiϐicial Intelligence/Machine Learning in 5G Chal‑
lenge”.
The goal of the GNN challenge was to predict the aver‑
age per ϐlow delay in a communication network. In other
words, it is of interest to estimate the average time it takes
for a packet to travel from its source node to its desti‑
nation node. Additionally, the network topology may be
different from that used in the training data. Thus, the
neural network should not be adapted to only one topol‑
ogy but work for general topologies. For this, three differ‑
ent network topologies have been provided. For training,
the NSFNET topology with 14 nodes [14] and GEANT2
topology with 24 nodes [15] were used. For validation,
GBN [16] with 17 nodes was used. The data set that was
used for the evaluation of the challenge consisted of 19
nodes. Other information has not been published by the
challenge organizers. Thus, the proposed solution for this
challengemustwork even for such unknown communica‑
tion networks where no details are known beforehand.
The data set consisted of different node and link informa‑
tion, as well as different settings used in the OMNeT++
simulator. A crucial simpliϐication for all data sets is that
there exists only one ϐlow for each path. And for each ϐlow,
a Type of Service (ToS) is randomly assigned. That means
all packets of a path have the same ToS. This is an impor‑
tant property of the data set and we will utilize it in Sec‑
tion 4.3. The number of generated packets per time unit
follow a Poisson distribution, and the inter‑packet arrival
times follow an exponential distribution. A two‑valued
distribution is used to model packet size. The maximum
bit rate is chosen randomly between 400 and 2000 bits
per time unit. For more details on the simulated data, we
refer to the challenge documentation [13].

In communication networks, scheduling policies describe
in which order packets are transmitted. A simple and
straightforward algorithm is FIFO, where the packets are
transmitted in the order in which they are received [17].
The original RouteNet was developed for networks that
use only a single scheduling policy. However, this im‑
plementation does not work well with other scheduling
algorithms and networks with heterogeneous schedul‑
ing can have large a impact on the behavior of networks
and thus on the delays. For this challenge speciϐically,
three different scheduling policies, namely Weighted‑
Fair‑Queuing (WFQ), Strict Priority (SP), and Deϐicit
Round Robin (DRR) are being used. For WFQ and DRR,
there are three ToS classes. The networks are in general
not homogeneous with respect to scheduling policies, in
fact there are data sets where all policies are present in a
single communication network.

3.1 RouteNet
RouteNet uses Graph Neural Networks and the so‑called
message passing [2] for predicting average per‑path de‑
lays in communication networks. There are two impor‑
tant elements in this architecture, links and paths; where
each path consists of at least one link. Note that we use
the term ”capacity” to refer to the tight upper bound on
the transmission rate of a link and the term ”data rate” to
refer to the desired transmission rate of a trafϐic ϐlow on a
network path. Each link is associated with speciϐic infor‑
mation, such as link capacity. We will refer to this simply
as link state information, which is represented as a vector.
The same holds true for paths, which we will call analo‑
gously path state information. The RouteNet version pro‑
vided for the challenge [18] uses at initialization only link
capacity (bits/time unit) for the link state information ℎ𝑙
and the average data rate (bits/time unit) of a single ϐlow
for the path state informationℎ𝑝. The data rate of the ϐlow
can be encoded as part of the path state information as in
RouteNet it is assumed that there is at most one ϐlow per
path. Thedimensionof link andpath informationareboth
set to 32 in this RouteNet version, that is at the beginning
only one component of the link and path state contains
meaningful information, all other components are ϐilled
with zeros. Therefore, those two vectors can be written
as

ℎ𝑙 = [𝑥, 0, … , 0]′ ∈ ℝ32 and
ℎ𝑝 = [𝑧, 0, … , 0]′ ∈ ℝ32,

where 𝑥 denotes the link capacity and 𝑧 the average de‑
sired data rate on that path.
RouteNet utilizes two recurrent neural networks 𝐺𝑝 and
𝐺𝑙. The neural network 𝐺𝑝 calculates the new path state
information based on the previous path information and
link information. The result of this neural network is then
used for 𝐺𝑙 to calculate new link state information with
the previous link state information. See Algorithm 1 for
the pseudo‑code. As 𝐺𝑝 is a recurrent neural network,
it returns the hidden path state after each link of a path.
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Fig. 2 – Schematic representation of RouteNet

