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Abstract – Molecular Communication (MC) is an emerging technology using molecules to transfer information between
nanomachines. In this paper, we approach the resource allocation problem in Molecular Nano‑networks (MCN) from the
perspective of evolutionary game theory. In particular, we consider an MCN as an organism having three types of nodes
acting as a sensor, relay, and sink, respectively. The resources are distributed among the nodes according to an evolutionary
process, which relies on the selection of the most successful organisms followed by creating their offspring iteratively. In this
regard, the success of an organism is measured by the total number of droppedmessages during its life cycle. To illustrate the
evolution procedure, we design a toy problem, and then solve it analytically and using the evolution approach for comparison.
We further simulate the performance of the evolution approach on randomly generated organisms. The results reveal the
potential of evolutionary game theory tools to improve the transmission performance of MCNs.
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1. INTRODUCTION

The Internet of Bio‑Nano Things (IoBNT) is a novel
paradigm based on the interconnection of nanoscale de‑
vices and biological entities. It enables novel applica‑
tions ranging from intra‑body sensing and actuator net‑
works for the treatment and diagnosis of various diseases
to the monitoring and control of environmental pollution
[1, 2]. Molecular Communication (MC), which is inspired
by the natural communication between biological enti‑
ties, emerges as a promising communication technology
to realize nano‑networks for IoBNT applications [3], and
recently recognized as an effective abstraction tool for un‑
derstanding several diseases [4, 5, 6].

Research efforts in MC mainly focused on physical chan‑
nel modeling, modulation, coding, and detection tech‑
niques [7, 8, 9, 10, 11]. Developing MC Nano‑networks
(MCN) acting and communicating cooperatively to per‑
form IoBNT tasks still poses many challenges.

One of the most prominent challenges in MC is resource
allocation. Relying on molecular dispersion instead of
electromagnetic waves, MC devices need to preserve both
energy andmolecules to continue their operation. As a re‑
sult, resource allocation is a more prominent problem for
MC compared to EM, where preserving and/or harvest‑
ing energy is enough to guarantee high transmission efϐi‑
ciency.

Realizing the importance of resource allocation in MC,
several works are proposed to overcome this problem.
In [12], the optimal number of molecules released by the

transmitter and the optimal detection threshold of the re‑
ceiver minimizing the error probability of each hop in a
multi‑hopMCNarederived. In [13], the joint optimization
of molecular resource allocation and relay location is in‑
vestigated to improve the error performance of a cooper‑
ative MC system. Similarly, in [14], the optimal molecule
allocation among molecular receivers is determined for a
cooperative MC system. In [15], information molecules
with different diffusion coefϐicients are considered opti‑
mizing molecular resource allocation in molecular multi‑
ple access networks.

MC is the primary communicationmode for all organisms.
It covers both short ranges as in synaptic communication
and long ranges as in pheromones. It is used for both fast
acting purposes such as adrenaline and slow acting pur‑
poses such as growth. DNA itself is an application of MC
that transfers information through ages. Therefore, we
turn to evolution, the driving factor of the MC utilization
diversity, to ϐind answers relating to the resource alloca‑
tion problem. One way to tap into the power of evolution
is using evolutionary game theory.

Game theory has been used as a tool tomodel networking
problems and to investigate communication efϐiciency of
MCN. Game theory principles can help one explore com‑
munication among molecular nanomachines when it is
hard to obtain analytical solutions because of the size of
MCN. Jiang et al [16] propose a game‑theoretic approach
for distributed research allocation forMCnetworks based
on Nash equilibrium and Nash bargaining schemes. In
[17], evolutionary game theory tools are used to explore
the effect of transmitter behaviors, namely cooperation
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or confrontation, regarding communication efϐiciency in
MCN. Game theory has also been used to describe the be‑
havioral dynamics of natural MCNs for sharing common
resources such as bacteria populations [18] and plant mi‑
crobiomes [19].

To the best of our knowledge, evolutionary game theory
itself has not been considered in the literature for the
MCN resource allocation problem. The success of evolu‑
tionary game theory in application to biological problems,
including resource allocation in organisms [20] shows its
applicability to the nature inspired MCN.

