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Abstract - To integrate unmanned aerial vehicles (UAVs) in future large-scale deployments, a new wireless communication
paradigm, namely, the cellular-connected UAV has recently attracted interest. However, the line-of-sight dominant air-to-
ground channels along with the antenna pattern of the cellular ground base stations (GBSs) introduce critical interference
issues in cellular-connected UAV communications. In particular, the complex antenna pattern and the ground reflection (GR)
from the down-tilted antennas create both coverage holes and patchy coverage for the UAVs in the sky, which leads to un-
reliable connectivity from the underlying cellular network. To overcome these challenges, in this paper, we propose a new
cellular architecture that employs an extra set of co-channel antennas oriented towards the sky to support UAVs on top of the
existing down-tilted antennas for ground user equipment (GUE). To model the GR stemming from the down-tilted antennas,
we propose a path-loss model, which takes both antenna radiation pattern and configuration into account. Next, we formu-
late an optimization problem to maximize the minimum signal-to-interference ratio (SIR) of the UAVs by tuning the up-tilt
(UT) angles of the up-tilted antennas. Since this is an NP-hard problem, we propose a genetic algorithm (GA) based heuristic
method to optimize the UT angles of these antennas. After obtaining the optimal UT angles, we integrate the 3GPP Release-
10 specified enhanced inter-cell interference coordination (elCIC) to reduce the interference stemming from the down-tilted
antennas. Our simulation results based on the hexagonal cell layout show that the proposed interference mitigation method
can ensure higher minimum SIRs for the UAVs over baseline methods while creating minimal impact on the SIR of GUEs.

Keywords - 3GPP, advanced aerial mobility (AAM), antenna radiation, drone corridor, enhanced inter-cell interference
coordination (elCIC), genetic algorithm, ground reflection, hexagonal cell layout, interference, unmanned aerial vehicle
(UAV), unmanned aircraft system (UAS), UAS traffic management (UTM), urban air mobility (UAM)

1. INTRODUCTION UAVs in BVLOS scenarios with their widespread
footprints [9, 2]. In fact, field trials from separate
industrial entities reported that the existing long-term
evolution (LTE) network is capable of meeting some basic
requirements of UAV-ground communications [10, 2].
However, these studies and the Third Generation
Partnership Project (3GPP) also pointed out several
challenges such as strong inter-cell interference and ser-
vice of UAVs through antenna side lobes, among others.
These challenges come into play due to the fact that tra-
ditional cellular networks are optimized for ground user

As the development of the fifth-generation (5G) and be-
yond wireless networks is underway, unmanned aerial
vehicles (UAVs) are expected to play an instrumental role
in improving the network capacity and efficiency [1, 2, 3,
4]. While UAVs were originally developed for military ap-
plications, due to their fluid mobility, line-of-sight (LOS)
transmission, and steadily decreasing production costs,
UAVs have been widely used in various new civilian appli-
cations, such as packet delivery, search and rescue, video

surveillance, aerial photography, airborne communica-
tions, among others [5, 6, 7, 8].

However, most commercial UAVs acting as aerial users
are still dependent on the instructions/maneuvers sent
to them by their associated ground pilots through sim-
ple direct point-to-point communications. More speci-
fically, this, in turn, limits the UAV use cases to the
visual or radio LOS range only. Thus, to take full
advantage of large-scale UAV deployment, beyond
visual line of sight (BVLOS) UAV operations are of
critical importance where the UAVs can reliably obtain
command and control (C&C) communication in the
downlink (DL) for safe autonomous operations. In
light of such requirements, existing cellular networks
can be a strong candidate for deploying autonomous

equipment (GUE) by tilting the main lobe of the anten-
nas towards the GUEs. Hence, UAVs flying in the sky are
only served by the upper antenna side lobes and expe-
rience abrupt signal fluctuations as the UAVs change
their locations. Moreover, UAVs also obtain more
frequent LOS channels than GUEs. This results in
severe interference in the DL from the nearby ground
base stations (GBSs) to the UAVs.

The down-tilted antennas of the existing GBSs can
also create another source of interference for the UAVs
through the reflected signal from the down-tilted anten-
nas [11]. The main lobe of the antenna hits the ground
with an incident angle and the reflected signal can cause
non-trivial interference to the UAVs lying in the sky. The
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The non-trivial impact of ground reflection (GR) at
millimeter- wave (mmWave) bands is also discussed
in [12, 13], where authors introduce the concept of
co-channel uptilted and down-tilted antennas for
serving UAVs and GUEs in the mmWave domain.
Their ray-tracing-based simulations captured the
impact of the angular separations between these
two antennas on the coverage performance of the
network. However, the authors did not consider the
presence of multiple GBSs in their work.
The presence of separate co-channel up-tilted

antenna sets can help network providers to
ensure a high signal-to-interference ratio (SIR)

for cellular-connected UAVs. However, proper
adjustment of the up-tilt (UT) angles 1is of
critical importance since these extra antennas
can create strong LOS interference towards
the UAV-GBS links of the network [12]. The
works in [1, 2] also suggested such dedicated
up-tilted cells for serving the UAVs; however, to the
best of our knowledge, no prior work considers the
problem of tuning the up-tilted antennas for obtaining
better UAV SIR performance in a multi-GBS scenario.

Note that, in such a two-antenna setup, the down-tilted
antennas create interference to the UAVs by
antenna side lobes and the GR. Moreover, the
down-tilt (DT) angles of the down-tilted antennas can
impact the DL performance of the GUEs as they
can be tuned to mitigate the inter-GBS interference
for GUEs. Hence, it may not always be possible or
convenient to tune the DT angles of cellular networks
to optimize coverage for both ground and aerial
users. Thus, to mitigate the interference stemming
from the down-tilted antennas on the UAVs, we
can consider existing inter-cell interference
coordination (ICIC) techniques already developed
for heteroge-neous networks, namely, the 3GPP
Release-10 specified enhanced intercell
interference coordination (eICIC) [14, 15].

Motivated by all these factors, the main contribution
of this paper is a novel cellular architecture that
leverages additional sets of antennas focusing towards
the sky to support UAVs along with existing
down-tilted antennas for GUEs. Our key contributions
can be summarized as follows:

e We first introduce and study a new cellular concept to
increase the coverage of cellular-connected UAVs. As
mentioned earlier, we propose to use extra antennas
with UT angles installed on top of the existing
down-tilted antennas for the GUEs. To the best of our
knowledge, there are only limited studies in the lite-
rature for such an architecture [12, 13]. The
antenna sets use the same time and frequency
resources as the existing down-tilted antennas.
However, they focus their main beams towards the
sky to provide a more efficient and reliable
connectivity to the UAVs.

¢ Unlike other previous work, in our proposed archi-
tecture, we also consider the presence of GR stem-
ming from the down-tilted antennas while consider-

ing the antenna radiation pattern of the down-tilted
antennas. To represent the impact of antenna direc-
tivity, we modify the GR-based path-loss model in-
troduced in [11] to capture the impact of the antenna
directivity. Depending on the DT angles of the down-
tilted antennas, our analysis shows that the GR can
create stronger interference than the antenna’s side
lobes when the horizontal distance between the UAV
and a GBS increases.