All these states are combined to a sequence of path states
for each path. Therefore, the output from 𝐺𝑝 is aggre‑
gated for each link with a function that is denoted by 𝑓 .
In RouteNet, this 𝑓 is equal to a summation. The func‑
tion 𝑔 reduces the output that is returned by𝐺𝑝 to the last
state only, which is considered to be the new path state
information. This algorithm or message passing between
these two neural networks is repeated 𝑇 = 8 times. The
number of repetitions should be of the order of the aver‑
age shortest path length [2]. The ϐinal path information is
then an approximation of the ϐixed point of this message
passing procedure. It is then used to predict the average
delay with an additional neural network. Figure 2 gives
a simpliϐied overview of this message passing. Rusek et
al. [4] give more details about the RouteNet architecture.
Data: path state ℎ𝑝 and link state vector ℎ𝑙
Result: predicted per‑path delay ̂𝑦𝑝
for t = 0 to T do

𝐻𝑡+1
𝑝 = 𝐺𝑝(ℎ𝑡

𝑝, ℎ𝑡
𝑙)

ℎ𝑡+1
𝑙 = 𝐺𝑙(𝑓(𝐻𝑡+1

𝑝 ), ℎ𝑡
𝑙)

ℎ𝑡+1
𝑝 = 𝑔(𝐻𝑡+1

𝑝 )
end

̂𝑦𝑝 = 𝑅(ℎ𝑇
𝑝 );

Algorithm 1: RouteNet architecture

4. PROPOSED SOLUTION
Our proposed solution is a modiϐication of RouteNet [3],
which is based on message passing and graph neural net‑
works. Instead of just providing the ϐinal architecture, we
give an overview of all changes we applied to the origi‑
nal RouteNet model and provide intermediate results for
the delay predictions. That way, it is possible to see and
evaluate the impact that different changes had on the re‑
sults. All variants have been repeated 5 times to also as‑
sess the stability and variability of each model. Note that
this number of 5 replications is arbitrary and no sample
size calculation was done to compare different variants
with each other given a pre‑speciϐied power for the statis‑
tical analysis. We use 600 000 training steps for each run
and an exponential decay after every 60 000 steps. That
means the learning rate of 0.001 is multiplied by the fac‑
tor 0.6 after 60 000 training steps. Regularization is the
same as in the RouteNet implementation provided for the

challenge [18], that is the 𝐿2 regularization is set to 0.1
and 0.01 for all neural networks in the ϐirst hidden layer
and second hidden layer of the readout neural network.
In the following we illustrate the impact of all changes on
the mean absolute percentage error.

4.1 Baseline
The task was to minimize the mean absolute percentage
error of per‑path delays. Hence, we decided to change the
loss function in the original implementation from Mean
Squared Error (MSE) to Mean Absolute Percentage Error
(MAPE) to use the same metric for training and evalua‑
tion.
We compare this ϐirst change with the baseline code
where the optimization is done with respect to the mean
squared error. The results are displayed in Table 1 as
Step 0 and Step 1. It shows that without any modiϐica‑
tions the model does not perform well as the average er‑
ror over 5 runs is over 200%. This is not surprising as
the original RouteNet model was developed for networks
with a different scheduling policy. Using the mean ab‑
solute percentage error as the target function improved
the model signiϐicantly. The grand mean of all results
was about 46% (with a 95% Conϐidence Interval (CI) of
[26.5%, 66.29%]). This improvement was expected as
the results were evaluated by the mean absolute percent‑
age error and the training was done with the same target
function.