In this paper, we apply evolutionary game theory to the
resource allocation problem in MCNs. The evolution pro‑
cedure relies on selecting successful MCNs, where the
success criterion is the total number of successful trans‑
missions, followed by creating their offspring iteratively.
By this approach, we have a population of MCNs which
is generally better in terms of transmission count as we
increase the iteration number. In a way, this approach re‑
semblesmachine learning. In otherwords, our simulation
behaves as an evolutionary machine learning algorithm
based on mechanisms of evolutionary game theory. To il‑
lustrate the evolutionary approach, we use a toy problem
for resourcemanagement in anMCN and then provide re‑
spective analytical and evolutionary solutions compara‑
tively. We also demonstrate our simulation using a ran‑
domly generated MCN.

The rest of the paper is organized as follows. In Section
2, we describe the systemmodel, i.e., the operation of the
MCNand evolution procedure. In Section 3, wepresent an
analytical and an evolutionary solution for a toy problem
comparatively to illustrate how evolution works. In Sec‑
tion 4, we simulate a randomly generated MCN, using the
evolutionary approach, and then discuss its performance.
Finally, we conclude the paper in Section 5.

2. SYSTEMMODEL
We use an organism as an MCN. The organism consists of
nodes communicating with each other using MC. In Sec‑
tion 2.1 we describe the organism in detail and in Section
2.2 we will present the system model for MC. Finally, in
Section 2.3, we will illustrate the evolution procedure.

2.1 Organism
An organism has three types of nodes: sensor nodes col‑
lecting information about their surroundings, sink(s) op‑
erating as gateways to the Internet, and relay nodes trans‑
mitting the information they received from the sensor
nodes to the sink(s). Because of the extremely small sizes
of the relay nodes, they are randomly distributed in a vol‑
ume. However, sensor nodes and the sink are larger, so
they are not necessarily distributed randomly. Fig. 1 de‑
picts the organism. We made the following assumptions
regarding the operation of the nodes:

• The sensor nodes have an inϐinite number of
molecules, while the relay nodes have a ϐinite size
molecule reservoir.

• The nodes have a good knowledge of each other and
the location of the sinks, i.e., nodes use a localization
algorithm prior to their operation.

• The existing nodes do not cause any obstruction for
the nodes behind them.

The general operation of the organism is depicted in Algo‑
rithm 1. Firstly, one of the sensor nodes emits a message
(lines 10‑12). When a relay node receives the message,
it relays the message to another node until the message
reaches the sink (line 26). If several relay nodes receive
the message, a random one among them, which is closer
to the sink than the previously emitting relay node (lines
14‑17), transmits the message (lines 18‑19). The organ‑
ism is considered dead if 𝑋 messages are dropped con‑
secutively or if reservoirs of𝑃% of the relay nodes are ex‑
hausted (line 9). The latter condition is included to sup‑
port the former. Without this condition, if the consecutive
drop cycle is broken by a lucky transmission, at least 𝑋
more attempts aremade, which increases the drop counts
and overall performance parameters are disrupted.

2.2 Molecular communication model
In this work, we use a simplistic model capturing all the
essential mechanisms of MC without the computational
burden. As with any MC model, our model comprises in‑
formation carriers, medium, transmission, and reception,
as described in detail as follows.

2.2.1 Information carrier
As the name suggests, the information carrier is a
molecule that can diffuse andpropagate in amedium. The
molecules do not interact with each other, and they have
a constant, isotropic diffusion constant,𝐷. The half‑life of
the molecules is assumed long compared to the propaga‑
tion timeand short compared to the timebetweenconsec‑
utive transmissions of the nodes. Therefore, themolecule
count does not drop during propagation to other nodes.
Moreover, we assume that the channel is cleared between
consecutive transmissions.
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Fig. 1 – An example of an organism, with sink shown as red and sensors
nodes shown with yellow rings around them. The other nodes are relay
nodes.
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Algorithm 1: Operation of the organism.
1 𝒮 = {𝑠𝑒𝑛𝑠𝑜𝑟_𝑠𝑒𝑡}
2 ℛ = {𝑟𝑒𝑙𝑎𝑦_𝑠𝑒𝑡}
3 ℰ𝒮 = {𝑒𝑚𝑝𝑡𝑦_𝑠𝑒𝑛𝑠𝑜𝑟_𝑠𝑒𝑡} = {}
4 ℛ𝒮 = {𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑_𝑠𝑒𝑡} = {}
5 𝑠𝑖𝑛𝑘
6 𝑑𝑟𝑜𝑝_𝑐𝑜𝑢𝑛𝑡 = 0
7 𝑡𝑜𝑡𝑎𝑙_𝑑𝑟𝑜𝑝𝑠 = 0
8 𝑡𝑜𝑡𝑎𝑙_𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 = 0
9 while 𝑑𝑟𝑜𝑝_𝑐𝑜𝑢𝑛𝑡 < 𝑋 and