¢ By considering an interference-limited DL cellular
network, we formulate an optimization problem to
maximize the minimum SIR of the UAVs by tuning the
UT angles of all the up-tilted antennas in the network.
Since this is an NP-hard problem, we propose a sim-
ple meta-heuristics-based technique, which tunes
the UT angles of the GBSs to ensure high minimum
UAV SIR. Our proposed method uses the genetic algo-
rithm (GA), a well-known meta-heuristics algorithm
that can generate suboptimal solutions efficiently in
an iterative method [24].

e Since the UAVs will experience interference from
the extra up-tilted antenna sets along with the an-
tenna side lobes and GRs of the down-tilted anten-
nas, here, we consider the 3GPP Release-10 specified
eICIC technique to ensure the reliable coexistence of
cellular-connected UAVs and GUEs. The basic idea is
that the down-tilted antennas will stop transmission
during some portions of the data transmission dura-
tion to reduce interference at the UAVs in DL. We
discuss elCIC briefly later in this paper.

¢ We conduct and present extensive simulations to
study the minimum SIR performance of our pro-
posed method. We first obtain suboptimal solu-
tions from the proposed GA-based technique and
then use elCIC to further increase the SIR. Our re-
sults show that it is possible to obtain high signal-to-
interference (SIR) at the UAVs’ end by optimizing the
UT angles along with considering the eICIC method.
By considering different UAV heights and inter-GBS
distances, we also show the effectiveness and supe-
riority of our method over some baseline methods.
Our results also revealed some interesting yet impor-
tant design guidelines such as the impact of the num-
ber of antenna elements and the DT angles while con-
sidering the coexistence of UAVs and GUEs.

The rest of the paper is organized as follows. We pro-
vide a literature review related to the interference miti-
gation techniques for cellular-connected UAV in Section 2.
In Section 3, we describe our system model. Section 4 dis-
cusses the UT angle maximization problem. We discuss
our proposed GA-based UT antenna optimization method
in Section 5. Simulation results and the pertinent discus-
sions are presented in Section 6. Finally, conclusions are
drawn in Section 7. The notation list of this paper is pre-
sented in Table 2.
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Table 1 - Literature review

Ref. Goal Interference miti- Antenna ra- up-tiltedan- GR Co-channel
gation technique diation pat- tenna UAV & GUE
tern
[5] Performance analysis X directional, X X X
of UAVs considering 3D array
antenna radiation
[16] Provide reliable connectiv- Cooperative trans- directional, X X X
ity and mobility support mission among array
for UAVs GBSs
[17] Simultaneous content de- MIMO conjugate directional, X v
livery to GUEs and UAVs beamforming array
[18] Mitigate the strong down- Cooperative beam- directional, X X X
link interference to UAVs forming array
[19] Intelligent GBS association = Choosing the best directional, X X X
for UAVs based on network GBS by supervised array
information learning
[15] Maximize the coverage Optimizing UAV-BS directional, X X v
probability and fifth- locations and ICIC single
percentile rate in hetnet parameters using
exhaustive search
[20] To reduce disconnectivity Finding the optimal directional, X X X
time, handover rate, and UAV velocity by RL  array
energy consumption of
UAV
[21] Serve both GUEs and Finding the ideal directional, X X v
UAVs simultaneously in tilting angle by RL array
a co-channel sub-6 GHz
network
[22] To ensure robust wireless NA directional, X X X
connectivity and mobility array
support for UAVs
[23] Maximize aircraft user Bidirectional deep directional, v X X
throughput by tuning ISD learning array
and UT angles
[12] Serve both GUEs and UAVs  Finding the ideal directional, v v v
simultaneously in a co- tilting angle of a single
channel mmWave network single GBS by ray-
tracing
This Maximize the minimum Tuning the UT an- directional, v v v
work UAV SIR gles by GA array

2. RELATED WORK

Research efforts in integrating UAVs into existing cellu-
lar networks with GUEs have recently attracted substan-
tial attention from both academia and industry. For in-
stance, in [5], the authors explored the impact of prac-
tical antenna configurations on the mobility of cellular-
connected UAVs and showed that increasing the num-
ber of antenna elements can increase the number of han-
dovers (HOs) for vertically-mobile UAVs. The workin [25]
discusses the possibility of using UAVs in wireless net-
works, with the role of flying base stations and relay
nodes.

In [16], the same authors provided the upper and lower
bounds on the coverage probability of UAVs considering a
coordinated multi-point technique. The workin [26] pre-
sented an analytical framework for a coexisting UAV and

GUE considering a beamforming technique. By conduc-
ting extensive 3GPP compliant simulations, in [27], the
authors showed that the existing cellular networks will
be able to support a small number of UAVs with good
mobility support. In [28], authors summarized the key
barriers and their potential solutions for widespread
commercial deployment of flying UAVs in beyond 5G
wireless systems. Authors in [29], proposed an
optimization method for managing the movement,
charging, and service coverage actions of a fleet of UAVs
used as flying base stations. By considering a network of
UAV base stations (BSs), the work in [30] introduced
exact HO probability for similar UAV velocity and
provided lower bound for UAV BSs with different
velocities. The authors in [31] extended the results of
[30] by providing exact analysis of HO rate and sojourn
time for different UAV velocities and showed that HO
rate is minimum when UAV BSs move with the same
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Fig. 1 - 2-tier hexagonal cell structure with 19 cells and ISD = 500 m. In
this paper, we focus on the center cell with GBS location [0,0] km.

velocity. However, both of these works treated UAVs as
BSs. By using tools from stochastic geometry, the authors
in [32] studied the performance of 3D two-hop cellular
networks where UAV-BSs can obtain wireless backhaul
from GBSs. In particular [32] considered realistic antenna
patterns and dedicated up-tilted antennas for providing
better connectivity in the UAV-to-GBS links.

Due to the complex antenna pattern and air-to-ground
path-loss model, the researcher also relied on learning-
based frameworks for ensuring reliable integration and
operation of cellular-connected UAVs. For instance, a su-
pervised learning-based association scheme for UAVs was
proposed in [19] to associate UAVs with the GBS provi-
ding the highest directional antenna SIR. By tuning the
DT angles of the GBSs, the work in [21] used
reinforcement learning (RL) to provide good
connectivity to both UAVs and GUEs. However, they did
not consider the SIR at the UAV which plays a critical
role in reliable autonomous UAV deployment. In
another work [33], the authors proposed a deep-
learning-based GBS association algorithm for cellular-
connected UAVs which takes the knowledge of the
cellular environment into account. In the recent work in
[20], authors study the problem of jointly optimizing
the UAV HO rate, disconnectivity time, UAV flight
duration, and UAV energy consumption by tuning the
UAV velocity. In particular this prior work explored a
multi-armed bandit RL algorithm to solve the problem
and showed that the perfect parameters can
significantly improve the performance of cellular-
connected UAVs. In [22], the authors explored an RL
algorithm to maximize the received signal quality at a
cellular-connected UAV while minimizing the number of
HOs. An extension of the traditional RL algorithms
known as multi-agent RL has been also introduced for
efficient UAV control in [34]. Note that these learning-
based algorithms will either require advanced data col-
lection, preprocessing, and training, or sample inefficient
repetitive interaction with the cellular networks, which
makes the deployment of these algorithms challenging for
real-world network operators.