4.2 Normalization
For neural networks, it is common and advised to stan‑
dardize the input variables [19, 20]. Therefore, all vari‑
ables were shifted into [0, 1] such that they are on the
same scale. No centering was applied. This modiϐica‑
tion signiϐicantly improved the results given in Table 1.
The grand mean is about 23% (95% CI [23.7%, 23.74%]).
It shows again, what is already known in the literature,
that normalizing or standardizing input variables is cru‑
cial and should be done. Not only to improve prediction
but also to improve stability of training the model, which
is reϐlected in a small standard deviation of those 5 runs.

4.3 Adding variables
In Step 3 we added all variables that are provided in the
data set from the challenge to either path state informa‑
tion ℎ𝑝 or link state information ℎ𝑙. When referring to
such variables, wewill provide the names of the variables
as named in the data sets in parenthesis to make cross‑
referencing the source code easier. As the dimension is
still greater than the number of variables, all unused com‑
ponents of ℎ𝑝 and ℎ𝑙 are again initialized with 0. To be
precise, we added link capacity (bandwidth), the schedul‑
ing policy (schedulingPolicy) and weights for schedul‑
ing as link information. As there are three different ToS,
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there are also threeweights for thepoliciesWFQandDRR.
For the policy SP, we artiϐicially set these three weights to
1.
For the scheduling policy, we used dummy variables,
since there are three different policies. Let e𝑖 =
(𝑒𝑖1, 𝑒𝑖2, 𝑒𝑖3)′ ∈ ℝ3 be the 𝑖th canonical vector with 𝑒𝑖𝑗 =
1 if 𝑖 = 𝑗 and 𝑒𝑖𝑗 = 0 otherwise. Note that 𝑒′

𝑖 denotes the
transpose of 𝑒𝑖. For simplicity, the scheduling policy 𝑠 is
identiϐied as integers 0, 1 or 2. Then the dummy variable
for the scheduling policy can be written as 𝑒𝑠+1 (some‑
times known as ”one hot” encoding).
For this particular data set there is exactly one ϐlow for
each path as already mentioned in Section 3. Hence, we
can identify paths with ϐlows and can therefore assign
each path a ToS. That is why we can use ToS as path in‑
formation. Other variables for the path information are
the average data rate on that path (AvgBw), the gener‑
ated packets (PKtsGen), average bit rate per time unit
(EqLambda), average number of packets of average size
generated per time unit (AvgPktsLambda), information
about packet sizes (AvgPktSize, PktSize1, PktSize2)
and a variable describing the upper limit for the inter‑
packet arrival times used in the OMNeT++ simulation
(ExpMaxFactor). All these variables were as well shifted
into [0, 1] to improve the stability of the model.
Wedecided to split the average desired data rate on a path
(AvgBw) into different variables for each ToS, respectively.
For example, if the ToS is 1, then the ϐirst of these three
variables contains the average data rate, while the other
two are set to 0. For illustration, let 𝑑 ∈ ℝ≥0, 𝑡 ∈ {0, 1, 2}
be the data rate and ToS, where the ToS is identiϐied by
integers. Then this data rate dummy variable can bewrit‑
ten as 𝑑 ⋅e𝑡+1. We also used ToS additionally for the initial
path state information. It should be noted that many of
those variables listed above are highly correlated. How‑
ever, we did not encounter any problems and decided to
keep these variableswithout any furthermodiϐication. By
adding these additional variables, we now take into ac‑
count the scheduling and therefore the prediction of av‑
erage delays improved signiϐicantly.
For illustration, the state information are given by