𝒞({ℰ𝒮} < 𝑃 × 𝒞(ℛ)/100) do
10 𝑠𝑒𝑛𝑠𝑜𝑟 = random(𝒮)
11 𝑠𝑒𝑛𝑠𝑜𝑟.transmit()
12 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠_𝑛𝑜𝑑𝑒 = 𝑠𝑒𝑛𝑠𝑜𝑟
13 while 𝑠𝑖𝑛𝑘.received() == 𝐹𝐴𝐿𝑆𝐸 do

14 ℛ𝒮 = {𝑛𝑜𝑑𝑒|𝑛𝑜𝑑𝑒 ∈ ℛ
15 and 𝑛𝑜𝑑𝑒.received() = 𝑇 𝑅𝑈𝐸 and
16 𝑑(𝑛𝑜𝑑𝑒 ∶ 𝑠𝑖𝑛𝑘) < 𝑑(𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠_𝑛𝑜𝑑𝑒 ∶ 𝑠𝑖𝑛𝑘)}

17 𝑛𝑒𝑥𝑡_𝑛𝑜𝑑𝑒 = random(ℛ𝒮)
18 𝑛𝑒𝑥𝑡_𝑛𝑜𝑑𝑒.transmit()
19 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠_𝑛𝑜𝑑𝑒 = 𝑛𝑒𝑥𝑡_𝑛𝑜𝑑𝑒
20 if drop then
21 ℛ𝒮 = {}
22 𝑑𝑟𝑜𝑝_𝑐𝑜𝑢𝑛𝑡 + +
23 𝑡𝑜𝑡𝑎𝑙_𝑑𝑟𝑜𝑝 + +
24 break
25 end

26 if 𝑠𝑖𝑛𝑘.received() == 𝑇 𝑅𝑈𝐸 then
27 ℛ𝒮 = {}
28 𝑑𝑟𝑜𝑝_𝑐𝑜𝑢𝑛𝑡 = 0
29 𝑡𝑜𝑡𝑎𝑙_𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 + +
30 break
31 end
32 end
33 end

2.2.2 Medium

The transmission medium is a 3D medium where 
molecules can diffuse. The medium is isotropic and ho‑ 
mogeneous, i.e., the diffusivity of the molecules does not 
depend on the position or direction.

2.2.3 Transmission

Each node in the organism is capable of receiving and 
transmitting messages. The nodes transmit the mes‑ 
sage by releasing vesicles containing a ϐixed number of 
molecules. The release is assumed to happen in the center 
of the node in an omnidirectional manner.
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Fig. 2 – Reception behavior depending on molecule count in the vicinity.

2.2.4 Reception
Reception occurs when molecules are incident on the 
receptors located on the nodes. Considering a binding 
mechanism following the standard lock‑and‑key model, 
both the molecular concentration in the vicinity of the re‑ 
ceptor and the orientation of molecules according to the 
receptor are important. In other words, while a single 
molecule with the correct orientation can bind the recep‑ 
tor, many molecules without the correct orientation may 
fail to trigger a reception. Hence, to capture the stochastic 
properties of reception, we use the following simple ap‑ 
proach. If the maximum number of molecules exceeds a 
certain threshold, 𝛼, the binding probability approaches 
1, so we assume successful transmission. If the number 
of molecules is below 𝛼, there is a non‑zero chance of suc‑ 
cessful binding. This chance is directly proportional to the 
molecule count in the vicinity. Fig. 2 depicts the reception 
behavior. We can summarize reception with (1),

𝑃1(𝑡) =

⎧{{{
⎨{{{⎩

1, max
𝑡→𝑡+Δ𝑇

𝑀 ≥ 𝛼

0, max
𝑡→𝑡+Δ𝑇

𝑀 = 0

max
𝑡→𝑡+Δ𝑇

𝑀
𝛼 , 0 ≤ max

𝑡→𝑡+Δ𝑇
𝑀 ≤ 𝛼

(1)

where max
𝑡→𝑡+Δ𝑇

𝑀 is the maximum number of molecules in
the vicinity of the node and 𝑃1(𝑡) is probabilities of suc‑
cessfully receiving the emitted signal.