In addition to these learning-based methods, non-linear
optimization techniques were also used to provide re-
liable connectivity to UAVs. For instance, in [35], the
authors proposed a cooperative interference mitigation
scheme to mitigate the strong uplink interference from
the UAV to a large number of co-channel GBSs serving ter-
restrial UEs. The helping GBSs sense the UAV’s power,
which is sent to the main GBS for further interference pro-
cessing. Similar authors introduced a cooperative beam-
forming and transmission scheme to mitigate the interfe-
rence of cellular-connected UAVs in DL [18]. In [36],
they proposed a cooperative non-orthogonal multiple
access (NOMA) technique to the uplink communication
from a UAV to cellular GBSs, under spectrum sharing
with the existing GUEs. The work in [37] discusses how
to integrate UAVs for providing wireless communications
in zones where the deployment of canonical base
stations is not possible. In [38], authors introduced the
problem of maximizing the minimum UAV rate by joint
beamforming, association, and UAV-height control

framework for cellular-connected multi-UAV scenarios.
However, none of these analytical and learning-based
works [5, 16, 26, 27, 28, 30, 31, 19, 21, 33, 20, 22, 38]
considered the pres- ence of GR which plays a critical
role in air-to-ground communications as an important
source of interference for UAVs [12, 11].

The most closely related work here is [23], in which the
authors introduced a bidirectional deep learning-based
technique to maximize the median capacity of an aircraft
flying at a height of 12 km. Using system-level simulation,
they considered optimizing the inter-GBS distance and
dedicated up-tilted antennas to solve network optimiza-
tion problems. In contrast to their work, here, we focus
on the UAVs flying under 400 meters of height where the
impact of GR is not negligible. Moreover, in our consi-
dered system, each GBS can individually change its UT
angle, in contrast to the similar UT angles that are
assumed for all GBSs in [23]. To further increase the
minimum SIR, we consider the concept of the eICIC to
mitigate the interference stemming from the
down-tilted antennas at the UAV’s end. Since elICIC was
already studied extensively in the last decade for
increasing efficiency and capacity of the heterogeneous
networks [14, 15], it will be practical to deploy it for
mitigating the interference from the down-tilted
antennas. Moreover, the UT angle tuning is based on
the GA algorithm, which is also well-studied and was
used extensively in optimizations of different aspects of
wireless networks [39]. For convenience, we summarize
and compare the state of the art in the literature with our
work in Table 1.

3. SYSTEM MODEL
3.1 Network model

We consider an interference-limited DL transmission sce-
nario from terrestrial GBSs to cellular-connected UAVs
where the 19 GBSs are distributed in a two-tier hexagonal
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Table 2 - Notation list

Notation Description
hyav UAV altitude
P Transmit power of the GBSs
A Set of UAV locations
B Set of GBS
N, Number of vertically placed antennas
o Up-tilt angle of the up-tilted antennas
10) Down-tilt angle of down-tilted antennas
d
hé“gs Height of the up-tilted antennas
hggs Height of the down-tilted antennas
hqg Height difference between up-tilted and down-tilted antennas
04 Elevation angle w.r.t. down-tilted antennas
G.(6y) Element gain w.r.t. down-tilted antennas
G Maximum gain of each antenna element
G9(0y) Total antenna gain at elevation angle 6, w.r.t. down-tilted antennas
GY(0,) Total antenna gain at elevation angle 6, w.r.t. up-tilted antennas
G, Side-lobe level limit
Pj(u) Received power from the up-tilted antennas of GBS j
P]@ Received power from the down-tilted antennas of GBS j
A Wavelength of the carrier frequency
va) (6,) Height-dependent antenna gain of the direct path
C:'E-d) (h) Height-dependent antenna gain of the reflected path
Y, Angle of reflection of GBS j
R(wj) Ground reflection coefficient for the angle of reflection ¢, of GBS j
Ag; Phase difference between the reflected and the direct signal paths of GBS j
a(h) UAV height dependent propagation coefficient
ng) (¥;) Antenna gain of the incident path on the ground
'y](.ugsf SIR of a UAV connected to up-tilted antennas of GBS j during uncoordinated subframes
'y;ucjsf SIR of a UAV connected to up-tilted antennas of GBS j during coordinated subframes
'yj(.dgsf SIR of a UAV connected to down-tilted antennas of GBS j during uncoordinated subframes
;dgsf SIR of a UAV connected to down-tilted antennas of GBS j during coordinated subframes

grid with a fixed inter-site distance (ISD). An illustration
of such a network is presented in Fig. 1. Here, we do not
consider wraparound [40, 41] and thus, we will only focus
on the performance of the central hexagonal cell to cap-
ture the impact of inter-cell interference from the neigh-
boring cells. However, our analysis can easily be extended
to larger cellular networks with different GBS distribu-
tions. Hereinafter, we will use the terms ‘GBS’ and ‘cell’
interchangeably. To average out the impact of UAV distri-
bution, we divide the center cell into discrete grid points,
and a UAV is placed on each grid point at a height hy,y.
Note that a closer inter-UAV distance or higher grid reso-
lution will provide more fine-grained information on the
cellular network characteristics such as interference, GBS
association, received signal strength, etc. at the height
hyav- Each UAV is assumed to be equipped with a single
omnidirectional antenna. The set of the UAV locations and
the GBSs can be expressed as .4 and 3, respectively.

We also assume that all GBSs have equal altitudes %z and
transmission power Fggs. The GBSs consist of IV, verti-
cally placed cross-polarized directional antennas down-

tilted by angle ¢4 [5, 6]. We consider the GBS antennas to
be omnidirectional in the horizontal plane but they have
avariable radiation patterns along the vertical dimension
with respect to the elevation angle between the antennas
and the users [17].

Different from the traditional cellular network setting,
here, we also consider the presence of another set of an-
tennas on top of the previous ones, which can provide
connectivity to the UAVs using UT angle ¢,,. Since the UAVs
served by only down-tilted antennas suffer from poor
connectivity and severe interference, up-tilted antennas
can be used to provide reliable connectivity to the UAVs [1,
12]. Note that the antenna tilt angle is obtained by intro-
ducing a fixed phase shift to the signal of each element. We
define hggs and h(ccgs: respectively, as the height of the up-
tilted antennas and down-tilted antennas. The two sets
of antenna setups are separated by a height difference hy,
e, hy = hggs — h(GCgS. We consider that all of the GBSs
and their sets of antennas share the same time and fre-
quency resources. The UAVs will be associated with the
antenna set (up-tilted or down-tilted) of the GBS
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Fig. 2 - Illustration of the inter-cell interference at a cellular-connected UAV from the GR signal of a down-tilted antenna and the LOS signal from the
up-tilted antenna of a nearby base station. Though not shown in the figure, the associated GBS in the right can also create interference by the down-
tilted antennas. The signal quality at the UAV will be affected by the UT angles of the up-tilted antennas since they will impact both the desired and the

interference signals.

providing the highest reference signal received power
(RSRP) [5, 42].

3.2 Antenna radiation pattern

The NV, antennas are equally spaced where adjacent ele-
ments are separated by half-wavelength distance. The
element power gain (in dB) in the vertical plane at
elevation angle 6; with respect to the down-tilted
antennas can be specified by [40]

0 2
Ge(éd):Gg‘a"—min{IQ <d> ,Gm}, (1)

03dB

where 04 € [—90°, 90°], 0545 refers to the 3 dB beam width
with a value of 65°, GT'** = 8 dBi is the maximum gain of
each antenna element, and G,,, is the side-lobe level limit,
respectively, with a value 30 dB [43]. Note that 6, = 0°
refers to the horizon and the 6; = 90° represents the case
when the main beam is facing upward perpendicular to
the zy-plane [40]. The array factor A% (6,) of the ULA with
N, elements while considering a DT angle ¢4 is given by

1 sin (NZ”r (sinfy —singy))

\/ﬁt sin (5 (sin 6y — sin ¢4)) .