ℎ𝑙 = [𝑥, 𝑤1, 𝑤2, 𝑤3, 𝑒′
𝑠+1, 0, … , 0]′ ∈ ℝ32 and

ℎ𝑝 = [𝑧 ⋅ 𝑒′
𝑡+1, … , 0]′ ∈ ℝ32,

where 𝑥 denotes the link capacity, 𝑤𝑖 (𝑖 = 1, 2, 3) for the
weights, 𝑠 for the scheduling policy, 𝑡 for the ToS and 𝑧 for
the average path data rate.
Note that some variables are node properties in the data
set, for example the queue scheduling policy that is used.
However, ϐlows have a direction. Let us consider a ϐlow on
the link from node A to node B. Then we assign this link
the scheduling policy from the source node A. Conversely,
if we have a ϐlow in the opposite direction on the link from
node B to node A, then we assign the scheduling policy
fromnodeB. Although both links connect the samenodes,
they are treated as different links.
Adding these variables improves themodel as scheduling

information is now used as input. The average error is
about 4.46% (95% CI [3.97%, 4.94%]) as can be seen un‑
der Step 3 in Table 1.

4.4 Residual connection
For the readout neural network, we used a similar idea
already used in the original RouteNet model [3]. They
used a residual connection for the path information to
the last hidden layer of the readout neural network. This
can be seen as some kind of residual neural network [21].
However, this idea is not present in the RouteNet code
provided for the challenge. The readout neural network
consists of two hidden layers. The output of this neural
network together with the ϐinal path state information is
used as input in a second neural network with one hid‑
den layer and without any activation function (which is
equivalent to a linear activation function) as the path state
information can be important for estimating the average
delays. The number of neurons for this layer is chosen to
be equal to the dimension of the input.
The results are similar to the earlier results. The average
error for Step 4 is about 4.55% (95% CI [4.38%, 4.71%]).
However, the standard deviation is reduced by a factor of
about 3 = 0.39/0.13, which means the results are stabler,
which can be explained by this residual neural network.
There are hypotheses that such neural networks smooth
the loss function and the algorithm does get stuck less of‑
ten in non‑optimal local minima [21][22].
To illustrate this modiϐication, we refer to the pseudo
code 2. In contrast to the unmodiϐied code 1, the readout
neural network is separated into two feed forward neu‑
ral networks. The output of the ϐirst neural network with
two hidden layers and ”relu” activation functions is used
as input for the secondneural network. Note that the path
state information is used in both neural networks as in‑
put.
Data: path state ℎ𝑝 and link state vector ℎ𝑙
Result: predicted per‑path delay ̂𝑦𝑝
for t = 0 to T do

𝐻𝑡+1
𝑝 = 𝐺𝑝(ℎ𝑡

𝑝, ℎ𝑡
𝑙)

ℎ𝑡+1
𝑙 = 𝐺𝑙(𝑓(𝐻𝑡+1

𝑝 ), ℎ𝑡
𝑙)

ℎ𝑡+1
𝑝 = 𝑔(𝐻𝑡+1

𝑝 )
end
𝑟 = 𝑅1(ℎ𝑇

𝑝 )
̂𝑦𝑝 = 𝑅2(𝑟, ℎ𝑇

𝑝 )
Algorithm 2: RouteNet architecture with modiϐied
readout neural network

4.5 Stacked gated recurrent networks
The idea of the RouteNet architecture is that for each
path/ϐlow we have information about all links of which
the path consists. And this link information is used as in‑
put in a gated recurrent neural network. The initial infor‑
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mation is the current path state. For the ϐirst cell of the
gated recurrent unit (GRU), the information of the ϐirst
link of a path is being used as the input. Then, the re‑
sult of this ϐirst calculation, and the information of the
second link is used in the next step. This is done until
all link information of a path has been used. This works
well as long as no heterogeneous queuing is in the data.
However, to tackle the additional complexity of queuing,
we decided to use two gated recurrent networks stacked
together. The idea of using stacked gated recurrent net‑
works has already been used in a slightly different con‑
text [23], where neural networks predicted trafϐic volume
in road networks to relieve trafϐic congestion. Further‑
more, these gated recurrent networks seemingly allow
for more ϐlexibility as more parameters can be trained.
The average error for this Step 5 is about 3.18% (95% CI
[2.94%, 3.41%]); see Table 1.
Data: path state ℎ𝑝,1, ℎ𝑝,2 and link state vector ℎ𝑙
Result: predicted per‑path delay ̂𝑦𝑝
for t = 0 to T do