2.3 Evolution
As stated in Section 2.1, the organismdies after it consecu‑
tively drops messages from its sensors. The total number
of droppedmessages during its life cyclemeasures the or‑
ganism’s success.

Themore successful organisms, which are chosen accord‑
ing to the selection process, then produce their offspring,
i.e., the creation. Iterated selection and creation stages
constitute evolution. The evolution procedure is summa‑
rized in Algorithm 2. First, as the generation dies, the

ITU Journal on Future and Evolving Technologies, Volume 2 (2021), Issue 3, 30 July 2021



0
1

2 3

4
5

6

7

8

Parent

0
1

2 3

4
5

6

7

8

Child 1

0
1

2 3

4
5

6

7

8

Child 2

Fig. 3 – The parent, which has the same reservoir size in each node,
evolves into two children. The radii of the nodes are proportional to the
reservoir size. Note that for illustration purposes, the carried changes
were not inϐinitesimal.

most successful 𝑅 of organisms in the generation of 𝑁
organisms are selected (lines 4‑5). Then, the selections
form their offspring (line 6). The nodes of these offspring
have very similar reservoir distribution among their re‑
lay nodes compared to their parent. The resources are
distributed among the relay nodes onlywith inϐinitesimal
changes compared to the resource distribution of their
parent. Hence, suboptimal distributions are eliminated,
and better nodes are created. A parent with two offspring
is presented in Fig. 3.

Note that during procreation, the resources available to
each node of an organism changes by a random number 𝑘
such that

𝑘 = {−𝑘𝑚𝑎𝑥, −𝑘𝑚𝑎𝑥 + 1 … , −1, 0, 1, … , 𝑘𝑚𝑎𝑥} (2)

If 𝑘 < 0 and the node reservoir becomes smaller than 0,
the resources are set to 0.

Note that the total resources distributed to all nodes are
kept constant. Otherwise, organisms with a higher total
number of resources would dominate the others, and we
could not obtain any information regarding optimum re‑
source distribution.

Selection Creation

Parents

Offsprings

Fig. 4 – In the ϐirst stage, offspring of the previous generation are se‑
lected through the selection rules. In the second stage, selected parents
create the next generation. In our approach, the selection rule is the
higher total transmission count.

Algorithm 2: Evolution Procedure
1 {𝑜𝑟𝑔𝑎𝑛𝑖𝑠𝑚𝑠}
2 𝑖 = 0
3 while 𝑖 < 𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 do
4 {𝑑𝑟𝑜𝑝𝑠} = {𝑜𝑟𝑔𝑎𝑛𝑖𝑠𝑚𝑠}.selection()
5 {𝑝𝑎𝑟𝑒𝑛𝑡𝑠} = {𝑜𝑟𝑔|𝑜𝑟𝑔 ∈ {𝑜𝑟𝑔𝑎𝑛𝑖𝑠𝑚𝑠} and

𝑜𝑟𝑔.selection() ∈
sorted({𝑑𝑟𝑜𝑝𝑠})[0 ∶ 𝑅 − 1]}

6 {𝑜𝑟𝑔𝑎𝑛𝑖𝑠𝑚𝑠} = {𝑝𝑎𝑟𝑒𝑛𝑡𝑠}.procreate()
7 𝑖 + +
8 end

3. EVOLUTIONARY GAME THEORY

Evolutionary game theory is an application of game the‑ 
ory for evolution and population dynamics. It suggests 
that the collective behavior of the individuals, whether 
they are rational, or not plays a vital role in the survival
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Fig. 5 – Total number of transmissions by the organism through stages
of evolution.

and continuation of the species.
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Evolutionary game theory is a two‑stage process. In the 
ϐirst stage, the population members undergo a selection 
process depending on the individual strategies of the 
pop‑ ulation. In the second stage, selected individuals 
create new offspring. The phases of evolutionary game 
theory are depicted in Fig. 4.