AL (0y) = 2)

Let us denote chd)(Qd) = 1010g10(14jl(6d))2 as the array
power gain in dB scale. Then the overall antenna gain at
elevation angle 6, is given by

G (6g) = G (0g) + G (0)- 3)
Similarly, the array factor pertinent to the up-tilted anten-

nas with UT angle ¢, and elevation angle 6, can be ex-
pressed as:

2

~ /N, sin(%(sin6, —sing,))

1 sin (X (sinf, —sing,))
in

N

The array gain G;“(eu) £ 10log,,(A}(6,))* can then be
derived and, finally, the overall antenna gain due to the UT
angle ¢, can be expressed as:

GW(0,) = G.(0,) + G (0,). (5)

3.3 Ground reflection channel model

The channel between a GBS and a UAV plays a critical
role in the coverage performance at the UAV’s end and
we consider a channel model that is characterized by both
distance-based path-loss and GR. To characterize the GR,
we modify the height-dependent path-loss model intro-
duced in [11] which is a variant of the two-ray path-loss
model [44]. Let the length of the 3D Cartesian distance
from a UAV to a GBS j be [; and the length of the incident
and reflected paths are r, ; and r, j, respectively. For con-
venience, we discard the subscript from A,y in the fol-
lowing analysis. Finally, the received power from GBS j at
a UAV at height & can be specified as:

~ i alh
GV(0,,) RGO (h)eidts 2

L 1T T

)

(6)
where v € {u,d}, 0, ; is the elevation angle with respect
to the up-tilted or down-tilted antenna of GBS j,i = v—1
is the imaginary unit of a complex number, X is the
wavelength of the carrier frequency, ég") (0,) and @Ed) (h)
represent the height-dependent antenna gain of the
direct and reflected path, respectively, R(¢;) is the GR
coefficient for the angle of reflection +; with respect to
the ground plane, A¢; = (ry ; + 75 ;) — [; is the phase
difference between the reflected and the direct signal
paths, and a(h) is the height dependent propagation
coefficient for UAV height h. Here, we do not consider GR
from the up-tilted antennas since their main beams are
oriented towards the sky.

2
P[V) — PGBS |:4>\:|
m

Note that the GR coefficient for cross-polarized antennas
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Fig. 3 - Analysis of GR depending on the DT angle ¢.

can be calculated as R(¢);) = w [45], which
also depends on the relative ground permittivity ¢, ~
15 [11], reflection coefficients for horizontal linear po-
larization Ry (¢);) and vertical linear polarization Ry(1);).
Moreover, ég")(é‘,) depends on the instantaneous eleva-
tion angle between the GBS and the UAV by (3) and (5),
whereas @gd) (h) can be expressed as:

G (y)), h<h,
~(d)
o (%)7 h, < h < 2h,
GOy =4 .2
' Glwy) GY 1), 2h, < h <500
5 *m'(j (¥;) = 1), (S h<
0.5, h > 500

(7)
where h, = Qh%]s + 2 and h, ., = 500 m are thresh-
old heights [11], and égd)(wj) is the antenna gain of the
incident path on the ground from the down-tilted anten-
nas which depends on N,. Finally, the height-dependent
propagation coefficient can be expressed as:

—2
ag—h- <(a°(v) >>7 h<2-hi,
h (8

2 h>2-hQ,

where ¢ is the maximum possible attenuation coeffi-
cient [11]. Here, we do not consider any GR due to the
antenna side lobes. From (7), we can see that the an-
tenna gain is dependent on the incident angle ¢, whereas
in [11], the gain of the reflected path is assumed to be con-
stant with respect to ;. In Fig. 2, we provide a simple il-
lustration of how a UAV can suffer from interference from
GR and antenna side lobes.

Remark 1: Due to the the DT angle ¢4, the main lobe of the
down-tilted antenna will not reach the ground level before
the horizontal distance (in meter) is away by m};‘éifz) from
the GBS. Hence, UAVs closer to this distance from a GBS will
not be impacted by the GR stemming from the down-tilted
main lobe of that particular GBS.

Next, for a given UAV height and DT angle, we derive the
distances from a GBS where the impact of the GR is the
most effective.

Theorem 1: For a given hggg, hyay, and DT angle ¢4, the
impact of the GR from a GBS will mostly be seen between

. . hggs+h hepsth
horizontal distances d; = W and dy, = W
from that GBS, where
¢1 = ¢q—0.5 x 9hpbw7 (%)
¢2 = (bd +0.5 % thbw’ (10)

and by, s half power beam width of the main lobe of the
down-tilted antenna.

Proof: Consider a scenario with a single GBS with antenna
pattern and height are as specified in Section 3. Since GR
only stems from the down-tilted antennas, here, we con-
sider that the GBS is only equipped with down-tilted an-
tenna with DT angle ¢,. Let us consider the half-power
beam width (HPBW) of the main lobe as 6y, ;.. Note that
the HPBW is inversely proportional to the number of
elements in the antenna array [46]. Given the DT angle
¢4, the two angles of the two end points of the HPBW will
be as expressed in (9) and (10).

Then the down-tilted main beam will reach the ground
and the impact of the HPBW will be within the distances
r1 = "esand r2 = "5 from the GBS as depicted

tan(é,] @n(é,)
in Fig. 3. By assuming regular reflection from the ground,

the two rays will reach the UAV height at a distance d; =

hgpst+h _ hggsth .
W and dy, = g‘;;( ¢2”>A", respectively from the GBS,

which completes the proof.

Theorem 1 provides us the range of distances from a GBS
where a UAV will be impacted significantly by GR for a
given DT angle ¢,. From Theorem 1, we can observe that
for a higher ¢4, locations closer to the GBSs will be im-
pacted by GR and vice versa.

Remark 2: If ¢4 < 0“%, then the impact GR at the UAV
will start from the distance d, and the impact of the main
lobe will last till infinity. However, due to the path-loss, the
impact will gradually decrease as the horizontal distance
increases beyond d.

3.4 Numerical example

By considering ¢4 = 6°, in Fig. 4(a), we compare the 3GPP
RMa-AV model [41] and our proposed height dependent
GR model for hyay = 50 m, hggs = 30 m, and FPgpg =
30 dBm, while considering the antenna radiation pattern
as discussed before. The received signal plot with respect
to 2D UAV-BS distance shows that the impact of GR comes
into play after a certain horizontal distance. The ripple in
the received signal is created due to the phase difference
between the direct LoS path and the reflected path and the
GR can provide more than 10 dB more signal power than
the 3GPP model. For hy,y = 100 m, as shown in Fig. 4(b),
the GR shows a similar kind of trend but after greater UAV-
to-GBS horizontal distance as discussed in Theorem 1.

Finally, we split the reflected signal from the
down-tilted antennas into its two ingredients: the signal
from the antenna side lobes and the reflected signal
from the main beam of the DT antennas.
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Fig. 4 - Comparison of GR and 3GPP RMa-AV channel model [41] for
different UAV heights considering the antenna radiation pattern and
¢q=6° (a) hyay =50 mand (b) hyay= 100 m.

The relevant results for hyayy = 100 m
are shown in Fig. 5(a), from which we conclude that the
GR path-loss model coincides with the side lobes when
the UAV is close to the GBS. However, after a distance of
400 m, the GR starts to provide high power through the
main lobe which even compensates the antenna’s
side-lobe null at 442 m. Overall, the GR keeps dominating
the signal from the DT angles till about 900 m. We also
study the impact of GR for higher DT angles in Fig. 5(b).
For a DT angle of 10°, GR starts dominating the signal
power from about 350 m and can act as the dominant
source of interference for a UAV situated at a distance of

1500 meters.