𝐻𝑡+1
𝑝 = 𝐺𝑝(ℎ𝑡

𝑝,1, ℎ𝑡
𝑝,2, ℎ𝑡

𝑙)
ℎ𝑡+1

𝑙 = 𝐺𝑙(𝑓(𝐻𝑡+1
𝑝 ), ℎ𝑡

𝑙)
ℎ𝑡

𝑝,1 = 𝑔1(𝐻𝑡+1
𝑝 )

ℎ𝑡
𝑝,2 = 𝑔1(𝐻𝑡+1

𝑝 )
end
𝑟 = 𝑅1(ℎ𝑇

𝑝,1, ℎ𝑇
𝑝,2)

̂𝑦𝑝 = 𝑅2(𝑟, ℎ𝑇
𝑝,1, ℎ𝑇

𝑝,2)
Algorithm 3: RouteNet architecture with stacked
gated recurrent networks. Each GRN has its own hid‑
den states denotes by ℎ𝑝,𝑖, 𝑖 = 1, 2. The functions 𝑔1
and 𝑔2 return the ϐinal hidden state for each gated re‑
current network.

4.6 Dimension path and link information

As the problem of prediction average delays in networks
with scheduling is more complex than without schedul‑
ing, it may be necessary to have a higher dimension of
path and link state information. The RouteNet code ini‑
tially used a dimension of 32 for both. We tried increas‑
ing the dimension to 64, 128, and 256. For a dimension
of 64, we observe a signiϐicant increase of the overall er‑
ror over just using a dimension of 32. Doubling the di‑
mension to 128 again reduces the prediction error signif‑
icantly. However, using dimension 256 seems to increase
the error, whichmaybe a result of overϐitting. For this set‑
ting, we did not try to add more regularization to avoid
a possible overϐit. But rather, we decided to set the di‑
mension to 128 in the following. Another reason is com‑
putational complexity as we want to train the model in a
reasonable amount of time. The results are given again in
Table 1 where Step 6A represents dimension 64 with an
average error of 2.02%, 6B with a dimension of 128 and
an average error of 1.6% and 6C with a dimension of 256
and an error of 2.86%.

4.7 Neurons
The ϐinal path state information is obtained through the
message passing [2] loop. This ϐinal information ismainly
used for predicting the average delays in two steps, one
neural network with two hidden layers each with 8 neu‑
rons. The other neural network does not contain an acti‑
vation function and is described in Step 4.4. As we have
increased the dimension of this path state information in
the previous step from 32 to 128, it may be useful to in‑
crease the number of neurons in the ϐirst neural network
responsible for prediction. The baseline number of neu‑
rons is 8. We increased this number to 128 and 256 and
observed that there is no signiϐicant difference between8,
128 or 256 neurons. The results for 128 and 256 neurons
are given in Table 1 as Step 7A and Step 7B with an av‑
erage error of 1.61% and 1.67%, respectively. As already
mentioned, there is no difference to 8 neurons under Step
6B with an error of 1.6%. As the standard deviation of
the results for 128 neurons (0.047) seems to be smaller
than for just 8 neurons (0.061), we decided to include this
change in our ϐinal solution. But as this decision is based
on only 5 observations, it is not conclusive.

4.8 Decay rate
For the two ϐinal steps, wewant to optimize this algorithm
with respect to learning parameters. We tried two differ‑
ent approaches. First, we usually trained the models for
600 000 steps. For each 60 000 steps, the learning rate is
decreased exponentially with a decay rate of 0.6. That is,
the current learning rate 𝑟𝑛 after 𝑛 training steps is given
by 𝑟𝑛 = 0.001 ⋅ 0.6⌊𝑛/60 000⌋ where ⌊.⌋ denotes the ϐloor
function. This means that after 600 000 steps the learn‑
ing rate is almost zero and no changes are observed any‑
more to the parameters. That is why we decided to in‑
crease the learning rate again after 600 000 steps artiϐi‑
cially by changing the decay rate to 0.85. Then, the ad‑
justed learning rate is given by 𝑟𝑛 = 0.001 ⋅ 0.85⌊𝑛/60 000⌋