In this section, we ϐirst describe the toy problem and then 
present an analytic solution using the simple geometry of 
the toy problem. Then, we demonstrate an evolutionary 
solution for the same problem and compare the results 
with the analytic solution.

3.1 Problem description
To illustrate how evolution works, consider the toy prob‑ 
lem given in Fig. 6. The parent consists of one sink node,
two sensor nodes, 𝒮 = {𝑛4, 𝑛6} and six relay nodes. The 
goal, as described in Algorithm 1, is either to minimize 
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Fig. 6 – Snapshots of the resource distribution and total transmission,
𝑇 after different evolution counts.

the total number of dropped messages or maximize the total 
number of transmissions. Note that there might be other 
communication‑related goals such as faster communica‑ 
tion or communicating with fewer resources, however, 
for the sake of simplicity, we only focus on the maximum 
number of dropped messages from sensor nodes to the 
sink for this problem. As a result, organisms with a lower 
number of drops are selected to create offspring. Since 
we consider the organisms individually, we assume they 
do not interact with each other.

Without loss of generality, we assume that sensor nodes 
have unlimited resources, i.e., they safely outlast the relay 
nodes. Without this assumption, dried‑up sensor nodes 
might stop creating messages before relay nodes stop 
transmitting them. Hence, such an assumption helps us 
only to focus on relaying the messages instead of their 
creation. This assumption is also justiϐied because sensor 
nodes with extra hardware must be larger than the relay 
nodes.

Our ϐinal assumption is that each node knows the location 
of the sink and other nodes to a reasonable degree. Thus, 
nodes do not relay messages coming from a node closer to 
the sink than they are, as described in Algorithm 1. This 
assumption is justiϐied as well since each node can include 
a stamp on the messages allowing the receiving nodes to 
learn the last transmitting node.

3.2 Analytic solution

Although most resource management problems do not 
have an easy analytic solution, we can attempt to ϐind 
one for this problem because of its simple geometry. To 
this end, we evaluate the resource distribution of an 
optimal organism, using Shapley Values of individual 
nodes for the organism. A Shapley Value is deϐined as the 
performance difference in a system with and without the 
part under in‑ vestigation. In other words, we can ϐind 
the Shapley Value of node 𝑛𝑖 ∈ ℛ using the formula

𝑉 (𝑛𝑖) = 𝑃 (∀𝑛𝑗 ∈ ℛ) − 𝑃(∀𝑛𝑗 ∈ ℛ − 𝑛𝑖), (3)

where 𝑉 (𝑛𝑖) is the Shapley Value of node 𝑛𝑖 and 𝑃(𝒳) is
the cumulative performance of all members of set 𝒳.
Firstly, since they are located to the opposite side of the
sink, i.e., upstream of all sensor nodes, 𝑛7 and 𝑛8 do not
relay any messages. Hence,

𝑉 (𝑛7) = 𝑉 (𝑛8) = 0. (4)

For the remaining relay nodes, we employ the probability
of a drop to measure their performance.

𝑉 (𝑛𝑖) = 𝑝𝑑𝑟𝑜𝑝(ℛ − 𝑛𝑖) − 𝑝𝑑𝑟𝑜𝑝(ℛ), (5)

where 𝑝𝑑𝑟𝑜𝑝(𝒳) is the drop probability within the set 𝒳.
Note that since (5) focuses on drop performance, it ismul‑
tiplied by a factor of −1, i.e., performance is measured as
the negative of the drops.
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Without loss of generality, we assume that transition be‑
tween adjacent nodes is a certainty while there is still a
non‑zero chance of the next node receiving the message,
as depicted in Fig. 2. The simulation parameters are also
chosen to satisfy this assumption. Therefore, we expect
no drop to occur if all nodes are present, which allows us
to ϐind 𝑝𝑑𝑟𝑜𝑝(ℛ) = 0. Hence, only the ϐirst term of (5) re‑
mains.