From the above discussion, we can conclude that the
down-tilted antennas can create significant interference
towards the far UAVs by GR. However, other than some
works, the impact of GR is not considered in the literature.
Apart from this, the up-tilted antennas can also create
strong interference. However, we can mitigate the inter-
ference from the up-tilted antennas by tuning the UT an-
gles properly [12]. Hence, to increase the reliability of the
cellular-connected UAVs, we consider the eIlCIC method to
reduce the interference from the down-tilted antennas.
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Fig. 5 - Impact of GR and antenna side lobes on the GR-based path-loss
model for hyay = 100 m. (a) ¢4 = 6°and (b) ¢pq = 10°.

3.5 Overview of elCIC

To mitigate the interference problems caused by the extra
set of antennas, we consider elCIC techniques which have
been specified in LTE Release-10 of 3GPP [47]. The time-
domain elCIC technique provides an interference coordi-
nation method based on the subframe blanking, known
as almost blank subframe (ABS) that does not send any
traffic channels and sends mostly control channels with
very low power. In our proposed interference mitiga-
tion method, the down-tilted antennas will not transmit
data while allowing the up-tilted antennas to serve UAVs
suffering from high interference during an ABS. Trans-
missions from the down-tilted antennas are periodically
muted during the entire frame duration. The up-tilted an-
tennas can send their data during such an ABS and avoid
interference. Note that certain control signals are still re-
quired to be transmitted even in the muted subframes to
avoid radio link failure [48].

The frame structure of the eICIC is shown in Fig. 6. Du-
ring the uncoordinated subframes (USFs), the down-tilted
antennas transmit data and control signals at full power
Pps while during the coordinated subframes (CSFs), they
remain muted. We define § as the duty cycle of USFs
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Fig. 6 - Basic principle of time domain eICIC. For the considered sce-
nario, the aerial users can be scheduled in the up-tilted antenna sub-
frames that overlap with the almost blank subframes of the down-tilted
antennas. This will protect aerial users from the sidelobe interference
and the ground reflection interference coming from the down-tilted an-
tennas, as illustrated in Fig. 2.

which refers to the ratio of the number of USFs to the to-
tal number of subframes in a frame. Then, (1 — 3) will
be the duty cycle of the silent subframes or CSFs. Here,
we assume full coordination and synchronization among
the GBSs and hence, the ABS pattern of all the down-tilted
antennas will be the same. We will show in the next sub-
section that the choice of 3 will impact the capacity/rate
of the UAVs/GUEs associated with the down-tilted anten-
nas. However, this is out of the scope of this paper and
will be subject of our future work.

4. UP-TILT ANGLE OPTIMIZATION FOR
MAXIMIZING SIR

4.1 SIR definitions over different subframes

As mentioned earlier, we consider an interference-
limited DL sub-6 GHz band for the cellular network, where
the presence of thermal noise is omitted. We also as-
sume that the GBSs and both up-tilted and down-tilted an-
tennas share a common transmission bandwidth and full
buffer traffic is used in every GBS [6, 49]. Then, we can
calculate the SIR of a UAV connected to the up-tilted an-
tennas of GBS j considering flat-fading channels [14] and
antenna pattern during USF by the following expression:

P(u)

J
> PPy
beB bj, ve(ud) !

(w) _
rYj,usf -

(11

Similarly, SIR of a UAV connected to the down-tilt anten-
nas of GBS j considering flat-fading channels during USF
as follows:

Pl

J
SRR
beB,b#j, ve{u,d}

(d) _
YVjusf =

(12)

Note that (6) is used to calculate the received power
from a particular antenna set (up-tilted/down-tilted) of a
GBS. We assume flat-fading channels due to the presence
of narrowband OFDM-based communications in existing
cellular networks. After considering the antenna radia-
tions from the both sets of antennas and some algebraic
calculations, the closed-form expressions of (11) and (12)
are expressed by (16) and (17), respectively, which are

presented on the next page. During the CSFs, the down-
tilt antennas are kept off to protect the UAVs from
interference (GR of the beam’s boresight and the LOS
interference from the beam’s side lobes). Note that the
interference to a UAV served by an up-tilted antenna may
be coming also from the down-tilted antenna located at
the same GBS. Thus, the SIR of a UAV connected to the
up-tilted antennas of GBS j during CSF can be expressed
as follows:

W
B

> By
beB btj

(W _
ryj,csf -

(13)

Finally, we can find the capacity of a UAV connected to up-
tilted antennas of GBS j during USFs as follows:
O = log, (1 + 7). (14)

7,

On the other hand, if the UAV is associated with down-
tilted antenna of its serving GBS, it will obtain its data in
the DL during the USFs. Hence, the rate can be expressed
as

d d
Ci = Bllogy 1+ %) (15)

Note that the rate of the UAVs associated with down-tilted
antennas will be scaled by the parameter 5. Lower
values of g will increase the SIR performance of the UAVs
associated with the up-tilted antennas as shown in (13).
However, the UAVs associated with the down-tilted
antennas and most importantly, the GUEs will suffer
from low rates for a low (. This trade-off will be
addressed in our future work.

4.2 Problem definition

Our goal is to tune the UT angles of the up-tilted anten-
nas individually during the USFs to provide reliable SIR at
the UAVs’ end. Without optimizing the UT angles, the SIR
performance will worsen due to the additional interfe-
rence from the up-tilted antennas [12]. Note that the

UAVs can be associated with either up-tilted antennas or
down-tilted antennas depending on the highest RSRP

providing antenna set [12]. Let us consider the vector of
SIRs of all UAVs when they are associated with the highest
RSRP providing antenna sets as:

Y= [71,usf7 0 V\A\,ust

where | - | represents the cardinality of a set. Then, we
can formulate the problem of maximizing the minimum
UAV SIR as:
max min~y
™ (18)
st. 0<®, <90°.

Here, the optimization variable ®, = [¢, 1,...,, 5] is
the vector of the UT angles of the up-tilted antennas in
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the network. Note that only the interference caused by
the up-tilted antennas is dependent on the UT angles. We
also keep the UT angles above the horizon level (greater
than 0°) for saving the GUEs from additional
interference. However, changing the UT angles will
change the association of the serving GBS/antenna sets.
Overall, the optimization problem in (18) is very difficult
to solve efficiently since the objective function is highly
non-convex with respect to decision variables ®, [1].
The search space of the problem is continuous and grows
exponentially with the number of GBS. Moreover, due to
the complex antenna pattern and tilting angles involved,
it is not possible to obtain the closed-form optimal

solutions by taking the derivatives of (16) and (17) even
under a free-space path-loss model and a similar UT

angle for all the GBSs. Assuming the tilting angles to be 0°
for simplification as done in [26] will not represent a
realistic cellular network scenario.

Using an exhaustive search method is also computatio-
nally prohibitive since its complexity increases exponen-
tially with number of GBSs or up-tilted antenna sets. To
overcome these challenges, in the next section, we in-
troduce our GA-based UT angle optimization method for
maximizing the minimum UAV SIR. Note the SIR gain due
to the elCIC is not related to tuning the UT angles and the
gain can be calculated by simply not considering the re-
ceived power from the down-tilted antennas. The rates
of the UAVs who are associated with the down-tilted an-
tennas will be reduced by the quantity g as shown in
(15) and their SIRs will also be impacted by the choice of
the UT angles.