for 𝑛 ≥ 600 000. We refer to this approach as Step 8A and
it is related to the concept of cyclical learning rates [24]
where the learning rate is increasing and decreasing in a
cyclical way.
We compared this approach where we change the decay
rate in the beginning of the training to 0.85. We call this
approach Step 8B. The formermethod returns an average
error of about 1.47%, the latter an average error of 1.36%
as can be seen in Table 1. A graphical representation of
the loss functions up to 1.2 million training steps is given
in Figure 3 and Figure 4. In Figure 3, there is an increase
in the loss function after 600 000 steps as the learning
rate was modiϐied at that point. Note that for both loss
functions themean absolute percentage errors are shown
shown on a log scale.
As no overϐittingwas observedwe did not change the reg‑
ularization and decided to keep the standard parameters
from RouteNet. In our tests, method Bwhere we changed
the decay rate in the beginning performed slightly better.
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Table 1 – Mean absolute percentage error (MAPE) for each modiϐication step for ϐive runs: Last two columns denote the average and standard deviation of
each row.

Step Run 1 Run 2 Run 3 Run 4 Run 5 ̂𝜇 �̂�
0 MSE 337 120 335 102 185 216 114
1* MAPE 26.4 64.1 43.7 36.9 60.9 46.4 16.0
2* Normalization 23.7 23.7 23.7 23.7 23.7 23.7 0.01
3* Variables 4.55 4.85 4.58 3.80 4.51 4.47 0.39
4* Residual connection 4.45 4.75 4.53 4.41 4.59 4.55 0.13
5* Stacked GRN 3.05 3.32 3.40 3.17 2.94 3.18 0.19
6A Dimension path and link state (64) 2.03 1.94 1.97 1.86 2.28 2.02 0.16
6B* Dimension path and link state (128) 1.68 1.63 1.52 1.58 1.57 1.60 0.06
6C Dimension path and link state (256) 2.65 2.99 3.00 3.19 2.48 2.86 0.29
7A* Neurons (128) 1.60 1.69 1.59 1.57 1.59 1.61 0.05
7B Neurons (256) 1.59 1.80 1.71 1.60 1.73 1.67 0.09
8A Decay rate (0.6/0.85) 1.42 1.61 1.37 1.42 1.52 1.47 0.10
8B* Decay rate (0.85) 1.35 1.34 1.32 1.49 1.30 1.36 0.08
* Variant selected for ϐinal solution
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Fig. 3 – Loss function for training during Step 8A

4.9 Final results
Overall, if we evaluate the best trained model, that is run
5 frommethod 8B as previously described, we get amean
absolute percentage error of about 0.897%with the ϐinal
data set from theGNNchallenge. For comparison, the best
result in the challenge by the winning team was an error
of 1.53%. Our originally submitted solution achieved an
error of about 1.9%, thuswe could improveour submitted
model further. The training was done on a single Geforce
RTX 2080 Ti in under 48 hours for 1.2 million training
steps. The code was written in Python 3.7.7 with tensor‑
ϐlow2.1.0 based onKeras and is available as open source.1

5. CONCLUSION
In this paper we have described the problem of estimat‑
ing delays in communication networks using deep neural
networks and proposed a solution based on the RouteNet
model [3]. Wedecomposedour solution into several steps
1https://github.com/ITU-AI-ML-in-5G-Challenge/GNN_
Challenge_SalzburgResearch_Follow_Up_Paper
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Fig. 4 – Loss function for training during Step 8B

to demonstrate the improvement of each step and com‑
pared different variants of the steps to ϐind good hyper‑
parameters. Such a step by step analysis of changes can
be helpful in constructing, improving and understanding
a model. Using this approach we were able to obtain an
error of about 0.897% for predicting average per‑path de‑
lays based on graph neural networks.
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