We know that drops occur only if no other node receives
the message. Otherwise, one of the receiving nodes,
namely, 𝑛𝑖 ∈ ℛ𝒮 relays the message to the sink. Hence,

𝑝𝑑𝑟𝑜𝑝(𝑖) = 𝜆𝑖+1 (1 −
𝑖+1
∏
𝑘=2

(1 − 𝑝𝑘)) , (6)

where 𝜆𝑖 is the activation rate of 𝑛𝑖 and 𝑝𝑘 is the probabil‑
ity of a successful transmissionbetweennode𝑛𝑖 and𝑛𝑖+𝑘.
Note that, 1−∏(1−𝑝𝑘) term gives the probability that no
downstream node including the sink receives themessage
coming from𝑛𝑖+1 and if𝜆𝑖+1 = 0 if𝑛𝑖+1 ∉ 𝒮+ℛ. Here, we
also used the fact that the chosen simulation parameters
ensures transmission between adjacent nodes, which ren‑
ders drops possible only when one‑step upstream node,
i.e., 𝑛𝑖+1 if 𝑝𝑑𝑟𝑜𝑝(𝑖) is investigated, is transmitting.

Activation rates depend on the position of the node.
While sensor node activation occurs independent of other
nodes, relay nodes depend on the activation of sensor
nodes. For example, 𝑛5, which only has the burden of
transmittingmessages from𝑛6, is activated less than𝑛1 −
𝑛3. As a result, 𝜆𝑖s can be solved recursively.
For a given node, we can ϐind 𝜆𝑖+1 as

𝜆𝑖+1 = ∑
𝑗>𝑖+1,𝑗∈𝒮+ℛ

𝜆𝑗
⎛⎜⎜⎜⎜
⎝

∑
𝑛0,𝑛𝑖∉ℛ𝒮
𝑛𝑖+1∈ℛ𝒮

1
𝒞(ℛ𝒮)𝑝ℛ𝒮

⎞⎟⎟⎟⎟
⎠

+ ∑
𝑛𝑗∈𝒮

𝛿𝑖+1,𝑗𝜆𝑆
𝑖+1,

(7)

where 𝛿𝑖𝑗 is the Kronecker Delta, 𝜆𝑆
𝑖 is the sensor activa‑

tion rate of sensor node 𝑛𝑖, 𝑛0 is the sink and 𝑝𝑅𝑆 is the
probability of obtaining the particularℛ𝒮. It is calculated
by

𝑝ℛ𝒮=∏𝑛𝑗∈ℛ𝒮 𝑝6−𝑗 ∏𝑛𝑗∉ℛ𝒮
𝑛𝑗≠𝑛𝑖

(1−𝑝6−𝑗).(8)

Although seemingly complicated, the ϐirst term of (7) de‑
scribes the node acting as a relay probability by summing
over all nodes, whichmight be relaying amessage to node
𝑛𝑖. The second term describes the node acting as a sen‑
sor node. Note that second term becomes non‑zero only
when 𝑛𝑗 ∈ 𝒮.

Table 1 – Percent Shapley Values and resource distribution

Analyic Results Experimental Results
Node Percent Value Percent Value
1 29.72 35.67 21.09 27
2 27.80 33.36 28.91 37
3 28.18 33.82 30.47 39
5 14.30 17.16 14.84 19
7 0 0 4.69 6
8 0 0 0 0

3.3 Evolutionary solution
In the previous subsection, we used the simplicity of ge‑ 
ometry to ϐind an analytic solution to an otherwise com‑ 
plicated problem. In this section, we allow the parent or‑ 
ganism to continuously evolve as described in Section 2.3.

We can see in Fig. 6 that expectedly, the resources allo‑ 
cated to 𝑛7 and 𝑛8 are reallocated to the 𝑛2 and 𝑛3, even 
after a few iterations. 𝑛5, which only has the burden of 
relaying messages originated at 𝑛6, possesses fewer re‑ 
sources than the 𝑛2 and 𝑛3, relaying messages originated 
at both of the sensor nodes.

Inspecting Fig. 5, we observe that evolution does not 
guarantee increased performance after each iteration. 
This observation coincides with the fact that the evolu‑ 
tion of species does not guarantee better offspring at ev‑ 
ery generation. Furthermore, similar to its counterpart in 
biology, evolution may be inϐluenced by successful organ‑ 
isms with suboptimal resource distribution. For exam‑ 
ple, since the sensors are activated randomly, an organ‑ 
ism with higher 𝑛4 sensor activity would require fewer 
resources overall than an organism with higher 𝑛6 sensor 
activity.