5. GENETIC ALGORITHM-BASED UP-TILT
ANGLE OPTIMIZATION

The GA is a stochastic population-based optimization
technique that mimics the metaphor of natural biologi-
cal evaluation and is an efficient tool in searching for the
global optimum [24]. It borrows the idea of “survival of
the fittest” in its search process to select and generate

individuals (design solutions) that are adapted to the
underlying objectives/constraints of the problem of
interest. Hence, GA is well suited to and has been
extensively applied to solve complex design optimization
without being guided by stringent mathematical
formulation. It can explore the whole search space
simultaneously, and hence, identify high quality
solutions more quickly than an exhaustive search. The
detailed principles of a GA scheme can be found in [24].
In the following subsections, we outline our proposed
GA-based UT angle tuning method for obtaining the
optimal solution of (18). We assume that each GBS
sends only its chosen UT angle and the SIR information of
the UAVs associated with it to a central server. The
server can then run the proposed GA-based algorithm and
compute the optimum UT angles.

5.1 Representation

At first, some randomly generated candidate solutions for
the optimization problem are encoded in a chromosome-
like strings. The collection of these candidate solutions
or chromosomes are referred to as population. In other
words, members of the population are the vectors of pos-
sible UT angles for our formulated optimization problem.
Note that each member of the population must provide
a complete solution to the problem. The size of the po-
pulation does not change over time usually. To meet
the constraint, the UT angles of the population are
generated within the feasible search space.

5.2 Fitness evaluation

The objective function of the problem is used to evaluate
the fitness of each chromosome. In our case, the randomly
generated UT angles are used as inputs to the simulator
for obtaining the minimum SIR of all the discrete UAV lo-
cations. The higher the minimum SIR of a solution is, the
better the fitness value is associated with it.
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Algorithm 1 Up-tilt Angle Optimization using GA

[u=y

: Input:
: population: Set of UT angles for all GBSs
: Fitness function (FF): Minimum SIR of the UAV
: network parameters, GBS and UAV locations
Method:
NewPopulation = empty set
: StopCondition: Number of iterations
: SELECTION: Roulette wheel selection method
: Create random Population
: EVALUATE (Population, FF)
: while (StopCondition is not met)
for i = 1 to Population size do
Parentl = SELECTION(NewPopulation, FF)
Parent2 = SELECTION(NewPopulation, FF)
Child = Reproduce(Parent1, Parent2)
if (small random probability)
child = MUTATE(Child)
add child to NewPopulation set
end if
end for
: end while
: EVALUATE (NewPopulation, FF)
: Args = GetBestSolution (NewPopulation)
: Population = Replace (Population, NewPopulation)
: Output: Args: Best individuals of the UT angles and the
highest minimum SIR

© N U AW

NN NNNDNR R B 2 R R s R s
AR I e 2 A A Ll O S el o

5.3 Selection

The selection process determines the pair of candidate
solutions/ UT angles which will act as parents for ma-
ting. After being evaluated by a fitness function, each
member of the population is assigned a probability to
be selected for reproduction. Note that, the worse
performing members should also be given a chance in
the evolution process so that the overall algorithm can
maintain a good exploration in the search space. Here,
we consider a simple biased roulette wheel to select
individuals as parents [50]. More explicitly, each
chromosome in the population is assigned a slot in a
roulette wheel, whose size is proportional to its fitness
over the total sum of fitness in the population. Then, a
random number between 0 and 1 is generated for each
member/ UT angle set. A chromosome/member is
selected as a parent for further genetic operations if the
random number is within the range of its roulette wheel
slot.

5.4 Crossover

The selected parents are then processed by the crossover
operator, which mimics mating in biological populations.
It is considered to be the most significant phase in a GA.
Here, for each pair of parents to be mated, a crossover
point is chosen at random from within the chromosomes.
Then offspring/children are created by exchanging the
chromosomes (UT angles) of parents among themselves
until the crossover point is reached. The crossover ope-
rator propagates features of good surviving designs
from the current population into the future population,

which will have better fitness value (higher minimum SIR
in our case) on average.

5.5 Mutation

The last operator is the mutation, which introduces di-
versity in population characteristics and prevents pre-
mature convergence. In this step, certain parts of the
newly formed children (new sets of UT angles with bet-
ter fitness) are subjected to a mutation with a low ran-
dom probability. In our proposed GA-based framework,
the mutation takes place with a low mutation probability.
We first generate random numbers between —1 and 1 for
each member of the UT angle population. If the absolute
value of a random number is less than the mutation pro-
bability, that particular random number is added to
that member (UT angle) of the population.

After all of these genetic processes, the members of the
populations with the worst fitness values are replaced by
the new individuals with better fitness values or higher
minimum SIRs. The algorithm continues until good re-
sults are obtained through iterations in terms of the ob-
jective function. The overall algorithm is also summa-
rized in Algorithm 1. In essence, obtaining high-quality
suboptimal solutions from our proposed method depends
on carefully addressing the following issues.

¢ representation of tentative solutions (UT angles) as
chromosomes;

e initialization of the randomly generated population;
e determination of the fitness function (min SIR);
e selection of genetic operators;

e adjustment of GA parameters (population size,
crossover and mutation probabilities).

Considering the impact of mutation, the work in [51] pro-
vided the lower bound of the number of iterations re-
quired for obtaining the global optimum for a given po-
pulation size. In particular, they showed that to
obtain the global optimum with any specified level of
confidence, GAs should run for long enough. However,
later we show that increasing the number of iterations
or population size will increase the complexity and
run-time of the proposed algorithm. Hence, we run
extensive simulations for different numbers of
population size and iterations, and check the associated
minimum UAV SIRs. We found that with a the
population size of 200, mutation probability of 0.1, and 50
iterations, our algorithm provides high-quality
suboptimal solutions.

5.6 Complexity analysis

As described in the previous subsections, our proposed
GA-based UT angle optimization technique randomly ge-
nerates tentative solutions and then produces new better
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Table 3 - Simulation parameters

Parameter Value

Pps 46 dBm

hyav 100 m & 200 m

hibe 30 m

ISD 500 m & 1000 m

hq 1m

hue 1.5m
0.15m

a, 3.5 [11]

DT angle (¢4) 6°

solutions from the previous ones iteratively. For a given
GBS and UAV distributions, the overall time complexity
of the algorithm is O(M?1|A4||B|), where M represents
the number of populations and I is the iteration number,
respectively. Hence, for a given population size, number
of iterations, and number of GBSs, the complexity of our
proposed algorithm increases linearly with an increasing
number of UAVs.

6. SIMULATION RESULTS

In this section, we present the simulation results for our
proposed cellular architecture based on a new set of an-
tennas and elCIC. Unless otherwise stated, the simulation
parameters are as listed in Table 3. By considering flat
fading channels [14] and hexagonal cells, we report our
finding for two ISDs namely, 500 m and 1000 m while con-
sidering the highest RSRP-based association (HRA). It is
worth noting that in our setup, the HRA association will
also provide the highest SIR among all the available anten-
nas of the network. For convenience, we refer to our pro-
posed method as ‘optimal HRA' hereinafter. To study the
performance of our proposed method we consider also
three baseline schemes. These four scenarios can be sum-
marized as follows.

e optimal HRA: this is our proposed GA-based UT angle
tuning method.

e HRA single: all GBSs pick the same optimal UT angle
which maximizes the minimum SIR. This UT angle is
calculated by exhaustive search method.

e Random: each GBS picks UT angles randomly from
the search space.

e HRA (no eICIC nor UT antennas): presence of up-
tilted antennas and elCIC is ignored. UAVs associate
with the highest RSRP providing GBS.