Note that there is also a systematic error in our simulation 
method promoting decreased performance in some iter‑ 
ations. We force an inϐinitesimal change in all nodes in 
the organism, i.e., nodes do not die off when they do not 
have any resources in an iteration. As a result, nodes hav‑ 
ing no reservoir either stay at no resources or slightly go 
up, causing the organism to approach a distribution just 
below the optimal.

Table 1 shows the comparison between analytical and 
evolutionary results after 200 iterations. Although they 
all start at resources enough for 20 transmissions, as ex‑ 
pected, 𝑛7 and 𝑛8 lose their resources while other nodes 
thrive during the evolutionary process. However, as ex‑ 
plained above, even though it approaches zero, 𝑛7 is not 
yet quite zero, wasting some resources, which should be 
reallocated to other nodes. The only dramatic discrep‑ 
ancy is 𝑛1 being lower than the expectations by the analyt‑ 
ical solution. We expect that the discrepancy diminishes 
with an increasing iteration count.
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Fig. 7 – Layout for the simulation organism.
Table 2 – Simulation parameters

Name Value Unit
Vesicle size 40000 molecules
Diffusion constant 1 × 10−12 𝑚2/𝑠
Radius 0.5 𝜇𝑚
Exhausted node ratio 0.2
# of Vesicles per node 40
Offsprings 2
Node count 16
Dimensions 1 × 2 × 10 𝜇𝑚 × 𝜇𝑚 × 𝜇𝑚
Change amplitude 3

4. VESICLE COUNT OPTIMIZATION

In this section, we use our approach to optimize a ran‑ 
domly generated organism. The only design constraint 
we have is introducing a separation between the sink and 
the sensors, i.e., the probability of any sensor successfully 
sending information to the sink without the relay nodes 
is small enough to be ignored. The simulation parameters 
and the simulation organism are given in Table 2 and 
Fig. 7 respectively. The selected simulation parameters 
are all arbitrary; however, one can alter the time scale, 
diffusion constant, radii, and the organism size easily to 
ϐit them to an actual organism.

Firstly, we investigate the effect of the number of offspring 
per organism. Since the population is kept constant, the 
selection rate is proportional to the inverse of the off‑ 
spring per organism.

Child count change

Changing the child count for each stage has dramatic ef‑ 
fects on the performance of the organism. These effects 
are visible in Fig. 8. A smaller number of offspring imply 
that more parents join in the creation of the next genera‑ 
tion. As a result, there is less uncertainty in the next gen‑ 
eration. More offspring increase the uncertainty. If one 
of the parents reached their performance mostly due to 
luck, most of the offspring in the next generation becomes 
inferior. This situation leads to huge discrepancies in per‑ 
formance between generations.

Amplitude change

Increasing the amplitude of change inter‑generations has 
a dramatic impact on the system performance. For large 
amplitudes, the evolution fails to reach its potential. Once 
the organism reaches a certain performance, the huge
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Fig. 8 – Performance of evolution with different child numbers.
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changes in the resource distribution set the organism 
back. Fig. 9 displays the performance of evolution with 
different change amplitudes.

Inspecting Fig. 9, we also realise that the performance of 
𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 = 1 line is inferior for the ϐirst hundred it‑ 
erations of evolution. This is obviously due to the small 
increases due to the limited inter‑generational changes. 
However, the same factor boosts the ϐinal performance of 
the organism, which veriϐies the biological evolution, i.e., 
small changes advance the organisms while huge 
changes are not sustainable.

5. CONCLUSION

In this paper, we simulate the resource allocation in an or‑ 
ganism, having nodes communicating via MC, using evo‑ 
lutionary game theory. We propose a two‑staged evo‑ 
lution process realized by selecting the organisms with

Fig. 9 – Performance of evolution with different amplitude values.
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better transmission count and the creation of their off‑ 
spring. Furthermore, we apply this approach to a simplis‑ 
tic MCN scenario, for which we also obtain an analytical 
solution. We simulate the performance of evolution con‑ 
cerning different parameters. Our work offers a simple 
demonstration of nature’s solution to the resource man‑ 
agement problem.

We believe our approach applies to many problems other 
than resource allocation. It also holds the potential of 
optimizing several different parameters to a reasonable 
degree. As future work, we will employ our method for 
node orientation, vesicle size, and receptor locations on 
the node surfaces.
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