As mentioned in Section 3, we divide the whole network
into 10 mx10 m grids [14], and a UAV is placed on each
grid point with height hy,y. Such a uniform distribution
will average out the impact of UAV distributions [14]. We
only take the discrete points inside the center hexagonal
cell into consideration.
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Fig. 7 - Optimal UT angles obtained from the proposed GA algorithm
for ISD = 500 m for (a) hyayy = 100 m, (b) hyay = 200 m, and (c) for
ISD = 1000 m and hyy = 100 m.

6.1 Optimal UT angle analysis

After obtaining the best solutions of UT angles by using
(11) and (12) and our proposed GA-based method, we
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calculate the UAV SIRs in USFs for the two ISDs and UAV
heights. Then elCIC is used to get the pertinent UAV SIRs
in CSFs. For ISD = 500 m and A,y = 100 m and 200 m,
the best solutions obtained from the proposed GA-based
algorithm are presented in Fig. 7(a) and Fig. 7(b), respec-
tively. Our results show that one of the six neighboring
GBS chooses a relatively smaller UT angle and provides
high received power to the UAVs for hy,, = 100 m. The
other GBSs overall maintain higher UT angles to reduce
the interference from the side lobes.

A similar conclusion can also be drawn for A,y = 200 m,
while one big exception is that the UAVs are supported by
s tier-2 GBS as shown in Fig. 7(b). Due to the compact
GBS locations and higher UAV height, the tier-2 GBSs can
provide better SIR by choosing an angle that covers most
of the discrete UAV locations for hy,, = 200 m. For ISD
= 1000 m, both UAV heights show the similar trend as
Fig. 7(a) and in Fig. 7(c), we report the best solutions of
UT angles for Ay, = 100 m. Overall, the GBSs tend to
choose lower UT angles for larger ISD to reduce inter-cell
interference. A similar case of obtaining lower UT angles
for higher ISD was also reported in [23].

For ISD = 500 m and hy,y = 100 m and 200 m, the re-
spective UAV SIR cumulative distribution function (CDF)
plots are presented in Fig. 8(a) and Fig. 8(b), respectively.
From both figures, we can conclude that our proposed op-
timal HRA scheme provides higher minimum SIR (about
—1.36 dB for hy,y = 100 m and about 10 dB for hy,y =
200 m) than the other baseline methods. The optimiza-
tion framework considers the minimum UAV SIR inside
the center cell and thus the interfering GBSs choose UT
angles which create less interference towards the UAVs.
During the CSFs, turning the down-tilted antennas off in-
creases the minimum SIR to about 6 dB for hy,y = 100 m
and about 12.5 dB for hy,y = 200 m. One interesting ob-
servation is that the overall SIR with eICIC is higher for
hyay = 100 m. This is because the UAVs suffer more in-
terference from the down-tilted antennas for lower UAV
heights via GR and antenna side lobes. Moreover, the
path-loss is also lower for hy,y = 100 m than hy,y =
200 m. Hence, muting the down-tilted antennas provide
higher SIR gain in the CSFs for hy,y = 100 m.

In the HRA single scheme, the GBSs choose the same op-
timal angle, which result in less degree of freedom to
improve the SIR performance. Hence, it provides com-
paratively lower SIR (about —11 dB for hy,y = 100 m
and about —8 dB for A,y = 200 m) than our proposed
method. Even with the ICIC, the overall gain in the
minimum SIR is still significantly lower than without
the ICIC minimum SIR of our proposed scheme. The
random scheme chooses the UT angles for each of the
GBSs and thus provides better performance than HRA
single. Thus, it is evident from the discussion that it is
critical to tune the UT angles of the GBSs individually for
the successful inte- gration of the up-tilted antenna sets.
Finally, for the case in which the UAVs are served by only
down-tilted antennas
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and without the ICIC scheme, the overall SIR is very low
(less than —8 dB) for both of the UAV heights. For larger
cell sizes or ISD = 1000 m and the two UAV heights, we
can conclude from Fig. 9(a) and Fig. 9(b) that our method
outperforms the other baseline schemes significantly in
terms of the minimum UAV SIR during the USFs i.e., with-
out ICIC.

Fig. 10 shows the rates (bps/Hz) for the baseline schemes
using (14) and (15). From Fig. 10, we can observe that our
proposed optimal HRA scheme provides a higher mini-
mum rate, 50th-percentile rate, and sum rate than other
baseline schemes. The HRA (no ICIC or UT antennas)
scheme is excluded in the rate comparison due to its very
low SIR performance (less than —8 dB). Due to the higher
SIR obtained with eICIC, overall the rates increase signif-
icantly in the CSFs. The UAV with the minimum SIR in the
HRA single scheme is associated with the down-tilted an-
tennas and thus, HRA single provides the same rate in USF
and CSF. Similar observations are also obtained for other
UAV height and ISD.
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6.2 Impact of the down-tilted antenna

DT angles can create a significant impact on the overall
performance of the network since they play a major role
in determining the inter-cell interference. Higher DT an-
gles decrease the interference towards other nearby GBSs
which translates to a better coverage for GUEs. However,
for UAVs flying in the sky, the DT angles can create inter-
ference by both side lobes and GR. This motivated us to
study the impact of DT angles of the down-tilted antenna
sets and report the relevant results in Fig. 11.

In Fig. 11(a), we show the SIR CDFs for A,y = 100 m and
200 m by calculating the optimal UT angles using an op-
timal HRA scheme for three DT angles namely, 0°, 6°, and
12°, respectively. From this figure, we can conclude that
the 0° DT angle overall provides low SIR in both USF and
CSF frames due to the higher interference stemming from
the main beam of the down-tilted antennas. Though the
impact of GRis trivial for ¢4 = 0° as discussed in Theorem
1, the focus of the main beam causes severe interference
to the far away UAVs, which degrades the overall SIR

25 1
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Fig. 10 - Rate (bps/Hz) analysis for hy,y = 100 m and ISD = 500 m.
(a) min rate, (b) 50th-percentile rate, and (c) sum rate.
performance. Although higher DT angles are beneficial
for GUEs, our results show that 6° provides better SIR
performance than its 12° counterpart. This is because, for
a 12° DT angle, the UAVs faces more interference by GR
from the closest GBS as described in Theorem 1.
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Fig. 11 - UAV SIR CDFs for ISD = 500 m for (a) hAyyy = 100 m and (b)
hyay = 200 m.

For a 6° DT angle, UAVs usually suffer less severe
interference in GR from neighbor GBSs due to higher
path-loss since the GR signals have to travel longer to
reach the UAV.

For the CSFs, we obtain high SIR for both 6°and 12°. Due
to the higher GR interference of 12°, this angle provides
the highest SIRs in the CSFs by muting the down-tilted
antennas. From Fig. 11(b), we can make similar obser-
vations for hy,y = 200 m. However, in Fig. 11(b), the
UAVs achieve better SIRs than those of lower heights. This
is due to the fact that the GRs from the GBSs face higher
path-loss and thus become weak when they reach UAVs.
Moreover, the interference due to the side lobes also
weakens due to the increased distances from the GBSs.
Interestingly, 6° provides slightly better SIRs because this
angle provides better antenna gain through the side lobes
from its other DT angle counterparts at hy,y = 200 m.

6.3 Impact of the number of antenna elements

The number of antenna elements has a direct impact on
the antenna array gain and the beam width of the an-
tenna pattern [46]. Here, we focus on how the number
of antenna elements at the GBS can influence the SIR per-
formance of the UAVs. Note that increasing the element
number increases the antenna array gain but reduces the
beam width and vice versa [46]. In Fig. 12(a), we plot the
antenna gains in dB scale for N, = 4, 16, and 32 using (3)
and ¢4 = 6°. As expected, the antenna gain increases by
3 dB for doubling the antenna elements and at the same
time, the main beam becomes narrower. To study the im-
pact of this phenomenon, we use the proposed optimal
HRA method to calculate the optimal UT angles in USFs
for different IV, and report the finding in Fig. 12(b). Since
antenna with low NV, provides lower gain, the SIRs corre-
sponding to N, = 4 obtains lower values. For instance,
about 20% of the UAVs suffer from very low SIR (less than
—5dB).

For the other two N, plots, we can see an interesting
trade-off. When N, = 16 is considered, Fig. 13(b) verifies
that it provides better minimum SIR (greater than 0 dB)
than IV, =8, thanks to its higher antenna gain. However,
due to its wider beam width, with NV, = 8, GBSs can
cover a larger area in the sky with higher gains. This
trans- lates into the fact that about 70% of the UAVs
achieve a higher SIR compared to the case when GBSs
are equipped with 16 antennas each. This interesting
insight can help the network operators better plan the
number of antenna elements they need depending on
their performance requirements.

6.4 Impact of the physical separation of the
antenna sets

We also study the impact of the antenna separation dis-
tance hy between the up-tilted and the down-tilted an-
tenna sets. We consider hy,y = 100 m and ISD= 500 m
and 1000 m and show the resulting UAV SIRs for the opti-
mal UT angles in Fig. 13. For both ISDs, we can conclude
that the overall impact of h is very trivial for the optimal
UT angles during USFs. The related SIRs are slightly bet-
ter for hq = 2m. This is due to the fact that with higher Ay,
the main lobes of the two sets of antennas are more sepa-
rated from each other and thus creates less interference.

Another interesting finding is that the impact of hy is
more visible for ISD= 1000 m. This is because the GBSs
tend to pick lower UT angles for covering the cell-edge
UAVs for larger ISDs, and hence, the higher 24 helps to
keep the main beams of the up-tilted and down-tilted an-
tennas further away. This results in lower interference
and thus higher SIRs for the UAVs. Whereas for lower
ISDs, the GBSs pick higher values of UT angles which are
already separated from the main beams of the down-tilted
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antennas, and thus the overall impact of h is trivial here.

6.5 Impact on the GUE SIR

Thus far, we have focused on scenarios in which the UAVs
as the only users in the network. After proper tuning of
the UT angles, the presence of the extra set of up-tilted
antennas along with the eICIC method can provide a high
and reliable SIR for the UAVs flying in the sky. However,
the extra set of antennas can also introduce interference
to the existing GUEs. Hence, in this subsection, we study
the impact of our proposed UT angle tuning scheme on
the GUEs.

Here, we consider the three DT angles as done before
along with the two ISDs and UAV heights to check the
impact thoroughly and report the results in Fig. 14. We
use the GR-based path-loss model with a height of 1.5 m
to represent the GUE cases. We only report the USF re-
sults for visual convenience and the CSF cases show the
same trends and hence, are omitted here. The cases with
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the up-tilted antennas are presented with solid lines and
scenarios without the up-tilted antennas are represented
by the dashed lines. It is evident from the plots of both
Fig. 14(a) and Fig. 14(b) that the impact of up-tilted an-
tennas on the GUE SIRs is trivial and the lines represen-
ting these two scenarios overlap each other. This is
be- cause the main lobes of the up-tilted antennas are

focused towards the sky and hence, the only impact they
can create is through the side lobes. However, these side
lobes of the up-tilted antennas can create little to no

impact on the GUEs who are associated with GBS
providing very high antenna gains. Note that the
overall trends will still be the same for 3GPP-based

path-loss models [40] for GUEs.

Note that the SIRs of the GUEs increase with increasing
DT angle since higher DT angles reduce inter-cell interfe-
rence. Moreover, larger cell areas or ISDs provide
better SIR performance due to the reduced interference
on the cell-centered GUEs. Other than the plot for ISD=
1000 m and hy,y = 200 m, all other plots show that
GUE performance is invariant of the optimal UT angles of
the up-tilted antennas. For ISD= 1000 m and A,y = 200
m, the cell-edge users suffer from less interference since
GBSs tend to focus more upwards with higher A ,y.

7. CONCLUDING REMARKS AND DISCUS-
SION

In this paper, we have proposed a novel cellular archi-
tecture by considering an extra set of antennas that are
up-tilted to provide good and reliable connectivity to the
UAVs. These antennas coexist with the traditional down-
tilted antennas and use the same time and frequency re-
sources. The down-tilted antennas can create interfe-
rence to the UAVs by the antenna side lobes and GR,
and we have proposed a modified path-loss model to
capture the impact of the GR on the UAVs. To ensure high
SIR and reliable connectivity, we have formulated an
optimization problem with an aim to maximize the
minimum UAV SIR by tuning the UT angle of each GBS.
Since the problem is NP-hard, we have proposed a
GA-based UT angle optimization method to obtain

high-quality suboptimal so- lutions efficiently. Apart

from this, we have also consid- ered the 3GPP specified
elCIC to reduce the interference caused by the
down-tilted antennas. We have run extensive simula-
tions to study our proposed method for various cellular
network deployment configurations such as ISD, UAV
height, DT angle, number of antenna elements, etc. Our
results have shown that overall our proposed method
can provide high minimum SIR for the UAVs. Our results
have also revealed some interesting design guide- lines
such as the impact of the number of antenna ele-
ments and the DT angles on the UAV SIR performance, and
most importantly, our method has shown little to no im-
pact on the SIRs of the existing GUEs in the network.
Thus, the proposed technique can be a strong candidate for

deploying large-scale urban aerial systems in the near
future while maintaining the reliable and efficient
coexistence of UAVs and GUEs.

Our proposed framework can be extended in several
ways. First of all, the duty cycle parameter 3 can be taken
into account in the optimization framework to maximize
the minimum rate (instead of SIR) of both GUE and UAV
since those who are associated with down-tilted antennas
suffer from the reduced rate in our proposed framework.
Moreover, the updated version of eICIC known as fur-
ther enhanced ICIC (FeICIC) can be considered in which
traffic data is transmitted during ABS with relatively low
power. Another interesting study will be providing bet-
ter connectivity and reliable mobility (i.e., reducing ping-
pong and handover failures) to the UAVs whose trajecto-
ries are known before. It is worth noting that, our pro-
posed method will not be able to support UAVs in the re-
gions where cellular infrastructures are not available i.e.,
over deserts or oceans. We may need to rely on high-
altitude aerials platforms or low earth orbital satellites
for providing reliable connectivity to UAVs in these ex-
treme cases.

Another limitation of our proposed framework is that the
extra set of antennas will increase the overall energy con-
sumption of the network. Moreover, the DT angles of the
down-tilted antennas can impact the SIR performance
of the UAVs. Hence, joint optimization of UT angles,
transmit power of the up-tilted antennas, elCIC/FelCIC
parameters, and DT angles will be included in our future
work to make our framework more efficient.
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